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Let Lip(X), Lipb(X), Liploc(X) and Lippt(X) be the vector spaces
of Lipschitz, bounded Lipschitz, locally Lipschitz and pointwise
Lipschitz (real-valued) functions defined on a metric space (X, dX),
respectively. We show that if a weighted composition operator
Tf = h · f ◦ ϕ defines a bijection between such vector spaces pre-
serving Lipschitz constants, local Lipschitz constants or pointwise
Lipschitz constants, then h = ±1/α is a constant function for some
scalar α > 0 and ϕ is an α-dilation.

Let V be open connected and U be open, or both U, V are
convex bodies, in normed linear spaces E,F , respectively. Let Tf =
h · f ◦ ϕ be a bijective weighed composition operator between the
vector spaces Lip(U) and Lip(V ), Lipb(U) and Lipb(V ), Liploc(U)
and Liploc(V ), or Lippt(U) and Lippt(V ), preserving the Lipschitz,
locally Lipschitz, or pointwise Lipschitz constants, respectively. We
show that there is a linear isometry A : F → E, an α > 0 and a
vector b ∈ E such that ϕ(x) = αAx+b, and h is a constant function
assuming value ±1/α. More concrete results are obtained for the
special cases when E = F = R

n, or when U, V are n-dimensional
flat manifolds.
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1. Introduction

Let f : (X, dX) → (Y, dY ) be a map between metric spaces. Let B(p, ε) be
the open ball in the metric space X centered at p of radius ε > 0. We say
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that f is Lipschitz if the Lipschitz constant

L(f) = sup
x �=y∈X

dY (f(x), f(y))

dX(x, y)
< +∞;

we say that f is locally Lipschitz if the local Lipschitz constants

Lloc
p (f) = lim

ε→0+
sup

x �=y∈B(p,ε)

dY (f(x), f(y))

dX(x, y)
< +∞, ∀p ∈ X;

and we say that f is pointwise Lipschitz if the pointwise Lipschitz constants

Lpt
p (f) = lim sup

x→p

dY (f(x), f(p))

dX(x, p)
< +∞, ∀p ∈ X.

Let Lip(X), Lipb(X), Liploc(X) and Lippt(X) denote the (real) vector spaces
of Lipschitz, bounded Lipschitz, locally Lipschitz, and pointwise Lipschitz
(real-valued) functions on X into Y = R, respectively. Clearly, Lipb(X) ⊆
Lip(X) ⊆ Liploc(X) ⊆ Lippt(X) and 0 ≤ Lpt(f) ≤ Lloc ≤ L(f), in general,
but all the inclusions and inequalities can be strict. However, for a bounded
metric space X we have Lip(X) = Lipb(X). On the other hand, Lip(X) =
Lip(X) where X is the metric completion of X. See, e.g., [2, Examples 2.6
and 2.7], for more details.

We are interested in the question how the (resp. local, pointwise) Lip-
schitz constants determine the (resp. local, pointwise) Lipschitz function
spaces. For example, if T : Lip(X) → Lip(Y ) is a bijective linear map pre-
serving Lipschitz constants, namely,

L(Tf) = L(f), for every f ∈ Lip(X),

we ask if the underlying metric spaces X,Y are equivalent, and if T carries
some good structure. The following results give us motivations.

Proposition 1.1. (a) (Weaver [11, Theorem D]; see also [12, Sections 2.6
and 2.7]) Let X,Y be complete metric spaces of diameter at most 2,
which cannot be written as a disjoint union of two nonempty subsets
with distance ≥ 1. If T : Lip(X) → Lip(Y ) is a surjective linear isometry
with respect to the norm ‖f‖ = max{‖f‖∞, L(f)}, then

Tf = α · f ◦ ϕ, ∀f ∈ Lip(X),

where ϕ : Y → X is a surjective isometry and α is a unimodular con-
stant.
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(b) (Wu [13], Araujo and Dubarbie [1, Corollary 6.1]) Let X be a bounded
complete metric space and Y be a compact metric space. If T : Lip(X) →
Lip(Y ) is a linear bijection preserving zero products, that is,

fg = 0 =⇒ TfTg = 0,

then

Tf = h · f ◦ ϕ, ∀f ∈ Lip(X),

where ϕ is a bijective Lipschitz map from Y onto X with Lipschitz in-
verse ϕ−1, and h ∈ Lip(Y ) is nonvanishing.

See also, e.g., [2, 6, 10]. However, if the map T preserves only the Lipschitz
constants without other assumption, T needs not carry a weighted compo-
sition operator form. For example, let Ψ be an arbitrary linear functional
of the vector space Lip(X). Then the assignment Tf(x) = f(x) + Ψ(f) de-
fines a linear bijective map from Lip(X) onto Lip(X) preserving Lipschitz
constants. But T does not assume a weighted composition form.

In this paper, based on [7], we study the structure of a weighted compo-
sition operator Tf = h · f ◦ ϕ between Lipschitz function spaces defined on
metric spacesX and Y , which preserves Lipschitz constants. We will see that
ϕ is an α-dilation for a positive constant α, i.e., dX(ϕ(u), ϕ(v)) = αdY (u, v),
∀u, v ∈ Y , and h is a constant function assuming the value ±1/α. In partic-
ular, if V is open connected and U is open, or both U, V are convex bodies,
in normed linear spaces E,F , respectively, then ϕ(x) = αAx+ b for a linear
isometry A : F → E and a vector b ∈ E. In other words,

Tf(x) = ±α−1f(Ax+ b).

When E = F = R
n, we obtain similar results for those bijective weighted

composition operators preserving local or pointwise Lipschitz constants. We
also extend these results to the case when U, V are flat manifolds.

2. Weighted composition operators preserving Lipschitz
constants

All vector spaces discussed in this paper are over the real number field R.
In this section, we study Lipschitz constant preserving weighted compo-

sition operators between Lipschitz function spaces. We begin with some well
known results. Here, by an α-dilation (resp. isometry) between metric spaces
X,Y for α > 0, we mean a map ϕ : X → Y such that dY (ϕ(x), ϕ(y)) =
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αdX(x, y) (resp. when α = 1) for all x, y ∈ X. Moreover, a convex body in
a normed linear space is a (not necessarily closed or bounded) convex set
with nonempty interior.

Proposition 2.1. (a) (Mazur-Ulam theorem; see, e.g., [4]) Every surjective
isometry T : M → N between normed linear spaces is affine; namely,

T (λx+ (1− λ)y) = λTx+ (1− λ)Ty, for all x, y ∈ M and 0 ≤ λ ≤ 1.

(b) (Mankiewicz [9]) Every isometry ϕ : U → V from an open connected
set (resp. convex body) U in a normed linear space M onto an open set
(resp. convex body) V in a normed linear space N has a unique isometric
extension from M onto N .

Recall that a metric space (X, dX) is quasi-convex if there is a constant
C > 0 such that for any x, y ∈ X there is a continuous path in X joining x
to y with length at most CdX(x, y).

Proposition 2.2 ([5, Theorems 3.9 and 3.12]). Let ϕ : Y → X be a map
between metric spaces. Then ϕ is Lipschitz if and only if

(a) f ◦ ϕ ∈ Lip(Y ) for each f ∈ Lip(X); or
(b) f ◦ ϕ ∈ Lipb(Y ) for each f ∈ Lipb(X), provided that both X,Y are

quasi-convex.

Theorem 2.3. Let (X, dX) and (Y, dY ) be (resp. quasi-convex) metric spaces.
Let T : Lip(X) → Lip(Y ) (resp. T : Lipb(X) → Lipb(Y )) be a bijective
weighted composition operator Tf = h · f ◦ϕ preserving Lipschitz constants.
Then ϕ is an α-dilation from Y onto a dense subset X0 = ϕ(Y ) of X for
α > 0, and h is a constant function assuming either 1/α or −1/α. If Y is
complete, then ϕ(Y ) = X.

Proof. We verify the case when T sends Lip(X) onto Lip(Y ). The other case
follows similarly.

Since T preserves Lipschitz constants, so does its inverse; indeed,

L(g) = L(TT−1g) = L(T−1g), for all g in Lip(Y ).

Observe that

0 = L(1) = L(T1) = L(h) = sup
u�=v

|h(u)− h(v)|
dY (u, v)

.

Hence h = ±1/α is a nonzero constant function for a scalar α > 0.
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For any f in Lip(X), we have f ◦ ϕ = ±αTf ∈ Lip(Y ). It follows from
Proposition 2.2 that ϕ is Lipschitz. Since T is bijective, ϕ is one-to-one
with dense range. Let X0 = ϕ(Y ), which is a dense subset of the metric
space X. Define a bijective linear map S : Lip(Y ) → Lip(X0) such that
Sg = T−1g |X0

; in other words, Sg = ±αg ◦ψ, where ψ is the bijection from
X0 onto Y defined by the condition ψ(x) = y whenever x = ϕ(y). Then a
similar argument shows that ψ is Lipschitz from X0 onto Y . Let ϕ : Y → X
and ψ : X → Y be the unique Lipschitz extensions of ϕ and ψ between the
metric completions X,Y of X,Y , respectively. For any x ∈ X, let xn ∈ X0

such that xn → x, we have ϕ(ψ(x)) = limn ϕ(ψ(xn)) = limn ϕ(ψ(xn)) =
limn xn = x. It amounts to saying that ϕ ◦ ψ = IX . In a similar manner, we
see that ψ ◦ ϕ = IY , and thus ϕ−1 = ψ is also Lipschitz.

On the other hand, the fact

L(f) = L(Tf) = L(±α−1f ◦ ϕ) ≤ α−1L(f)L(ϕ), ∀f ∈ Lip(X),

implies that L(ϕ) ≥ α. Assume L(ϕ) > α. Then there are p and q in Y ,
such that

dX(ϕ(p), ϕ(q)) > αdY (p, q).

Define f̃ : X → R by

f̃(x) = min{dX(x, ϕ(p)), dX(ϕ(p), ϕ(q))}.

Then

|f̃(x)− f̃(y)| ≤ |dX(x, ϕ(p))− dX(y, ϕ(p))|
≤ dX(x, y), for all x, y in X,

and

‖f̃(ϕ(q))− f̃(ϕ(p))‖ = dX(ϕ(q), ϕ(p)).

Hence, f̃ ∈ Lipb(X) with L(f̃) = 1. But

|T f̃(p)− T f̃(q)| = |h(p)f̃ ◦ ϕ(p)− h(q)f̃ ◦ ϕ(q)|
=α−1dX(ϕ(p), ϕ(q))

>dY (p, q).

This implies L(T f̃) > 1, which is a contradiction. Hence L(ϕ) = α. Similarly,
L(ψ) = α−1.
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If u �= v in Y and ϕ(u) = s, ϕ(v) = t in X, then

α = L(ϕ) ≥ dX(ϕ(u), ϕ(v))

dY (u, v)
=

dX(s, t)

dY (ψ(s), ψ(t))
≥ 1

L(ψ)
= α,

and thus

dX(ϕ(u), ϕ(v)) = αdY (u, v).

In other words, ϕ is an α-dilation.
Finally, if Y = Y is complete then X0 = ϕ(Y ) is also complete, and thus

ϕ(Y ) = X0 = X.

Corollary 2.4. Assume either that U, V are open sets and V is connected,
or that both U, V are convex bodies, in normed linear spaces E,F , respec-
tively. Let the weighed composition operator Tf = h · f ◦ϕ define a bijection
from Lip(U) onto Lip(V ) preserving Lipschitz constants. Then there is a
linear isometry A : F → E with dense range, a scalar α > 0 and a vector
b ∈ E such that ϕ(y) = αAy + b for all y ∈ V , and h is a constant function
assuming value ±α−1. In other words,

Tf(y) = ±α−1f(αAy + b), for all f ∈ Lip(U) and for all y ∈ V .

Proof. By Theorem 2.3, we know that h = ±α−1 is a constant function for
some α > 0, and ϕ is an α-dilation from V onto a dense subset of U . Indeed,
ϕ extends uniquely to an α-dilation ϕ from V onto U , where U, V are the
closures of U, V in the Banach space completions E,F of E,F , respectively.

If V is open and connected in F , then so is the interior of V in F . It is
plain that ϕ sends the interior of V in the Banach space F onto the interior
of U in the Banach space E. Then ϕ extends uniquely to an affine α-dilation
from F onto E by Proposition 2.1. In the other case, U, V are both convex
bodies in E,F , and thus so are U, V in the Banach spaces E,F , respectively.
It follows from Proposition 2.1 again that ϕ extends uniquely to an affine α-
dilation from F onto E. In both cases, ϕ extends to a unique affine α-dilation
from F into E with dense range. The assertion follows.

Corollary 2.5. Let U, V be convex bodies in normed linear spaces E,F ,
respectively. Let the weighed composition operator Tf = h · f ◦ ϕ define a
bijection from Lipb(U) onto Lipb(V ) preserving Lipschitz constants. Then
there is a surjective linear isometry A : F → E, a scalar α > 0 and a vector
b ∈ E such that ϕ(y) = αAy + b for all y ∈ V , and h is a constant function
assuming value ±α−1. In other words,

Tf(y) = ±α−1f(αAy + b), for all f ∈ Lip(U) and for all y ∈ V .
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Proof. Note that convex bodies in normed spaces are quasi-convex. The

proof now goes the same way as in Corollary 2.4.

Example 2.6. (a) Let Tf = h · f ◦ ϕ define a bijection T : Lip(Rn) →
Lip(Rn) preserving Lipschitz constants. It follows from Theorem 2.3 that ϕ

is Lipschitz, and indeed an L(ϕ)-dilation of Rn. Moreover, h is the constant

function assuming either 1/L(ϕ) or −1/L(ϕ). By Proposition 2.1, there is an

n× n orthogonal matrix A such that ϕ(x) = L(ϕ)Ax+ ϕ(0). Let α = L(ϕ)

and b = ϕ(0), we have

Tf(x) = ±α−1f(αAx+ b) for all x ∈ R
n.

(b) Let Tf = h · f ◦ ϕ define a bijection T : Lip([0, 1]) → Lip([0, 1])

preserving Lipschitz constants. Applying Theorem 2.3, we see that ϕ is an

L(ϕ)-dilation of [0, 1]. This forces L(ϕ) = 1, and either ϕ(x) = x or ϕ(x) =

1− x. Consequently, T is given by

Tf(x) = ±f(x) or Tf(x) = ±f(1− x).

(c) More generally, let Tf = h · f ◦ ϕ define a bijection T : Lip([a, b]) →
Lip([c, d]) preserving Lipschitz constants. Then L(ϕ) = b−a

d−c , h = ±d−c
b−a , and

either

ϕ(x) =
b− a

d− c
(x− c) + a or ϕ(x) =

b− a

d− c
(d− x) + a.

Consequently,

T (f) = ±d− c

b− a
f

(
b− a

d− c
(x− c) + a

)
,

or

T (f) = ±d− c

b− a
f

(
b− a

d− c
(d− x) + a

)
.

(d) Let T : Lip([0, 1]n) → Lip([0, 1]n) be a bijective weighted composition

operator preserving Lipschitz constants. It follows from Corollary 2.4 and

the structure of the symmetric group of the n-cube that

Tf(x) = ±f(Px+ b) for all x ∈ [0, 1]n,
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for an n × n signed permutation matrix P (in the sense that exactly one
entry in each row and each column is ±1, and elsewhere 0), and a vector
b ∈ R

n in which all entries are either 0 or 1.

(e) There are similar versions for bounded Lipschitz functions in all
above examples. The conclusions are identical.

3. Weighted composition operators preserving
local/pointwise Lipschitz constants

We say that a weighted composition operator Tf = h · f ◦ϕ from Liploc(X)
into Liploc(Y ), or from Lippt(X) into Lippt(Y ), preserves the local or point-
wise Lipschitz constants (with respect to ϕ), if

Lloc
p (Tf) = Lloc

ϕ(p)(f) for all f ∈ Lip(X) and all p ∈ Y ,

or

Lpt
p (Tf) = Lpt

ϕ(p)(f) for all f ∈ Lip(X) and all p ∈ Y .

In this section we consider weighted composition operators between lo-
cally or pointwise Lipschitz functions on Euclidean spaces preserving local
or pointwise Lipschitz constants, respectively.

Proposition 3.1. Let (X, dX) and (Y, dY ) be metric spaces without isolated
point, and let ϕ : Y → X be a map. Suppose that

f ◦ϕ ∈ Liploc(Y ) (resp. Lippt(Y )) for all f ∈ Liploc(X) (resp. Lippt(X)).

Then ϕ is locally (resp. pointwise) Lipschitz from Y into X. If the compo-
sition map f → f ◦ ϕ preserves local (resp. pointwise) Lipschitz constants
then Lloc

q (ϕ) = 1 (resp. Lpt
q (ϕ) = 1) for every q ∈ Y .

Proof. Let q ∈ Y , and let fq(x) = min{dX(x, ϕ(q)), 1}. Then fq is bounded
and pointwise Lipschitz on X. In particular, Lpt

ϕ(q)(fq) = 1. Since q is not an

isolated point in Y , we see that dX(ϕ(y), ϕ(q)) < 1 eventually when y → q.
Hence,

Lpt
q (fq ◦ ϕ) = lim sup

y→q

|fq(ϕ(y))− fq(ϕ(q))|
dY (y, q)

= lim sup
y→q

min{dX(ϕ(y), ϕ(q)), 1}
dY (y, q)

< +∞.
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Thus,

Lpt
q (ϕ) = lim sup

y→q

dX(ϕ(y), ϕ(q))

dY (y, q)
= Lpt

q (fq ◦ ϕ) < +∞.

Since this holds for every point q in Y , we see that ϕ is pointwise Lipschitz

from Y into X. Moreover, Lpt
q (ϕ) = 1 for all q ∈ Y if the composition map

f → f ◦ ϕ preserves pointwise Lipschitz constants.

The case for local Lipschitzness is proved in [5, Lemma 3.15]. As an

alternative proof, consider

Lloc
ϕ(q)(fq) = lim sup

y,z→ϕ(q)

|fq(y)− fq(z)|
dX(y, z)

≤ lim sup
y,z→ϕ(q)

|dX(y, ϕ(q))− dX(z, ϕ(q))|
dX(y, z)

≤ 1,

while, in general,

Lloc
ϕ(q)(fq) ≥ Lpt

ϕ(q)(fq) = 1.

Thus, Lloc
ϕ(q)(fq) = 1. In a similar fashion, we can verify that ϕ is locally

Lipschitz, and Lloc
q (ϕ) = 1 when the composition map f → f ◦ ϕ preserves

local Lipschitz constants.

Lemma 3.2. Let ϕ : [a, b] → R be a locally (resp. pointwise) Lipschitz

function satisfying that

Lloc
p (ϕ) = α (resp. Lpt

p (ϕ) = α), for all p ∈ [a, b].

If α = 0 then ϕ(x) = c for some fixed scalar c. In general, if ϕ is injective

then ϕ(x) = αx+ c or ϕ(x) = −αx+ c on [a, b] for some fixed scalar c.

Proof. Suppose

Lloc
p (ϕ) = lim sup

x,y→p
x,y∈[a,b]

|ϕ(x)− ϕ(y)|
|x− y| = α for all p ∈ [a, b].

Let ε > 0. For any point p ∈ [a, b], there is an open interval B(p, δp) centered

at p with radius δp > 0 such that

|ϕ(x)− ϕ(y)|
|x− y| < α+ ε for all x, y ∈ B(p, δp) ∩ [a, b].
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By the Lebesgue’s number lemma, there is a δ > 0 such that for any partition
[a, b] =

⋃m
i=1[xi−1, xi] with all |xi − xi−1| < δ, we have xi−1, xi ∈ B(pi, δpi

)
for some pi ∈ [a, b], and thus

m∑
i=1

|ϕ(xi)− ϕ(xi−1)| <
m∑
i=1

(α+ ε)|xi − xi−1|(3.1)

=(α+ ε)(b− a) < +∞.

In particular, ϕ is of bounded variation on [a, b]. Consequently, ϕ is differ-
entiable almost everywhere in [a, b], and |ϕ′(p)| = α for almost all p ∈ [a, b].
If α = 0 then ϕ assumes constant value c on [a, b].

Suppose ϕ is injective now. Since ϕ is continuous and injective, it is
monotone on [a, b]. Thus, ϕ′ = α or ϕ′ = −α almost everywhere on [a, b].
Hence, in the sense of Lebesgue integral,

ϕ(x)− ϕ(a) =

∫ x

a
ϕ′(t) dt = ±α(x− a).

Consequently, ϕ(x) = αx+ c or ϕ(x) = −αx+ c on [a, b], where c = ∓αa+
ϕ(a).

The other case when

Lpt
p (ϕ) = lim sup

x→p

|ϕ(x)− ϕ(p)|
|x− p| = α, for all p ∈ [a, b],

follows similarly, except that in (3.1) we might break |ϕ(xi) − ϕ(xi−1)| ≤
|ϕ(xi)− ϕ(pi)|+ |ϕ(pi)− ϕ(xi−1)| where xi−1, xi ∈ B(pi; δpi

).

The following example tells us that the injectivity condition is indispens-
able.

Example 3.3. Define ϕ : [0, 1] → [12 , 1] by

ϕ(x) =

{
x, 1

2 ≤ x ≤ 1,
1− x, 0 ≤ x ≤ 1

2 .

Then Lloc
x (ϕ) = 1 for all x ∈ [0, 1]. But ϕ is not linear.

Lemma 3.4. Let V be either an open connected set or a convex body in a
normed linear space. Let h be locally or pointwise Lipschitz function on V
with Lloc

q (h) = 0 or Lpt
q (h) = 0 for all q ∈ V . Then h is a constant function

on V .
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Proof. Suppose h ∈ Lippt(V ) with Lpt
q (h) = 0 for all q ∈ V . Let (1− t)x+ ty

for t ∈ [0, 1] be a path lying in the interior of V . Define f : [0, 1] → R

by f(t) = h((1 − t)x + ty). Then f ∈ Lippt([0, 1]) with Lpt
t (f) = 0 for all

t ∈ [0, 1]. By Lemma 3.2, f is a constant function. In other words, h(x) =
h(y). A connected argument shows that h is constant on V if V is open and
connected. If V is a convex body, then we can see that h is constant on the
interior of V . By continuity, h is constant on V .

We also have the following well known results.

Proposition 3.5 (Rademacher/Stepanov Theorem; see, e.g., [3, 8]). Let V
be an open subset of Rn. Every locally/pointwise Lipschitz function ϕ(x) =
(ϕ1(x), ϕ2(x), · · · , ϕn(x)) from V into R

n is differentiable on V almost ev-
erywhere. In particular, for every v �= 0 in R, the directional derivative
Dvϕi(x) = v · ∇ϕi(x) exists for almost every x in V for i = 1, 2, · · · , n.
Theorem 3.6. Let U and V be two open connected sets or two convex bodies
in R

n. Let T : Liploc(U) → Liploc(V ) (resp. T : Lippt(U) → Lippt(V )) be a
bijective weighted composition operator defined by Tf = h · f ◦ ϕ preserving
local (resp. pointwise) Lipschitz constants. Then h assumes constant value
±α−1 on V for some α > 0, and ϕ assumes the form ϕ(v) = αAv + b for
an n× n orthogonal matrix A and a point b ∈ R

n.

Proof. We present the proof for the case when U, V are open connected sets
in R

2, and T : Liploc(U) → Liploc(V ) preserves local Lipschitz constants.
The other cases follow similarly.

It is clear that ϕ is injective and ϕ(V ) is a dense subset of U . Since
h = T1U is locally Lipschitz with Lloc

ϕ(p)(h) = Lloc
p (1U ) = 0 for all p ∈ V , we

see that h = ±α−1 is a constant function for some α > 0 by Lemma 3.4. It
then follows from Proposition 3.1 that both ϕ and ϕ−1 are locally Lipschitz.

We write ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)). It follows from Proposition 3.5

that all partial derivatives
∂ϕ1

∂x
,
∂ϕ1

∂y
,
∂ϕ2

∂x
and

∂ϕ2

∂y
exist, and Lloc

(x,y)(ϕi) =

‖∇ϕi(x, y)‖ for i = 1, 2, for almost every point (x, y) in V . Let I1(x, y) = x
and I2(x, y) = y. Then I1 and I2 belong to Liploc(V ) with Lloc

(x,y)(I1) =

Lloc
(x,y)(I2) = 1. It follows that

α−1Lloc
ϕ(x,y)(ϕ1) = Lloc

ϕ(x,y)(h · I1 ◦ ϕ) = Lloc
(x,y)(I1) = 1

for almost every point (x, y) in V . Thus

(
∂ϕ1

∂x
(x, y))2 + (

∂ϕ1

∂y
(x, y))2 = α2.
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Dealing with I2 instead, we also have

(
∂ϕ2

∂x
(x, y))2 + (

∂ϕ2

∂y
(x, y))2 = α2

for almost all (x, y) in V .

In general, for any f in Liploc(U), by Proposition 3.5 we have

Lloc
(u,v)(f) =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

|(u,v)

for almost every (u, v) in U . Now let f(x, y) = xy in Liploc(U). We have
Lloc
(u,v)(f) =

√
v2 + u2 for all (u, v) in U . In particular,

Lloc
ϕ(x,y)(f) =

√
ϕ1(x, y)2 + ϕ2(x, y)2 for all (x, y) in U .

Hence

α
√

ϕ2
1 + ϕ2

2 |(x,y) = αLloc
ϕ(x,y)(f)

= αLloc
(x,y)(Tf) = Lloc

(x,y)(ϕ1(x, y)ϕ2(x, y))

=

√
(
∂ϕ1

∂x
ϕ2 +

∂ϕ2

∂x
ϕ1)2 + (

∂ϕ1

∂y
ϕ2 +

∂ϕ2

∂y
ϕ1)2 |(x,y)

=

√
α2(ϕ2

1 + ϕ2
2) + 2(

∂ϕ1

∂x

∂ϕ2

∂x
+

∂ϕ1

∂y

∂ϕ2

∂y
)ϕ1ϕ2 |(x,y)

for almost all (x, y) in V . This implies

∂ϕ1

∂x
(x, y)

∂ϕ2

∂x
(x, y) +

∂ϕ1

∂y
(x, y)

∂ϕ2

∂y
(x, y) = 0

for almost all (x, y) in V . Therefore,

D[ϕ]|(x,y) =

⎛
⎜⎝

∂ϕ1

∂x

∂ϕ1

∂y
∂ϕ2

∂x

∂ϕ2

∂y

⎞
⎟⎠

|(x,y)

exists, and α−1D[ϕ]|(x,y) is an orthogonal matrix for almost all (x, y) in V .
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For any two points (x1, y1) and (x2, y2) in an open ball B contained in

V , let C : [0, 1] → V be any smooth curve in B joining (x1, y1) to (x2, y2).

Using Lebesgue integration, we have

‖ϕ(x1, y1)− ϕ(x2, y2)‖ ≤
∫ 1

0
‖ d

dt
(ϕ(C(t)))‖ dt

=

∫ 1

0
‖D[ϕ(C(t))]

d

dt
C(t)‖ dt = α

∫ 1

0
‖ d

dt
C(t)‖ dt.

Hence, taking infimum over all such smooth curves C, we have

‖ϕ(x1, y1)− ϕ(x2, y2)‖ ≤ α‖(x1, y1)− (x2, y2)‖.

In particular, the injective map ϕ is continuous on the open set V ⊂ R
n. By

the invariance of domain, U0 = ϕ(V ) is an open dense subset of the open

set U ⊂ R
n. It is clear that T−1g |U0

= αg ◦ ϕ−1 preserves local Lipschitz

constants. By a similar argument, we have αD[ϕ−1]|q exists as an orthogonal

matrix for almost every point q ∈ U0. Hence, the reverse inequality

‖ϕ(x1, y1)− ϕ(x2, y2)‖ ≥ α‖(x1, y1)− (x2, y2)‖

also holds. In other words, ϕ is an α-dilation from B onto ϕ(B) for any

open ball B contained in V . It follows from Proposition 2.1 that ϕ |B can be

uniquely extended to an α-dilation from R
n onto itself. By a connectedness

argument, we see that ϕ can be extended uniquely to the same α-dilation

of Rn onto itself. In other words, ϕ(v) = αAv + b for an n × n orthogonal

matrix A and a vector b ∈ R
n, as asserted.

Example 3.7. Let T : Liploc([0, 1]n) → Liploc([0, 1]n) be a bijective weighted

composition operator preserving local Lipschitz constants. Then

Tf = ±f(Px+ b),

where P is an n×n signed permutation matrix and b ∈ R
n has entries either

0 or 1.

Example 3.8. Let T : Liploc([a, b]) → Liploc([c, d]) defined by Tf = h · f ◦ ϕ
be a bijection and preserve local Lipschitz constants. Then h = d−c

b−a or

h = −d−c
b−a and ϕ(x) = b−a

d−c(x− c) + a or ϕ(x) = b−a
d−c(d− x) + a.
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4. Local/pointwise Lipschitz constant preservers of flat
manifolds

In this section we consider locally (resp. pointwise) Lipschitz functions de-
fined on flat manifolds. A flat manifold of dimension n is a set M with a
family of injective mappings, called charts, φα : Uα ⊆ R

n → φα(Uα) ⊆ M of
open connected sets Uα containing 0 such that:

(1) M ⊆ ∪αφα(Uα);
(2) For any pair α, β with W = φα(Uα) ∩ φβ(Uβ) �= ∅, the transition map

φ−1
α ◦ φβ|φ−1

β (W ) is a diffeomorphism from φ−1
β (W ) onto φ−1

α (W ), and

D[φ−1
α ◦ φβ] is orthogonal matrix-valued everywhere;

(3) The family {(Uα, φα)}α is maximal with respect to the conditions (1)
and (2).

For example, lines, circles, planes, spheres and the Möbius strip are all flat
manifolds. Note that a flat manifold becomes a metric space when it is
equipped with the geodesic distance between points.

Definition 4.1. Let M be a flat manifold of dimension n. A function f :
M → R is locally (resp. pointwise) Lipschitz if for all p in M , there is a chart
φp : U ⊆ R

n → φp(U) ⊆ M with φp(0) = p such that f ◦φp : U ⊆ R
n → R is

locally (resp. pointwise) Lipschitz at 0. Moreover, we define the local (resp.
pointwise) Lipschitz constant of f at p by Lloc

p (f) = Lloc
0 (f ◦ φp) (resp.

Lpt
p (f) = Lpt

0 (f ◦ φp)).

Lemma 4.2. Let M be a flat manifold. A function f : M → R is locally
(resp. pointwise) Lipschitz at p with respect to a chart (φp, U) is equivalent
to the same property with respect to another chart (ψp, V ) at p. Indeed, we
have Lloc

0 (f ◦ φp) = Lloc
0 (f ◦ ψp) (resp. L

pt
0 (f ◦ φp) = Lpt

0 (f ◦ ψp)).

Proof. Let W = φp(U) ∩ ψp(V ). Observe that

Lpt
0 (f ◦ φp) = Lpt

0 (f ◦ φp |φ−1
p (W )) and Lpt

0 (f ◦ ψp) = Lpt
0 (f ◦ ψp |ψ−1

p (W )).

It follows

Lpt
0 (f ◦ φp) = Lpt

0 (f ◦ ψp ◦ ψ−1
p ◦ φp |φ−1

p (W ))

≤ Lpt
0 (f ◦ ψp) · Lpt

0 (ψ−1
p ◦ φp |φ−1

p (W )) = Lpt
0 (f ◦ ψp)

and

Lpt
0 (f ◦ ψp) = Lpt

0 (f ◦ φp ◦ φ−1
p ◦ ψp |ψ−1

p (W ))
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≤ Lpt
0 (f ◦ φp) · Lpt

0 (φ−1
p ◦ ψp |ψ−1

p (W )) = Lpt
0 (f ◦ φp).

Hence Lpt
0 (f ◦ φp) = Lpt

0 (f ◦ ψp).

The case for the local Lipschitz constants is similar.

Theorem 4.3. Let M , N be two n-dimensional flat manifolds. Let σ : N →
M such that the composition operator Tf = f ◦ σ defines a bijective linear

map T : Lippt(M) → Lippt(N) satisfying that Lpt
x (Tf) = Lpt

σ(x)(f) (resp.

T : Liploc(M) → Liploc(N) satisfying that Lloc
x (Tf) = Lloc

σ(x)(f)) for all x in

N . Then σ is a local isometry in the sense that for any point p ∈ N , and any

chart φ : U → M of σ(p) and ψ : V → N of p such that σ(ψ(V )) ⊆ φ(U),

the induced map φ−1 ◦ σ ◦ ψ : V → U is an isometry.

Proof. Let p be in N , equipped with charts φ : U → M and ψ : V → N

such that ψ(0) = p, φ(0) = σ(p) and σ(ψ(V )) ⊆ φ(U). Note that both

U, V are open and connected in R
n. The composition map T (g ◦ φ−1) ◦ψ =

g◦(φ−1◦σ◦ψ) defines a bijection from Lippt(U) onto Lippt(V ) preserving the

pointwise Lipschitz constants. It follows from Theorem 3.6 that φ−1 ◦ σ ◦ ψ
extends to an isometry from R

n onto R
n.

The case for local Lipschitz functions is similar.

Example 4.4. Let S2 be the unit sphere in R
3. Let T : Lippt(S2) → Lippt(S2)

be a bijection such that Tf = f ◦ σ, and Lpt
p (Tf) = Lpt

σ(p)(f) for all p ∈ S2.

By Theorem 4.3, σ is a local isometry, and thus a surjective isometry with

respect to the geodesic metric on S2.

Example 4.5. Let 0 < r < R and

S1 × S1 = {((R+ r cos θ) cosφ, (R+ r cos θ) sinφ, r sin θ) ∈ R
3: 0 ≤ θ ≤ 2π,

0 ≤ φ ≤ 2π }

be a 2-dimensional torus. Let T : Lippt(S1 × S1) → Lippt(S1 × S1) be a

bijection such that Tf = f ◦σ and Lpt
p (Tf) = Lpt

σ(p)(f) for all p ∈ S1×S1. It

follows from Theorem 4.3 that σ is a local isometry, and thus it is a surjective

isometry of S1 × S1 in the geodesic metric.
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