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We prove that every m×n row-stochastic (RS) matrix can be writ-

ten as a convex combination of nm many {0, 1}–RS matrices. In

the special cases of 2 × 3 and 3 × 3 RS matrices, the proofs are

given constructively. Algorithms for computing the convex decom-

positions of row-stochastic matrices are provided.
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1. Introduction

A doubly stochastic (DS, for short) matrix is a matrix of nonnegative real

entries in which the sums of entries in every row and every column is 1.

DS matrices have many applications in, for example, the theory of ma-

jorization, the assignment problems, discrete Markov chains, etc; see, e.g.,

[2, 3, 12, 15, 16]. Recall that a permutation matrix is a square {0, 1}–matrix

with exactly one 1 per row and per column. Permutation matrices are DS

matrices. Clearly, every convex combination of permutation matrices is again

DS. The converse, named the Birkhoff-von Neumann theorem (BNT, for

short), was proved by Birkhoff [1] and von Neumann [13], separately.

The BNT has been proved many times again in the literature with a

number of different methods, some inductive, some constructive, and some

existential, see [4, 5, 8, 9, 10, 14] for example. In 2016, Dufossé and Ucard

[6] investigated the problem of decomposing a DS matrix as a convex sum of

the minimum number of permutation matrices. They showed that the asso-

ciated decision problem is strongly NP-complete. In 2018, Dufossé et al. [7]

published some further notes on the Birkhoff-von Neumann decomposition

of DS matrices.
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An m×n matrix A = [aij ] is said to be row-stochastic (RS, for short) if
it is nonnegative, i.e., aij ≥ 0 for all i, j, and each row sums up to 1, i.e.,

n∑
j=1

aij = 1 for i = 1, 2, . . . ,m.

Similarly, A is said to be column-stochastic (CS, for short) if it is nonnegative
and each column sums up to 1, i.e.,

m∑
i=1

aij = 1 for j = 1, 2, . . . , n.

The convex sets of all row-stochastic matrices and all column-stochastic ma-
trices are denoted by RSM(m,n) and CSM(m,n), respectively. Moreover, a
matrix A is said to be {0, 1}-row-stochastic ({0, 1}–RS, for short) if each row
of A contains exactly one entry 1 and all others 0. In other words, for each
i there exists a unique k(i) such that ai,k(i) = 1 and aij = 0 for all j �= k(i).

It amounts to saying that A =
[
δj,k(i)

]
. Clearly, there are exactly nm many

{0, 1}–row-stochastic m×n matrices, denoted by R1, R2, . . . , Rnm . Similarly,
we can define {0, 1}–column-stochastic ({0, 1}–CS, for short) matrices, and
list all {0, 1}–column-stochastic m× n matrices as C1, C2, . . . , Cmn .

It is clear that every convex combination of {0, 1}–RS matrices is RS.
Let

R(m,n) = conv{Rk : k = 1, 2, . . . , nm},
which is the convex hull of {Rk : k = 1, 2, . . . , nm}. Then RSM(m,n) ⊇
R(m,n). An interesting question is whether the converse holds; namely,
RSM(m,n) ⊆ R(m,n)? For an affirmative answer we need to prove that for
any B ∈ RSM(m,n), the equation

(1) B =

nm∑
k=1

xkRk,

has a nonnegative solution x =
[
x1 x2 · · · xnm

]T
such that x1 + x2 +

· · · + xnm = 1. This is equivalent to proving that for any D ∈ CSM(m,n),
the equation

(2) D =

mn∑
j=1

yjCj ,
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has a nonnegative solution y =
[
y1 y2 · · · ymn

]T
such that y1 + y2 +

· · ·+ ymn = 1.
In 2002, Li, et al. [11, Lemma 3.3] pointed out that the extreme points

of the compact convex set CSM(m,n) constitute

(3) ext (CSM(m,n)) = {Ck : k = 1, 2, . . . ,mn},

without a detail proof, but referring to an application of [11, Proposition
1.2]. Thus, the equation (2) has always the desired solutions y, and so does
the equation (1).

In Section 2, we provide a constructive proof of the solvability of (1)
for the special, occasionally the most useful, cases of 2 × 3 and 3 × 3 RS
matrices. In Section 3, an algorithm for finding all convex decompositions of
a row-stochastic matrix and an efficient algorithm for computing a convex
decomposition are presented.

2. The decompositions of 2 × 3 and 3 × 3 RS matrices

2.1. The 2 × 3 case

All 2× 3 {0, 1}–RS matrices are

R1 =

(
1 0 0
1 0 0

)
, R2 =

(
1 0 0
0 1 0

)
, R3 =

(
1 0 0
0 0 1

)
,

R4 =

(
0 1 0
1 0 0

)
, R5 =

(
0 1 0
0 1 0

)
, R6 =

(
0 1 0
0 0 1

)
,

R7 =

(
0 0 1
1 0 0

)
, R8 =

(
0 0 1
0 1 0

)
, R9 =

(
0 0 1
0 0 1

)
.

Given any 2 × 3 RS matrix B =

(
b11 b12 b13
b21 b22 b23

)
, the aim is to find a

nonnegative vector

x =
[
x1 x2 x3 x4 x5 x6 x7 x8 x9

]T
in R

9 such that

(4) B =

9∑
k=1

xkRk.

Noting that by summing up all matrix entries of two sides, we see that x1+
· · · + x9 = 1. Therefore, the matrix equation (4) has nonnegative solutions
if and only if B is a convex combination of the {0, 1}–RS matrices.
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Rewrite (4) as a linear system of 6 equations in 9 unknowns:

(5)

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6
x7
x8
x9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

b11
b12
b13
b21
b22
b23

⎞
⎟⎟⎟⎟⎟⎟⎠

.

A nonnegative solution x to (5) is given concretely according to the following
five case rule.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1) b13 + b23 > 1 (Case 1),

(2) b13 + b23 ≤ 1

⎧⎪⎪⎨
⎪⎪⎩

b11 ≤ b23

{
b13 ≤ b21 (Case 2.1),
b13 > b21 (Case 2.2),

b11 > b23

{
b13 ≤ b21 (Case 2.3),
b13 > b21 (Case 2.4).

Case 1. x = (0, 0, b11, 0, 0, b12, b21, b22, b13 + b23 − 1)T .

Case 2.1. x = (0, 0, b11, b21 − b13, b22, b23 − b11, b13, 0, 0)
T .

Case 2.2. x = (0, 0, b11, 0, 1− b13 − b23, b23 − b11, b21, b13 − b21, 0)
T .

Case 2.3. x = (0, b11 − b23, b23, b21 − b13, 1− b11 − b21, 0, b13, 0, 0)
T .

Case 2.4. x = (0, b11 − b23, b23, 0, b12, 0, b21, b13 − b21, 0)
T .

In other words, every 2 × 3 RS matrix B can be written as a convex
combination of at most 2× (3− 1) + 1 = 5 many {0, 1}–RS matrices. How-
ever, such a convex combination representation is not necessarily unique.
For example, when

b11 ≥ b21 ≥ 0.5 ≥ b22 ≥ b12 ≥ b13 ≥ b23,

The system (5) has many solutions indeed. The following are four of them.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 − b22
b22
0
b12
0
0

b13 − b23
0
b23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 + b21 − 1
b22
b23
b12
0
0
b13
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− b13 − b22
b22 − b12

0
0
b12
0

b13 − b23
0
b23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 − b22
b22
0

b12 − b23
0
b23
b13
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

2.2. The 3 × 3 case

All 3× 3 {0, 1}–RS matrices are

R1 =

⎛
⎝ 1 0 0

1 0 0
1 0 0

⎞
⎠ , R2 =

⎛
⎝ 1 0 0

1 0 0
0 1 0

⎞
⎠ , R3 =

⎛
⎝ 1 0 0

1 0 0
0 0 1

⎞
⎠ ,

· · ·

R25 =

⎛
⎝ 0 0 1

0 0 1
1 0 0

⎞
⎠ , R26 =

⎛
⎝ 0 0 1

0 0 1
0 1 0

⎞
⎠ , R27 =

⎛
⎝ 0 0 1

0 0 1
0 0 1

⎞
⎠ .

Given any 3 × 3 RS matrix B =

⎛
⎝ b11 b12 b13

b21 b22 b23
b31 b32 b33

⎞
⎠, the aim is to find a

nonnegative vector x =
[
x1 · · · x27

]T
in R

27 such that

(6) B =

27∑
k=1

xkRk.

Noting that by summing up all matrix entries of two sides, we see that

x1 + · · · + x27 = 1. Therefore, the matrix equation (6) has nonnegative

solutions if and only if B is a convex combination of the {0, 1}–RS matrices.

Rewrite (6) as a linear system Mx = b of 9 equations in 27 unknowns

with the coefficient matrix M equal
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

b = vec(BT ) =
[
b11 b12 b13 b21 b22 b23 b31 b32 b33

]T
.

For convenience, we rewrite x as a 9× 3 matrix:

x =

1© 2© 3©⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x10 x19
x2 x11 x20
x3 x12 x21
x4 x13 x22
x5 x14 x23
x6 x15 x24
x7 x16 x25
x8 x17 x26
x9 x18 x27

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1©
2©
3©
4©
5©
6©
7©
8©
9©

Clearly, the nonnegative numbers x1, . . . , x27 satisfying (6) is equivalent

to the validity of the following seven conditions.

(a) The sums of the entries in each column of x are equal to b11, b12 and

b13, respectively;

(b) The sum of the entries in the rows 1©, 2© and 3© of x is equal to b21;

(c) The sum of the entries in the rows 4©, 5© and 6© of x is equal to b22;

(d) The sum of the entries in the rows 7©, 8© and 9© of x is equal to b23;

(e) The sum of the entries in the rows 1©, 4© and 7© of x is equal to b31;

(f) The sum of the entries in the rows 2©, 5© and 8© of x is equal to b32;

(g) The sum of the entries in the rows 3©, 6© and 9© of x is equal to b33.

We construct such a nonnegative solution to (6) explicitly according to the

following 12 case rule.

Case (1): b13 + b33 > 1:
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(1.1) b13 + b23 − b31 ≥ 1 and b13 − b21 + b33 ≤ 1:

x =

⎧⎨
⎩

x9 = b11, x23 = b22, x20 = 1− b13 + b21 − b33,
x21 = b13 + b33 − 1, x26 = b13 + b23 − b31 − 1,
x18 = b12, x25 = b31, xi = 0 otherwise.

⎫⎬
⎭

(1.2) b13 + b23 − b31 ≥ 1 and b13 − b21 + b33 ≥ 1:

x =

⎧⎨
⎩

x9 = b11, x21 = b21, x23 = 1− b13 − b23 + b31 + b32,
x18 = b12, x26 = b13 + b23 − b31 − 1,
x25 = b31, x24 = b22 − b31, xi = 0 otherwise.

⎫⎬
⎭

(1.3) b13 + b23 − b31 ≤ 1 and b13 − b21 + b33 ≤ 1:

x =

⎧⎨
⎩

x12 = b21 − b13 + b31, x20 = 1− b33 − b23 + b11, x9 = b11,
x17 = b23 − b11 − b31, x21 = b13 − b11 + b23 + b33 − b31 − 1,
x15 = b22, x25 = b31, xi = 0 otherwise.

⎫⎬
⎭

(1.4) b13 + b23 − b31 ≤ 1 and b13 − b21 + b33 ≥ 1:

x =

⎧⎨
⎩

x9 = b11, x23 = b32, x15 = 1− b13 − b23 + b31,
x21 = b21, x25 = b31, x18 = b23 − b11 − b31,
x24 = b33 − b21 + b13 − 1, xi = 0 otherwise.

⎫⎬
⎭

Case (2): b13 + b33 ≤ 1:
(2.1) b13 ≤ b21, b13 ≤ b31 and b13 + b23 + b33 ≥ 1 + b11:

x =

⎧⎨
⎩

x9 = b11, x17 = b32, x12 = b21 − b13,
x15 = b22, x19 = b13, x16 = b31 − b13,
x18 = b33 + b23 − b11 + b13 − 1, xi = 0 otherwise.

⎫⎬
⎭

(2.2) b13 ≤ b21, b13 ≤ b31 and b13 + b23 + b33 < 1 + b11:

x =

⎧⎨
⎩

x12 = b21 − b13, x14 = 1− b13 − b23 − b33, x6 = b11,
x16 = b31 − b13, x15 = b13 − b11 − b21 + b33, x19 = b13,
x17 = b23 − b31 + b13, xi = 0 otherwise.

⎫⎬
⎭

(2.3) b13 ≤ b21, b13 > b31 and b13 + b23 + b33 ≥ 1 + b11:

x =

⎧⎨
⎩

x12 = b21 − b13, x17 = 1− b13 − b33, x9 = b11,
x20 = b13 − b31, x18 = b13 − b11 + b23 + b33 − 1,
x15 = b22, x19 = b31, xi = 0 otherwise.

⎫⎬
⎭
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(2.4) b13 > b21, b13 ≤ b31 and b13 + b23 + b33 ≥ 1 + b11:

x =

⎧⎨
⎩

x16 = b31 − b13, x15 = 1− b23 − b13, x9 = b11,
x22 = b13 − b21, x18 = b13 − b11 + b23 + b33 − 1,
x17 = b32, x19 = b21, xi = 0 otherwise.

⎫⎬
⎭

(2.5) b13 ≤ b21, b13 > b31 and b13 + b23 + b33 < 1 + b11:

x =

⎧⎨
⎩

x12 = b21 − b13, x14 = 1− b13 + b11 − b23 − b33,
x17 = b23 − b11, x15 = b33 − b11 + b13 − b21, x19 = b31,
x9 = b11, x20 = b13 − b31, xi = 0 otherwise.

⎫⎬
⎭

(2.6) b13 > b21, b13 > b31 and b13 + b23 + b33 ≥ 1 + b11:

x =

⎧⎨
⎩

x15 = 1− b13 − b23, x18 = b23 − b11 + b13 + b33 − 1,
x17 = 1− b13 − b33, x19 = b21 + b31 − b13, x9 = b11,
x20 = b13 − b31, x22 = b13 − b21, xi = 0 otherwise.

⎫⎬
⎭

(2.7) b13 > b21, b13 ≤ b31 and b13 + b23 + b33 < 1 + b11:

x =

⎧⎨
⎩

x14 = 1− b13 − b23 − b33, x15 = b33 − b11, x9 = b11,
x17 = b23 − b11 − b31 + b13, x16 = b31 − b13,
x22 = b13 − b21, x19 = b21, xi = 0 otherwise.

⎫⎬
⎭

(2.8) b13 > b21, b13 > b31 and b13 + b23 + b33 < 1 + b11, i.e. b23 < b11:

x =

⎧⎨
⎩

x14 = 1− b13 + b11 − b23 − b33, x15 = b33 − b11,
x19 = b21 + b31 − b13, x17 = b23 − b11, x9 = b11,
x20 = b13 − b31, x22 = b13 − b21, xi = 0 otherwise.

⎫⎬
⎭

This shows that (6) always has a nonnegative solution x =
[
x1 · · · x27

]T
in R

27 satisfying
∑27

k=1 xk = 1. In other words, every 3 × 3 row-stochastic

matrix B can be written as a convex combination of at most 3×(3−1)+1 = 7

many {0, 1}–row-stochastic matrices.
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3. Convex decomposition algorithms

3.1. Computing all possible convex decompositions of an RS
matrix into {0, 1}–RS matrices

Given an RS matrix B = [bij ] ∈ R
m×n, we define a matrix M by

M =

m∑
k=1

em,k ⊗ 1Tnk−1 ⊗ In ⊗ 1Tnm−k ∈ R
mn×nm

where em,k ∈ R
m whose entries are zero except kthe element being one,

1p ∈ R
p whose elements are all one, In ∈ R

n×n is the n× n identity matrix,
and ⊗ denotes the Kronecker product. For computing all possible convex
decompositions of B, the simplex algorithm can be applied to solve for x in
a system of linear equations and linear inequalities

(7)

{
Mx = b
x ≥ 0,

where b = vec
(
BT
)
∈ R

mn and x = (x1, . . . , xnm)T ∈ R
nm

.
Let mk be the kth column of the matrix M . Let Rk = vec−T (mk); in

other words, mk = vec(RT
k ). Then we can consider Rk as the kth among

all nm many {0, 1}–RS matrices. It is easy to see that the system (7) is
equivalent to the convex decomposition equation

(8) B =

nm∑
k=1

xkRk, xk ≥ 0.

For example, let

B =

⎡
⎣ 0.92 0.08

0.69 0.31
0.57 0.43

⎤
⎦ ∈ RSM(3, 2) .

Then its convex decomposition equation is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
...
x8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.92
0.08
0.69
0.31
0.57
0.43

⎤
⎥⎥⎥⎥⎥⎥⎦
,(9)
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where x1, x2, . . . , x8 are nonnegative. And the eight {0, 1}–RS matrix are
ordered as follows:

R1 =

⎡
⎣ 1 0

1 0
1 0

⎤
⎦ , R2 =

⎡
⎣ 1 0

1 0
0 1

⎤
⎦ , R3 =

⎡
⎣ 1 0

0 1
1 0

⎤
⎦ , R4 =

⎡
⎣ 1 0

0 1
0 1

⎤
⎦

R5 =

⎡
⎣ 0 1

1 0
1 0

⎤
⎦ , R6 =

⎡
⎣ 0 1

1 0
0 1

⎤
⎦ , R7 =

⎡
⎣ 0 1

0 1
1 0

⎤
⎦ , R8 =

⎡
⎣ 0 1

0 1
0 1

⎤
⎦ .

Now, summing up the equationsMx = b in (7) yields equationm1Tnmx =
m; that is, 1Tnmx = 1. Together with the fact that the solution set in
(7) forms a polyhedron, it shows that the solution set of all coefficients
x = (x1, . . . , xnm)T is the convex hull of some finitely many points (i.e. ver-
tices of the solution set) in R

nm

. We are going to find out all these vertices.
First, to find a solution of system (7), we consider the linear optimization

problem P1:

minimize 1Tmny

subject to

{
Mx+ y = b
x ≥ 0,y ≥ 0.

Obviously,

[
x
y

]
=

[
0
b

]
is a basic feasible solution of P1. If the minimum

is reached (i.e. cost is zero), then the system (7) has a solution. In this case,

the basic feasible solution of P1 is

[
x̃
0

]
, and x̃ is a solution of system (7).

Summing up the equations in P1, we have equation m1Tnmx+ 1Tmny =
m. Replacing the cost function 1Tmny in P1 with

(
m−m1Tnmx

)
, we have an

equivalent problem P2:

maximize m1Tnmx−m

subject to

{
Mx+ y = b
x ≥ 0,y ≥ 0.

Suppose

[
x
y

]
=

[
0
b

]
is a basic feasible solution of P2 with cost −m.

When the cost reaches the maximal value 0, the basic feasible solution is in

the form of

[
x̃
0

]
, and x̃ is a solution of system (7).
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Let [d] denote the set {1, 2, . . . , d} for simplicity. The simplex algorithm

for solving P2 are as follows.

Step 1: Construct the initial tableau

H h

cT α
where H = M, h = b, cT = m1Tnm , and α = m.

Step 2: Find a column s with a positive element in the bottom row.

If there is no positive element in the bottom row, then the cost reaches

maximum 0.

Step 3: Determine the pivot row r where

hr
Hrs

= min
i∈[mn]

{
hi
His

: His > 0

}
.

Step 4: Update the tableau by Gauss elimination on pivot Hrs.

Step 5: Go to step 2.

After calculating with the simplex algorithm, the resulting tableau for

solving (9) is

(10)

0 0 1 1 0 0 1 1 0.31
0 0 0 0 0 0 0 0 0.00
0 1 0 1 0 1 0 1 0.43
0 0 0 0 1 1 1 1 0.08
1 0 0 −1 0 −1 −1 −2 0.18
0 0 0 0 0 0 0 0 0.00

0 0 0 0 0 0 0 0 0.00

.

Consequently, we obtain a solution x(1)=
[
0.18 0.43 0.31 0 0.08 0 0 0

]T
of the system (8), which is a vertex of the polyhedral solution set. The

tableau also shows that columns 4, 6, 7, 8 are inactive, so the vertex x(1)

may have at most four adjacent vertices.

Next, we can compute the pivot and update the tableau by Gauss elim-

ination to achieve an adjacent vertex. For the column s = 4 of tableau (10),

the pivot row r = 1 is determined by

hr
Hrs

= min
i∈[mn]

{
hi
His

: His > 0

}
.
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Figure 1: The adjacent relation of vertices
{
x(k)

}8
k=1

.

After updating with Gauss elimination, the tableau becomes

(11)

0 0 1 1 0 0 1 1 0.31
0 0 0 0 0 0 0 0 0.00
0 1 −1 0 0 1 −1 0 0.12
0 0 0 0 1 1 1 1 0.08
1 0 1 0 0 −1 0 −1 0.49
0 0 0 0 0 0 0 0 0.00

0 0 0 0 0 0 0 0 0.00

.

Hence, the solution x(2) =
[
0.49 0.12 0 0.31 0.08 0 0 0

]T
is an

adjacent vertex of x(1). Applying the same routine on column 6, 7, 8 of
tableau (10), we obtain the other three adjacent vertices:

x(3) =
[
0.26 0.35 0.31 0 0 0.08 0 0

]T
,

x(4) =
[
0.26 0.43 0.23 0 0 0 0.08 0

]T
,

x(5) =
[
0.34 0.35 0.23 0 0 0 0 0.08

]T
.

Continuing this process, we can apply this routine on column 6, 7, 8 of
tableau (11) for seeking adjacent vertices of x(2). The computing result shows
that, beside x(1), the other three adjacent vertices of x(2) are obtained as
follow:

x(6) =
[
0.57 0.04 0 0.31 0 0.08 0 0

]T
,

x(7) =
[
0.49 0.20 0 0.23 0 0 0.08 0

]T
,
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x(8) =
[
0.57 0.12 0 0.23 0 0 0 0.08

]T
.

Finally, these eight points
{
x(k)

}8
k=1

are all vertices of the polyhedral

solution set. The adjacent relation of them is illustrated in Figure 1. Note

that every convex combination of
{
x(k)

}8
k=1

is the coefficients of a convex

decomposition of the RS matrix B. In this sense, we have solved all possible

convex decompositions of the RS matrix B into {0, 1}–RS matrices.

3.2. Convex decomposition algorithm for finding one convex

decomposition

On the occasion of requiring only one convex decomposition of an RS matrix

into {0, 1}–RS matrices, here we provide an efficient algorithm. Given

B =

⎛
⎜⎜⎜⎝

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn

⎞
⎟⎟⎟⎠ ∈ RSM(m,n).

Step 1: Set B(0) =
[
b
(0)
ij

]
= B and determine the index l

(0)
i = min{j ∈

[n] | b(0)ij > 0}. Then b
(0)

i,l
(0)
i

is the first nonzero entry of the i–th row of B(0).

Define R1 =
[
h
(1)
ij

]
where

h
(1)
ij =

{
1, j = l

(0)
i

0, j �= l
(0)
i

,

and set

x1 = min
{
b
(0)

i,l(0)i

| i ∈ [m]
}
= b

(0)

i1,l
(0)
i1

.

Clearly, 0 < x1 ≤ 1. If x1 = 1, then B(0) is an {0, 1}–RS matrix R1, and

B = B(0) = R1. In this case, the convex decomposition is obtained and the

algorithm terminates. Otherwise, set

B(1) =
[
b
(1)
ij

]
:=

1

1− x1
(B(0) − x1R1).

and go to Step 2.
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Step 2: Determine the index l
(1)
i = min

{
j ∈ [n] | b(1)ij > 0

}
. Then b

(1)

i,l
(1)
i

is the first nonzero entry of i–th row of B(1). Define R2 =
[
h
(2)
ij

]
where

h
(2)
ij =

{
1, j = l

(0)
i

0, j �= l
(0)
i

,

and set

x2 = min
{
b
(1)

i,l
(1)
i

| i ∈ [m]
}
= b

(1)

i2,l
(1)
i2

.

Clearly, 0 < x2 ≤ 1. If x2 = 1, then B(1) is an {0, 1}–RS matrix R2, and
B = x1R1+(1−x1)B

(1). In this case, the convex decomposition is obtained
and the algorithm terminates. Otherwise, set

B(2) =
[
b
(2)
ij

]
:=

1

1− x2
(B(1) − x2R2).

and go to next step.
If B(s), Rs and xs are defined with 0 < xs < 1 and

B(s) =
[
b
(s)
ij

]
:=

1

1− xs
(B(s−1) − xsRs) for s = 1, 2, . . . , k − 1,

go to Step k.

Step k: Determine the index l
(k−1)
i = min

{
j ∈ [n] | b(k−1)

ij > 0
}
. Then

b
(k−1)

i,l
(k−1)
i

is the first nonzero entry of i–th row of B(k−1). Define Rk =
[
h
(k)
ij

]
where

h
(k)
ij =

{
1, j = l

(k−1)
i

0, j �= l
(k−1)
i

and set

xk = min
{
b
(k−1)

i,l
(k−1)
i

| i ∈ [m]
}
= b

(k−1)

ik,l
(k−1)
ik

.

Clearly, 0 < xk ≤ 1. If xk = 1, then B(k−1) is an {0, 1}–RS matrix Rk, and

B = x1R1 + (1− x1)x2R2 + · · ·+ (1− x1)(1− x2) · · · (1− xk−1)B
(k−1).

Otherwise, set

B(k) =
[
b
(k)
ij

]
:=

1

1− xk
(B(k−1) − xkRk),
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and go to Step k + 1.

The following theorem shows that this algorithm must be terminated in
at most m(n− 1)+1 many steps, and in each step at most mn comparisons
and m subtractions are performed.

Theorem 3.1. Let B be an m×n RS matrix. It can be written as a convex
combination of at most m(n− 1) + 1 many {0, 1}–RS matrices.

Proof. If B is an m × n RS matrix but not a {0, 1}–RS matrix, then x1
defined at Step 1 in the above algorithm satisfies 0 < x1 < 1.

Now, we claim that the matrix B(s) generated at each Step s is an RS
matrix. To prove this, let ri(X) =

∑n
j=1 xij for any m×n matrix X = [xij ].

Then from the formula B(s) = 1
1−xs

(B(s−1) − xsRs) we see that

ri

(
B(s)

)
=

1

1− xs

(
ri

(
B(s−1)

)
− xsri

(
R(s)

))
=

1

1− xs
(ri

(
B(s−1)

)
−xs).

Thus, if B(s−1) is an RS matrix, so is B(s). Since B(0) = B is an RS matrix,
we conclude that B(s) is an RS matrix for s ≥ 1.

Clearly, b
(1)

i1,l
(0)
i1

= 0. If b
(0)
i,j = 0, then we have j �= l

(0)
i1

, and so b
(1)
i,j = 0 since

h
(1)
i,j = 0. This shows that zero(B(0)) < zero(B(1)) where zero(A) denotes the

number of the zero entries in a matrix A. Thus,

zero(B(0)) < zero(B(1)) < zero(B(2)) < · · · ≤ mn−m

provided that B(0), B(1), . . . are defined. Thus, the sequence B(0), B(1), . . .
must be a finite sequence. In other words, there exists a positive integer
k such that 0 < xs < 1 for s = 1, 2, . . . , k − 1, and xk = 1. In this case,
k − 1 ≤ zero(B(k−1)) ≤ mn − m = m(n − 1) since B(k−1) is a {0, 1}–RS
matrix. Hence, k ≤ m(n− 1) + 1.

The following example demonstrates the operation of the algorithm.

Example 3.2.

B =

⎡
⎣ 0.6 0.1 0.3

0.2 0.4 0.4
0.3 0.2 0.5

⎤
⎦

= 0.2

⎡
⎣ 1 0 0

1 0 0
1 0 0

⎤
⎦+

⎡
⎣ 0.4 0.1 0.3

0 0.4 0.4
0.1 0.2 0.5

⎤
⎦
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= 0.2

⎡
⎣ 1 0 0

1 0 0
1 0 0

⎤
⎦+ 0.1

⎡
⎣ 1 0 0

0 1 0
1 0 0

⎤
⎦+

⎡
⎣ 0.3 0.1 0.3

0 0.3 0.4
0 0.2 0.5

⎤
⎦

...

= 0.2

⎡
⎣ 1 0 0

1 0 0
1 0 0

⎤
⎦+ 0.1

⎡
⎣ 1 0 0

0 1 0
1 0 0

⎤
⎦+ 0.2

⎡
⎣ 1 0 0

0 1 0
0 1 0

⎤
⎦

+ 0.1

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦+ 0.1

⎡
⎣ 0 1 0

0 0 1
0 0 1

⎤
⎦+ 0.3

⎡
⎣ 0 0 1

0 0 1
0 0 1

⎤
⎦ .
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