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In this note we refine some of the results of [18] on the gradient-
projection algorithm in the infinite-dimensional Hilbert space set-
ting by weakening the conditions imposed on the choices of the
parameters in [18, Theorems 4.2, 4.3 and 5.2]. In addition, we also
show that the relaxed gradient-projection algorithm has a sublin-
ear rate of convergence.
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1. Introduction

The gradient-projection algorithm (GPA) is one of the most popular meth-
ods for solving a constrained minimization problem of the form

(1) min{f(x) : x ∈ C},

where C is a nonempty closed convex subset of a Hilbert space H and
f : H → R is a continuously differentiable convex function. We will use S to
denote the set of solutions of (1) and always assume that S �= ∅ throughout
the rest of this paper.

The GPA is an iteration process that generates a sequence (xn) by the
recursive procedure

(2) xn+1 = PC(xn − γn∇f(xn)), n ≥ 0,

where x0 ∈ C is an initial guess, γn > 0 is a stepsize, and PC is the met-
ric projection from H onto C. The convergence (either weak or strong) of
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GPA (2) depends on the gradient ∇f and the stepsizes (γn). The following
convergence result is known.

Theorem 1.1. [5] Assume further that the gradient ∇f of f satisfies the
Lipschitz continuity condition (in this case, f is said to be L-smooth):

(3) ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, x, y ∈ H.

Assume also that the stepsize sequence (γn) satisfies the condition:

(4) 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn <
2

L
.

Then the sequence (xn) generated by GPA (2) converges weakly to a point
in S.

An averaged mapping approach to GPA (2) is provided in [18]. In con-
nection with Mann’s iteration method [8, 11], the following result was proved
in [18].

Theorem 1.2. [18, Theorems 4.2 and 4.3] Assume that f is convex and
L-smooth (i.e., (3) holds). Let a sequence (xn) be generated by the relaxed
gradient-projection algorithm (RGPA):

(5) xn+1 = (1− αn)xn + αnPC(xn − γn∇f(xn)), n = 0, 1, 2, · · · .

Assume that {γn} and {αn} satisfy the condition (4) and the following con-
dition

(6) 0 < αn <
4

2 + γnL
, 0 < lim inf

n→∞
αn ≤ lim sup

n→∞
αn <

4

2 + L · lim sup
n→∞

γn
.

Then the sequence (xn) converges weakly to a point in S.
If, in addition, the stepsizes γn ≡ γ ∈ (0, 2/L) for all n ≥ 0, that is, the

algorithm (5) is reduced to

(7) xn+1 = (1− αn)xn + αnPC(xn − γ∇f(xn)), n = 0, 1, 2, · · · ,

and the sequence {αn} satisfies the condition

(8)

∞∑
n=1

αn

(
4

2 + γL
− αn

)
= ∞,

then (xn) converges weakly to a point in S.
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It is known that GPA (2), in an infinite-dimensional setting, has weak
convergence only, in general. In order to get strong convergence, a technique,
known as viscosity approximation method (VAM), is needed. This method
was first introduced by Attouch [1] to convex optimization theory and later
extended by Moudafi [9] and Xu [17] to nonexpansive mappings in Hilbert
and Banach spaces, respectively. Applying VAM to GPA (2) leads to the
algorithm below:

(9) xn+1 = θnh(xn) + (1− θn)PC(xn − γn∇f(xn)), n = 0, 1, 2, · · · ,

where θn ∈ [0, 1] for all n ≥ 0, and h : C → C is a ρ-contraction with
ρ ∈ [0, 1), i.e.,

‖h(x)− h(y)‖ ≤ ρ‖x− y‖ for all x, y ∈ C.

Note also that VAM is indeed an extension of Halpern’s iteration method
[2, 4, 6, 7, 13, 14, 15].

Theorem 1.3. [18, Theorem 5.2] Assume that f is convex and L-smooth
(i.e., (3) holds) and let (xn) be generated by VAM (9). Assume {γn} satisfies
the condition (4) and, in addition, the following conditions are satisfied:

(i) θn → 0;
(ii)

∑∞
n=0 θn = ∞;

(iii)
∑∞

n=0 |θn+1 − θn| < ∞;
(iv)

∑∞
n=0 |γn+1 − γn| < ∞.

Then (xn) converges in norm to a point x∗ ∈ S which is the unique solution
of the variational inequality (VI)

(10) x∗ ∈ S, 〈(I − h)x∗, x− x∗〉 ≥ 0, x ∈ S.

Equivalently, x∗ is the unique fixed point of the contraction PSh, i.e., x
∗ =

(PSh)x
∗.

The purpose of this note is to refine Theorems 1.2 and 1.3 by weaken-
ing the conditions imposed on the parameters (αn), (θn), and (γn). More
precisely, we will prove the weak convergence of the algorithm RGPA (11)
under standard conditions, that is, (γn) satisfies (4) and (αn) satisfies the
condition: αn ≥ α > 0 for all n ≥ 0. Moreover, we will weaken the conditions
in Theorem 1.3 by completely removing the condition (iii) satisfied by (θn)
and also condition (iv) will be weakened to the condition γn+1 − γn → 0. In
addition, we also show that the relaxed gradient-projection algorithm has a
sublinear rate of convergence.
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2. Preliminaries

Suppose H is a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖,
respectively, and C is a nonempty closed convex subset of H. A mapping

T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all

x, y ∈ C. A mapping V : H → H is said to be α-averaged (α-AV) if for

some α ∈ (0, 1) and another nonexpansive mapping T : H → H one has

V = (1− α)I + αT.

A typical example of an averaged mapping is the (metric) projection PC :

H → C defined by

PCx = argmin{‖x− y‖2 : y ∈ C}, x ∈ H.

Some useful properties of projections are listed below.

Proposition 2.1. Given x ∈ H and z ∈ C.

(i) z = PCx if and only if 〈x− z, y − z〉 ≤ 0 for all y ∈ C.

(ii) 〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2 for all x, y ∈ H. In particular,

PC is 1
2 -AV (also known as firmly nonexpansive).

(iii) ‖x− PCx‖2 ≤ ‖x− y‖2 − ‖y − PCx‖2 for all x ∈ H and y ∈ C.

The following result is immediately clear, but nevertheless useful.

Lemma 2.1. If a mapping V : H → H is α-AV for some α ∈ (0, 1), then,

for each α′ ∈ [α, 1), V is α′-AV.

Proof. Since V is α-AV, V = (1−α)I +αT , where T is nonexpansive. Now

for 1 > α′ > α, set T ′ := (1−α/α′)I + (α/α′)T which is nonexpansive. It is

easily seen that V = (1− α′)I + α′T ′. Consequently, V is α′-AV.

Lemma 2.2. Suppose f : H → R is convex and L-smooth with L ≥ 0 (i.e.,

∇f is L-Lipschitz). Then, for each 0 < γ < 2
L , the mapping PC(I−γ∇f) is

β-AV with β = 2+γL
4 . In other words, there exists a nonexpansive mapping

T : H → H such that

PC(I − γ∇f) = (1− β)I + βT =
2− γL

4
I +

2 + γL

4
T.

Proof. Details of proof can be found in the proof of [18, Theorem 4.1].
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Lemma 2.3 ([5]). Suppose f : H → R is convex and L-smooth with L ≥ 0
(i.e., ∇f is L-Lipschitz). Then, for each x, y ∈ H, we have

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖y − x‖2.

Lemma 2.4 (Opial’s lemma [10]). Let K be a nonempty subset of a real
Hilbert space H. Let {xn} be a bounded sequence in H satisfying the prop-
erties:

(i) limn→∞ ‖xn − x‖ exists for each x ∈ K;
(ii) ωw(xn) ⊂ K.

Then {xn} is weakly convergent to a point in K.

Here ωw(xn) denotes the set of all accumulation points in the weak
topology of the sequence (xn).

Lemma 2.5. [12] Suppose (βn) is a sequence of real numbers in [0, 1] such
that

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Let (xn) and (yn) be bounded sequences in a Banach space such that xn+1 =
(1− βn)xn + βnyn for all n ≥ 1. Suppose, in addition,

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0. Consequently, one also has limn→∞ ‖xn+1 −
xn‖ = 0.

Lemma 2.6. [16] Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0,1) and {δn} a sequence in R satisfying the
conditions:

(i)
∑∞

n=1 γn = ∞,
(ii) lim supn→∞ δn ≤ 0.

Then limn→∞ an = 0.

Lemma 2.7 (Demiclosedness Principle; cf. [3]). Let C be a closed convex
subset of a Hilbert space H and let T : C → C be a nonexpansive mapping
with Fix(T ) �= ∅. If {xn} is a sequence in C such that xn → x xn−Txn → 0
strongly, then x− Tx = 0, i.e., x ∈ Fix(T ).
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3. Main results

In this section we shall refine Theorems 1.2 and 1.3 by weakening the condi-
tions imposed on the parameters (αn), (θn), and (γn). In addition, we also
show that the relaxed gradient-projection algorithm has a sublinear rate of
convergence.

Theorem 3.1. Assume that f is convex and L-smooth (i.e., (3) holds). Let
a sequence (xn) be generated by the relaxed gradient-projection algorithm
(RGPA):

(11) xn+1 = (1− αn)xn + αnPC(xn − γn∇f(xn)), n = 0, 1, 2, · · · .

Assume in addition that

(i) {γn} satisfies (4), i.e., 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 2
L .

(ii) (αn) ⊂ (0, 1] and lim infn→∞ αn > 0.

Then (xn) converges weakly to a point in S.

Proof. Observe from (4) that we may assume that 0 < a ≤ γn ≤ b < 2/L for
some constants 0 < a ≤ b < 1 and all n ≥ 0. Also by Lemma 2.2, for each n,
PC(I−γn∇f) is βn-AV with βn = 2+γnL

4 . Set β = 2+bL
4 ; then βn ≤ β < 1 for

all n. By Lemma 2.1, we further get that PC(I − γn∇f) is β-AV. Therefore,
we can write

(12) Vn := PC(I − γn∇f) = (1− β)I + βTn =
2− bL

4
I +

2 + bL

4
Tn,

where Tn : H → H is nonexpansive. We can rewrite xn+1 as

xn+1 = (1− αn)xn + αnVnxn

= (1− α′
n)xn + α′

nTnxn,

where α′
n = αnβ. It is easy to find from condition (ii) that

0 < lim inf
n→∞

α′
n ≤ lim sup

n→∞
α′
n ≤ β < 1.

Consequently, there exist 0 < α∗ ≤ α∗ < 1 such that

(13) α∗ ≤ α′
n ≤ α∗

for all n (large enough). Now take an x∗ ∈ S to get

‖xn+1 − x∗‖2 = ‖(1− α′
n)(xn − x∗) + α′

n(Tnxn − x∗)‖2
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= (1− α′
n)‖xn − x∗‖2 + α′

n‖Tnxn − x∗‖2

− α′
n(1− α′

n)‖xn − Tnxn‖2

≤ ‖xn − x∗‖2 − α∗(1− α∗)‖xn − Tnxn‖2.(14)

It turns out that ‖xn+1 − x∗‖ ≤ ‖xn − x∗‖, hence,

(15) lim
n→∞

‖xn − x∗‖ for each x∗ ∈ S.

Since we also have α∗(1−α∗)‖xn−Tnxn‖2 ≤ ‖xn−x∗‖2−‖xn+1−x∗‖2. This
immediately implies that limn→∞ ‖xn − Tnxn‖2 = 0 which in turns implies
that limn→∞ ‖xn+1 − xn‖ = 0.

Next we show

(16) ωw(xn) ⊂ S.

To see this, we take x′ ∈ ωw(xn) and assume xn′ → x′ weakly for some
subsequence (xn′) of (xn). With no loss of generality, we may assume γn′ →
γ′ ∈ (0, 2/L). Set V ′ = PC(I − γ′∇f). Notice that V ′ is nonexpansive and
Fix(V ′) = S. It turns out that

‖xn′ − V ′xn′‖
≤ ‖xn′ − Vn′xn′‖+ ‖Vn′xn′ − V ′xn′‖
≤ ‖xn′ − xn′+1‖+ ‖xn′+1 − Vn′xn′‖
+ ‖PC(I − γn′∇f)xn′ − PC(I − γ′∇f)xn′‖

≤ ‖xn′ − xn′+1‖+ θn′‖h(xn′)− Vn′xn′‖+ |γn′ − γ′|‖∇f(xn′)‖
≤ ‖xn′ − xn′+1‖+ 2M(θn′ + |γn′ − γ′|) → 0.

Thus, the demiclosedness principle of nonexpansive mappings (i.e., Lemma
2.7) asserts that x′ ∈ Fix(V ′) = S; hence, ωw(xn) ⊂ S.

By virtue of (15) and (16), Lemma 2.4 is applicable to the sequence (xn)
and the set S. Consequently, (xn) converges weakly to a point of S.

The following is a straightforward consequence of Theorem 3.1.

Corollary 3.1. Assume that f is convex and L-smooth (i.e., (3) holds). Let
a sequence (xn) be generated by the gradient-projection algorithm (GPA):

xn+1 = PC(xn − γn∇f(xn)), n = 0, 1, 2, · · · .

Assume {γn} satisfies (4), i.e., 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 2
L .

Then (xn) converges weakly to a point in S.
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Proof. In Theorem 3.1, take αn = 1 for all n ≥ 0.

Remark 3.1. We observe that the choices of the parameter sequences (γn)
and (αn) in Theorem 3.1 are decoupled; moreover, the choice of (αn) is
irrelevant to the Lipschitz constant L of ∇f , as opposed to the condition (6)
of Theorem 3.1.

Theorem 3.2. Assume that f is convex and L-smooth (i.e., (3) holds)
and let (xn) be generated by VAM (9). Assume the following conditions are
satisfied:

(a) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 2
L , i.e., (4) holds.

(b) γn+1 − γn → 0.
(c) θn → 0.
(d)

∑∞
n=0 θn = ∞.

Then (xn) converges in norm to the unique solution x∗ of VI (10). Equiva-
lently, x∗ is the unique fixed point of the contraction PSh, i.e., x

∗ = (PSh)x
∗.

Proof. First we show that (xn) is bounded. As a matter of fact, since PC(I−
γn∇f) is nonexpansive with S as its fixed point set, it follows from (9) that,
for x̄ ∈ S,

‖xn+1 − x̄‖
= ‖θn[h(xn)− h(x̄) + h(x̄)− x̄] + (1− θn)[PC(I − γn∇f)xn − x̄]‖
≤ θn(ρ‖xn − x̄‖+ ‖h(x̄)− x̄‖) + (1− θn)‖xn − x̄‖
= (1− (1− ρ)θn)‖xn − x̄‖+ θn‖h(x̄)− x̄‖
≤ max

{
‖xn − x̄‖, (1− ρ)−1‖h(x̄)− x̄‖

}
.

Hence, an induction argument shows that

‖xn − x̄‖ ≤ max

{
‖x0 − x̄‖, 1

1− ρ
‖h(x̄)− x̄‖

}
, n ≥ 0.

In particular, (xn) is bounded. Let M be a constant such that

M ≥ max{‖xn‖, ‖h(xn)‖, ‖∇f(xn)‖, ‖Tmxn‖, ‖PC(xn − γn∇f(xn))‖}

for all m,n ≥ 0.
Observe that (12) remains valid, due to condition (a). We can therefore

rewrite the algorithm (9) as

xn+1 = θnh(xn) + (1− β)(1− θn)xn + β(1− θn)Tnxn
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= (1− (β + (1− β)θn))xn + θnh(xn) + β(1− θn)Tnxn

= (1− τn)xn + τnyn,

where τn = β + (1− β)θn and

yn =
θnh(xn) + β(1− θn)

τn
Tnxn =

θn
τn

h(xn) +
β(1− θn)

τn
Tnxn.

It follows that

yn+1 − yn =
θn+1

τn+1
h(xn+1)

+
β(1− θn+1)

τn+1
Tn+1xn+1 −

(
θn
τn

h(xn) +
β(1− θn)

τn
Tnxn

)

=
θn+1

τn+1
h(xn+1)−

θn
τn

h(xn)

+
β(1− θn+1)

τn+1
(Tn+1xn+1 − Tn+1xn)

+
β(1− θn+1)

τn+1
(Tn+1xn − Tnxn)

+

(
β(1− θn+1)

τn+1
− β(1− θn)

τn

)
Tnxn.(17)

Again using (12), we get

PC(I − γn+1∇f)xn = (1− β)xn + βTn+1xn,

PC(I − γn∇f)xn = (1− β)xn + βTnxn.

Hence,

‖Tn+1xn − Tnxn‖ = ‖PC(I − γn+1∇f)xn − PC(I − γn∇f)xn‖/β
≤ |γn+1 − γn|‖∇f(xn)‖/β ≤ (M/β)|γn+1 − γn| → 0.(18)

Combining (17) and (18) we obtain

‖yn+1 − yn‖ − ‖xn+1 − xn‖

≤ M

(
θn+1

τn+1
+

θn
τn

)
+

(
β(1− θn+1)

τn+1
− 1

)
‖xn+1 − xn‖

+M

{
(1− θn+1)

τn+1
|γn+1 − γn|+

∣∣∣∣β(1− θn+1)

τn+1
− β(1− θn)

τn

∣∣∣∣
}
.(19)



356 Hong-Kun Xu

Now noticing the facts that θn → 0 and τn → β ∈ (0, 1), we immediately
get from (19) and the assumption |γn+1 − γn| → 0 that

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Consequently, by Lemma 2.5 we obtain limn→∞ ‖yn − xn‖ = 0 and also
limn→∞ ‖xn+1 − xn‖ = 0.

Next, we prove ωw(xn) ⊂ S. Let x̂ ∈ ωw(xn) and assume xnj
⇀ x̂ for

some subsequence (xnj
) of (xn). With no loss of generality, we may assume

γnj
→ γ ∈ (0, 2/L), due to condition (a), i.e., (4). Set Vn = PC(I − γn∇f)

and V = PC(I − γ∇f). Notice that V is nonexpansive and Fix(V ) = S. It
turns out that

‖xnj
− V xnj

‖ ≤ ‖xnj
− Vnj

xnj
‖+ ‖Vnj

xnj
− V xnj

‖
≤ ‖xnj

− xnj+1‖+ ‖xnj+1 − Vnj
xnj

‖
+ ‖PC(I − γnj

∇f)xnj
− PC(I − γ∇f)xnj

‖
≤ ‖xnj

− xnj+1‖+ θnj
‖h(xnj

)− Vnj
xnj

‖+ |γnj
− γ|‖∇f(xnj

)‖
≤ ‖xnj

− xnj+1‖+ 2M(θnj
+ |γnj

− γ|) → 0.

Thus, the demiclosedness principle (Lemma 2.7) of nonexpansive mappings
asserts that x̂ ∈ Fix(V ) = S; hence, ωw(xn) ⊂ S.

Now let x∗ be the unique solution of VI (10) and we show xn → x∗ in
norm. To see this, we claim

(20) lim sup
n→∞

〈h(x∗)− x∗, xn − x∗〉 ≤ 0.

As a matter of fact, we can take a subsequence (xnj
) of (xn) such that

lim sup
n→∞

〈h(x∗)− x∗, xn − x∗〉 = lim
j→∞

〈h(x∗)− x∗, xnj
− x∗〉.

With no loss of generality, we may further assume xnj
→ x̂ weakly; then

x̂ ∈ S as proved above. Now since x∗ solves VI (10), it is immediately clear
that

lim sup
n→∞

〈h(x∗)− x∗, xn − x∗〉 = 〈h(x∗)− x∗, x̂− x∗〉 ≤ 0

and (20) is proven.
We are finally in a position to prove xn → x∗ in norm. Recalling that

Vn = PC(I − γn∇f) and xn+1 = θnh(xn) + (1− θn)Vnxn, we have

‖xn+1 − x∗‖2 = ‖θn(h(xn)− x∗) + (1− θn)(Vnxn − x∗)‖2
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= ‖θn(h(xn)− h(x∗)) + (1− θn)(Vnxn − x∗) + θn(h(x
∗)− x∗)‖2

≤ ‖θn(h(xn)− h(x∗)) + (1− θn)(Vnxn − x∗)‖2

+ 2θn〈h(x∗)− x∗, xn+1 − x∗〉
≤ θn‖h(xn)− h(x∗)‖2 + (1− θn)‖Vnxn − x∗‖2

+ 2θn〈h(x∗)− x∗, xn+1 − x∗〉
≤ (1− (1− ρ2)θn)‖xn − x∗‖2 + 2θn〈h(x∗)− x∗, xn+1 − x∗〉.(21)

Due to condition (d) and (20), Lemma 2.6 is applicable to (21) to get ‖xn−
x∗‖ → 0. This completes the proof.

It is interesting to know if condition (b) can be removed.
When the contraction h is taken to be constant, we get the following

result.

Corollary 3.2. Assume that f is convex and L-smooth (i.e., (3) holds) and
let (xn) be generated by the following Halpern iteration method:

(22) xn+1 = θnu+ (1− θn)PC(xn − γn∇f(xn)), n = 0, 1, 2, · · · ,

where u ∈ C is a fixed point in C (commonly referred to as anchor). Assume
the condition (a)-(c) of Theorem 3.2 are satisfied. Then (xn) converges in
norm to PSu.

Remark 3.2. The conditions of Theorem 3.2 are much weaker than the
conditions of Theorem 1.3. For instance, condition (iii) of Theorem 1.3 is
completely removed and condition (iv) is weakened to condition (b) (i.e.,
γn+1 − γn → 0) of Theorem 3.2.

Note also that conditions (c) and (d) are standard and necessary condi-
tions for Halpern’s iteration method to converge in norm [4].

Finally we discuss the convergence rate of RGPA (11). Below we show
that RGPA (11) has a sublinear rate of convergence.

Theorem 3.3. The RGPA (11) has at least a sublinear rate of convergence.
More precisely, we have the estimate:

(23) f(xn)− f(x∗) ≤ 1

n

(
f(x0)− f(x∗)

α
+ τ‖x0 − x∗‖2

)
, n ≥ 1,

where x∗ ∈ S and τ = τ(α, α, γ, γ, L) > 0 is a constant. Here L is the
Lipschitz constant of ∇f , α := infn≥0 αn > 0, α := supn≥0 αn ≤ 1, γ :=

infn≥0 γn > 0, and γ := supn≥0 γn < 2
L .
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Proof. By (11), we get

xn+1 − xn
αn

+ xn = PC(xn − γn∇f(xn)).

It turns out from Proposition 2.1(i) that

(24) −
〈
γn∇f(xn) +

xn+1 − xn
αn

, y − xn+1 − xn
αn

− xn

〉
≤ 0 ∀y ∈ C.

In particular, replacing the y in (24) with xn yields

(25) 〈∇f(xn), xn+1 − xn〉 ≤ −‖xn+1 − xn‖2
αnγn

.

On the other hand, taking y := x∗ ∈ S in (24), we obtain

− 〈∇f(xn), x
∗ − xn〉+

1

αn
〈∇f(xn), xn+1 − xn〉

− 1

αnγn
〈xn+1 − xn, x

∗ − xn〉+
‖xn+1 − xn‖2

α2
nγn

≤ 0.(26)

We have from (26) and Lemma 2.3

f(x∗)−f(xn+1) ≥ f(xn) + 〈∇f(xn), x
∗ − xn〉

− [f(xn) + 〈∇f(xn), xn+1 − xn〉+
L

2
‖xn+1 − xn‖2]

= 〈∇f(xn), x
∗ − xn+1〉 −

L

2
‖xn+1 − xn‖2

= 〈∇f(xn), x
∗ − xn〉+ 〈∇f(xn), xn − xn+1〉 −

L

2
‖xn+1 − xn‖2

≥ 1

αn
〈∇f(xn), xn+1 − xn〉 −

1

αnγn
〈xn+1 − xn, x

∗ − xn〉

+
‖xn+1 − xn‖2

α2
nγn

+ 〈∇f(xn), xn − xn+1〉 −
L

2
‖xn+1 − xn‖2

=

(
1

αn
− 1

)
〈∇f(xn), xn+1 − xn〉 −

1

αnγn
〈xn+1 − xn, x

∗ − xn〉

−
(
L

2
− 1

α2
nγ

)
‖xn+1 − xn‖2.(27)
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Since

〈xn+1 − xn, x
∗ − xn〉 = −1

2
(‖xn+1 − x∗‖2 − ‖xn+1 − xn‖2 − ‖xn − x∗|2),

we obtain from (27) that

f(x∗)− f(xn+1) ≥
(

1

αn
− 1

)
〈∇f(xn), xn+1 − xn〉

+
1

2αnγn
(‖xn+1 − x∗‖2 − ‖xn+1 − xn‖2 − ‖xn − x∗|2)

−
(
L

2
− 1

α2
nγn

)
‖xn+1 − xn‖2.

Consequently,

f(xn+1)− f(x∗) ≤
(

1

αn
− 1

)
〈∇f(xn), xn − xn+1〉

+
1

2αnγn
(‖xn − x∗‖2 − ‖xn+1 − x∗|2)

+

(
L

2
− 1

α2
nγn

+
1

2αnγn

)
‖xn+1 − xn‖2.(28)

Substituting into (28) the inequality

〈∇f(xn), xn − xn+1〉 ≤ f(xn)− f(xn+1) +
L

2
‖xn+1 − xn‖2

which holds by Lemma 2.3, we further arrive at

f(xn+1)− f(x∗) ≤
(

1

αn
− 1

)
[f(xn)− f(xn+1) +

L

2
‖xn+1 − xn‖2]

+
1

2αnγn
(‖xn − x∗‖2 − ‖xn+1 − x∗|2)

+

(
L

2
− 1

α2
nγn

+
1

2αnγn

)
‖xn+1 − xn‖2.

Hence by multiplying both sides by αn, we get

αn[f(xn+1)− f(x∗)] ≤ (1− αn)[f(xn)− f(xn+1) +
L

2
‖xn+1 − xn‖2]

+
1

2γn
(‖xn − x∗‖2 − ‖xn+1 − x∗|2)
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+

(
αnL

2
− 1

αnγn
+

1

2γn

)
‖xn+1 − xn‖2

= (1− αn)[f(xn)− f(xn+1)] +
1

2γn
(‖xn − x∗‖2 − ‖xn+1 − x∗|2)

+

(
L

2
− 1

αnγn
+

1

2γn

)
‖xn+1 − xn‖2.

It follows that

f(xn+1)− f(xn) + αn[f(xn)− f(x∗)]

≤ 1

2γn
(‖xn − x∗‖2 − ‖xn+1 − x∗|2) +

(
L

2
− 1

αnγn
+

1

2γn

)
‖xn+1 − xn‖2.

Setting d1 := 1/(2λ) and d2 := (L/2) + (1/2γ), we get, for each j ≥ 0,

f(xj+1)− f(xj) + α[f(xj)− f(x∗)]

≤ d1(‖xj − x∗‖2 − ‖xj+1 − x∗|2) + d2‖xj+1 − xj‖2.(29)

Summing up from j = 0 to j = n− 1 and then divided by n yields

α

⎛
⎝ 1

n

n−1∑
j=0

f(xj)− f(x∗)

⎞
⎠+

1

n
(f(xn)− f(x0))

≤ d1
n
(‖x0 − x∗‖2 − ‖xn − x∗|2) + d2

n

n−1∑
j=0

‖xj+1 − xj‖2.(30)

Since, by Lemma 2.3, f(xj+1) ≤ f(xj)+〈∇f(xj), xj+1−xj〉+ L
2 ‖xj+1−xj‖2,

we have by (25),

f(xj)− f(xj+1) ≥ 〈∇f(xj), xj − xj+1〉 −
L

2
‖xj+1 − xj‖2

≥
(

1

αjγj
− L

2

)
‖xj+1 − xj‖2 ≥ 0

since αjγj ≤ γj < 2/L for all j. That is, {f(xj)} is nonincreasing. As a

result, we find that (30) implies

α[f(xn)− f(x∗)] +
1

n
(f(xn)− f(x0))
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≤ d1
n
‖x0 − x∗‖2 + d2

n

n−1∑
j=0

‖xj+1 − xj‖2.(31)

By (14), we get

‖xn+1 − xn‖2 = (α′
n)

2‖Tnxn − xn‖2 ≤ β2‖Tnxn − xn‖2

≤ β

α(1− αβ)
(‖xn − x∗‖2 − xn+1 − x∗‖2)

with β = 2+γL
4 < 1 (as γ < 2/L). Hence,

1

n

n−1∑
j=0

‖xj+1 − xj‖2 ≤
β

α(1− αβ)n
(‖x0 − x∗‖2 − xn − x∗‖2).

Substituting this into (31), we obtain

f(xn)− f(x∗) ≤ 1

n

{
f(x0)− f(xn)

α
+

‖x0 − x∗‖2
α

(
d1 +

d2β

α(1− αβ)

)}

≤ 1

n

{
f(x0)− f(x∗)

α
+ ‖x0 − x∗‖2

(
d1
α

+
d2β

α2(1− αβ)

)}
.

Consequently, (23) holds with τ = (d1/α) + d2β/(α
2(1− αβ)). The proof is

complete.
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