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1. Introduction

Let G be a locally compact abelian (= LCA) group and Ĝ its dual group.
The Fourier algebra A(G) of G is the isometric image of the group alge-
bra L1(Ĝ) of Ĝ under the Fourier transform. The algebra A(G) is one of
the most studied Banach algebras of harmonic analysis; the reader can find
ample information about this algebra, among other places, in the classical
book of Rudin [Ru]. The algebra A(G) is a commutative, semisimple, reg-
ular and Tauberian Banach algebra with a bounded approximate identity.
The structure space (or Gelfand spectrum) ΦA(G) of A(G), via evaluation
functionals, is G; and, the Gelfand transform of A(G) is just the natural
inclusion j : A(G) → C0(G). We assume that the group G is not discrete.
The nondefined terms used in this section will be defined in the next section.

In this paper we present some tools to study the set of synthesis and
Ditkin sets in the setting of the Fourier algebra A(G) of a LCA group G.
We also present many applications of these tools to illustrate the use of
them. Our aim in these applications is to get as much information as we can

365

https://www.intlpress.com/site/pub/pages/journals/items/amsa/_home/_main/index.php


366 Ali Ülger

about sets of synthesis and Ditkin sets in order to understand better where
the difficulties lie in the study of these sets. The great majority of the results
presented in the paper are new and they appear for the first time here.

To explain the content of the paper we need some notation and termi-
nology. To every nonempty closed subset E of G, the following two ideals
are usually associated.

k(E) = {u ∈ A(G) : u = 0 on E};

and,

j(E) = {u ∈ A(G) : The support of u is compact and disjoint from E}.

The ideal k(E) is the largest closed ideal of A(G) with hull E; and the ideal
J(E) = j(E) is the smallest closed ideal of A(G) with hull E. When these
two closed ideals coincide, the set E is said to be a set of synthesis. If the
following stronger condition,

for each u ∈ k(E), u ∈ uj(E)

holds, the set E is said to be a Ditkin set. We also recall that a closed
subset H of G is said to be a Helson set if the restriction homomorphism
R : A(G) → C0(H), R(u) = u | H, is surjective. For basic results about sets
of synthesis and Helson sets, our reference is Rudin’s book [Ru, Chapter 7
and Chapter 5].

Two long-standing open problems of the subject are the following.

Union Problem 1. This problem asks whether the union of two sets of
synthesis is a set of synthesis?

S-set-D-set Problem 1. This problem asks whether every set of synthesis
is a Ditkin set?

These are not the only open problems of the subject (=sets of spectral
synthesis); as we shall see below, there are many other important unsolved
problems in this area.

Before continuing with the introduction, we present a short history of
the subject. This subject is an important chapter of Harmonic Analysis with
many applications in many parts of mathematics, from the ideal theory of
Banach algebras, the number theory, the spectral theory of the bounded
linear operators to the differential equations, among many others. In the
books [Be], [Gr-McGe] the reader can find ample information about the set
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of spectral synthesis, Ditkin and Helson sets; and, in the books [Be] and
[Ka-Sa] some notes about the historical origin of the subject. In the books
[Me] and [Be, Sections 2.3-2.5], and also in the earlier works of Y. Meyer,
the reader can find some information about the connections of this subject
to the number theory, in particular to Pisot numbers and Cantor set type
sets.

Some authors (see e.g. [Be, Section 1.5] and [Ka-Sa, Capter IX]) take
the origin of the subject to the beginning of the wave equation in 1750’s.
We shall not go that far; we shall start with Wiener’s celebrated paper [Wi]
(1932). In this paper Wiener, among many other important results, proves
that, for the group algebra A = L1(R), the ideal

{f ∈ L1(R) : The support of f̂ is compact}

is dense in the algebra L1(R). In today’s terminology this is equivalent to
saying that the empty set is a set of synthesis for the algebra L1(R). A few
years after Wiener’s paper, in 1939 Ditkin [Di] proved that any closed set
E ⊆ R whose boundary does not contain any nonempty perfect set is a set
of synthesis for the algebra L1(R). Such a set is in fact a Ditkin set and this
result is at the origin of the “Ditkin set” notion. Until Laurent Schwartz’s
paper [SC] it was not known whether every closed subset of the Euclidean
group R

n is a set of synthesis or not for the group algebra L1(Rn). In 1948
Schwartz proved that, for n ≥ 3, the unit sphere S = {x ∈ R

n :‖ x ‖= 1}
of Rn fails to be a set of synthesis [SC]. In contrast with this result, in 1958
Herz proved that the unit circle S = {x ∈ R

2 :‖ x ‖= 1} is a set of syn-
thesis for the algebra L1(R2) [Her1], a situation evoking the Banach-Tarski
paradox. At that time an important open problem was whether Schwartz’s
result is special to the Euclidean group R

n or it is universally valid for any
noncompact LCA group G. In his celebrated paper [Ma] P. Malliavin proved
that every noncompact LCA group Ĝ contains a closed set that fails to be a
set of synthesis for the group algebra L1(G). In 1967, opening a new avenue
to the subject, N. Varopoulos, using the projective tensor products, gave a
completely different proof of Malliavin’s Theorem [Va1]. Around that time
another important problem was whether every Helson set is a set of unique-
ness. In his land marking paper [Kö] Th. Körner proved that a Helson set in
the unit circle group T need not be a set of uniqueness nor a set of synthesis.
Around that time yet another important problem, solved in the affirmative
by Drury [Dr] and Varopoulos [Va2], was whether the union of two Helson
sets is a Helson set. After the 1970s most of the works in this area are about
constructing/discovering sets (mostly in R

n or T) that are sets of synthesis
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or Helson sets. See e.g. [Her2], [Do1], [Do2], [Mü1], [Mü2]. After the 1990s
the works in this area are slowed down and eventually became sporadic.

In a paper like this one, which is not a review article, it was not possible
to make justice to all of the researchers in this area; the author asks for
the understanding of the contributors of the subject. In the books [Be],
[Gr-McGe] and [Me] the readers can find many more references to the works
that have appeared before 1980.

To explain the content of the paper we need some more notation and
terminology. For ϕ ∈ A(G)∗, by Sp(ϕ) we denote the support (or spectrum)
of the functional ϕ. For u ∈ A(G) and ϕ ∈ A(G)∗, by u · ϕ we denote the
functional defined on A(G) by

< u · ϕ, v >=< ϕ, vu > .

We note here that

Sp(u · ϕ) ⊆ Sp(ϕ) ∩ Supp(u).

To every closed subset E of G, we associate the following closed subset of
E.

σ(E) = ∪u,ϕSp(u · ϕ),
where the union is taken over all u ∈ k(E) and all ϕ in J(E)⊥. The set σ(E)
is a perfect subset of the boundary of E and, by the very definition of it,
σ(E) = ∅ iff E is a set of synthesis.

If the set E is not a Ditkin set then there is a u ∈ k(E) such that
u /∈ uj(E). So, there is a ϕ ∈ A(G)∗ such that < u,ϕ > 
= 0 and σ(u ·ϕ) ⊆ E.
Similar to the set σ(E), to the set E we associate another perfect set, denoted
as σ�(E) and defined as follows,

σ�(E) = ∪u,ϕSp(u · ϕ),

where the union is taken over all u ∈ k(E) and all ϕ in A(G)∗ such that
Sp(u ·ϕ) ⊆ E. By the very definition of it, σ�(E) = ∅ iff the set E is a Ditkin
set. It is easy to see that, for u ∈ k(E) and ϕ ∈ A(G)∗, Sp(u · ϕ) ⊆ ∂E
whenever Sp(u · ϕ) ⊆ E. Hence

σ(E) ⊆ σ�(E) ⊆ ∂E.

For two closed ideals I and J of A(G), IJ is the closed ideal generated by
the set

{uv : u ∈ I and v ∈ J}.
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Here we note that, for any closed set E, J(E)J(E) = J(E) since the ideal
J(E) is the smallest closed ideal in A(G) with hull E. To the set E we also
associate the following closed ideal

I = {u ∈ A(G) : k(E)u ⊆ J(E)}.

This ideal, by its very definition, is the largest closed ideal in A(G) for which
the equality k(E)I = J(E) holds. The hull of this ideal is σ(E) [Ka-Ül-1].
Now on this ideal will be denoted as I(σ(E)). We shall also use throughout
the paper the following notion, introduced here.

Definition 1.1. A subset D of G will be called a LS-set if it is closed,
nonempty and σ(D) = D.

A notable example to the LS-sets is the unit sphere of Rn for n ≥ 3
[Ka-Ül-2]. The letters LS stand for Laurent Schwartz because of this exam-
ple. As we shall see, the LS-sets abundantly exist and they are everywhere.
Concerning the synthesis problem, the LS-sets are worst possible.

After having introduced these notions, we can now explain the content
of the paper.

After a preliminary section, in Section 3 we prove the following three
theorems and some consequences of them. Below by a “closed set” we always
mean a closed subset of G.

Theorem A. Let D and E be two closed sets such that D ⊆ E. Then the
equality k(E)J(D) = J(E) holds iff σ(E) ⊆ D.

Theorem B. Let D and E be two closed sets and F = D∪E. Then σ(F ) ⊆
D iff σ(E) ⊆ D.

Theorem C. Let D and E be two closed sets and F = D∪E. Then σ�(F ) ⊆
D iff σ�(E) ⊆ D.

These three theorems together with the sets σ(E), σ�(E), Lemma 6.6
below and LS-sets are our main tools to study the sets of synthesis and
Ditkin sets. The set σ(E) has been introduced in the paper [Ül1]; this set and
the ideal I(σ(E)) are extensively used in the papers [Ka-Ül-1] and [Ka-Ül-2]
to study the sets of synthesis. The set σ�(E), the notion of LS-set, Lemma
6.6 and the three theorems above are new and these theorems are some of
the main results of the paper. These theorems, to some extent, transform
the synthesis problems into problems of topology.

In Section 4 we present a few general results about the problem of how
to make a given set into set of synthesis or Ditkin sets. Two of these results
are the following.
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1. Let D and E be two closed sets such that the set L = D ∩E \D is a
Ditkin set. Then

(i) The set E \D is a set of synthesis iff σ(E) ⊆ D.
(ii) The set F = D ∪E is a set of synthesis iff σ(E) ⊆ D and the set D is

a set of synthesis.

2. Let E be a closed set and (Dn) a sequence of Ditkin sets such that
the set F = E ∪ (∪n≥1Dn) is closed. Suppose that σ�(E) ⊆ ∪n≥1Dn. Then
the set F is a Ditkin set.

In Section 5 we present a series of results related to LS-sets. Among
them we cite here the following results.

3. Let S be a LS-set in G. Then, for any proper closed subset E of S,
the set D = S \E is also a LS-set.

This result says that, concerning synthesibility, the most of the closed
subsets of S are as bad as the set S itself.

In [Re, Theorem 2] Reiter proves the following theorem.

Theorem (Reiter). Let E be a closed subset of G = R
n for n ≥ 3, S the

unit sphere of Rn and F = E ∪ S. If the set F is a set of synthesis then
S ⊆ E.

The following result, which is a far reaching generalization of this theo-
rem of Reiter, shows that in this theorem, the hypothesis that the set F is a
set of synthesis is not necessary; it is enough to assume that F \ σ(F ) = F .
This latter hypothesis is satisfied, for instance, if F is the closure of its
interior or there is a set of synthesis in between σ(F ) and F .

4. Let E be a closed subset of G, S a LS-set and F = E ∪ S. Suppose
that F \ σ(F ) = F . Then S ⊆ E and E \ S = E

5. For any closed subset E of G, we have E \ σ(E) = E iff for any LS-set
S ⊆ E we have E \ S = E.

Section 5 also contains several other results related to LS-sets and the
set σ(E).

In Section 6 we present a few results related to Helson sets. Two of
these are the following. Before stating these results we need to introduce the
following notion.

Let E be a closed set and x a point in its boundary ∂E. We shall say
that “E is locally Helson at x” if for some neighbourhood V of x, the set
H = V ∩∂E is a Helson set. With this notion, we prove the following result.

6. Let E be a closed set, u ∈ k(E) and ϕ ∈ A(G)∗ be such that Sp(u·ϕ) ⊆
E. Suppose that u ·ϕ ∈ k(∂E)⊥. Then no point x of ∂E at which E is locally
Helson can be in the set D = Sp(u · ϕ).
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The second main result of Section 6 is the following one.
7. Let (Hn) be a sequence of Helson sets and E = ∪n≥1Hn. Then E

is a hereditarily set of synthesis (i.e. every closed subset of E is a set of
synthesis) iff it is a hereditarily Ditkin iff it does not contain any LS-set.

In Section 7 we listed a series of results, remarks, and open problems
with comments.

The paper is essentially self-contained; except a few results taken from
the papers [Ka-Ül-2] and [Ül2], as far as we know the subject, all the other
results and tools presented in this paper are new. The main ingredients of
the proofs are the standard results of the subject and the Baire Theorem.

2. Preliminaries and notation

Our notation and terminology are standard. For any Banach space X, by X∗

we denote its dual space. We always consider X as naturally embedded into
its bidual X∗∗. For x ∈ X and f ∈ X∗, by < x, f >, and also by < f, x >,
we denote the natural duality between X and X∗. For any subspace Y of
X, by Y ⊥ we denote the annihilator of Y in X∗. The weak-star topology of
X∗ is σ(X∗, X); the weak topology of X∗ is σ(X∗, X∗∗).

Fourier Algebra A(G) of a LCA group G. Let G be a locally compact
abelian group and A(G) its Fourier algebra. This is a commutative semisim-
ple, regular, Tauberian Banach function algebra. The term Tauberian means
that the ideal Ac(G) = {u ∈ A(G) : Supp(u) is compact} is dense in A(G).
This is equivalent to saying that the empty set is set of synthesis. This is also
equivalent to saying that every proper closed ideal of A(G) is contained in
a regular maximal ideal of A(G). The structure space ΦA(G) of the algebra
A(G) is {ρx : x ∈ G}, where ρx is the evaluation functional at x defined by
< ρx, u >= u(x). The space ΦA(G) is homeomorphic to G and we usually do
not distinguish them.

The algebra A(G) and its maximal ideals have bounded approximate
identities. For this algebra, the closed scattered subsets (the empty set in-
cluded), in particular, the finite subsets of G, are Ditkin sets. The dual space
of A(G) is denoted as PM(G) and each element of PM(G) is called a pseu-
domeasure on G. Our main reference about the algebra A(G) is Rudin’s
classical book [Ru].

A∗ as an A module. Let A be a commutative Banach Algebra.
For u ∈ A and ϕ ∈ A∗, by u · ϕ we denote the functional on A, defined,

for v ∈ A, by:

< u · ϕ, v >=< ϕ, vu >
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It is immediate to see that ‖ u · ϕ ‖≤‖ u ‖ · ‖ ϕ ‖ so that u · ϕ is in A∗.
For the action A×A∗ → A∗, defined by (u, ϕ) �→ u·ϕ, A∗ is an A-module.

For the algebra A = A(G), this is the only module action on A(G)∗ that

will be used in this paper.

Our Banach algebra terminology is that of the book [Da, Chapter 3].

The spectrum (or support) of a functional ϕ in A∗. Let A be a

commutative semisimple, regular and Tauberian Banach algebra. For ϕ ∈
A∗, the spectrum (or the support) Sp(ϕ) of ϕ is defined in several equivalent

ways. Below we state three of them. The set Sp(ϕ) is a closed subset of ΦA

and is defined as follows. For more on this notion, see [Ka, Chapter 5] and

[Re-St, Chapter 7].

For γ ∈ ΦA, γ ∈ Sp(ϕ) iff, for any u ∈ A, u · ϕ = 0

implies that u(γ) = 0.
(2.1)

For γ ∈ ΦA, γ ∈ Sp(ϕ) iff, for each neighbourhood V of γ,

there is an u ∈ A such that Supp(u) ⊆ V and < u,ϕ > 
= 0.
(2.2)

For γ ∈ ΦA, γ ∈ Sp(ϕ) iff there is a net (uα) in A

such that uα · ϕ → γ in the weak-star topology of A∗.
(2.3)

We note here that, since the algebra A is supposed to be Tauberian, for

ϕ ∈ A∗, Sp(ϕ) = ∅ iff ϕ = 0. In the special case where A = C0(Ω) for a

locally compact space Ω, for μ ∈ M(Ω) = C0(Ω)
∗, by (2.2), the set Sp(μ)

is just the support of the measure μ, the complement of the largest open

subset of Ω on which μ vanishes.

The properties of the spectrum that we shall need are:

Sp(ϕ) = ∅ iff ϕ = 0.(2.4)

For any u ∈ A and any ϕ ∈ A∗, Sp(u · ϕ) ⊆ Sp(ϕ) ∩ Supp(u).(2.5)

For any closed subset E of ΦA, Sp(ϕ) ⊆ E iff ϕ ∈ J(E)⊥.(2.6)

If E is a closed subset of ΦA and if (ϕi)i∈I is a weak-star

convergent net in A∗ converging to some ϕ ∈ A∗,

the inclusions Sp(ϕi) ⊆ E for all i ∈ I imply that Sp(ϕ) ⊆ E too.

(2.7)
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The product IJ of two closed ideals I and J . Let I and J be two

closed ideals of A(G). By IJ we denote the closed ideal of A(G) generated

by the set {uv : u ∈ I and v ∈ J}. This is the closure of the set

{
n∑

i=1

uivi : ui ∈ I and vi ∈ J}.

If J = I, instead of IJ we will write I2.

We shall also need some topological notions. Below X is a Hausdorff

topological space and all the sets considered are subsets of X.

Locally Finite Family of Sets. A family of sets (Ei)∈I is said to be

“locally finite” if, for every x ∈ X, there is a neighbourhood of x that meets

only finitely many of Ei. In this case

∪i∈IEi = ∪i∈IEi

In particular, the union of a locally finite family of closed sets is closed [En,

p. 16].

Relative Interior. Let D ⊆ E be two nonempty sets. Then the interior

of the set D as a subset of E is denoted as IntE(D). A point x of E is in

the set IntE(D) iff there is a neighbourhood V of x such that V ∩ E ⊆ D.

If D ⊆ E1 ⊆ E2 then, obviously,

IntE2
(D) ⊆ IntE1

(D)

Now let D ⊆ E be two closed sets. It is important to notice that

E \D = E \ IntE(D).

Relative boundary. Let D ⊆ E be two closed sets. The boundary of D

as a subset of E is the set

∂E(D) = D ∩ E \D.

We note that, if D ⊆ E1 ⊆ E2 then

∂E1
(D) ⊆ ∂E2

(D).
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Baire Theorem. We will use several times the following form of the Baire
Theorem. Let Ω be a locally compact space, E and Fn closed subsets of Ω
such that E ⊆ ∪n≥1Fn. Suppose that, for each n ≥ 1, E \ Fn = E. Then
E = ∅.

The other notions and notation will be introduced as needed.

3. Some tools to study sets of synthesis and Ditkin sets

In this section we present the proofs of the three theorems stated in the in-
troduction, which are our main tools to study sets of synthesis, and consider
a few consequences of them.

By a “closed set”, as above, we always mean a closed subset of G, which
we consider as identified with the structure space of the Banach algebra
A(G). By E we denote a generic nonempty closed subset of G. When we
work with a sequence of Ditkin sets (Dn) we never assume that the union
of them is closed.

We recall that, in the introduction, to every closed set E we have asso-
ciated the following closed set

σ(E) = ∪u,ϕSp(u · ϕ),

where the union is taken over all u ∈ k(E) and ϕ ∈ J(E)⊥; and the following
closed ideal

I(σ(E)) = {u ∈ A(G) : k(E)u ⊆ J(E)}.
By the very definition of the set σ(E), the set E is a set of synthesis iff
σ(E) = ∅. The set σ(E) is the smallest closed subset of E for which this
equivalence holds. It is immediate to see that σ(E) = ∅ iff there is a Ditkin
set F such that σ(E) ⊆ F ⊆ E.
Here we recall that the empty set is a Ditkin set for the algebra A(G). As
proved in [Ka-Ül-1], the hull of the ideal I(σ(E)) is the set σ(E) so that

J(σ(E)) ⊆ I(σ(E)) ⊆ k(σ(E)).

So, since J(E)J(E) = J(E) and J(E) ⊆ k(E), we have

k(E)J(σ(E)) = J(E).

The ideal I(σ(E)) is the largest closed ideal I of A(G) for which the equality

k(E)I = J(E)
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holds. For instance, from this equality we see that

k(E)2 = J(E) iff k(E) ⊆ I(σ(E)).

An important result about the set σ(E) is the following theorem.

Theorem 3.1. Let D and E be two arbitrary closed sets. Then

(i) k(E)J(D) ⊆ J(E) iff σ(E) ⊆ D.
(ii) If k(E)J(D) = k(E) then D ⊆ E and σ(E) \D = σ(E).
(iii) If D ⊆ E then k(E)J(D) = J(E) iff σ(E) ⊆ D.

Proof. (i) Suppose first that k(E)J(D) ⊆ J(E). Then, for u ∈ k(E), v ∈
J(D) and ϕ ∈ J(E)⊥, Sp(vu · ϕ) = ∅. So, this being true for each v ∈
J(D), Sp(u · ϕ) ⊆ D. This shows that σ(E) ⊆ D. Conversely, suppose that
σ(E) ⊆ D. Then J(D) ⊆ J(σ(E)). Hence k(E)J(D) ⊆ k(E)J(σ(E)). Since
k(E)J(σ(E)) = J(E), we see that k(E)J(D) ⊆ J(E).

(ii) Suppose that k(E)J(D) = k(E). Then k(E) ⊆ J(D) so that D ⊆ E.
To prove that σ(E) \D = σ(E), we first note that, for u ∈ J(D) and any
ϕ ∈ A(G)∗, since J(D) = j(D), Sp(u ·ϕ) ⊆ Sp(ϕ) \D. So, for u ∈ k(E), v ∈
J(D) and ϕ ∈ J(E)⊥, we have

Sp(uv · ϕ) = Sp(v · u · ϕ) ⊆ σ(E) \D.

Since k(E)J(D)=k(E), from the preceding line we conclude that σ(E) \D=
σ(E).

(iii) This assertion follows from the first assertion and the equality

k(E)J(σ(E)) = J(E).

For any Ditkin subset D of E, as one can see easily, k(E) = k(E)J(D).
By the preceding theorem, this implies that σ(E) \D = σ(E). In particular,
by Baire Theorem, σ(E) = ∅ if there is a sequence of Ditkin sets (Dn) such
that σ(E) ⊆ ∪n≥1Dn ⊆ E.

As a first application of this theorem we present the following result.
Before this we recall that, as proved by Helson [He] (see also [Sa1]), given
any two closed distinct ideals I and J with the same hull, there is a closed
ideal K strictly in between I and J . In the next example, in the case where
J = J(E) and I = I(E), we give a very simple proof of this result.

Example 3.2. Suppose that the set E is not a set of synthesis so that
J(E) 
= k(E) and σ(E) 
= ∅. Let D ⊆ σ(E) be a closed set such that
σ(E) \D 
= σ(E). SetK = k(E)J(D). Then, by Theorem 3.1 (i),K 
= J(E);
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and, by Theorem 3.1 (ii), K 
= k(E). Since the hull of K is E, the ideal K
is strictly in between J(E) and k(E). Varying D we obtain infinitely many
closed ideals in between J(E) and k(E).

The most important results of this paper are the preceding theorem
and the following two theorems, which have many applications and can be
used in many different ways. We shall see some of their applications in the
subsequent sections. In the theorems below D and E are arbitrary closed
sets.

Remark 3.3. The proofs of the next two theorems use the following simple
result.

Let D be a closed set and ϕ ∈ A(G)∗ be a functional such that, for all
v ∈ J(D), Sp(v · ϕ) ⊆ D. Then, in this case, Sp(ϕ) ⊆ D.

To see that this claim is true, for a contradiction, suppose that there is
an x in Sp(ϕ) that is not in D. Then there is a relatively compact neigh-
bourhood V of x such that V ∩ D = ∅. Let v ∈ A(G) be a function such
that v(x) = 1 and Supp(v) ⊆ V . Then, since v ∈ j(D), by hypothesis,
Sp(v · ϕ) ⊆ D. Since v(x) = 1 and x ∈ Sp(ϕ), x ∈ Sp(v · ϕ). This con-
tradicts the hypothesis that, for all v ∈ J(D), Sp(v · ϕ) ⊆ D. So the above
claim is justified.

Theorem 3.4. Let D and E be two closed sets and F = D ∪ E. Then

σ(F ) ⊆ D iff σ(E) ⊆ D.

Proof. Suppose first that σ(F ) ⊆ D. Let us see that then k(E)J(D) ⊆
J(E). To see this inclusion, let u ∈ k(E), v ∈ J(D) and ϕ ∈ J(E)⊥. Then,
since k(E)J(D) ⊆ k(E)k(D) and k(E)k(D) ⊆ k(E ∪D) = k(F ), and since
J(E)⊥ ⊆ J(F )⊥, so vu ∈ k(F ) and ϕ ∈ J(F )⊥, we see that

Sp(vu · ϕ) ⊆ σ(F ) ⊆ D.

Thus, for all v ∈ J(D), Sp(vu · ϕ) ⊆ D. This, by the above remark, implies
that Sp(u · ϕ) ⊆ D. This inclusion in turn implies that, for each v ∈ J(D),
Sp(vu · ϕ) = ∅. So vu · ϕ = 0. As the algebra A(G) has an approximate
identity, < vu, ϕ >= 0. This proves that ϕ vanishes on the ideal k(E)J(D).
This being true for each ϕ ∈ J(E)⊥, we conclude that k(E)J(D) ⊆ J(E).
Hence, by Theorem 3.1 (i), σ(E) ⊆ D.

Conversely, now suppose that σ(E) ⊆ D. So, for all u ∈ k(E) and
ϕ ∈ J(E)⊥, Sp(u · ϕ) ⊆ D. Take w ∈ k(F ) and ψ ∈ J(F )⊥. Since for
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v ∈ J(D),

Sp(v · ψ) ⊆ F \D

and

F \D ⊆ E \D ⊆ E,

we see that v · ψ ∈ J(E)⊥. Hence, since k(F ) ⊆ k(E), we have w ∈ k(E) so

that Sp(wv · ψ) ⊆ σ(E). By hypothesis, σ(E) ⊆ D. Thus, for all v ∈ J(D),

Sp(vw · ψ) ⊆ D.

This, by Remark 3.3, implies that Sp(w · ψ) ⊆ D. This inclusion in turn

implies that

< w · ψ, v >=< ψ, vw >= 0.

This shows that ψ vanishes on the ideal k(F )J(D). This being true for each

ψ ∈ J(F )⊥, we conclude that k(F )J(D) ⊆ J(F ). Hence, by Theorem 3.1

(i), σ(F ) ⊆ D. This finishes the proof.

We note that, in this theorem, the roles of D and E are symmetric. This

theorem, as we shall see in the next sections, has many applications. Here

in the next example we present some simple applications of this theorem.

Examples 3.5. 1. Let D ⊆ E be two closed sets. Suppose that D is a set

of synthesis. Writing E as

E = E \D ∪D,

and using the hypothesis that D is a set of synthesis, so σ(D) = ∅, by

Theorem 3.4, we get that σ(E) ⊆ E \D. This shows that, for any set of

synthesisD contained in E, σ(E)∩IntE(D) = ∅. Thus, E is a set of synthesis

iff E = ∪DIntE(D), where the union is taken over all subsets D of E that

are sets of synthesis. Equivalently, E is a set of synthesis iff, given any x ∈ E,

there are a neighbourhood V of x and a set of synthesis D ⊆ E such that

V ∩ E ⊆ D.

2. Let D ⊆ E be two closed sets. Suppose that the set E is a set of
synthesis. Then in this case σ(D) ⊆ ∂E(D). If D is open in E then ∂E(D) =

∅, and D is a set of synthesis.

3. If D is an arbitrary closed subset of E, writing E as

E = [E \D ∪ σ(E)] ∪D
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and remembering that σ(D) ⊆ D, we see that

σ(D) ⊆ σ(E) ∪ ∂E(D).

4. Let U be an closed-open subset of G. For instance U maybe an open
subgroup of G or the union of the finitely many cosets of it. Then, for any
closed set E, the set D = E ∩ U is closed in G and open in E so that
E \D = E \D. Hence, if E is a set of synthesis, as noted above, so is D. In
particular, if H is an open subgroup of G then, for any set of synthesis E,
the set D = E ∩H is a set of synthesis.

The next theorem is the analogue of Theorem 3.4 for Ditkin sets. Before

stating this theorem, we recall the definition of the set σ�(E).

If the set E is not a Ditkin set then there is a u ∈ k(E) such that u /∈
uj(E). Hence, there is a ϕ ∈ A(G)∗ such that < u,ϕ > 
= 0 and Sp(u·ϕ) ⊆ E.
Below we take the closure of the union of all such sets Sp(u · ϕ). Precisely,

σ�(E) = ∪u,ϕSp(u · ϕ),

where the union is taken over all u ∈ k(E) and for all ϕ ∈ A(G)∗ such that
Sp(u · ϕ) ⊆ E. Thus, for u ∈ k(E) and ϕ ∈ A(G)∗,

Sp(u · ϕ) ⊆ σ�(E) iff Sp(u · ϕ) ⊆ E.

In the preceding line, if E is a Ditkin set, since then u ∈ uk(E), the inclusion
Sp(u · ϕ) ⊆ E implies that Sp(u · ϕ) = ∅ so that σ�(E) = ∅. Conversely, if
σ�(E) = ∅ then, for u ∈ k(E) and ϕ ∈ A(G)∗, the inclusion Sp(u · ϕ) ⊆ E
implies that Sp(u · ϕ) = ∅, so < u,ϕ >= 0, and the set E is a Ditkin set.
Hence, E is a Ditkin set iff σ�(E) = ∅.

Theorem 3.6. Let D and E be two closed sets and F = D ∪ E. Then

σ�(F ) ⊆ D iff σ�(E) ⊆ D

Proof. Suppose first that σ�(F ) ⊆ D. This means that whenever for a w ∈
k(F ) and ϕ ∈ A(G)∗ we have Sp(w ·ϕ) ⊆ F then we also have Sp(w ·ϕ) ⊆ D.

To show that then σ�(E) ⊆ D, we start with a u ∈ k(E) and a ϕ ∈ A(G)∗

such that Sp(u·ϕ) ⊆ E. Then, since for v ∈ J(D), the product vu is in k(F ),
and since Sp(vu · ϕ) ⊆ E ⊆ F , by hypothesis, Sp(vu · ϕ) ⊆ D. This being
true for each v ∈ J(D), by Remark 3.3, Sp(u · ϕ) ⊆ D. Hence σ�(E) ⊆ D.

To prove the reverse implication, suppose that σ�(E) ⊆ D. This means
that, for u ∈ k(E) and ϕ ∈ A(G)∗, whenever Sp(u · ϕ) ⊆ E, we have
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Sp(u ·ϕ) ⊆ D. Now to prove that σ�(F ) ⊆ D, we start with a w ∈ k(F ) and
a ϕ ∈ A(G)∗ such that Sp(w · ϕ) ⊆ F . Then, for v ∈ J(D),

Sp(vw · ϕ) ⊆ F \D ⊆ E.

Hence, by hypothesis, Sp(vw · ϕ) ⊆ D. This being true for each v ∈ J(D),
by Remark 3.3 again, Sp(w · ϕ) ⊆ D. This implies that σ�(E) ⊆ D. This
completes the proof.

Next, as a first application of the preceding theorem, we give the follow-
ing corollary. This result will permit us to produce new Ditkin sets from the
known ones.

Corollary 3.7. Let E be a Ditkin set and D a closed subset of E. Suppose
that the relative boundary of D, ∂ED = D ∩ E \D, is a Ditkin set. Then
the set F = E \D is also a Ditkin set.

Proof. Since E = F ∪D and since E is a Ditkin set, so σ�(E) = ∅, by the
preceding theorem, σ�(F ) ⊆ D. Since σ�(F ) ⊆ F too, σ�(F ) ⊆ ∂E(D) ⊆ F .
Since the set ∂E(D) is a Ditkin set, we conclude that the set F is a Ditkin
set.

In the example below by a “triangle” we mean a triangle together with
its interior.

Example 3.8. Let G = R
2 and E be the closed unit disk in R

2. Let also
D1,..., Dn be pairwise disjoint triangles situated in the interior of E. Let
D = ∪n

k=1Dk. Then, since the union of finitely many Ditkin sets is a Ditkin
set, the relative boundary of D, which is the union of the boundaries of the
sets Dk’s, is a Ditkin set. So the set F = E \ ∪n

k=1Dk, which is a kind of
lace (= dentelle in French), is a Ditkin set.

We can repeat this example in any dimension with other geometrical
figures that are known to be Ditkin sets to obtain new Ditkin sets. In G =
R
n, it is known that the polyhedral sets and the star-shaped bodies are

Ditkin sets [Ru, Section 7.5].

The results stated in Examples 3.5 remain valid if we replace the term
“set of synthesis” by “Ditkin set”. We shall not repeat them. In the following
remarks we display a couple of useful results about the sets σ(E) and σ�(E)

Remarks 3.9. Let D and E be two closed sets.
1. Suppose that σ(E) ⊆ D ⊆ E. Then

σ(E) ⊆ σ�(D).
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Taking into account the inclusion k(E) ⊆ k(D), this follows from the defini-
tion of the set σ(E) and σ�(F ). This inclusion shows once more that if there
is a Ditkin set in between σ(E) and E then E is a set of synthesis.

2. Suppose that σ�(E) ⊆ D ⊆ E. Then

σ�(E) ⊆ σ�(D).

To see that this inclusion holds, let u ∈ k(E) and ϕ ∈ A(G)∗ be such that
Sp(u · ϕ) ⊆ E. Then, since σ�(E) ⊆ D, Sp(u · ϕ) ⊆ D. As k(E) ⊆ k(D), so
u ∈ k(D), by the definition of the set σ�(D), we see that Sp(u · ϕ) ⊆ σ�(D).
Hence σ�(E) ⊆ σ�(D).

This result shows in particular that σ�(E) ⊆ ∂D so that σ�(E) ⊆ ∂D ∩
∂E. This also shows that (take D = ∂E) if the boundary of the set E is a
Ditkin set then so is the set E, a well-known result. Below we shall see a
much better result.

Next we state a condition implying that a set E for which the given
condition holds is a Ditkin set. To our knowledge, the hypothesis of the
next result is weaker than the hypothesis of any known result with the same
conclusion.

Theorem 3.10. Let E be a closed set. Suppose that for some sequence of
Ditkin sets (Dn)n≥1 we have σ�(E) ⊆ ∪n≥1Dn ⊆ E. Then E is a Ditkin set.

Proof. Since E is a Ditkin set iff σ�(E) = ∅, we are going to prove that,
under the given hypothesis, σ�(E) = ∅. To this end, let u ∈ k(E) and
ϕ ∈ A(G)∗ be such that Sp(u · ϕ) ⊆ E. Hence, by the definition of the set
σ�(E), Sp(u · ϕ) ⊆ σ�(E). So

Sp(u · ϕ) ⊆ ∪n≥1Dn.

Fix an n ≥ 1. Since u ∈ k(E), k(E) ⊆ k(Dn) and Dn is a Ditkin set, there
is a sequence (vk) in j(Dn) such that ‖ u − uvk ‖→ 0, as k → ∞. Since
Supp(vk) ∩Dn = ∅,

Sp(vku · ϕ) ⊆ Sp(u · ϕ) \Dn.

Hence, taking the limit on k, we get that

Sp(u · ϕ) ⊆ Sp(u · ϕ) \Dn.

So,

Sp(u · ϕ) = Sp(u · ϕ) \Dn.
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The set Sp(u ·ϕ), considered as a topological space, is locally compact; and
the preceding lines show that the set On = Sp(u · ϕ) \ Dn is dense in the
space Sp(u · ϕ). The set On is open in the space Sp(u · ϕ) so that, by Baire
Theorem, the intersection of the sets On is also dense in the space Sp(u ·ϕ).
As Sp(u · ϕ) ⊆ ∪n≥1Dn, this is possible only if Sp(u · ϕ) = ∅. This, by the
definition of the set σ�(E), implies that this set is empty, so E is a Ditkin
set.

In the above proof, after the equality Sp(u · ϕ) = Sp(u · ϕ) \Dn, the
conclusion was clear from Baire Theorem. As we use this kind of argument
very often below, for the sake of the reader, we have included the full details
of the proof.

4. First uses of the tools introduced

In this section, to illustrate the use of the tools introduced, we present some
applications of the theorems proved in the preceding section.

Most of the results of this section are about the following question.

Question: If a given set E is not a set of synthesis, can we make it into a
set of synthesis (Ditkin set) by adding (or subtracting) a small set to it (or
from it)?

So the problem is similar to the closure problem in topology. If a set in
a topological space is not closed, we can make it into a closed set by adding
to the set its accumulation points. In the synthesis problem the subset of
E that hinder the set E from being a set of synthesis (Ditkin set) is the
set σ(E) (σ�(E)). So, to make E into a set of synthesis (Ditkin set) either
we should cut off the set σ(E) (σ�(E)) or we should coat it by a better set.
Below we present a couple of results to illustrate these possibilities. Before
this, we present a result that shows that the set σ(E) (σ�(E)) (if the set E
is not a LS-set) is in general much smaller than the boundary of the set E.

Lemma 4.1. Let D ⊆ E be two closed sets. Suppose that D is a set of syn-
thesis (Ditkin set). Set F =E \D∩∂E. Then σ(E)⊆σ�(F ) (σ�(E)⊆σ�(F )).

Proof. Since the set D is a set of synthesis (Ditkin set), as seen in Examples
3.5, σ(E) ⊆ E \D (σ�(E) ⊆ E \D). So σ(E) ⊆ F (σ�(E) ⊆ F ). Hence,
as seen in Remarks 3.9, σ(E) ⊆ σ�(F ) (σ�(E) ⊆ σ�(F )).

So, in the preceding lemma, larger the set D is, smaller is the set σ(E)
(σ�(E)).

The next result tells us about what to do to make the set E into a set
of synthesis (Ditkin set).



382 Ali Ülger

Lemma 4.2. Let E be a closed set.

(i) Suppose that, for some closed set D, the set F = E ∪D is a set of
synthesis (Ditkin set). Then σ(E) ⊆ D (σ�(E) ⊆ D).

(ii) Suppose that D is a Ditkin set. Then the set F = E ∪D is a set of
synthesis (Ditkin set) iff σ(E) ⊆ D (σ�(E) ⊆ D).

Proof. (i) Since the set F is a set of synthesis (Ditkin set), σ(F ) = ∅
(σ�(F ) = ∅). So σ(F ) ⊆ D (σ�(F ) ⊆ D). Hence, by Theorem 3.4 (Theorem
3.6), σ(E) ⊆ D (σ�(E) ⊆ D).

(ii) To see that assertion (ii) holds, we recall once more that a closed
set K is a set of synthesis (Ditkin set) iff there is a Ditkin set H such that
σ(K) ⊆ H ⊆ K (σ�(K) ⊆ H ⊆ K). We have seen this result above (see
Remarks 3.9); it also follows from Theorem 3.1 (ii) and from Theorem 3.10,
respectively. Assertion (ii) follows from (i) and the result just recalled.

In the next result we make a “surgical operation” on the set E to make
it into a set of synthesis. Below D and E are two arbitrary closed sets, and
L = D∩E \D. The set L is the “stitching path”. The suture should be good
for the surgical operation to be successful. Note that L is just the relative
boundary of the set D ∩ E in E.

Theorem 4.3. Let D, E be two closed sets and L = D ∩ (E \D). Suppose
that the set L is a Ditkin set. Then

(i) The set E \D is a set of synthesis iff σ(E) ⊆ D.

(ii) The set F = E ∪D is a set of synthesis iff σ(E) ⊆ D and the set D
is a set of synthesis.

Proof. (i) Suppose first that the set E \D is a set of synthesis so that
σ(E \D) = ∅. Writing E as

E = E \D ∪ (D ∩ E)

and applying Theorem 3.4, we see that σ(E) ⊆ D.

Conversely, suppose that σ(E) ⊆ D. Then, by Theorem 3.4 again,
σ(E \D) ⊆ D so that σ(E \D) ⊆ L ⊆ E \D. Since the set L is a Ditkin
set, we get that σ(E \D) = ∅. This proves that the set E \D is a set of
synthesis.

(ii) Suppose first that the set F = E ∪ D is a set of synthesis. Then,
since σ(F ) = ∅, σ(F ) ⊆ D. So, by Theorem 3.4, σ(E) ⊆ D. Now, writing F
as

F = E \D ∪D
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and using again Theorem 3.4, we see that σ(D) ⊆ E \D. Since σ(D) ⊆ D
too, we see that σ(D) ⊆ L ⊆ D. Since L is a Ditkin set, we conclude that
D is a set of synthesis.

Conversely, suppose that σ(E) ⊆ D and the set D is a set of synthesis.
Then, since σ(D) ⊆ E \D, by Theorem 3.4, σ(F ) ⊆ E \D. Since, by hy-
pothesis, σ(E) ⊆ D, by Theorem 3.4 again, σ(F ) ⊆ D. Hence σ(F ) ⊆ L ⊆
F . Since L is a Ditkin set, we conclude that the set F is a set of synthesis.

The first part of this theorem says that if we cut off from the set E the set
σ(E) by a set D containing σ(E) then, if the suture is good, the remaining
closed set E \D is a set of synthesis. The second part of the theorem says
that if we transplant to the set E a set of synthesis D containing the set
σ(E), if the stitching is good, then the set E ∪D becomes a set of synthesis.
In this Theorem, instead of assuming that “L is a Ditkin set” if we assume
that “there is a sequence of Ditkin sets (Dn) such that L ⊆ ∪n≥1Dn ⊆ D∩E”
then the theorem remains valid.

For the proof of the results below we need the following lemma, which is
of independent interest and an illustration of the use of the tools introduced.

Lemma 4.4. Let D ⊆ E be two closed sets.
(i) Suppose that σ(D) ∩ σ(E) = ∅. Then k(E) ⊆ J(D).
(ii) Suppose that k(E) ⊆ J(D). Then σ(E) ⊆ E \D and σ(D) ⊆ E \D.
(iii) Suppose that σ(E) ∩D = ∅. Then k(E) = k(E)J(D) = k(E)k(D).

Proof. (i) To prove the inclusion k(E) ⊆ J(D), we are going to prove that
each ϕ ∈ J(D)⊥ vanishes on k(E). So we take a u in k(E) and a ϕ in
J(D)⊥. Since k(E) ⊆ k(D), Sp(u · ϕ) ⊆ σ(D). Since J(D)⊥ ⊆ J(E)⊥,
Sp(u · ϕ) ⊆ σ(E) too. Since σ(D) ∩ σ(E) = ∅, we see that Sp(u · ϕ) = ∅.
Hence < u,ϕ >= 0, and k(F ) ⊆ J(D).

(ii) We first prove the inclusion σ(E) ⊆ E \D. To prove this we note
that, since k(E) ⊆ J(D),

k(E)J(E \D) ⊆ J(D)J(E \D) = J(E)).

From this, by Theorem 3.1 (i), we conclude that σ(E) ⊆ E \D.
To prove the inclusion σ(D) ⊆ E \D, let u ∈ k(D) and ϕ ∈ J(D)⊥.

Then, since k(E) ⊆ J(D), ϕ ∈ k(E)⊥. So, since, in the weak-star topology
of the space A(G)∗,

k(E) = Span(E)
w∗

,

for some net (ϕα) in Span(E), ϕα → ϕ in the weak-star topology of A(G)∗.
Since ϕα is in the space Span(E), we see that the functionals u·ϕα are in the
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space Span(E \D). So Sp(u · ϕ) ⊆ E \D. This proves that σ(D) ⊆ E \D.
Actually, we have proved more: u · ϕ is in the space k(E \D)⊥.

(iii) Since k(E)J(D) ⊆ k(E)k(D) ⊆ k(E), it is enough to prove that
k(E) ⊆ k(E)J(D). To prove this inclusion, let ϕ ∈ A(G)∗ be a functional
that vanishes on k(E)J(D). Then, for each u ∈ k(E), Sp(u · ϕ) ⊆ D. Since
J(E) = J(E)J(E), so J(E) ⊆ k(E)J(D), ϕ ∈ J(E)⊥. Hence Sp(u · ϕ) ⊆
σ(E). Thus, Sp(u ·ϕ) ⊆ σ(E)∩D. So, by hypothesis, Sp(u ·ϕ) = ∅, so that
< u,ϕ >= 0. This proves that any ϕ ∈ A(G)∗ that vanishes on k(E)J(D)
also vanishes on k(E) so that k(E) = k(E)J(D).

Next we present a general result involving the union of countably many
Ditkin sets. We recall that each one-point set in G is a Ditkin set so that
any closed separable subset E of G can be written as in the proposition. So,
one should not expect that such a set E is or should be a set of synthesis.

Proposition 4.5. Let (Dn) be a sequence of Ditkin sets and E = ∪n≥1Dn.
Then, for any closed set D ⊆ ∪n≥1Dn, we have

(i) k(E) = k(E)J(D).
(ii) σ(E) ⊆ E \D.
(iii) σ(E) \D = σ(E).

Proof. (i) Let ϕ ∈ A(G)∗ be a functional that vanishes on k(E)J(D). Then,
for each u ∈ k(E), u · ϕ is in the space J(D)⊥ so that

Sp(u · ϕ) ⊆ D ⊆ ∪n≥1Dn.

From this, as in the proof of Theorem 3.10, we deduce that Sp(u · ϕ) = ∅.
Since the algebra A(G) has an approximate identity, from Sp(u · ϕ) = ∅
we get that < u,ϕ >= 0. This proves that ϕ vanishes on k(E) so that
k(E) = k(E)J(D).

(ii) The equality k(E) = k(E)J(D) implies that k(E) ⊆ J(D). This
inclusion, by Lemma 4.4 above, implies that σ(E) ⊆ E \D.

(iii) This assertion follows from Theorem 3.1(ii).

From this proposition we see once more that if σ(E) ⊆ ∪n≥1Dn ⊆ E
then the set E is a set of synthesis. Note that, from (i), we also have k(E) =
k(E)k(D).

In the next result we shall see that if a closed set E is not a Ditkin set
then by adding some sets to it we can make it into a Ditkin set. Note that
in the next theorem the hypothesis is about the set E but the conclusion is
about the set F . Note also that if ∂E ⊆ ∪n≥1Dn then the main hypothesis
is satisfied.
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Theorem 4.6. Let E be a closed set and (Dn) a sequence of Ditkin sets such
that the set F = E ∪ (∪n≥1Dn) is closed. Suppose that σ�(E) ⊆ ∪n≥1Dn.
Then the set F is a Ditkin set.

Proof. We are going to show that, under the given hypothesis,

σ�(F ) ⊆ σ�(E).

To prove this, we start with a u ∈ k(F ) and ϕ ∈ A(G)∗ such that Sp(u ·ϕ) ⊆
F . Since k(F ) ⊆ k(Dn) for each n, and Dn is a Ditkin set,

Sp(u · ϕ) ⊆ Sp(u · ϕ) \Dn.

So

Sp(u · ϕ) = Sp(u · ϕ) \Dn.

Hence, by Baire Theorem,

Sp(u · ϕ) = Sp(u · ϕ) \ ∪n≥1Dn.

Since F = E ∪ (∪n≥1Dn), it follows that Sp(u ·ϕ) ⊆ E. Since k(F ) ⊆ k(E),
so u ∈ k(E), from the inclusion Sp(u · ϕ) ⊆ E, by the definition of the set
σ�(E), we conclude that

Sp(u · ϕ) ⊆ σ�(E).

Hence,

σ�(F ) ⊆ σ�(E).

Since, by hypothesis, σ�(E) ⊆ ∪n≥1Dn, so σ�(F ) ⊆ ∪n≥1Dn, and since each
Dn is a Ditkin set, by Theorem 3.10, F is a Ditkin set.

5. About the sets that fail to be sets of synthesis

To understand better the sets of synthesis one should understand as much
as one can why a given closed set fails to be a set of synthesis, and one
should collect as much information as one can about the sets that fail to be
set of synthesis. This is what we want to do in this section.

In this section the LS-sets play an important role. We recall that a set
D is said to be a LS-set if it is nonempty, closed and σ(D) = D. As noted in
the introduction, the unit sphere of the Euclidean group G = R

n, for n ≥ 3,
is such a set [Ka-Ül-2]. In this section we shall prove that
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(1) Almost every closed subset E of G contains a LS-set.

(2) Every substantial closed subset of a LS-set is a LS-set.

Since the closed scattered sets in G are set of synthesis, one should not

expect that all the closed subsets of a LS-set are LS-sets.

(3) For a LS-set S and a closed set E, for the set F = E ∪S, we can have

F \ σ(F ) = F only if S ⊆ E and E \ S = E.

This result is a far reaching generalization of Reiter’s Theorem mentioned

in the introduction, which is Theorem 2 in [Re].

Before starting with the results of this section, we recall that for the

equality k(E)2 = k(E) to hold the set E need not be a set of synthesis.

As proved in [Ül2], for any Helson set H in G, the equality k(H)2 = k(H)

holds. There are many other sets E that fail to be a set of synthesis but for

them the equality k(E)2 = k(E) holds.

Proposition 5.1. Let E be a closed sets that fails to be a set of synthesis

but such that k(E)2 = k(E). Then the set S = σ(E) is a LS-set.

Proof. The proof uses Theorem 3.1 twice. Since k(E)2 = k(E), for any closed

subset D of E, the equality k(E) = k(E)k(D) also holds. In particular

k(E) = k(E)k(S).

Hence, since S = σ(E), by Theorem 3.1,

k(E)J(σ(S)) = k(E)k(S)J(σ(S)) = k(E)J(S) = J(E).

The equality k(E)J(σ(S)) = J(E), by Theorem 3.1, implies that S ⊆ σ(S).

Hence σ(S) = S.

This result shows that any closed set E that contains a Helson set H

failing to be a set of synthesis contains a LS-set. So, except the rare sets that

are hereditarily set of synthesis (such a set is called a “set of spectral reso-

lution” (Malliavin)), practically every nonempty closed set E in G contains

a LS-set.

Another case where we have σ(σ(E)) = σ(E) is the following.

Proposition 5.2. Suppose that, for a closed set F in between σ(E) and E,

the equality k(E) = k(E)k(F ) holds. Then σ(σ(E)) = σ(E) and σ(E) ⊆
σ(F ).
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Proof. Let u ∈ k(E), v ∈ k(F ) and ϕ ∈ J(E)⊥. Since σ(E) ⊆ F , Sp(u ·ϕ) ⊆
F . So u ·ϕ ∈ J(F )⊥ and Sp(vuϕ) ⊆ σ(F ). Since k(E) = k(E)k(F ), from the
inclusion Sp(vuϕ) ⊆ σ(F ) we conclude that σ(E) ⊆ σ(F ). Since Sp(u ·ϕ) ⊆
σ(E) and k(F ) ⊆ k(σ(E)), so v ∈ k(σ(E)), we have σ(vu · ϕ) ⊆ σ(σ(E)).
Whence, since k(E) = k(E)k(F ), we conclude that σ(σ(E)) = σ(E).

This proposition also shows that if F is a set of synthesis and it is in
between σ(E) and E then E is a set of synthesis iff k(E) = k(E)k(F ) (see
Theorem 3.1). We note that if E is the union of two sets of synthesis Ei,
(i = 1, 2) then σ(E) ⊆ Ei ⊆ E (i = 1, 2) so that there are sets of synthesis
in between σ(E) and E.

The closed sets E that fail to be a set of synthesis can be split into two
categories.

(1) The sets E for which E \ σ(E) 
= E.
(2) The sets E for which E \ σ(E) = E.

In general, the sets in category (1) are easier to deal with; they fail badly to
be sets of synthesis. The sets in category (2) are more subtle and we know
very little about them. One of our concerns in this section is to get some
information about these sets. More precisely, we are looking for the answer of
the problem that asks when does, for a closed E, the equality E \ σ(E) = E
hold? We shall present below various results about this problem.

Before the following results, we recall that if S ⊆ E are two closed sets
then E \ S = E \ IntE(S) so that E \ S = E iff IntE(S) = ∅. So, if the set
E is such that Int(E) = E then, since σ(E) ⊆ ∂E, we have E \ σ(E) = E.
This observation shows that for the equality E \ σ(E) = E to hold the set
E need not be a set of synthesis. Actually, for many classes of sets failing
to be set of synthesis, this equality hold. For instance, if there is a set of
synthesis F such that σ(E) ⊆ F ⊆ E then, one can see as an application
of Theorem 3.4, that E \ σ(E) = E. In fact, as the next result shows, this
holds under much weaker hypothesis.

Lemma 5.3. Let E be a closed set. Suppose that, for some sequence of sets
of synthesis (Fn), we have σ(E) ⊆ ∪≥1Fn ⊆ E. Then E \ σ(E) = E.

Proof. Let Dn = Fn ∩ σ(E) so that ∪n≥1Dn = σ(E). By Example 3.5 (1),

σ(E) ⊆ E \ Fn ⊆ E \Dn.

Since Dn ⊆ σ(E), we see that E \Dn = E. Hence, by Baire Theorem,
E \ σ(E) = E.
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This result shows in particular that if E is a union of countably many
sets of synthesis then E \ σ(E) = E.

The next result shows that if E \ σ(E) 
= E then σ(E), so E, contains a
LS-set.

Lemma 5.4. Suppose that E \ σ(E) 
= E. Then the set S = IntE(σ(E)) is
a LS-set.

Proof. We first note that, since the set σ(E) is a closed set and S =
IntE(σ(E)), E \ S = E \ σ(E). This being noted, we write the set E as

E = [E \ S ∪ σ(S)] ∪ S.

Theorem 3.4 implies that

σ(E) ⊆ E \ S ∪ σ(S).

This in turn, taking the equality E \ S = E \ σ(E) into account, implies
that

σ(S) ∪ E \ S = E.

From the last equality we deduce that IntE(S) ⊆ σ(S). So IntE(S) ⊆ σ(S).
Since S = IntE(σ(E)) is the closure of an open set, IntE(S) = S, and so
σ(S) = S.

The next theorem completes the preceding result.

Theorem 5.5. Let E be a closed set. Then E \ σ(E) = E iff, for any LS-set
S ⊆ E, E \ S = E.

Proof. By the preceding lemma, if E \ σ(E) 
= E then the set S=IntE(σ(E))
is a LS-set and E \ S 
= E.

Conversely, suppose that E \ σ(E) = E. Let S ⊆ E be a LS-set. Writing
E as

E = [E \ S ∪ σ(E)] ∪ S

and applying Theorem 3.4, we get that

S ⊆ E \ S ∪ σ(E).

So

E = E \ S ∪ σ(E).

It follows

E \ σ(E) ⊆ E \ S.
Since, by hypothesis, E \ σ(E) = E, we conclude that E \ S = E.
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From the above lemma we also deduce easily that the following result

holds. So we can safely omit the proof.

Theorem 5.6. Let E be a closed set. Then E contains a LS-set iff E con-

tains a closed set F such that F \ σ(F ) 
= F .

The next result shows that most of the subsets of a LS-set are also

LS-sets.

Theorem 5.7. Let S be a LS-set and D a closed proper subset of it. Then

the set E = S \D is also a LS-set.

Proof. If S \D = S then there is nothing to prove. So we suppose that

S \D 
= S. Then we write S as

S = E ∪ (D ∪ σ(E)).

Using the hypothesis that S is a LS-set, from Theorem 3.4, we see that

S ⊆ D ∪ σ(E)).

Hence,

S = D ∪ σ(E).

So

S \D ⊆ σ(E).

Hence, since the set σ(E) is closed,

E ⊆ σ(E).

From this we conclude that σ(E) = E so that E is a LS-set

This result tells us that Laurent Schwartz could not have chosen a set

better than the unit sphere of Rn, (n ≥ 3) to prove his theorem.

The next result shows that the sets that are not much larger than a

LS-set, concerning synthesibility, are as bad as the LS-sets.

Theorem 5.8. Let E be a closed set and S a LS-set contained in E. Suppose

that E \ S 
= E. Then neither the boundary of E nor any closed set in

between S and E is a set of synthesis.
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Proof. Let us first see that, for any closed set F containing a LS-set D,
IntF (D) ⊆ σ(F ). To see this it is enough to write F as follows

F = [F \D ∪ σ(F )] ∪D

and apply Theorem 3.4 to get that D ⊆ [F \D∪σ(F )]. From this inclusion,
the equality F \D ∪ σ(F ) = F and then the inclusion IntF (D) ⊆ σ(F )
follow.

Now, for a contradiction, suppose that there is a set of synthesis F such
that S ⊆ F ⊆ E. Then, by the above observation,

IntE(S) ⊆ IntF (S) ⊆ σ(F ).

Since F is a set of synthesis, so σ(F ) = ∅, and IntE(S) 
= ∅, we have a
contradiction. So there is no set of synthesis in between S and E.

Since IntE(S) ⊆ σ(E) and σ(E) ⊆ ∂E, if the boundary of E were a
set of synthesis, for the set D = IntE(S), which is a LS-set, we would have
∂E \D = ∂E. But then we would have E \D = E. Since E \D = E \ S,
this is not the case. From this we conclude that the boundary of E is not a
set of synthesis.

Here we note that, if E \ σ(E) 
= E then, the preceding theorem together
with Lemma 5.4 show once more that no closed set in between σ(E) and E
is a set of synthesis.

The next result is a far reaching generalization of Reiter’s Theorem
stated in the Introduction.

Theorem 5.9. Let E be a closed set, S a LS-set and F = E ∪ S. Suppose
that F \ σ(F ) = F . Then S ⊆ E and E \ S = E

Proof. The proof is very similar to the proof of Theorem 5.5 above; for the
sake of the reader we repeat it. We write F as

F = [F \ S ∪ σ(F )] ∪ S.

Since σ(S) = S, by Theorem 3.4,

F = F \ S ∪ σ(F ).

So,

F \ σ(F ) ⊆ F \ S ⊆ E \ S.
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Since F \ σ(F ) = F , we conclude that

E \ S = F.

It follows that S ⊆ E and E \ S = E.

The last result of this section is a general result of independent interest;
it will be used in the last section.

Theorem 5.10. Let E be an arbitrary closed set and F = E \ σ(E). Then
F \ σ(F ) = F .

Proof. If E \ σ(E) = E then there is nothing to prove. So we suppose that
F 
= E. Writing E as

E = E \ σ(E) ∪ σ(E)

and applying Theorem 3.4 we get the following.

σ(F ) ⊆ σ(E).

Since

σ(F ) ⊆ F and F = E \ σ(E) = E \ IntEσ(E),

we see that

σ(F ) ⊆ σ(E) ∩ (E \ IntE(S)) ⊆ σ(E) \ IntE(σ(E)).

So

σ(F ) ⊆ ∂E(σ(E)).

Hence

F \ ∂E(σ(E)) = (E \ IntE(σ(E))) \ ∂E(σ(E)) = E \ σ(E).

So, since E \ σ(E) = F , we have

F \ ∂E(σ(E)) = F.

Since

σ(F ) ⊆ ∂E(σ(E)),

we see that

F \ σ(F ) = F.

The reader can find more results about the LS-sets and the set σ(E) in
Section 7.
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6. Around Helson sets

In this section we consider two classes of sets that are closely related to
Helson sets and study the synthesibility of them. These are sets of the form

(1) E = ∪n≥1Hn, where each Hn is an Helson set.

And,

(2) The closed sets that are locally Helson sets.

We note that, since the closed subsets of Helson sets are Helson sets, any
closed set E that is a subset of a union ∪n≥1Hn of Helson sets Hn can be
written as E = ∪n≥1E ∩ Hn. So, E is a union of countably many Helson
sets. Since there exist compact countable sets in G that are not Helson sets
[Ru, p.117 and Section 6.8], a set E as in (1) need not be a Helson set.

We shall first consider the locally Helson sets. We start by recalling the
definition of these sets.

Definition 6.1. Let E be a closed set and x a point in its boundary. We
shall say that “E is locally Helson at x” if there is a neighbourhood V of x
such the set H = V ∩ ∂E is an Helson set. If E is locally Helson at every x
in its boundary then the set E will be said to be a locally Helson set.

A locally Helson set need not be a Helson set. Here are some examples.

Examples 6.2. 1. Let G = R and, for each integer n ≥ 1, let Hn ⊆ [n, n+1]
be a Helson set. If necessary, adding to Hn the points n and n + 1, we can
and do assume that these points are in Hn. Let E = ∪n≥1Hn. The set E is
closed since the family (Hn)n≥1 is locally finite. The set E is not a Helson
set. For this we recall that a Helson set in R does not contain an arbitrary
long arithmetic progression [Ru, p. 117 and Section 6.8]. However the set E
is a locally Helson set. Indeed, since every x ∈ E has a neighbourhood that
meets at most two of the sets Hn and since the union of two Helson sets is
a Helson set, we can easily see that the set E is a locally Helson set.

2. Let (Hα)α∈I be a locally finite family of Helson sets in G. We suppose
that the set I is infinite. Then the set E = ∪α∈IHα is a locally Helson set
but, as in the preceding example, in general is not a Helson set.

3. Let E be a closed boundary set (i.e. the interior of E is empty) in G
and H ⊆ E a Helson set such that E \H 
= E. Let x be a point in E that
is not in E \H. Then the point x has a closed neighbourhood V such that
V ∩E ⊆ H so that the set V ∩E is a Helson set. This shows that the set E is
locally Helson at every point x in E \E \H. So, if H1 ⊆ H2 ⊆ · · · ⊆ Hn · · · ,
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are Helson sets, E = ∪n≥1Hn and F = ∩n≥1E \Hn then E is locally Helson
set at each x /∈ F . So, if E is also locally Helson at each x ∈ F then the set
E is a locally Helson set.

Let j : A(G) → C0(G) be the natural injection. Since j is a continuous
linear operator, j∗(C0(G))∗ is a subspace of the space A(G)∗. Identifying
M(G) with j∗(C0(G))∗ we can and do consider M(G) as a subspace of
A(G)∗.

Since, for a Helson set H, the restriction homomorphism R : A(G) →
C0(H), R(u) = u | H, is surjective and ker(R) = k(H), we have k(H)⊥ ⊆
M(G). In [Sa2] Saeki, extending Körner’s result cited above, proved that
every nondiscrete locally compact Abelian group G contains a Helson set
that fails to be a set of synthesis for the algebra A(G). Hence, for a closed
subset E of G, the inclusion k(E)⊥ ⊆ M(G) does not imply that E is a set
of synthesis.

We shall need the following result proved in [Ül2].

Theorem 6.3. Let E be a closed set, u ∈ k(E) and ϕ ∈ A(G)∗ be such that
Sp(u · ϕ) ⊆ E. Suppose that the functional u · ϕ is in the subspace M(G) of
A(G)∗. Then u · ϕ = 0.

Let again E be a closed set, u ∈ k(E) and ϕ ∈ A(G)∗ be such that
Sp(u ·ϕ) ⊆ E. Then, as one can see easily, Sp(u ·ϕ) ⊆ ∂E. One of the main
results of this section is the following lemma. This lemma gives us some
information about the question where the set Sp(u ·ϕ) lies in the boundary
of E.

Lemma 6.4. Let E be a closed set, u ∈ k(E) and ϕ ∈ A(G)∗ be such that
Sp(u ·ϕ) ⊆ E. Set D = Sp(u ·ϕ). Suppose that the functional u ·ϕ is in the
space k(∂E)⊥. Then no point x ∈ ∂E at which E is locally Helson can be in
the set D.

Proof. Let x ∈ ∂E be a point at which E is locally Helson so that there
is a neighbourhood V of x such that the set H = V ∩ ∂E is a Helson set.
Let v ∈ A(G) be a function such that v(x) = 1 and Supp(v) ⊆ V . Since
u · ϕ ∈ k(∂E)⊥, there is a net (ϕα) in the space Span(∂E) that converges
in the weak-star topology of A(G)∗ to u · ϕ. Then, since

Sp(v · ϕα) ⊆ Sp(ϕα) ∩ Supp(v) ⊆ H,

and since the functionals Sp(v ·ϕα) are finitely supported, so v ·ϕα ∈ k(H)⊥,
the functional vu · ϕ is the space k(H)⊥. Since k(H)⊥ ⊆ M(G), by the
preceding theorem, vu · ϕ = 0. Since v(x) = 1, x cannot be in D (see (2.1)
in Section 2).
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Let LH(E) = {x ∈ ∂E : E is locally Helson at x}. This set is open
in ∂E. The preceding lemma shows that, if ∂E is a set of synthesis then
σ�(E) ∩ LH(E) = ∅ so that σ�(E) ⊆ ∂E \ LH(E).

As a consequence of this lemma, we have the following result. We can
safely omit the proof of this theorem; it follows easily from the preceding
lemma.

Theorem 6.5. Let E be a closed set that is locally Helson. Suppose that the
boundary of E is a set of synthesis. Then E is a Ditkin set.

From this theorem we see that any Helson set of synthesis is a hereditary
Ditkin set, a known result [La-Ül].

In the rest of this section our concern will be the synthesis problem for
a closed E that is union of countably many Helson sets (Hn). If each of the
sets Hn is a set of synthesis then, since a Helson set of synthesis is a Ditkin
set, the set E is a Ditkin set. For this reason we do not assume that the sets
(Hn) are sets of synthesis. Our problem is to find out when the set E is a
set of synthesis.

For u ∈ A(G), we set Zu = {x ∈ G : u(x) = 0}. This is the zero set of u.
Note that

Supp(u) = G \ Zu = G \ Int(Zu).

We shall use the set Zu frequently below.

• From this point on until the end of the paper we assume that the
group G is metric and σ − compact. In such a group, every open set U can
be written as

U = ∪n≥1Kn

with, for each n ≥ 1, Kn is compact and Kn ⊆ IntKn+1. Now let D 
= G be
a nonempty closed set and U = G\D. Write U as above and, for each n ≥ 1,
choose a function un ∈ A(G) such that un = 1 on Kn and Supp(un) ⊆ Kn+1.
Set

w =

∞∑
n=1

un
2n(1+ ‖ un ‖) .

Then Zw = D and w ∈ J(D), see [Be, p. 67, Theorem 1.4.3].

• Thus, given any proper closed set D ⊆ G, there is a function w ∈ J(D)
such that Zw = D.

Since Zw = D, as one can see readily,

w ∈ wJ(D), and J(D) = wA(G).
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Now let E be a closed set. Let w ∈ J(σ(E)) be such that Zw = σ(E). Then,
since

J(σ(E)) = wA(G),

we have (see Theorem 3.1)

k(E)w = J(E).

This implies that the following lemma holds.

Lemma 6.6. Let E be a closed set and w ∈ J(σ(E)) be such that Zw =
σ(E). Then, for any ϕ ∈ J(E)⊥, the functional w ·ϕ is in the space k(E)⊥.

This lemma also is one of our tools to study the set of synthesis.
• This lemma in particular shows that if E is a Helson set then, for each

ϕ ∈ J(E)⊥, the functional w · ϕ is a measure.
To illustrate the use of this lemma, we consider the following situation.
Let E be a closed set, u ∈ k(E) and ϕ ∈ J(E)⊥. Set D = Sp(u ·ϕ). Then

the functional u ·ϕ is in the space J(D)⊥. Now let w ∈ J(σ(D)) be such that
Zw = σ(D). Then, by the preceding lemma, the functional wu · ϕ is in the
space k(D)⊥. So, if the set D is a Helson set, by Theorem 6.3, wu · ϕ = 0.
On the other hand, using the fact that Zw = σ(D), as one can see easily,

Sp(wu · ϕ) = D \ σ(D).

Hence, (under the hypothesis that D is a Helson set), since wu · ϕ = 0,

D \ σ(D) = ∅.

From this we see that D = σ(D) so that D is a LS-set. Thus, in the case
where D = Sp(u · ϕ) is a Helson set, the set D is either empty or it is a
LS-set. We shall see below that the same conclusion holds in the case where
D is the union of a sequence of Helson sets. The above observation also
shows that a Helson is a set of synthesis iff it does not contain a LS-set.

For the proof of the next theorem we need the following result [Ül2].

Theorem 6.7. Let H be a Helson set. Then, for each u ∈ k(H), u ∈ uk(H).

This theorem shows that, for any Helson set H, the ideal k(H) has
approximate units. The theorem below is the second main result of this
section. Before this theorem, for the sake of clarity, we present the essential
of the argument in a separate lemma. Below we use more than once the
following result in the next remark.
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Remark 6.8. Let E be a closed set, u ∈ k(E) and ϕ ∈ A(G)∗ be such that
Sp(u·ϕ) ⊆ E. Suppose that, for some closed set F ⊆ E, u·ϕ ∈ k(F )⊥. Then,
for any Helson set H ⊆ F , u · ϕ ∈ k(F \H)⊥. Indeed, since u · ϕ ∈ k(F )⊥,
there is a net (ϕα) in Span(F ) such that ϕα → u·ϕ in the weak-star topology
of A(G)∗. For any v ∈ k(H), the functional v ·ϕα is in the space Span(F \H).
It follows that vu ·ϕ ∈ k(F \H)⊥. Since u ∈ uk(H), using this, we get that
u · ϕ ∈ k(F \H)⊥.

Lemma 6.9. Let E = ∪n≥1Hn be a closed set that is the union of countably
many Helson sets. Let u ∈ k(E) and ϕ ∈ A(G)∗ be such that Sp(u ·ϕ) ⊆ E.
Then u · ϕ = 0 iff the functional u · ϕ is in the space k(D)⊥, where D =
Sp(u · ϕ).

Proof. Suppose that the functional u · ϕ is in the space k(D)⊥. We write D
as D = ∪n≥1D∩Hn so that D = ∪n≥1Dn, where Dn = Hn ∩D. So D is the
union of countably many Helson sets Dn. Fix an n ≥ 1. Since k(E) ⊆ k(Dn)
and u ∈ k(E), u is in the ideal k(Dn). Hence, by Theorem 6.7, u ∈ uk(Dn).
On the other hand, since u · ϕ is in the space k(D)⊥, for each v ∈ k(Dn),
the functional vu · ϕ is in the space k(D \Dn)

⊥. From this we get that

Sp(vu · ϕ) ⊆ D \Dn.

Using the fact that u ∈ uk(Dn), we conclude that

Sp(u · ϕ) ⊆ D \Dn.

Since D = Sp(u · ϕ), we see that D = D \Dn. Hence, by Baire Theorem,
D = ∅, and u · ϕ = 0. The reverse implication is trivial.

Now we can prove the next result.

Theorem 6.10. Let E be a closed. Suppose that E is the union of a sequence
of Helson sets Hn. Then the following assertions are equivalent.

(i) The set E is a set of synthesis.

(ii) The set σ(E) is a set of synthesis.

(iii) For u ∈ k(E) and ϕ ∈ J(E)⊥, the functional u · ϕ is in the space
k(σ(E))⊥.

(iv) The set σ(E) does not contain any LS-set.

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are clear. To prove the
implication (iii) ⇒ (iv) it is enough to prove that (iii) implies that σ(E) = ∅.
To prove this, take u ∈ k(E) and ϕ ∈ J(E)⊥. Then, by hypothesis, the
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functional u · ϕ is in the space k(σ(E))⊥. Next we write, as above, σ(E) as
a union of countably many Helson sets:

σ(E) = ∪n≥1Dn, where Dn = σ(E) ∩Hn.

Since u ∈ uk(Dn), as in the proof of the preceding lemma, we get that

Sp(u · ϕ) ⊆ σ(E) \Dn.

Hence, by definition of the set σ(E), σ(E) = σ(E) \Dn. This, by Baire
Theorem, implies that σ(E) = ∅. So the set σ(E) does not contain any
LS-set.

To prove the implication (iv) ⇒ (i), suppose that the set σ(E) does not
contain a LS-set. We want to prove that then σ(E) = ∅. To see this, we
take a u ∈ k(E) and a ϕ ∈ J(E)⊥. Set D = Sp(u · ϕ). Then u · ϕ ∈ J(D)⊥.
Now let w ∈ J(σ(D)) be such that Zw = σ(D). Then, by Lemma 6.6, the
functional wu · ϕ is in the space k(D)⊥. Since σ(D) = Zw,

Sp(wu · ϕ) = D \ σ(D).

Since the set σ(E), so the set D, does not contain any LS-set, by Lemma
5.4, D \ σ(D) = D so that Sp(wu ·ϕ) = D. Since the functional wu ·ϕ is in
the space k(D)⊥, we are in the hypothesis of Lemma 6.8. Hence wu ·ϕ = 0.
Since

Sp(wu · ϕ) = D \ σ(D) = D,

we conclude that D = ∅. Hence u · ϕ = 0, so < u,ϕ >= 0, and E is a set of
synthesis.

Exactly the same proof shows that the set E is a Ditkin set iff σ�(E)
does not contain any LS-set iff σ�(E) is a set of synthesis (see item A/9 in
the next section). We shall not repeat the proof.

The final result of this section is the following theorem.

Theorem 6.11. Let E be a closed that is the union of a sequence of Helson
sets Hn. Then the following three assertions are equivalent.

(i) E is hereditary Ditkin.
(ii) E is hereditary set of synthesis.
(iii) E does not contain any LS-set.

Proof. The only implication that needs a proof is the implication (iii) ⇒
(ii)). To prove this implication, let F be a nonempty closed subset of E.
Then we can write F as a union of countably many Helson sets. Since F
does not contain any LS-set, by the note preceding this theorem, the set F
is a Ditkin set so that the set E is hereditary Ditkin.
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7. Questions, results, remarks and comments

In this final sections we have collected a certain number of results, remarks,
notes, and some problems that we were not able to solve; the interested
readers may wish to work on them. For the sake of the readers we have
added some comments to the questions posed.

In this section, as in the previous sections, E is a nonempty closed subset
of G.

A. Concerning the synthesis problem, the most critical part of the set E
is the set σ(E). Any information about this set is valuable. Here are a few
questions about this set.

1. In Lemma 4.2 we have seen that if D is a Ditkin set and σ(E) ⊆ D
then the set F = E ∪ D is a set of synthesis. Does this result hold if D is
a set of synthesis? This is the most difficult and most important question
stated here.

2. It is not difficult to see that

E \ σ(E) = E \ σ(σ(E)).

In spite of this, we do not know whether, for each closed set E, σ(E) =
σ(σ(E)). As seen in Proposition 5.1, this is the case if k(E)2 = k(E). The
other possibility is the case where σ(E) \ σ(σ(E)) = σ(E). We do not know
whether there is a a set E that fails to be a set of synthesis but for which
this equality holds. In this connection, see the item 9 below.

3. For a Helson set H, the set H is a set of synthesis iff the set σ(H) is
a set of synthesis. This is also true for any set E for which k(E)2 = k(E).

4. If k(E)2 = k(E) and there is a set of synthesis in between σ(E) and
E then E is a set of synthesis. As stated in question 1 above, we do not
know whether, for an arbitrary closed set E, existence of a set of synthesis
in between σ(E) and E implies that E is a set of synthesis. Note that if E
is the union of two sets of synthesis E1 and E2 then σ(E) ⊆ Ei ⊆ E for
i = 1, 2.

5. Suppose that

E \ σ(E) 
= E

and set F = E \ σ(E). In Theorem 5.10 we have seen that F \ σ(F ) = F .
What can we say about synthesibility of the set F?

6. Let E be a closed set and D = ∪F⊆EIntE(F ), where the union is
taken on all sets of synthesis F contained in E. One can prove easily that if
D = E then E \ σ(E) = E. Is the converse of this result true?
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7. The only information about the ideal J(E) that we have is its defini-
tion (J(E) = j(E)). Here is a result that distinguishes the elements of J(E)
among those of k(E). It is easy to see the following: Let u ∈ k(E). Then u ∈
J(E) iff there is a sequence (un)n≥1 in k(E) such that Supp(un)∩σ(E) = ∅
and ‖ un − u ‖→ 0.

8. This remark is about Ditkin sets. Let E be a closed set that is not
a Ditkin set. Let w ∈ J(σ�(E)) be such that Zw = σ�(E). Then, as one

can see easily, for u ∈ k(E), the product uw is in the space uJ(E). So, if
u ∈ uJ(σ�(E)) then u ∈ uJ(E). From this we see that the ideal J(σ�(E)
cannot have approximate units unless the set E is a Ditkin set.

9. Continuing with the preceding remark, suppose that the set D =
σ�(E) is the union of countably many Helson sets Dn. This is the case, for
instance, if the boundary of E is contained in the union of countably many
Helson sets. Let u ∈ k(E) and ϕ ∈ A(G)∗ be such that σ(u · ϕ) ⊆ E.
Then u · ϕ ∈ J(D)⊥. Now choose a w ∈ J(σ(D)) such that Zw = σ(D).
Then, by Lemma 6.6, wu · ϕ ∈ k(D)⊥. So, by Remark 6.8, for each n,
wu · ϕ ∈ k(D \Hn)

⊥. On the other hand, since Zw = σ(D),

Sp(u · ϕ) \ σ(D) ⊆ Sp(wu · ϕ).

Hence,

Sp(u · ϕ) \ σ(D) ⊆ D \Hn.

This implies that D \ σ(D) ⊆ D \Hn. So

D \ σ(D) ⊆ D \Hn.

Now suppose that D \ σ(D) = D so that, for each n, D = D \Hn. Hence,
by Baire Theorem, D = ∅, and E is a Ditkin set. This proves that if the
boundary of E is contained in the union of countably many Helson sets and
D \ σ(D) = D, in particular, if the D is a set of synthesis, then D = ∅. This
applies in particular to any closed set E that is the union of countably many
Helson sets and shows that such a set E is a Ditkin set iff the set D = σ�(E)
is a set of synthesis.

10. Let F be a closed set and O an open set such that σ(F ) ⊆ O. Set
E = F \ O. It is easy to see that k(F ) ⊆ J(E) so that σ(E) ∩ O = ∅ (see
Lemma 4.4). Is the set E a set of synthesis?

11. Let G = R
n and S be the unit sphere of Rn. As mentioned in the

introduction, for n = 2, S is a set of synthesis whereas, for n ≥ 3, S is not
a set of synthesis; a situation quite similar to Banach-Tarski Paradox. This
observation led us to ask the question: Does, for ≥ 3, the nonamenability of
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the discrete version of the rotation group SOn have anything to do with the
nonsythesibility of S? In this connection, see the paper [Ka-Ül-2].

12. We single out here a result proved during the proof of Theorem
5.8: For any closed set E and any LS-set S contained in E, the inclusion
IntE(S) ⊆ σ(E) holds so that E \ σ(E) ⊆ E \ S. This result shows that if
E \ σ(E) = E, in particular, if E is a set of synthesis, then one cannot write
E as a union of countably many LS-sets. In the reverse direction, it is also
true that a LS-set cannot be written as a union of countably many sets of
synthesis.

13. The following two results are also about LS-sets. The first result
follows from the preceding result; the second can be proved in a similar way.
Let S be a LS-set and E a closed set.

(i) Suppose that S ⊆ E. Then E \ S = E iff σ(E) ∩ IntE(S) = ∅.
(ii) Suppose that E ⊆ S. Then S \ E = S iff σ(E) ∩ IntS(E) = ∅.

14. A way of producing LS-sets. Here we indicate a way, closely
related to “sets of uniqueness problem”, of producing LS-sets. Let X ⊆
A(G)∗ be a (not necessarily closed) nontrivial A(G)-module. i.e. X 
= {0}.
For instance, for any ϕ ∈ A(G)∗ \ {0}, the space Y = {u · ϕ : u ∈ A(G)} is
such an A(G)-module. Let ϕ ∈ X, ϕ 
= {0}, and set E = Sp(ϕ). Suppose
that k(E)⊥ ∩ X = {0}. Then σ(E) = E. Indeed, let w ∈ J(σ(E)) be such
that Zw = σ(E). Then, since ϕ ∈ J(E)⊥, by Lemma 6.6, w·ϕ ∈ k(E)⊥. Since
X is an A(G)-module, w · ϕ ∈ X too. Since k(E)⊥ ∩X = {0}, w · ϕ = {0}.
This implies that σ(E) = E so that E is a LS-set.

As a special case of the above remark, let now X = PF (G) be the space
of the pseudo functions on G. This is an A(G)-module. We recall that, for
any Helson set H, k(H)⊥∩PF (G) = {0}, see [Ül3] for more general results.
Hence, if for some ϕ ∈ PF (G)\{0}, the set E = Sp(ϕ) is an Helson set then
E is a LS-set. Since not every Helson set is a set of uniqueness ([Kö], [Sa2]),
there are Helson sets H such that, J(H)⊥ ∩ PF (G) 
= {0}. So, there are
nontrival functionals ϕ in PF (G) for which the sets E = Sp(ϕ) are LS-sets.

15. Let E be a closed. Suppose that E does not contain any LS-set. Is
then E a set of synthesis? As seen above, the answer is “yes” in the case
where E is the union of countably many Helson sets.

B. Let F be another closed such that E ⊆ F .
1. While working on synthesis problem, the following problem arises very

often.
When does the inclusion k(F ) ⊆ J(E) hold?
It is easy to see the following.
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Suppose that for a sequence of Ditkin set (Dn) we have

σ(E) ∩ σ(F ) ⊆ ∪n≥1Dn ⊆ F.

Then k(F ) ⊆ J(E). Can we replace in this result the hypothesis that “Dn

is a Ditkin set” by “Dn is a set of synthesis”?

2. When do have k(F ) = k(F )k(E)? If E is an Helson set or Ditkin set

this is the case. Is there any other case (not involving Helson sets, Ditkin

sets or the union of them) where this equality hold? For a related result, see

Lemma 4.4 and item 4 below.

3. If k(F ) = k(F )J(E) then k(F ) ⊆ J(E). When is the converse true?

4. We recall that a commutative Banach algebra B is said to have ap-

proximate units if for each u ∈ B, u ∈ uB.

This being recalled, we write the set F in the preceding item, for some

(not uniquely determined) closed set D, as F = D∪E. Let B = k(E)/J(F ).

If the Banach algebra B has approximate units then k(F ) = k(F )k(E) and

so k(F ) = k(D)k(E). Does this result have a kind of converse?

The following also holds for any closed set E: The equality k(E)2 = k(E)

holds iff the algebra B = k(E)/k(E)2 has approximate units.

Another interesting result related to the above ones is this. Let D and

E be two sets of synthesis and F = D∪E. Suppose that the Banach algebra

B = k(E)/J(F ) or the Banach algebra B = k(D)/J(F ) has approximate

units. Then the set F is a set of synthesis.

5. If the ideal k(E) has approximate units then, whatever the set F

containing E is, the equality k(F ) = k(F )k(E) holds. Is the converse true?

C. The following results and questions are related to Helson sets.

1. Let H be a Helson set. Suppose that, for any LS-set D ⊆ H, H \D =

H. Does this imply that H is a set of synthesis?

2. Let H be a Helson set or a boundary set that is locally Helson. Then

it easy to see that σ�(H) = σ(H). Is this true for a set E for which k(E)2 =

k(E)? This is equivalent to S-set-D-set Problem.

Let E be the union of countably many Helson sets (Hn).

3. We know that a Helson set is a Ditkin set iff it is a set of synthesis.

Most probably this is also true for the set E but we were not able to prove

it. This is closely related to S-set-D-set problem.

4. We do not know either whether the ideal k(E) has approximate units

or at least k(E)2 = k(E).

5. We do not know either whether E \ σ(E) = E.
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D. A General Result. Let B be a commutative semisimple, regular Banach
algebra such that the empty set is a Ditkin set for B. Then one can prove
that the following two assertions are equivalent.

(i) Every closed subset of ΦB is a Ditkin set.
(ii) Every closed subset of ΦB is a set of synthesis.

This result shows that for a Banach algebra such as B, to prove that
there is a closed set in ΦB that fails to be a set of synthesis it is enough
to prove that there is a closed set in ΦB that fails to be Ditkin set. Since,
for any Ditkin subset E of ΦB, the ideal k(E) has approximate units, it is
enough to prove that there is a closed set E in ΦB such that the ideal k(E)
does not have approximate units. As a special case of this observation, we
consider the following case.

Let G = R and E a Cantor set (i.e. a compact, perfect and totally
disconnected set) in G. Let A(E) = A(G)/k(E) be the quotient algebra.
Then the algebra A = A(E)⊗̂A(E) satisfies the hypotheses imposed above
on the algebra B. To prove that there is a closed subset F ⊆ ΦA that fails
to be a set of synthesis, it is enough to prove that, for some closed subset
F ⊆ ΦA, the ideal k(F ) does not have approximate units. This problem
looks to be an easier problem than the problem of proving that there is a
closed subset F ⊆ ΦA that fails to be a set of synthesis (a result proved by
Varopoulos).

E. Closely related to the preceding results, we consider the following prob-
lem. Let E be a closed subset of G that is a hereditarily set of synthesis.
Is then E hereditarily Ditkin? Let B = A(G)/k(E) then the algebra B is
semisimple, regular and the empty set is a Ditkin for B. The structure space
of B is E so that every closed subset of ΦB is a set of synthesis for B, see
[Ka, Theorem 5.2.7]. So, by the preceding result, every closed subset of ΦB

is a Ditkin set for the algebra B. The problem is whether this is true for the
algebra A(G)?

Finally, we note that all the results presented in this paper in the setting
of the Fourier algebra A(G) of a LCA group G are also valid for any abstract
Banach algebra having the relevant properties of A(G). In particular, they
are valid for the Eymard’s Fourier algebra A(G) of an amenable (noncom-
mutative) locally compact group G. The reader can find ample information
about this algebra in the monograph [Ka-La].
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