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Planar biharmonic vector fields; potentials and
traces

Giles Auchmuty

For Roland with fond memories of over 45 years of collegiality and
friendship

This paper describes eigenfunction approximation, and represen-
tations, of planar biharmonic vector fields with prescribed normal
and tangential boundary data. These enable the characterization
of the dependence of the solutions on the data including conver-
gence in various norms. These problems that have been extensively
studied using finite element algorithms; here various analytical re-
sults about the solutions are obtained. Spectral representations for
the solutions of some scalar harmonic and biharmonic boundary
value problems are first described and their dependence on bound-
ary data is summarized. For biharmonic problems, the solutions
are described using spaces with bases of DBS eigenfunctions in
a manner similar to the use of harmonic Steklov eigenfunctions
for solving harmonic boundary value problems. These methods are
then used to obtain eigenfunction expansions of the scalar potential
and stream function of a biharmonic field with given normal and
tangential boundary traces. The potentials are C∞ and bounded
and criteria for the solutions to be in specific spaces of fields are
found. Some convergence results are stated and bounds of some
norms are found. With further conditions on the traces, orthog-
onal expansions for the vorticity and the boundary trace of the
vorticity of the flow are found.
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Keywords and phrases: Biharmonic solenoidal planar vector fields,
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1. Introduction

This paper provides eigenfunction expansions for the solutions of a classic
biharmonic boundary value problem. These representations are used to ob-
tain results about the dependence of the solutions on their boundary data
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and whether the solutions are in specific Hilbert spaces of vector fields. The
paper was motivated by the large literature on the computational solution
of these problems. In particular it obtains analytical results for some of the
problems studied in the well-known review paper on finite element simula-
tions by Glowinski and Pironneau [9].

The initial application was that of describing solutions of the Stokes
equations for solenoidal vector fields on bounded planar domains with Lip-
schitz boundaries. However, related problems arise as subproblems of much
larger problems arising in studies of fluid flows, magnetic fields and elas-
ticity theory. The problem is treated as one of finding representations of
biharmonic vector fields subject to the tangential and normal components
of the field being given. In particular the formulae are used to describe
bounds on the solutions and their dependence on the boundary conditions.

2. Definitions and notation

In this paper, the definitions of the paper Auchmuty [5] will generally be
used, with some additions from [1] and [4] for boundary traces and bihar-
monic functions.

Cartesian coordinates x = (x1, x2) will be used and Euclidean norms
and inner products are denoted by |.| and x · y. ∂Ω := Ω \ Ω. Often the
position vector x is omitted in formulae for functions and fields and equality
should be interpreted as holding a.e. with respect to 2-dimensional Lebesgue
measure d2x = dx1 dx2 on Ω.

A curve in the plane is said to be a simple Lipschitz loop if it is a
closed, non-self-intersecting curve with at least two distinct points and a
uniformly Lipschitz parametrization. Such loops will be compact and have
finite, nonzero, length. Arc-length measure will be denoted dσ and our stan-
dard assumption is

Condition B1. Ω is a bounded region in R
2 with boundary ∂Ω the union

of a finite number of disjoint simple Lipschitz loops {Γj : 0 ≤ j ≤ J}.
The unit outward normal to ∂Ω is denoted ν and the unit tangent is

denoted τ = (−ν2, ν1) They are defined σ a.e.. When u ∈ W 1,p(Ω), the
boundary trace of u is a Borel function γ(u) ∈ Lp(∂Ω, dσ).

Our interest is in the dependence of solutions of biharmonic problems
and the Stokes problem on boundary fluxes and velocities. The boundary
flux of u is denoted Dνu := ∇u · ν. As is shown in [1], boundary traces of
functions may be uniquely characterized by boundary integrals with har-
monic functions. We shall use H(Ω), the space of H1-harmonic functions on
Ω, and W 1,∞

H (Ω), the subspace of harmonic functions in W 1,∞(Ω).
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To define weak normal and tangential derivatives of functions on the
boundary we require that the function u, its derivatives Dju and its Lapla-
cian Δu all be in L1(Ω). The boundary flux (or normal derivative) of a
function u is a function g ∈ L1(∂Ω, dσ) that satisfies

∫
Ω
[∇h · ∇u+ hΔu] d2x =

∫
∂Ω

h g dσ for all h ∈ W1,∞
H (Ω).

When this holds, we write Dνu := g on ∂Ω. Similarly, one has Dτu := g on
∂Ω when∫

Ω

[
hΔu+∇⊥h · ∇⊥u

]
d2x = −

∫
∂Ω

h g dσ for all h ∈ W1,∞
H (Ω),

and ∇⊥u := (u,2,−u,1) is the scalar curl operator.
When Ω is a bounded domain with Lipschitz boundary ∂Ω, a non-zero

function s ∈ H1(Ω) is said to be a harmonic Steklov eigenfunction for Ω if
there is a real number δ such that

(2.1)

∫
Ω
∇s · ∇v d2x = δ

∫
∂Ω

s v dσ for all v ∈ H1(Ω).

For any domain Ω, the least eigenvalue is δ0 = 0 and the corresponding
eigenfunctions are constants. All other eigenvalues are strictly positive. This
eigenproblem has been studied since the 1950s by Fichera, Kuttler and Sig-
illito and many others. A recent analysis is in [7, chapter 3, section 3].

This analysis is based on the fact that there are orthogonal bases of
spaces of harmonic functions, and trace spaces, generated by the harmonic
Steklov eigenfunctions and their boundary traces. In particular the usual
trace spaces Hs(∂Ω) on functions on Lipschitz domains may be defined
using the harmonic Steklov eigenfunctions under weaker requirements on
the domain and with many useful properties.

In [3], and earlier, an algorithm for constructing successive harmonic
Steklov eigenvalues and associated harmonic Steklov eigenfunctions is de-
scribed and used to construct an orthogonal basis S := {sj : j ∈ N0} of
L2(∂Ω, dσ) of H(Ω) with respect to the ∂ inner product. When successive
eigenvalues and eigenfunctions are obtained from this algorithm, an increas-
ing, infinite sequence ΛS := {δj : j ∈ N0} of harmonic Steklov eigenvalues
is found with δ0 = 0 < δ1 ≤ δ2 ≤ . . . and δj → ∞ as j → ∞. Choose
associated normalized eigenfunctions so that

∫
∂Ω

sj sk ds = 0 when j �= k, and

∫
∂Ω

s2j ds = 1 for all j, k.
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Given g ∈ L2(∂Ω, dσ), the j-th Steklov coefficient of g is

(2.2) ĝj := 〈g, sj〉∂Ω :=

∫
∂Ω

g sj dσ, and

∫
∂Ω

g2 dσ =

∞∑
j=1

ĝ2j

from Parseval’s identity. The function gM (z) :=
∑M

j=1 ĝj sj((z) with z ∈
∂Ω is called the M-th Steklov approximation of g and the sequence {gM}
converges strongly to g from the Riesz-Fisher theorem.

More generally, for s ≥ 0 define Hs(∂Ω) to be the subspace of functions

in L2(∂Ω, dσ) with

‖g‖2s,∂Ω :=

∞∑
j=1

(1 + δj)
2s ĝ2j < ∞.

When Ω is the unit disk, the harmonic Steklov eigenvalues are the positive

integers, and the corresponding eigenfunctions are multiples of rm cosmθ

and rm sinmθ. The above definitions agree with some standard definitions

for Sobolev spaces on the unit circle.

The results to be described here involve functions that have L2-Laplac-

ians and boundary data. That is we will require u ∈ H1(Ω) with Δu ∈ L2(Ω)

with boundary trace γ(u) and flux Dνu, or tangential derivatives Dτu, in

L2(∂Ω, dσ). Define H(Δ,Ω) to be the subspace of H1(Ω) of functions with

Δu ∈ L2(Ω). It is a real Hilbert space with respect to the inner product

(2.3) a1(u, v) :=

∫
Ω
[ΔuΔv +∇u · ∇v] d2x +

∫
∂Ω

u v dσ.

Let H(Δ, ∂Ω) be the subspace that also has Dνu ∈ L2(∂Ω, dσ) and the inner

product

(2.4) a∂(u, v) :=

∫
Ω
ΔuΔv d2x +

∫
∂Ω

[u v + DνuDνv] dσ,

and H0(Δ, ∂Ω) := H(Δ, ∂Ω) ∩H1
0 (Ω).

3. The zD biharmonic boundary value problem

In the next section, properties of solutions of some planar Stokes problems

are reduced to finding potentials that satisfying Laplacian and biharmonic
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boundary value problems. In particular results about the zero-Dirichlet Bi-
harmonic (zDB) boundary value problem on a bounded Lipschitz planar
domain Ω are used.

When u ∈ L2(Ω), g ∈ L1(Ω), we say that Δu = g on Ω provided

∫
Ω
u Δϕd2x =

∫
Ω
g ϕd2x for all ϕ ∈ C2

c(Ω).

u ∈ L2(Ω) is harmonic on Ω if this holds with g ≡ 0. Let L2
H(Ω) denote the

closed subspace of L2-harmonic functions n Ω. A function u ∈ H(Δ,Ω) is
said to be (weakly) biharmonic on Ω provided

(3.1)

∫
Ω
ΔuΔϕd2x = 0 for all ϕ ∈ C2

c(Ω).

Let B(Ω) be the space of all biharmonic functions in H(Δ, ∂Ω), and
B0(Ω) := B(Ω) ∩ H1

0 (Ω). This is a Hilbert space with respect to the inner
product

(3.2) b∂(u, v) :=

∫
Ω
ΔuΔv d2x +

∫
∂Ω

DνuDνv dσ.

We would like to find biharmonic functions ũ ∈ B0(Ω) that satisfy bound-
ary conditions

(3.3) u = 0 and Dνu = g on ∂Ω with g ∈ Z

where Z ⊂ L2(∂Ω, dσ) is a class of functions on ∂Ω defined using the or-
thonormal basis SK of L2(∂Ω, dσ).

To describe the solutions of the zDB boundary value problem the spe-
cific orthogonal basis of B0(Ω) of Dirichlet Biharmonic Steklov (DBS) eigen-
functions constructed by the algorithm described in section 5 of [4] is used.
The algorithm generates a maximal orthogonal set with respect to the b∂
inner product, that provide representations for function in the space.

A function b ∈ B0(Ω) is a DBS eigenfunction provided there is a real
number β, the DBS eigenvalue, such that

(3.4)

∫
Ω
Δb Δv d2x = β

∫
∂Ω

DνbDνv dσ for all v ∈ H0(Δ, ∂Ω).

Let ΛB := {βj : j ∈ N} be the increasing sequence of DBS eigenvalues
repeated according to multiplicity and SB := {bj : j ∈ N} be an associated
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sequence of DBS eigenfunctions normalized so that

∫
∂Ω

Dνbj Dνbk dσ = 0 when j �= k, and

∫
∂Ω

(Dνbj)
2 dσ = 1 for all j, k.

Then b∂(bj , bk) = (βj + 1) δjk for j, k ∈ N

Let b̃j := bj/
√

βj + 1, so that S̃B := {b̃j : j ∈ N} is orthonormal in
B0(Ω) with respect to the b∂ inner product. From theorem 5.3 in [4] this
is an orthonormal basis.

Define kj := Dνbj , hj := (Δ bj)/
√

βj , then the sets SK ,SH of these
functions are orthonormal bases of L2(∂Ω, dσ),L2

H(Ω) respectively. See sec-
tion 6 of [4].

Suppose g ∈ L2(∂Ω, dσ) has a DBS representation of the form

g(z) =

∞∑
j=1

ĝj bj(z) on ∂Ω with ĝj := 〈Dνg,Dνbj〉∂Ω =

∫
∂Ω

Dνg Dνbj dσ.

(3.5)

If only a finite number of the DBS coefficients ĝj are non-zero, then the
function

(3.6) u(x) := EBg(x) :=

∞∑
j=1

ĝj bj(x) for x ∈ Ω

is a biharmonic function in B0(Ω) that provides a solution of (3.3) This is
called the zDB extension of the boundary flux g. For general g ∈ L2(∂Ω, dσ),
EBg need not be in B0(Ω). Define the M-th DBS approximation of g by

gM (z) :=

M∑
j=1

ĝj bj(z) on ∂Ω.

Then each uM (x) := EB gM (x) has

∇⊥uM (x) =

M∑
j=1

ĝj ∇⊥bj(x), ΔuM (x) =

M∑
j=1

√
βj ĝj hj(x) on Ω so

(3.7)

‖DνuM‖22,∂Ω =

M∑
j=1

ũ2j , and

∫
Ω
|ΔuM |2 =

M∑
j=1

βj ĝ
2
j .(3.8)
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from the orthogonality conditions. The boundary fluxes DνuM converge to
g in L2(∂Ω, dσ). However, EBg ∈ B0(Ω) if and only if the boundary flux g
has a DBS representation with

∑∞
j=1 βj ĝ2j < ∞. Since the βj increase to

∞, there are g ∈ L2(∂Ω, dσ) for which Δ(EBg) is not L
2.

Note that each uM can be written as a finite rank integral operator

uM (x) :=

∫
∂Ω

KM (x, z) g(z) dσ, with KM(x, z) :=

M∑
j=1

bj(x) kj(z) on Ω× ∂Ω.

(3.9)

To quantify conditions on the flux, let W s(∂Ω) denote the subspace of
functions in L2(∂Ω, dσ) with

∑∞
j=1(1+ βj)

s ĝ2j < ∞. For s ≥ 0 these spaces
constitute a scale of real Hilbert spaces with respect to the inner products

bs(g1, g2) :=

∞∑
j=1

(1 + βj)
s ĝ1j ĝ2j ,

and the embedding W s1(∂Ω) ⊂ W s2(∂Ω) is strict when 0 ≤ s1 < s2.

The following theorem summarizes the conditions on the boundary flux
g for the solutions of the zDB boundary value problem to be in B0(Ω). It
provides an explicit orthogonal representation in terms of the DBS eigen-
functions of the solution of the biharmonic boundary value problem (3.3)
as well as its Laplacian ω and the boundary trace of ω, in terms of the
boundary data gτ .

Theorem 3.1. When (B1) holds and g ∈ W 1(∂Ω), then ũ(x) =∑∞
j=1 ĝj bj(x) is a solution of (3.3) with b∂(ũ, ũ) = b1(g, g). The function

ω := Δũ is in L2(Ω) and harmonic with

ω(x) = lim
M→∞

∫
∂Ω

KM (x, z) gτ (z) dσ(z) =

∞∑
j=1

√
βj ĝj hj(x) for x ∈ Ω.

The spaces W 1(∂Ω) and B0(Ω) are isometrically isomorphic.

Proof. Given g ∈ W 1(∂Ω), the biharmonic extension of g is given by (3.5)
and is a solution of (3.3). This solution is in B0(Ω) if and only if ‖ũ‖2W 1(∂Ω) =

b1(g, g) is finite. This implies that the spaces are isometric and the zDB
extension EB is continuous, 1-1 and onto as a map from W 1(∂Ω) to B0(Ω).
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For ω to have an L2-boundary trace, g must be in a smaller subspace of
L2(∂Ω, dσ).

Theorem 3.2. When (B1) holds, then the boundary trace γ(ω) ∈ L2(∂Ω, dσ)
if and only if g ∈ W 2(∂Ω).

Proof. Taking limits in (3.8) and use the fact that γ(hj) =
√

βj kj on ∂Ω to
see that

(3.10) γ(ω)(z) = −
∞∑
j=1

βj ĝj kj(z) so ‖γ(ω)‖22,∂Ω =

∞∑
j=1

β2
j ĝ

2
j .

This is finite and the limit exists in L2(∂Ω, dσ) if and only if g ∈ W 2(∂Ω).

4. Biharmonic planar vector fields

In both planar elasticity and fluid mechanics, the solution of boundary value
problems are often reduced to solving various problems with zero boundary
conditions together with homogenous problems (Lu = 0) on a domain with
non-zero boundary conditions. The paper of Glowinski and Pirroneau was
concerned with the finite element algorithms for planar biharmonic problems
related to Stokes’ flows. Here this problem is reformulated as the analytical
problem of determining the dependence of a planar biharmonic vector field
v on the boundary traces vν , vτ .

To do this, Hilbert spaces with inner products that include boundary
integrals and Sobolev traces will be used. In particular the definitions of
spaces such as Hs(∂Ω) will be the spectral definitions of [1]. All vector
fields are assumed to involve L1

loc, Borel measurable representatives on their
domains.

Here H(div,Ω) is the subspace of L2-vector fields on Ω with divv, |v|
in L2(Ω;R2) and the normal trace vν := v · ν ∈ L2(∂Ω, dσ). It is a Hilbert
space with respect to the inner product.

(4.1) bdiv(v, w) :=

∫
Ω
[divv divw + v ·w] d2x +

∫
∂Ω

vν wν dσ.

H(curl,Ω) is the subspace where vτ = v ·τ on ∂Ω and bcurl(v, v) is finite
where

(4.2) bcurl(v, w) :=

∫
Ω
[curlv curlw + v ·w] d2x +

∫
∂Ω

vτ wτ dσ.
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Then HDC(Ω) := H(div,Ω) ∩ H(curl,Ω) is the Hilbert subspace with the
inner product

〈v, w〉DC :=

∫
Ω
[divv divw + curlv curlw + v ·w] d2x(4.3)

+

∫
∂Ω

[vνwν + vτwτ ] dσ

A vector field v ∈ L1
loc(Ω;R

2) is said to be solenoidal provided a weak
form of the equation divv = 0 on Ω holds. That is

(4.4)

∫
Ω
v · ∇ϕd2x = 0 for all ϕ ∈ C1

c(Ω).

V (Ω) will denote the subspace of solenoidal vector fields in HDC(Ω) and
V0(Ω) is the space of no flux fields with vν ≡ 0 on ∂Ω.

A vector field v ∈ L1
loc(Ω;R

2) is said to be irrotational provided

(4.5)

∫
Ω
v · ∇⊥ϕd2x = 0 for all ϕ ∈ C1

c(Ω).

This is a weak form of the equation curlv = 0 on Ω.
A vector field is said to be a harmonic on Ω if it is both solenoidal

and irrotational on Ω. The subspace of HDC(Ω) of harmonic vector fields is
denoted H(Ω,R2).

A vector field v ∈ H(curl,Ω) is said to be biharmonic on Ω when it is
solenoidal, and curl 2 v ∈ L2(Ω,R2) is irrotational.

The time independent Stokes system on Ω is the system of 3 scalar
equations for 3 unknown functions v1, v2, p on Ω

(4.6) μ curl 2 v = f −∇p, and divv = 0 on Ω.

Here f is given data, μ > 0 and the usual problem is to find solutions with
given boundary traces gν , gτ where

(4.7) v · ν = gν , v · τ = gτ on ∂Ω.

Solutions of the Stokes system are biharmonic fields whenever the source
term f ∈ L2(Ω,R2) is irrotational and p ∈ H1(Ω).

When gν ≡ gτ ≡ 0 on ∂Ω the analysis of this system has been studied in
many papers and texts. This paper concerns the dependence of the solutions
on the boundary data. Our simplest requirement is
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Condition B2. v ∈ V(Ω), gν , gτ ∈ L2(∂Ω, dσ) and
∫
∂Ω gν dσ = 0.

In particular we find Steklov eigenfunction representations of a scalar
potential and stream function of these biharmonic fields. These potentials
are smooth functions but may have singular gradients near the boundary
so further conditions may be needed for specific integrability properties of
the fields on Ω. Thus conditions on the boundary data for the fields to have
|v| ∈ L2(Ω;R2) or L2-vorticity will first be described.

5. Harmonic component of a solenoidal field

The problem of finding the harmonic (or gradient) component of a solenoidal
vector field has been well-studied, but the author is not aware of previous
descriptions of the expressions for the solution in terms of the harmonic
Steklov eigenfunctions of the domain.

Let H1
m(Ω) be the subspace of H1(Ω) of functions that have mean

value 0. That is
∫
Ω ϕd2x = 0. Let ϕ̃ ∈ H1

m(Ω) be a minimizer of the
functional E : H1

m(Ω) → R defined by

(5.1) E(ϕ) :=
∫
Ω
|∇ϕ|2 d2x − 2

∫
∂Ω

gν ϕdσ.

A family of minimizers that differ by constants exist under the above
conditions from standard arguments. Let ϕ̃ be such a minimizer then Ṽ :=
−∇ϕ̃ is a harmonic field on Ω with Dνϕ̃ = gν . This field Ṽ is called the
gradient component of the flow and has the following properties.

Theorem 5.1. Assume that Ω is a bounded domain with a Lipschitz bound-
ary ∂Ω and gν ∈ L2(∂Ω, dσ) satisfies

∫
∂Ω gν dσ = 0. There is a unique

minimizer ϕ̃ of E on H1
m(Ω). It is a harmonic function on Ω and ϕ̃ has the

harmonic Steklov representation

(5.2) ϕ̃(x) =

∞∑
j=1

ĝj
δj

sj(x) = lim
M→∞

∫
∂Ω

NM (x, z) gν(z) dσ for x ∈ Ω

with NM (x, z) :=
∑M

j=1 δ
−1
j sj(x) sj(z). When gν ∈ Hs(∂Ω), then ϕ̃ ∈

Hs+3/2(Ω) and Ṽ := −∇ϕ̃ has

(5.3) ‖Ṽ‖22 =

∞∑
j=1

δ−1
j ĝ2j ≤ δ−1

1 ‖gν‖22,∂Ω
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Proof. The functional E is continuous, strictly convex and coercive onH1
m(Ω)

so there is a unique minimizer of E that satisfies the extremality equation

∫
Ω
∇ϕ̃ · ∇ξ d2x =

∫
∂Ω

gν ξ dσ for all ξ ∈ H1
m(Ω).

This minimizer is a weak solution of the system

Δϕ̃ = 0 on Ω, and Dνϕ̃ = gν on ∂Ω.

Thus ϕ̃ is harmonic on Ω. Substituting sj for ξ yields that

∫
Ω
∇ϕ̃ · ∇sj d

2x = δj ĝj when j ≥ 1

and gν = g here. Thus the expansion (5.2) holds. The series converges from
the Riesz-Fisher theorem as S is an orthogonal basis of the subspace of
harmonic H1 functions of H1

m(Ω).
The analysis of these Neumann harmonic boundary value problems in

[1] shows that, when the Neumann data is in Hs(∂Ω), the solution is in
Hs+3/2(Ω). Taking gradients and using properties of the harmonic Steklov
eigenfunctions and Parseval’s identity yields the first part of (5.3). Since the
δj are increasing the last inequality holds.

6. Biharmonic component of solenoidal fields in V0(Ω)

There are a number of different decompositions of planar vector fields on
bounded domains that are called Helmholtz decompositions and involve a
gradient and a curl. Usually L2-orthogonal decompositions are studied, as
in [5]. Here a biharmonic stream function that provides a field orthogonal to
the harmonic gradient field described in the preceding section will be found.

Given a biharmonic fieldw and the potential ϕ̃ one has thatw := v−∇ϕ̃
is in V0(Ω) with w · τ = gτ −Dτ ϕ̃ on ∂Ω. Now a biharmonic stream function
ψ̃ will be found with the property that w = ∇⊥ψ̃, so that

(6.1) v = ∇⊥ψ̃ +∇ϕ̃ with ψ̃ ∈ V0(Ω), ϕ̃ ∈ H1
m(Ω).

Consider the problem of solving the zDB boundary value problem of
Section 3 for a function ψ̃ ∈ B0(Ω) satisfying (3.3) with g ∈ W s(∂Ω).
The spectral solution of the problem, from (3.6), has the form ψ̃(x) =
limM→∞ ψM (x) with ψM (x) =

∑M
j=1 ĝj bj(x). Each ψM is biharmonic, so
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wM(x) := ∇⊥ψM(x) is in V0(Ω) and is a biharmonic field with wM · ν = 0
on ∂Ω. The tangential trace is

(wM · τ)(z) =

M∑
j=1

ĝj kj(z) for z ∈ ∂Ω, and also(6.2)

curlwM(x) = −ΔψM(x) = −
M∑
j=1

√
βj ĝj hj(x) on Ω.(6.3)

The following theorem provides a criterion on the boundary data gν , gτ
of a solenoidal field to have a biharmonic extension to Ω. Moreover there is
an explicit spectral representation of the stream function for this biharmonic
field. That is there are explicit formulae, in terms of harmonic Steklov and
DBS eigenfunctions, for this biharmonic field.

Theorem 6.1. Suppose (B1)–(B2) hold, g1 := gν − Dτ ∈ W1(∂Ω) and
ϕ̃ ∈ B0(Ω) as above. Then the biharmonic function ψ̃ is bounded and C∞

on Ω. w = ∇⊥ψ̃ is in H(curl,Ω) and there is a constant C depending only
on Ω such that
(6.4)

bcurl(w, w) =

∫
Ω

[
|w|2 + |curlw|2

]
d2x +

∫
∂Ω

|w|2 dσ ≤ C b1(g1, g1)

Proof. From the formulae for ψM , wM above and the orthogonality proper-
ties, one sees that

b∂(ψM , ψM ) =

M∑
j=1

(βj + 1) ĝ2j ≤ b1(g1, g1)

There is a constant C that depends only on Ω such that

∫
Ω
|curlwM|2 d2x +

∫
∂Ω

|wM|2 dσ ≥ C

∫
Ω
|wM|2 d2x

from the analysis in [6, section 8]. Thus (6.4) holds for each M, so the limit
as M → ∞ exists and the associated ψ̃ yields a w := ∇⊥ψ̃ ∈ H(curl,Ω).
This ψ̃ is C∞ and is bounded as its Laplacian is L2 and Ω is a bounded
planar domain. Moreover the sequence of fields {wM} converges to w in
H(curl,Ω) as M → ∞.

These properties now imply the following representation theorem for
such biharmonic fields.
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Corollary 6.1. Suppose (B1)–(B2) hold, ϕ̃ is as in Theorem 5.1 and
gτ ,Dτ ϕ̃ ∈ W1(∂Ω). If v is a biharmonic field on Ω, then there is a function
ψ̃ ∈ B0(Ω) such that (4.7) and (6.1) hold.

For Stokes problems, v is the fluid velocity so this theorem says that
both under the conditions of the corollary both the velocity and the vor-
ticity are L2. From (6.3) one has that the boundary trace of the M -th
approximation of the vorticity is

ωM (z) := −
M∑
j=1

βj ĝj kj(z)

Then the 2-norm of this trace has ‖ωM‖22,∂Ω =
∑M

j=1 β2
j ĝ2j so the boundary

trace of the vorticity ω := −Δψ̃ will have finite 2-norm only when the func-
tion g1 in Theorem 6.1 is in W 2(∂Ω). It would be of interest to investigate
the behavior of this trace when it is not an L2 function.
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