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In this paper we propose and study a fast multilevel dimension
iteration (MDI) algorithm for computing arbitrary d-dimensional
integrals based on the tensor product approximations. It reduces
the computational complexity (in terms of the CPU time) of a ten-
sor product method from the exponential order O(Nd) to the poly-
nomial order O(d3N2) or better, where N stands for the number
of quadrature points in each coordinate direction. As a result, the
proposed MDI algorithm effectively circumvents the curse of the
dimensionality of tensor product methods for high dimensional nu-
merical integration. The main idea of the proposed MDI algorithm
is to compute the function evaluations at all integration points in
cluster and iteratively along each coordinate direction, so lots of
computations for function evaluations can be reused in each iter-
ation. This idea is also applicable to any quadrature rule whose
integration points have a lattice-like structure.
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1. Introduction

Numerical integration is one of the most fundamental building blocks in com-

putational mathematics and in computational science at large. Many numer-

ical methods (or quadrature rules) had been well developed as documented

in numerical analysis textbooks (cf. [2, 16] and the references therein). They
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are tensor-product-type methods and work very well for computing integra-

tion in low dimensions. However, they all become prohibitively expensive

in the high-dimensional case because the number of function evaluations

grows as O(Nd) (hence, the CPU time for computing them is expected to

grow even faster), where d and N denote respectively the dimension of the

integration domain and the number of the quadrature points in each coor-

dinate direction. This exponential growth of the computational complexity

is known as “the curse of the dimensionality” (cf. [1, 5]).

To circumvent or lessen “the curse of the dimensionality”, various im-

proved numerical integration methods have been developed in the literature.

Among them are the Monte Carlo (MC) method and its variants including

quasi- and multilevel Monte Carlo (QMC) methods [3, 5, 10, 11, 14, 5, 12,

17], and sparse grid (SG) methods [1, 8, 6], and deep neural network-based

methods [7, 9, 13, 15, 18]. Although those improved methods are funda-

mentally different in their design ideas and mechanisms, they share a com-

mon strategy that is to reduce the number function evaluations compared

to the tensor-product methods while maintaining the reasonable degree of

accuracy. As expected, such a strategy works to some extent for medium

dimensions (i.e., d ≈ 100), but may not work for very high dimensions (i.e.,

d ≈ 1000) because the required number of function evaluations still grows

very rapidly for large d. The situation is even direr if one wants to solve

partial differential equations (PDEs) in high dimensions. Consequently, de-

veloping faster and efficient numerical integration methods remains critical

for tackling more challenging problems arising from mathematical finance,

image processing, economics and data science.

The primary goal of this paper is to develop a fast algorithm, called mul-

tilevel dimension iteration (MDI), for high dimensional numerical integra-

tion. Unlike the MC, QMC, SG and deep neural network (DNN) methods,

the proposed MDI algorithm is not aiming to providing a new numerical

integration method per se, instead, it is an acceleration algorithm for an ef-

ficient implementation of any tensor-product-type method. Thus, the MDI is

not a “discretization” method but a “solver” (borrowing the numerical PDE

terminologies). A well suited analogy would be high order polynomial evalu-

ations, that is, to compute p0 := p(x0) = akx
k
0+ak−1x

k−1
0 +· · ·+a1x0+a0 for

a given real number input x0. It is well known that such a high order poly-

nomial evaluation on a computer is notoriously unstable, inaccurate (due

to roundoff errors) and expensive, however, those difficulties can be easily

overcome by a simple nested iteration (or Horner’s algorithm. cf. [2, 16]),

namely, set p0 := ak and for j = k, k − 1, . . . , 1, compute p0 := p0x0 + aj−1.
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From the cost saving and efficiency point view, the reason for the nested iter-
ation to be efficient and fast is that it reuses many multiplications involving
x0 compared to the direct evaluations of each term in p(x0). Conceptually,
this is exactly the approach adopted by the proposed MDI algorithm, i.e., to
reuse computations of the function evaluations in a tensor product method
as much as possible to save the computation cost and hence to make it
efficient and fast. A key observation is that the function evaluations of ev-
ery tensor product method (including SG) involve a lot of computation in
each coordinate direction which can be shared because each coordinate ξj
of every integration point ξ = (ξ1, ξ2, . . . , ξd) ∈ R

d is shared by many other
integration points due to their tensor product structure. This observation
motivates us to compute the required function evaluations in cluster and
iteratively in each coordinate direction instead of computing them at the in-
tegration points independently, which is exactly the key idea of the proposed
MDI algorithm. In other words, our MDI algorithm is based on a numeri-
cal Fubini’s approach to compute the summation (and function evaluations)
defined by a given tensor product method.

The remainder of the paper is organized as follows. In Section 2 we in-
troduce our MDI algorithm first in two and three dimensions to explain
the main ideas of the algorithm, and then generalize them to arbitrary di-
mensions. In Section 3 we present various numerical experiments to test the
performance of the proposed MDI algorithm and to do various performance
comparisons with the classical MC method. It shows that the MDI algo-
rithm (regardless the choice of the underlying tensor product method) is
faster than the classical MC method in low and medium dimensions (i.e.,
d ≈ 100), much faster in very high dimensions (i.e., d ≈ 1000), and suc-
ceeds even when the MC method fails. In Section 4 we provide numerical
experiments to gauge the influence of parameters in the proposed MDI algo-
rithm, including the dependence on choices of the underlying tensor product
method and the iteration step size. In Section 5, we use the computation
techniques to find out the computational complexity of the MDI algorithm.
This is done by discovering the relationship between CPU time and dimen-
sion by the standard regression technique. It shows that the CPU time grows
in the polynomial order O(d3N2) at most. Furthermore, numerical experi-
ments are designed to test the limit of the proposed MDI algorithm, it can
compute integrals on standard desktop computers in medium dimensions
easily and in very high dimensions quickly. Finally, we complete the paper
with a few concluding remarks given in Section 6.
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2. Methodology: the MDI algorithm

Let Ω ⊂ R
d (d ≥ 1) be a bounded rectangular domain. Without loss of the

generality, unless mentioned otherwise, we assume Ω = [0, 1]d. Let g : Ω → R

denote a generic continuous function on Ω (hence, g has a pointwise value

at every x = (x1, x2, . . . , xd) ∈ Ω). Then the central issue to be addressed in

this paper is to evaluate

(1) I(g,Ω) :=

∫
Ω
g(x) dx

accurately and efficiently for d � 1.

We like to note that numerically evaluating integral (1) is imperative in

many applications. For example, when we solve random/stochastic PDEs, we

must compute quantities of stochastic interests (QoSIs) such as mean, vari-

ance and high moments. All these QoSIs involve numerical integration, which

is must be done in high dimensions if the sample space is high-dimensional.

Moreover, when we solve high-dimensional linear PDEs using Green’s func-

tion method or using the probability method, both approaches require com-

puting high-dimensional integrals to obtain the approximate solutions. Fi-

nally, in the financial mathematics, when modeling an option of a basket

of securities, a high-dimensional Black-Scholes model must be solved, which

also requires one way or another to compute high-dimensional integrals.

2.1. Tensor product methods

In this subsection, we briefly recall the formulation of tensor product meth-

ods for approximating (1) and their well-known properties.

LetN be a positive integer and h = 1
N . Let Th = {K} denote the uniform

rectangular mesh of Ω with mesh size h. Note that each element K ∈ Th is a

d-rectangle (in fact, a d-square of side h when Ω is a d-square domain) and

the total number of elements in Th is Nd. Define for K ∈ Th

(2) I(g,K) :=

∫
K
g(x) dx.

By the summation property of integrals, we have

(3) I(g,Ω) =
∑
K∈Th

I(g,K).
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Now, approximating every I(g,K) by a local numerical quadrature rule

(4) J(g,K) ≈ I(g,K) ∀K ∈ Th,

it then leads to the following global approximation

(5) J(g,Ω) :=
∑
K∈Th

J(g,K) ≈
∑
K∈Th

I(g,K) = I(g,Ω),

which is known as the composite method of the chosen local quadrature rule.
When the local rule (4) is constructed by repeatedly using the same one-

dimensional quadrature rule in each coordinate direction, then the resulting
global rule (5) is called a tensor product quadrature rule for approximating
I(g,Ω).

In this paper we only focus on the following four popular tensor product
quadrature rules: (i) the trapezoidal rule; (ii) the Simpson’s rule; (iii) the
two-point Gaussian rule; (iv) the midpoint rule. It is well known [2, 16] that
these four rules have the following error estimates:

(i) I(g,Ω)− Jtrap(g,Ω) = O(N−2), (ii) I(g,Ω)− Jsimp(g,Ω) = O(N−4),

(iii) I(g,Ω)− Jgauss(g,Ω) = O(N−4), (iv) I(g,Ω)− Jmidp(g,Ω) = O(N−2).

Clearly, these error estimates hold only when g is sufficiently smooth.
Also, the trapezoidal rule is lower order compared to the Simpson and two-
point Gaussian rules, however, the midpoint, trapezoidal and Simpson rules
are easier to implement and flexible on choosing the integration points when
the step size h is not fixed. This feature is advantageous in the case when
explicit formula of the integrand g is not known. On the other hand, the
two-point Gaussian rule has higher accuracy at the expense of computing
the Gaussian points (which is costly when d � 1). In Section 4 we shall use
numerical experiments to further elaborate this point in the context of the
proposed MDI algorithm.

2.2. Formulation of the MDI algorithm in two dimensions

To better understand and to present the idea of the MDI algorithm, we first
consider the simple two dimensional case (i.e., d = 2 and Ω = [0, 1]2). In the
two-dimensional case, by Fubini’s Theorem we have

(6) I
(
g, [0, 1]2

)
:=

∫
[0,1]2

g(x) dx =

∫ 1

0

(∫ 1

0
g(x) dx1

)
dx2.



432 Xiaobing Feng and Huicong Zhong

It should be noted that the exact evaluation of the above integral (assum-
ing it is doable) by hand is often done using Fubini’s theorem in calculus.
Conceptually, this trivial fact will play an important role in conceiving the
idea of our MDI algorithm.

Let N ≥ 1 be an integer. Suppose that we have (or choose) the following
generic one-dimensional quadrature rule:

(7)

∫ 1

0
φ(s) ds ≈

N∑
i=1

wiφ(ξi) =: J(g, [0, 1]),

where {ξi} and {wi} denote respectively the nodes and weights of the quadra-
ture rule. φ is a generic (continuous) function on [0, 1].

Then, the corresponding two-dimensional tensor product rule takes the
form

(8) J
(
g, [0, 1]2

)
=

N∑
i,j=1

wiwjg(ξij)

where the two-dimensional nodes ξij := (ξi, ξj). Obviously, the computa-
tional complexity of the above quadrature rule is O(N2)

Motivated by (and mimicking) the Fubini’s formula (6), we rewrite the
tensor product rule (8) as

(9) J
(
g, [0, 1]2

)
=

N∑
j=1

wj

( N∑
i=1

wig(ξij)

)
=

N∑
j=1

wjg1(ξj),

where

(10) g1(s) :=

N∑
i=1

wig
(
(ξi, s)

)
.

We note that the evaluation of g1(ξj) is amount to applying the 1-d for-

mula (7) to approximate the integral
∫ 1
0 g

(
(x1, ξj)) dx1. However, the values

of {g1(ξj)} will not be computed by the 1-d quadrature rule in our MDI al-
gorithm, instead, g1 is formed as a symbolic function, so the 1-d quadrature
rule can be called again.

Evidently, (9) is a discrete analogue of the Fubini’s formula (7), hence, we
refer (9) as a discrete Fubini’s formula in the rest of this paper. This simple
formula has a significant computational benefit because it does all compu-
tations which involve the first (i.e., x1) components of all two-dimensional
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integration nodes/points first and save them in terms of the symbolic func-
tion g1 defined by (10), then the final function evaluations in the tensor
product formula are done by evaluating g1 at the second (i.e., x2) compo-
nent of all two-dimensional integration nodes/points.

Let W and X denote the weight and node vectors of a selected 1-d
numerical quadrature rule on [0, 1] and we use a parameter r to indicate
the quadrature rule. The following algorithm implements the above discrete
Fubini’s formula.

Algorithm 1 2d-MDI(g, Ω, N, r)

Inputs: g,Ω, N, r.
Output: J = J(g,Ω).

1: Initialize g1 = 0, J = 0.
2: for i = 1 : N do
3: g1 = g1 +W (i)g((X(i), ·)).
4: end for
5: for j = 1 : N do
6: J = J +W (j)g1(X(j)).
7: end for
8: return J .

We note that the first do-loop forms the symbolic function g1 which en-
codes all computations involving the x1-components of all integration points.
The second do-loop evaluates the 1-d quadrature rule for the function g1.
As mentioned above, in this paper we only focus on the four well-known 1-d
quadrature rules: (i) the trapezoidal rule; (ii) the Simpson’s rule; (iii) the
two-point Gaussian rule; (iv) the midpoint rule. They will be represented
respectively by r = 1, 2, 3, 4.

Below we use a concrete 2-d example to explain the mechanism of above
2d-MDI algorithm. It is clear that to directly compute the Tensor Product
(TP) sum

(11)

N∑
i1=1

N∑
i2=1

ωi1ωi2g(ξi1 , ξi2)

it is necessary to compute the function values of g(x1, x2) at n1n2 points,
which are often done independently. On the other hand, the 2d-MDI algo-
rithm is based on rewriting the sum as

(12)

N∑
i1=1

N∑
i2=1

ωi1ωi2g(ξi1 , ξi2) =

N∑
i1=1

ωi1g1(ξi1),
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where g1(x1) =
∑N

i2
ωi2g(x1, ξi2) denotes the symbolic function obtained in

the first do-loop. Hence, the algorithm performs two separate do-loops. In
the first d-loop, symbolic computations are performed to obtain the sym-
bolic function g1(x1) which is saved. In the second do-loop, the single sum∑N

i1=1 g1(ξi1) is done. When computing the symbolic function g1(x1), a lot
of computations have been reused for computing the coefficients in g1(x1),
and those coefficients are constants in the second do-loop. Efficiently gen-
erating the symbolic function and using it to compute the TP sum are the
main reasons of saving computation and computer memory.

Take g(x1, x2) = x21 + x1x2 + x22 as an example. The direct computa-
tion the TP sum in (11) requires to compute the function value g(ξ1, ξ2) =
ξ21 + ξ1ξ2 + ξ22 at each node (ξ1, ξ2), this in turn requires three multiplica-
tions and two additions. With a total of N2 nodes, then computing the sum
requires a total of 5N2 multiplications and 4N2 − 1 additions. On the other
hand, when using the 2d-MDI algorithm to compute the same sum, in the
first do-loop, we compute the symbolic function g1(x1) =

∑N
i2=1 ωi2g(x1, ξi2)

which requires N “symbolic multiplications” of ξi2x1 (no real multiplication
is needed because of its linear dependence on ξu2

) and N multiplications of
ξ2i2 , as well as 3N − 1 additions. In the second do-loop, computing the sum∑N

i1=1 ωi1g1(ξi1) requires N multiplications of ξ2i1 and N multiplications of
ξi1 ξ̄i2 , as well as 3N − 1 additions. Thus, the 2d-MDI algorithm requires
a total of 8N multiplications and 6N − 4 additions. Therefore, the 2d-MDI
algorithm computes the TP sum much cheaper than the standard implemen-
tation, and this advantage will become more significant in high dimensions.
See Sections 2.4 and 3 for details.

2.3. Formulation of the MDI algorithm in three dimensions

In the subsection we shall formulate the MDI algorithm in the 3-d case.
Since the main idea is similar to that of the 2-d case, we shall only highlight
its main steps.

Applying the 1-d quadrature rule (7) in each of three coordinate direc-
tions, we readily obtain the following 3-d tensor product rule for approxi-
mating integral I(g, [0, 1]3):

(13) J
(
g, [0, 1]3

)
=

N∑
i,j,k=1

wiwjwkg(ξijk)

where the three-dimensional nodes ξijk := (ξi, ξj , ξk). Obviously, the com-
putational complexity of the above formula is O(N3)
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Again, by Fubini’s Theorem we have

(14) I
(
g, [0, 1]3

)
=

∫
[0,1]3

g(x) dx =

∫
[0,1]2

(∫ 1

0
g(x) dx1

)
dx′,

where x′ = (x2, x3). Mimicking the above Fubini’s formula, we rewrite (13)
as

(15) J
(
g, [0, 1]3

)
=

N∑
j,k=1

wjwk

( N∑
i=1

wig(ξijk)

)
=

N∑
j,k=1

wjwkg2(ξj , ξk),

where

(16) g2(s, t) :=

N∑
i=1

wig((ξi, s, t)).

Once again, it should be noted that g2 will be formed as a symbolic function
in our MDI algorithm and the right-hand side of (15) is viewed as a 2-d tensor
product formula for g2, it can be computed either directly or recursively by
using Algorithm 1. Below we present our MDI algorithm for implementing
the recursive strategy.

Algorithm 2 3d-MDI(g, Ω, N, r)

Inputs: g,Ω, N, r.
Output: J = J(g,Ω).

1: Initialize g2 = 0, J = 0.
2: for i = 1 : N do
3: g2 = g2 +W (i)g((X(i), ·, ·)).
4: end for
5: Ω2 = P 2

3Ω.
6: J =2d-MDI(g2,Ω2, N, r).
7: return J .

where P 2
3 denotes the orthogonal projection (or natural embedding): x =

(x1, x2, x3) → x′ = (x2, x3), W and X stand for the weight and node vectors
of the selected 1-d quadrature rule.

From Algorithm 2 we already can see the procedure of the MDI al-
gorithm. It is based on the two main ideas: (i) to use the discrete Fubini’s
formula to reduce the computation of the tensor product sum into the com-
putation of a lower dimensional tensor product sums, which allow us to call
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recursively a lower dimensional MDI algorithm; (ii) the function evaluations
are done in cluster in each coordinate direction during the dimension itera-
tion/reduction, which is the main reason for a significant computational sav-
ing due to reusing lots of computations, compared to the standard pointwise
function evaluations which treat all the integration points independently and
do not reuse any computation.

2.4. Formulation of the MDI algorithm in arbitrary d-dimensions

The goal of this subsection is to extend the 2- and 3-d MDI algorithms to
arbitrary d-dimensions. To the end, we first recall a more general version of
Fubini’s Theorem stated as follows:

(17) I(g,Ω) =

∫
Ω
g(x) dx =

∫
Ωd−m

(∫
Ωm

g(x) dx′′
)
dx′,

where 1 ≤ m < d, Ω = [0, 1]d,Ωm = Qm
d Ω = [0, 1]m and Ωd−m = P d−m

d Ω =

[0, 1]d−m in which Qm
d and P d−m

d denote respectively the orthogonal projec-
tions (or natural embeddings): x = (x1, x2, . . . , xd) → x′′ = (x1, x2, . . . , xm)
and x = (x1, x2, . . . , xd) → x′ = (xm+1, xm+2, . . . , xd). The integer 1 ≤ m ≤
3 is the dimension reduction step length in our algorithm. In Section 4, we
shall demonstrate using numerical tests the optimal choice of step length m.

We also recall that the tensor product quadrature rule for I(g,Ω) is
defined as

(18) J(g,Ω) =

N∑
i1,i2,...,id=1

wi1wi2 · · ·widg(ξi1,...,xid
).

Where {ξj}Nj=1 and {wj}Nj=1 are the nodes and weights of the given 1-d
quadrature rule (7), and ξi1,...,xid

= (ξi1 , ξi1 , . . . , ξid). Clearly, the computa-

tional complexity of the above formula is O(Nd).
Rewrite (18) as

J(g,Ω) =

N∑
im+1,...,id=1

wim+1
wi2 · · ·wid

( N∑
i1,...,im=1

wi1wi2 · · ·wimg(ξi1,...,xid
)

)(19)

=

N∑
im+1,...,id=1

wim+1
wi2 · · ·wid gd−m

(
ξim+1

, . . . , ξid
)
,
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where

gd−m(s1, . . . , sd−m) =

N∑
i1,...,im=1

wi1wi2 · · ·wim g
(
(ξ1, . . . , ξm, s1, . . . , sd−m)

)
.

(20)

We note that in our MDI algorithm gd−m is formed as a symbolic function us-
ing (20) and the right-hand side of (19) is a (d−m)-order multi-summation,
which itself can be evaluated by employing the above dimension reduction
strategy. The reduction can be iterated � := [ dm ] times until d − �m ≤ m.
Since m ≤ 3, the final sum can be evaluated by calling Algorithm 1 or 2.
To realize this procedure, we introduce the following conventions.

• If k = 1, set MDI(k, gk,Ωk, N,m, r) := J(gk,Ωk), which is computed
by using the one-dimensional quadrature rule (7).

• If k = 2, set MDI(k, gk,Ωk, N,m, r) := 2d-MDI(gk,Ωk, N, r).
• If k = 3, set MDI(k, gk,Ωk, N,m, r) := 3d-MDI(gk,Ωk, N, r).

We note that when k = 1, 2, 3, the parameter m becomes a dummy variable
and can be given any value.

Let P k−m
k denote the natural embedding from R

k to R
k−m by deleting

the first m components of vectors in R
k. Then the tensor product quadra-

ture approximation J(g,Ω) with Ω = [0, 1]d can be computed efficiently as
follows.

Algorithm 3 MDI(d, g,Ω, N,m, r)

Inputs: d(≥ 4), g,Ω, N,m(= 1, 2, 3), r.
Output: J = J(g,Ω).

1: Ωd = Ω, gd = g, � = [ dm ].
2: for k = d : −m : d− �m (the index is decreased by m at each iteration) do
3: Ωd−m = P k−m

k Ωk.
4: Construct symbolic function gk−m by (21) below).
5: MDI(k, gk,Ωk, N,m, r) := MDI(k −m, gk−m,Ωk−m, N,m, r).
6: end for
7: J = MDI(d− �m, gd−�m,Ωd−�m, N,m, r).
8: return J .

Where

gk−m(s1, . . . , sk−m) =

N∑
i1,...,im=1

wi1wi2 · · ·wim gk
(
(ξ1, . . . , ξm, s1, . . . , sk−m)

)
.

(21)
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Remark 2.1. Algorithm 3 recursively generates a sequence of symbolic
functions {gd, gd−m, gd−2m, . . . , gd−�m}, each function hasm fewer arguments
than its predecessor. As already mentioned above, our MDI algorithm ex-
plores the lattice structure of the tensor product integration points, instead
of evaluating function values at all integration points independently, the
MDI evaluates them in cluster and iteratively alongm-coordinate directions,
the function evaluation at any integration point is not completed until the
last step of the algorithm is executed. So many computations are reused in
each iteration, which is the main reason for the computation saving and to
achieve a faster algorithm. Clearly, this idea can be applied to other quadra-
ture rules, including sparse grid methods, whose integration points have a
lattice-like structure.

3. Numerical performance tests

In this section, we shall present extensive and purposely designed numerical
experiments to gauge the performance of the proposed MDI algorithm and to
compare it with the standard tensor product (STP) method and the classical
Monte Carlo (MC) method for computing high dimensional integrals. All the
numerical tests show that the MDI outperforms both TP and MC methods
in low and medium dimensions (i.e., d ≈ 100), and significantly outperforms
them in very high dimensions (i.e., d ≈ 1000), and succeeds even when the
other two methods fail. We shall evaluate the influence of the choice of the
1-d base quadrature rule (indicated by the parameter r) and step length of
the dimension iteration (indicated by the parameter m).

All our numerical experiments are done in Matlab 9.4.0.813654(R2018a)
on a desktop PC with Intel(R) Xeon(R) Gold 6226R CPU 2.90 GHz and
32 GB RAM.

3.1. Two and three-dimensional tests

We first test our MDI on simple 2- and 3-d examples and to compare its
performance (in terms of the CPU time) with the STP and MC methods.
A word of warning is that due to small size of the problems and good ac-
curacy of all the methods, the performance differences between of these
methods may not be significant when the integrand g is very “nice”. This is
the reason that we shall use oscillatory or rapidly growing integrands which
often require to use a large number of integration points to achieve high
accuracy.
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Test 1. Let Ω = [0, 2]2 and consider the following 2-d integrands:

(22) g(x) := exp
(
5x21 + 5x22

)
; ĝ(x) := sin

(
2π + 10x21 + 5x22

)
.

Let h ∈ (0, 1) denote the grid size of the tensor product grid. Then the
number of integration points in each coordinate direction is N = 2

h +1. The
base 1-d quadrature rule is chosen to be the Simpson’s rule, hence, r = 2.
Its composite quadrature rule is denoted by STP-S which stands for the
standard tensor product-Simpson rule.

Tables 1 and 2 present the computational results (errors and CPU times)
of the STP-S and MDI methods for approximating I(g,Ω) and I(ĝ,Ω), re-
spectively.

Table 1: Relative errors and CPU times of STP-S and MDI simulations with
m = 1 for approximating I(g,Ω)

STP-S MDI
Mesh size

(h)
Total
nodes

Relative
error

CPU
time

Relative
error

CPU
time

0.1 441 1.2146× 10−1 0.0380032 1.2146× 10−1 0.1371068
0.05 1681 1.0222× 10−2 0.0438104 1.0222× 10−2 0.1857806
0.025 6561 7.0238× 10−4 0.0545541 7.0238× 10−4 0.3617802
0.0125 25921 4.5031× 10−5 0.0633071 4.5031× 10−5 0.5514163
0.0100 40401 1.8502× 10−5 0.0659092 1.8502× 10−5 0.6151638
0.00625 103041 2.8328× 10−6 0.0720637 2.8328× 10−6 0.8968891

Table 2: Relative errors and CPU times of STP-S and MDI simulations with
m = 1 for approximating I(ĝ,Ω)

STP-S MDI
Mesh size

(h)
Total
nodes

Relative
error

CPU
time

Relative
error

CPU
time

0.1 441 8.4038× 10−1 0.0413903 8.4038× 10−1 0.1381629
0.05 1681 1.2825× 10−2 0.0477657 1.2825× 10−2 0.1841843
0.025 6561 5.1928× 10−4 0.0579602 5.1928× 10−4 0.2845160
0.0125 25921 2.9642× 10−5 0.0579613 2.9642× 10−5 0.4957854
0.0100 40401 1.2014× 10−5 0.0617214 1.2014× 10−5 0.6276175
0.00625 103041 1.8123× 10−6 0.0708075 1.8123× 10−6 0.9682539
0.003125 410881 1.1213× 10−7 0.0946567 1.1213× 10−7 2.1355674

From Table 1 and 2, we observe that the CPU times used by these two
methods are very small although that of the STP-S method in both simula-
tions are slightly less. However, we like to note that both methods are very
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efficient and the difference is almost negligible in the 2-d case. The main rea-
son for this is that the advantages of the MDI algorithm are not fully utilized
when calculating low-dimensional integrals. This is because that the STP-S
method employs floating-point calculations in MATLAB, whereas MDI uti-
lizes symbolic calculations. When the dimension is low and the number of
integration points is small, the STP-S method will yield faster calculations of
those function values. However, as the dimension and the number of integra-
tion points increase, evaluating function values at so many integration points
becomes very expensive and the advantages of the MDI algorithm become
more apparent. See Test 2 and Test 3 below for detailed comparisons.

Test 2. Let Ω = [0, 2]3 and we consider the following 3-d integrands:

(23) g(x) = exp
(
5x21+5x22+5x23

)
, ĝ(x) = sin

(
2π+10x21+5x22+20x23

)
.

We compute integrals of these two functions over Ω by using the STP-S and
MDI methods. Again, let h denote the grid size, N = 2

h + 1, r = 2 and
m = 1.

Tables 3 and 4 display the computational results (errors and CPU times),
we observe that when the number of integration points is small (i.e., the grid
size h is relatively large), the STP-S method requires less CPU times in both
simulations. However, when the number of integration points increases, the
advantage shifts to the MDI method and becomes significant when the num-
ber of integration points become large. This is because, by the computational
complexity analysis to be given in the next section, the CPU time required
by the MDI method grows in (d3N2) order while that of the STP-S method
increases in exponential order O(Nd). As a result, it is expected that when

Table 3: Relative errors and CPU times of STP-S and MDI simulations with
m = 1 for approximating I(g,Ω)

STP-S MDI
Mesh size

(h)
Total
nodes

Relative
error

CPU
time(s)

Relative
error

CPU
time(s)

0.1 9261 1.8762× 10−1 0.0594529 1.8762× 10−1 0.1678806
0.05 68921 1.0222× 10−2 0.0830445 1.0222× 10−2 0.2330631
0.025 531441 7.0238× 10−4 0.1748109 7.0238× 10−4 0.4138331
0.0125 4173281 4.5031× 10−5 0.4316260 4.5031× 10−5 0.8359030
0.0100 8120601 1.8502× 10−5 0.7565165 1.8502× 10−5 1.0155151
0.00625 33076161 2.8328× 10−6 2.7365100 2.8328× 10−6 1.8655724
0.003125 263374721 2.6601× 10−7 56.872493 2.6601× 10−7 7.6742217
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Table 4: Relative errors and CPU times of STP-S and MDI simulations with
m = 1 for approximating I(ĝ,Ω)

STP-S MDI
Mesh size

(h)
Total
nodes

Relative
error

CPU
time(s)

Relative
error

CPU
time(s)

0.1 9261 2.5789× 10−1 0.042875 2.5789× 10−1 0.173581
0.05 68921 3.0493× 10−1 0.0729843 3.0493× 10−1 0.247261
0.025 531441 1.2800× 10−2 0.1942965 1.2800× 10−2 0.4377125
0.0125 4173281 4.9563× 10−4 0.9138938 4.9563× 10−4 0.8930069
0.0100 8120601 1.9345× 10−4 1.7594922 1.9345× 10−4 1.1012937
0.00625 33076161 2.8065× 10−5 7.0588477 2.8065× 10−5 2.3235149
0.003125 263374721 1.7128× 10−6 56.322503 1.7128× 10−6 9.7523139

d = 3 and N is large, the advantage of the MDI method over any standard
tensor product method becomes significant, and it will be even more pro-
nouncing when both d and N become large as shown by the tests to be given
in the next subsection.

3.2. High-dimensional tests

Since the MDI method is designed to computing high dimensional integra-
tion, it is important to test its performance and power for d � 1. In addition,
we provide a performance comparison (in terms of the CPU time) of the MDI
with standard tensor product methods as well as with the classical Monte
Carlo (MC) method on computing high-dimensional integration.

The next test compares the performance of the MDI and STP-S methods
on computing a well-known integral in dimensions 2 ≤ d ≤ 11, respectively.

Test 3. Let Ω = [0, 1]d for 2 ≤ d ≤ 11 and consider the following Gaussian
integrand:

(24) g(x) =
1√
2π

exp
(
−1

2
|x|2

)
,

where |x| stands for the Euclidean norm of the vector x ∈ R
d.

Once again, we approximate the integral I(g,Ω) by the MDI and STP-S
(i.e., r = 2) methods as done in Tests 1–2. We also set m = 1 in the MDI
method and perform the simulations with two grid sizes h = 0.1, 0.05 (or
N = 11, 21) respectively.

Table 5 presents the relative errors and CPU times of both MDI and
STP-S methods using the grid size h = 0.1 (or N = 11) and Table 6 gives the
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Table 5: Relative errors and CPU times of STP-S and MDI simulations with
m = 1 for approximating I(g,Ω) when N = 11

STP-S MDI
Dimension

(d)
Relative
error

CPU
time(s)

Relative
error

CPU
time(s)

2 1.5809× 10−6 0.0015542 1.5809× 10−6 0.0853444
4 3.1618× 10−6 0.0091310 3.1618× 10−6 0.1348654
6 4.7427× 10−6 0.4403814 4.7427× 10−6 0.5389767
8 6.3237× 10−6 56.1856842 6.3237× 10−6 1.4880431
10 7.9046× 10−6 7341.3815698 7.9046× 10−6 3.7304532
11 8.6951× 10−6 80322.5805531 8.6951× 10−6 5.2628807

Table 6: Relative errors and CPU times of STP-S and MDI simulations with
m = 1 for approximating I(g,Ω) when N = 21

STP-S MDI
Dimension

(d)
Relative
error

CPU
time(s)

Relative
error

CPU
time(s)

2 9.8542× 10−8 0.0068182 9.8542× 10−8 0.1122873
4 1.9708× 10−7 0.0715035 1.9708× 10−7 0.6049681
6 2.9564× 10−7 20.7002115 2.9564× 10−7 6.4742624
8 3.9149× 10−7 9622.1118103 3.9149× 10−7 19.8850829
9 4.4344× 10−7 215136.0654597 4.4344× 10−7 28.6823906
10 4.9271× 10−7 failed 4.9271× 10−7 38.9745044

corresponding results for h = 0.05 (or N = 21). We observe from both tables
that the errors of both methods are the same as they should be (because
they compute the same multi-summation in each simulation), but their CPU
times are significantly different. The STP-S method is more efficient when
the dimension d ≤ 6 when N = 11 and d ≤ 5 when N = 21, but the MDI
method excels when the dimension d > 6 and the winning margin becomes
significant as d and N increase (also see Figure 1). For example, when d = 11
and N = 11, the CPU time required by the STP-S method is about 80323
seconds, which is about 22 hours, but the CPU time required by the MDI
method is only less than 6 seconds! In addition, when d = 10 and N = 21,
the STP-S method fails to compute the integral (because the computational
cost is too large for the computer to handle), but it only takes the MDI
method about 39 seconds to finish the computation! The reason for such
a dramatic CPU time saving is, by the computational complexity analysis
to be given in the next section, that the CPU time required by the MDI
method grows in (d3N2) order while that of the STP-S method increases in
exponential order O(Nd).
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Figure 1: CPU time comparison of STP-S and MDI simulations: N = 10
(left), N = 20 (right).

Arguably, the classical Monte Carlo (MC) method (or its variant) is the
method of choice for computing high dimensional integration. However, due
to its low order of convergence and intrinsic need for using large amount
of samples, it is only capable of simulating low and medium dimensional
integration in practice due to the large number of function evaluations at
randomly sampled integration points, which also grows quickly as the dimen-
sion d increases (due to the rapid growth of the variance). In the next test,
we compare the performance of the MDI (with parameters r = 2, N = 11,
m = 1) and the classical MC method.

Test 4. Let Ω = [0, 1]d and choose the following integrands:

(25) g(x) =

d∏
i=0

1

0.92 + (xi − 0.6)2
, ĝ(x) =

1√
2π

exp
(
−1

2
|x|2

)
.

First, we use the relative error as the metric to guage the performance,
namely, we use sufficient number of the random sampling points for the
MC method so it produces a comparable relative error to that of the MDI
method. The computational results for approximating I(g,Ω) and I(ĝ,Ω)
are presented respectively in Tables 7 and 8 below.

From Tables 7 and 8, we clearly see that the CPU times of the MDI and
MC methods are significantly different, the discrepancy becomes so dramatic
when d ≥ 40 because the MDI method only takes a few seconds/minutes to
finish the computation of approximating I(g,Ω) and I(ĝ,Ω), while the MC
method fails to produce a result on the computer! This is because, in order
for the MC method to obtain an approximate value with the relative error
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Table 7: CPU times of the MDI and MC simulations with comparable rela-
tive errors for approximating I(g,Ω)

MC MDI
Dimension

(d)
Relative
error

CPU
time(s)

Relative
error

CPU
time(s)

5 2.6251× 10−5 9.2872030 2.6251× 10−5 0.1755604
10 5.2504× 10−5 17.9837795 5.2504× 10−5 0.2510754
20 1.0501× 10−4 66.6797401 1.0501× 10−4 0.6229516
30 1.5752× 10−4 4302.1801130 1.5752× 10−4 0.8786786
35 1.8377× 10−4 11055.6351555 1.8377× 10−4 1.0470143
40 2.1003× 10−4 failed 2.1003× 10−4 1.2647430
80 4.2011× 10−4 4.2011× 10−4 2.8572520
100 5.2516× 10−4 5.2516× 10−4 3.2840268

Table 8: CPU times of the MDI and MC simulations with comparable rela-
tive errors for approximating I(ĝ,Ω)

MC MDI
Dimension

(d)
Relative
error

CPU
time(s)

Relative
error

CPU
time(s)

5 3.9523× 10−6 33.3246187 3.9523× 10−6 0.2620139
10 7.9046× 10−6 346.0491007 7.9046× 10−6 3.7304532
20 1.5809× 10−5 1210.092329 1.5809× 10−5 35.9158247
30 2.3714× 10−5 3416.6898735 2.3714× 10−5 108.7032555
35 2.7666× 10−5 12664.1000000 2.7666× 10−5 154.1259392
40 3.1618× 10−5 failed 3.1618× 10−5 240.1254540
80 6.3238× 10−5 6.3238× 10−5 1678.4531292
100 7.9049× 10−5 7.9049× 10−5 3207.3510623

of order 10−5, it requires about 1010 randomly sampled integration points at
which function values must be computed independently, a task that is too big
to be handled by Matlab on the computer. We note that g is an oscillatory
function and ĝ is an exponentially growth function, both functions are tough
for the MC method to handle, because a very large number of sampling
points must be used to resolve those functions with a reasonable resolution
and the function values must be computed independently at those points
in the MC method. On the other hand, although the MDI method must
use a comparable large amount (if not larger) of integration points (because
the underlying tensor product method does), due to its efficient way of
computing those function evaluations in cluster and iteratively along each
coordinate direction, the MDI can handle the computation of the multi-
summation in the blink of an eye.
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Table 9: CPU times of the MDI and MC simulations using the same number
of integration points for approximating I(g,Ω)

MC MDI
Dimension

(d)
Total
nodes

Relative
error

CPU
time(s)

Relative
error

CPU
time(s)

5 115 5.8241× 10−4 0.3056289 2.6251× 10−5 0.1755604
11 1111 4.3309× 10−7 9827.3992235 5.7754× 10−5 0.2815804
15 1115 failed 7.8757× 10−5 0.4811588
30 1130 1.5752× 10−4 0.8786786
40 1140 2.1003× 10−4 1.2647430
50 1150 2.6254× 10−4 1.6818385

Next, we compute the same test problems as above but use a differ-
ent metric to gauge the performance of both methods. We now specify the
number of integration points, instead of the relative errors, then let both
methods compute their respective multi-summations using the same num-
ber of points (so the same number of function evaluations are required by
both methods to approximate the integrals). Tables 9 and 10 present the
simulation results. Although the numbers are slightly different but the mes-
sage is the same, that is, the MC method fails to produce a result when the
dimension d ≥ 15 while the MDI can finish the simulation in the blink of an
eye for the integrand g and in a few minutes for the integrand ĝ even when
d = 50.

Table 10: CPU times of the MDI and MC simulations using the same number
of integration points for approximating I(ĝ,Ω)

MC MDI
Dimension

(d)
Total
nodes

Relative
error

CPU
time(s)

Relative
error

CPU
time(s)

5 115 1.0664× 10−3 0.0080803 3.9523× 10−6 0.2620139
11 1111 1.1947× 10−6 10195.085484 8.6951× 10−6 6.9215447
15 1115 failed 1.1856× 10−5 15.316679
30 1130 2.3714× 10−5 108.703255
40 1140 3.1618× 10−5 240.125454
50 1150 3.9523× 10−5 413.607179

One natural question is how high the dimension d which the MDI can
handle. First, we note that the answer is machine-dependent as expected.
Second, we perform the next test to seek an answer to this question using
the computer at our disposal as described at the beginning of this section.
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Test 5. Let Ω = [0, 1]d and consider the following integrands:

(26)

g̃(x) = exp

( d∏
i=1

xi

)
, g(x) = exp

( d∑
i=1

(−1)i+1xi

)
,

ĝ(x) =

d∏
i=0

1

0.92 + (xi − 0.6)2
.

We first approximate I(g̃,Ω) using the MDI algorithm with parameters
r = 3 (three-point Gaussian rule), m = 1, N = 3 and an increasing se-
quence of d. The computed results are presented in Table 11. We note that
the composite three-point Gaussian rule is very accurate for evaluating this
integral.

We then approximate I(g,Ω) and I(ĝ,Ω) using the MDI algorithm with
parameters r = 2 (composite Simpson’s rule), m = 1, N = 7 and an increas-
ing sequence of d. The computed results are presented in Tables 12 and 13.
The simulation is stopped at d = 1000 because it is already in the very
high dimension regime and N = 7 is chosen to minimize the computation
and because it is sufficient to produce reasonable relative errors. This test
demonstrates the promise and capability of the MDI method for efficiently
computing high dimensional integrals.

Table 11: Computed results for approximating I(g̃,Ω) by the MDI
algorithm

Dimension
(d)

Total
nodes

Approximation
Relative
error

CPU
time(s)

10 310 1.000985193399077 1.4085× 10−13 0.133632
20 320 1.000000953817867 9.5919× 10−16 0.3871058
30 330 1.000000000931325 1.4387× 10−16 1.6115572
40 340 1.000000000000909 8.8817× 10−16 5.2981164
50 350 1.000000000000001 2.3979× 10−17 16.5415132
60 360 1.000000000000000 2.8775× 10−17 32.007989
70 370 1.000000000000000 3.3571× 10−17 59.8037414
80 380 1.000000000000000 3.8367× 10−17 107.1823183
90 390 1.000000000000000 4.3163× 10−17 170.3656174
100 3100 1.000000000000000 4.2734× 10−17 249.1619032
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Table 12: Computed results for approximating I(g,Ω) by the MDI
algorithm

Dimension
(d)

Total
nodes

Relative
error

CPU
time(s)

10 710 4.2726× 10−5 0.2459398
100 7100 4.2734× 10−4 74.6973942
200 7200 8.5487× 10−4 503.3034372
300 7300 1.4386× 10−4 1560.0488058
400 7400 1.7097× 10−3 3546.4398972
500 7500 2.1371× 10−3 6772.0225935
600 7600 2.8772× 10−3 11954.1886240
700 7700 3.3566× 10−3 19355.4847153
800 7800 3.5194× 10−3 28273.5752793
900 7900 3.8467× 10−3 42427.2391457
1000 71000 4.2742× 10−3 62445.0882189

Table 13: Computed results for approximating I(ĝ,Ω) by the MDI
algorithm

Dimension
(d)

Total
nodes

Relative
error

CPU
time(s)

10 710 4.0743× 10−4 0.2059168
100 7100 4.0818× 10−3 2.0993900
200 7200 8.1803× 10−3 4.5213100
300 7300 1.2295× 10−2 7.2644682
400 7400 1.6427× 10−2 10.1062101
500 7500 2.0576× 10−2 13.5705851
600 7600 2.4742× 10−2 17.8284828
700 7700 2.8925× 10−2 21.6876065
800 7800 3.3125× 10−2 25.9204244
900 7900 3.7342× 10−2 31.3307727
1000 71000 4.1576× 10−2 35.7704489

4. Influence of parameters

Besides the dimension d, there are three other input parameters in the MDI

algorithm, they are r,m and N . The parameter r indicates the choice of

1-d base numerical quadrature rule. As mentioned earlier, here we only con-

sider four such choices, hence, r takes integer values {1, 2, 3, 4} and they

represent respectively the (composite) trapezoidal rule, Simpson’s rule, two-

point Gaussian rule, and midpoint rule. Their efficiency will be tested in

this section.
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Recall thatm represents the step length in the multi-dimension iteration,
namely, it indicates how many dimensions to reduce at each iteration. Prac-
tically, 1 ≤ m ≤ 3, hence, it takes integer values {1, 2, 3}. The performance
of each of these choices will be compared in this section. It should be noted
that after � := [ dm ] iterations, the residual dimension satisfies d − �m ≤ m.
Then in case m = 2 or 3, one has two options to choose to complete the al-
gorithm. On one hand, one just continues the dimension reduction by calling
3d-MDI or 2d-MDI as explained in the definition of Algorithm 3. On the
other hand, it is also possible to compute the remaining 2- or 3-d integra-
tion directly using the underlying 2- or 3-d tensor product formula without
further dimension reduction. The effect of these two choices will be tested
in this section.

It is clear that the larger N , the more expensive the computation. The
dependence of the efficiency of the MDI algorithm on the parameter N will
also be tested.

4.1. Influence of parameter r

We first examine the effect of the choices r = 1, 2, 3, 4 in the MDI algorithm.
They will be done on the same grid (i.e., N fixed) and with the same step
length m = 1.

Test 6. Let Ω = [0, 1]d and the integrand g be given by (24).

Table 14 presents the simulation results of Test 6. We note that since
the composite two-point Gaussian rule (r = 3) is too expensive to compute
this integral when the dimension is larger than 10, so it is not included in this
test. It shows that Simpson’s and trapezoidal rules have the same efficiency,
but Simpson’s rule has much better accuracy. The midpoint and trapezoidal
rules have the same accuracy, but the midpoint rule is three times more
efficient than the trapezoidal rule in this test.

Test 7. Let Ω = [0, 1]d and choose the integrand g as

(27) g(x) = exp
( d∑
i=1

(−1)i+1xi

)
, ĝ(x) =

d∏
i=0

1

0.92 + (xi − 0.6)2
.

Table 15 presents the simulation results of Test 7 for approximating
integral I(g,Ω). Again, choosing different types of the 1-d base quadrature
rule has a significant impact on the accuracy and efficiency of the MDI al-
gorithm. In terms of accuracy, the trapezoidal (r = 1) and midpoint (r = 4)
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Table 14: Efficiency comparison of the MDI algorithm with m = 1 and
r = 1, 2, 4

Parameter
(r)

Dimension
(d)

Points
(N)

Relative
error

CPU
time(s)

r = 1 10 11 5.8935× 10−3 3.8294275
30 11 1.7576× 10−2 97.3001349
50 11 2.9122× 10−2 419.1940599
70 11 4.0532× 10−2 1056.501204
90 11 5.1808× 10−2 2199.34273
100 11 5.7396× 10−2 3255.997642

r = 2 10 11 7.9046× 10−6 3.7304532
30 11 2.3714× 10−5 108.703255
50 11 3.9523× 10−5 413.607179
70 11 5.5333× 10−5 1147.446169
90 11 7.1144× 10−5 2388.382073
100 11 7.9049× 10−5 3207.351062

r = 4 10 10 2.9593× 10−3 1.6020058
30 10 8.9042× 10−3 50.2901972
50 10 1.4884× 10−2 186.0984739
70 10 2.0899× 10−2 436.3740376
90 10 2.6951× 10−2 855.0901709
100 10 2.9990× 10−2 1062.3387568

rules are comparable, but the midpoint rule is more efficient (in terms of the
CPU time) as the dimension d increases. Similarly, Simpson’s (r = 2) and
two-point Gaussian (r = 3) rules are comparable in accuracy, but Simpson’s
rule is significantly more efficient even the Gaussian rule uses fewer inte-
gration points. Moreover, Simpson’s rule is much more accurate than the
trapezoidal and midpoint rules with comparable efficiency because all three
quadrature rules use the same number of integration points. The compari-
son shows that Simpson’s rule is a clear winner among these four rules when
they are used as the building block in the MDI algorithm for high dimen-
sion integration. We note that the reason that the two-point Gaussian rule
requires a lot more CPU time is because it is costly to generate the Gauss
points on fly and to do their function evaluations.

Table 16 shows the simulation results of Test 7 for approximating inte-
gral I(ĝ,Ω). Due to the nicer behavior of the integrand ĝ, the MDI algorithm
is very fast with all four base quadrature rules for computing this integral
although the same observations as above can be made. Once again, the
Simpson’s rule excels.



450 Xiaobing Feng and Huicong Zhong

Table 15: Efficiency comparison of the MDI algorithm with m = 1 and
r = 1, 2, 3, 4

Parameter
(r)

Dimension
(d)

Points
(N)

Relative
error

CPU
time(s)

r = 1 10 11 8.3632× 10−3 0.3793491
30 11 2.5300× 10−2 3.9242551
50 11 4.2521× 10−2 20.7387841
70 11 6.0032× 10−2 76.7165061
90 11 7.7837× 10−2 170.2491139
100 11 8.6851× 10−2 234.4891902

r = 2 10 11 5.5489× 10−6 0.3435032
30 11 1.6646× 10−5 4.0590394
50 11 2.7745× 10−5 20.6479181
70 11 3.8843× 10−5 69.2068795
90 11 4.9941× 10−5 162.1716159
100 11 5.5491× 10−5 209.2587748

r = 3 10 6 2.8477× 10−5 0.8652789
30 6 8.5428× 10−5 219.3882758
50 6 1.4237× 10−4 5281.6063020
60 6 2.8775× 10−5 16366.6127593
70 6 failed

r = 4 10 10 4.1576× 10−3 0.3168370
30 10 1.2421× 10−2 2.3652108
50 10 2.0616× 10−2 13.5012784
70 10 2.8743× 10−2 45.0645030
90 10 3.6802× 10−2 112.2156751
100 10 4.0807× 10−2 153.9030288

4.2. Influence of parameter m

Recall that m stands for the step length in the MDI algorithm, it represents
how many dimensions are reduced at each iteration. The intuition is the
more reduction the better. However, that is not true because at each itera-
tion, many m-dimensional tensor product sums must be evaluated. Hence,
practically we have 1 ≤ m ≤ 3. The next test presents a performance com-
parison of the MDI algorithm using m = 1, 2, 3.

Test 8. Let Ω = [0, 1]d, g and ĝ be the same as in (25).

We compute these integrals using the MDI algorithm with r = 2 (com-
posite Simpson’s rule) and N = 11. Tables 17 and 18 present respectively
the computed results for these two integrals. We observe that the MDI algo-
rithm with different parameters m has the same accuracy which is expected.
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Table 16: Efficiency comparison of the MDI algorithm with m = 1 and
r = 1, 2, 3, 4

Parameter
(r)

Dimension
(d)

Points
(N)

Relative
error

CPU
time(s)

r = 1 10 11 1.2809× 10−2 0.2997928
30 11 3.7939× 10−2 0.8831823
50 11 6.2429× 10−2 1.5778940
70 11 8.6296× 10−2 2.2930658
90 11 1.0955× 10−1 3.1440537
100 11 1.2096× 10−1 3.5166433

r = 2 10 11 5.2504× 10−5 0.2510754
30 11 1.5752× 10−4 0.8786786
50 11 2.6254× 10−4 1.6818385
70 11 3.6758× 10−4 2.2283636
90 11 4.7263× 10−4 3.1751084
100 11 5.2516× 10−4 3.2840268

r = 3 10 10 3.5014× 10−5 0.3039294
30 10 1.0503× 10−4 1.3949243
50 10 1.7505× 10−4 4.2661412
70 10 2.4507× 10−4 9.8203358
90 10 3.1508× 10−4 19.3491396
100 10 3.5008× 10−4 25.3835608

r = 4 10 10 6.4658× 10−3 0.2454473
30 10 1.9523× 10−2 0.7190225
50 10 3.2750× 10−2 1.3526353
70 10 4.6148× 10−2 1.8832556
90 10 5.9720× 10−2 2.4435807
100 10 6.6572× 10−2 2.8005838

Table 17: Efficiency comparison of the MDI algorithm with r = 2 and m =
1, 2, 3

m = 1 m = 2 m = 3
Dimension

(d)
Relative
error

CPU
time(s)

CPU
time(s)

CPU
time(s)

10 5.2504× 10−5 0.2510754 1.7061606 10.8277897
30 1.5752× 10−4 0.8786786 5.6306318 49.1959065
50 2.6254× 10−4 1.6818385 10.1213779 79.0436736
70 3.6758× 10−4 2.2283636 14.4966060 127.4604677
90 4.7263× 10−4 3.1751084 19.3119927 171.5185236
100 5.2516× 10−4 3.2840268 21.8707585 196.2232037
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Table 18: Efficiency comparison of the MDI algorithm with r = 2 and m =
1, 2, 3

m = 1 m = 2 m = 3
Dimension

(d)
Relative
error

CPU
time(s)

CPU
time(s)

CPU
time(s)

10 7.9046× 10−6 3.7304532 17.4647858 31.7445041
30 2.3714× 10−5 108.703255 548.4820562 3762.781656
50 3.9523× 10−5 413.607179 2208.4417154 15367.76577
70 5.5333× 10−5 1147.446169 4332.8074455 35433.0000001
90 7.1144× 10−5 2388.382073 12397.0363557 75097.6376617
100 7.9049× 10−5 3207.351062 16428.9713811 102930.139707

However, the choice of m do affect the efficiency of the algorithm. It shows
that the algorithm is most efficient when m = 1. The explanation for this ob-
servation is that when using larger m, the number of nested loops increases
despite the number of iterations decreases. When m = 1, there is only one
loop per iteration, so the MDI algorithm becomes faster.

4.3. Influence of the parameter N

In this section, we test the influence of the number of integration points N
in each coordinate direction on the MDI algorithm. We set m = 1 and r = 2
(Simpson) in the test.

Test 9. Let Ω = [0, 1]d and choose the following integrands:

g(x) = exp
( d∑
i=1

(−1)i+1xi

)
, ĝ(x) = cos

(
2π + 2

d∑
i=1

xi

)
,

g̃(x) =

d∏
i=0

1

0.92 + (xi − 0.6)2
.

Tables 19, 20 and 21 present respectively the computed results of Test 9
with d = 5, 10 and N = 11, 21, 41, 81, 161, 321. It should be noted that the
quality of the approximation also depends on the behavior of the integrand.
For very oscillatory and fast growth functions, more integration points must
be used to achieve good accuracy. In the next section, we shall examine
using the regression technique the relationship between the CPU time and
the parameter N and the dimension d.
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Table 19: Performance comparison of the MDI algorithm with d = 5, 10 and
N = 11, 21, 41, 81, 161, 321 for approximating I(g,Ω)

d = 5 d = 10
Mesh size

(h)
Points
N

Relative
error

CPU
time(s)

Relative
error

CPU
time(s)

0.1 11 2.7744× 10−6 0.1756857 5.5489× 10−6 0.4397261
0.05 21 1.7355× 10−7 0.3406698 3.4711× 10−7 1.0226371
0.025 41 1.0849× 10−8 0.7929361 2.1699× 10−8 4.0287093
0.0125 81 6.7815× 10−10 2.1783682 1.3563× 10−9 31.1292788
0.00625 161 4.2384× 10−11 31.7971237 8.4768× 10−11 141.9877281
0.003125 321 2.6479× 10−12 136.4977085 5.2993× 10−12 550.772326

Table 20: Performance comparison of the MDI algorithm with d = 5, 10 and
N = 11, 21, 41, 81, 161, 321 for approximating I(ĝ,Ω)

d = 5 d = 10
Mesh size

(h)
Points
N

Relative
error

CPU
time(s)

Relative
error

CPU
time(s)

0.1 11 4.4657× 10−5 0.1832662 8.9317× 10−5 0.4046452
0.05 21 2.7810× 10−6 0.3478922 5.5621× 10−6 1.0245456
0.025 41 1.7366× 10−7 0.7666344 3.4732× 10−7 4.5341739
0.0125 81 1.0851× 10−8 2.8629733 2.1703× 10−8 35.0469255
0.00625 161 6.7818× 10−10 26.3679753 1.3563× 10−9 150.875945
0.003125 321 4.2383× 10−11 146.441442 8.4768× 10−11 568.693914

Table 21: Performance comparison of the MDI algorithm with d = 5, 10 and
N = 11, 21, 41, 81, 161, 321 for approximating I(g̃,Ω)

d = 5 d = 10
Mesh size

(h)
Points
N

Relative
error

CPU
time(s)

Relative
error

CPU
time(s)

0.1 11 2.6251× 10−5 0.1669653 5.2504× 10−5 0.273292
0.05 21 1.6339× 10−6 0.2529685 3.2679× 10−6 0.4857094
0.025 41 1.0200× 10−7 0.4683767 2.0401× 10−7 0.8593056
0.0125 81 6.3736× 10−9 0.8346902 1.2747× 10−8 1.7529975
0.00625 161 3.9832× 10−10 1.6505776 7.9664× 10−10 3.6539963
0.003125 321 2.4894× 10−11 3.6465664 4.9788× 10−11 9.5368530
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5. Computational complexity

5.1. The relationship between the CPU time and N

In this subsection, we examine the relationship between the CPU time and
parameter N using the regression technique based on the test data.

Figures 2 and 3 show the CPU time as a function of N obtained by the
least square method and the fitting functions are given in Table 22. All the
results indicate that the CPU time grows at most quadratically in N .

Figure 2: The relationship between the CPU time and parameter N when
d = 5: I(g,Ω) (left), I(ĝ,Ω) (middle), I(g̃,Ω) (right).

Figure 3: The relationship between the CPU time and parameter N when
d = 10: I(g,Ω) (left), I(ĝ,Ω) (middle), I(g̃,Ω) (right).

Table 22: The relationship between the CPU time and parameter N

Integrand r m d Fitting function R-square

g(x) 2 1 5 h1(N) = (0.001315) ∗N2 0.9973
ĝ(x) 2 1 5 h2(N) = (0.001393) ∗N2 0.9914
g̃(x) 2 1 5 h3(N) = (0.01111) ∗N 0.9963
g(x) 2 1 10 h4(N) = (0.00535) ∗N2 0.9998
ĝ(x) 2 1 10 h5(N) = (0.005536) ∗N2 0.9997
g̃(x) 2 1 10 h6(N) = (0.006307) ∗N1.267 0.9971
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5.2. The relationship between the CPU time and the
dimension d

Recall that the computational complexity of tensor product methods is of the
exponential order O(Nd). The numerical tests presented above overwhelm-
ingly and consistently show that the MDI algorithm has hidden capability
to overcome the curse of dimensionality faced by tensor product methods.
The goal of the next test is to find out the computational complexity (in
terms of CPU time as a function of d) using the least square method based
on numerical test data.

Test 10. Let Ω = [0, 1]d, we consider the following five integrands:

g1(x) = exp
( d∑
i=1

(−1)i+1xi

)
, g2(x) =

d∏
i=0

1

0.92 + (xi − 0.6)2
,

g3(x) =
1√
2π

exp
(
−1

2
|x|2

)
, g4(x) = cos

(
2π + 2

d∑
i=1

xi

)
,

g5(x) = exp
(
5

d∑
i=1

(−1)i+1x2i

)
, g6(x) = exp

( d∏
i=1

xi

)
.

Figure 4 displays the CPU time as functions of d obtained by the least
square method whose analytical expressions are given in Table 23. We note
that the parameters of the MDI algorithm only affect the coefficients of the
fitting functions, but not the order.

We quantitatively characterize the performance of the fitted curve by

the R-square in Matlab, which is defined as R-square = 1 −
∑n

i (yi−ŷi)2∑n
i (yi−y)2 .

Where yi represents the test data, ŷi refers to the predicted value, and y
indicates the mean value of yi. Table 23 also shows that the R-square of
all fitting functions is very close to 1, which indicates the fitting function
is quite accurate. These results indicate that the CPU time grows at most
cubically in d. Combining the results of Test 9 in Section 4.3 we conclude
that the CPU time required by the proposed MDI algorithm grows at most
in the polynomial order O(d3N2).

6. Conclusions

In this paper we introduced a fast MDI (multilevel dimension iteration)
algorithm (or solver) for efficiently implementing tensor product methods for
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Figure 4: The relationship between the CPU time and dimension d.
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Figure 4: (Continued.)
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Table 23: The relationship between CPU time and the integral dimension d

Integrand r m N Fitting function R-square

g1 1 1 11 f1 = (1.903e− 06) ∗N2d3 0.9966
2 1 7 f2 = (1.219e− 06) ∗N2d3 0.9961
2 1 11 f3 = (1.761e− 06) ∗N2d3 0.9964
3 1 3 f4 = (1.01e− 06) ∗N2d3 0.9978
4 1 10 f5 = (1.506e− 06) ∗N2d3 0.9947

g2 1 1 11 f6 = 0.0002787 ∗N2d1 0.9922
2 1 7 f7 = (6.154e− 05) ∗N2d1.358 0.9991
2 1 11 f8 = 0.0002779 ∗N2d1 0.9898
2 2 11 f9 = 0.001737 ∗N2d1 0.9937
2 3 11 f10 = 0.01517 ∗N2d1 0.9808
3 1 10 f11 = (2.629e− 07) ∗N2d3 0.9932
4 1 10 f12 = 0.000271 ∗N2d1 0.9952

g3 1 1 11 f13 = (2.629e− 05) ∗N2d3 0.9977
2 1 11 f14 = (2.682e− 05) ∗N2d3 0.9995
2 2 11 f15 = 0.0001357 ∗N2d3 0.9929
2 3 11 f16 = 0.0008642 ∗N2d3 0.9974
4 1 10 f17 = (1.123e− 05) ∗N2d3 0.9903

g4 2 1 11 f18 = (1.633e− 06) ∗N2d3 0.9990
2 1 21 f19 = (1.74e− 06) ∗N2d3 0.9966
3 1 3 f20 = (7.904e− 07) ∗N2d3 1.0000

g5 2 1 11 f20 = (2.136e− 05) ∗N2d3 0.9968
2 1 21 f22 = (4.791e− 05) ∗N2d3 0.9994

g6 3 1 3 f23 = (2.573e− 05) ∗N2d3 0.9786

high dimension numerical integration. It is based on the idea of computing
the function evaluations at all integration points in cluster and iteratively
along each coordinate direction, so many computations can be reused in each
iteration. It was showed numerically based on the simulation data that the
computational complexity (in terms of the CPU time) of the MDI algorithm
grows at most cubically in the dimension d, and overall in the order O(d3N2),
which shows that the proposed MDI algorithm could effectively circumvent
the curse of the dimensionality in high dimensional numerical integration,
hence, makes tensor product methods not only become competitive but also
can excel. Extensive numerical tests were provided to gauge the performance
of the MDI algorithm and to do performance comparisons with the standard
tensor product methods and especially with the Monte Carlo (MC) method.
They demonstrated that the MDI algorithm (regardless the choice of the 1-d
base quadrature rules) is faster than the MC method in low and medium
dimensions (i.e., d ≈ 100), much faster in very high dimensions (i.e., d ≈
1000), and succeeds even when the MC method fails. As the idea of the
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MDI algorithm is applicable to any quadrature rule whose integration points
have a lattice-like structure, this extension will be further investigated in
the future. Another direction of continuing this research is to sharpen the
dimension-iteration idea to develop even faster algorithms which can achieve
the optimal computational complexity (in terms of the CPU time) of the
order O(Nd), we shall present those new results in a forthcoming work.
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