
Annals of Mathematical Sciences and Applications

Volume 8, Number 3, 501–543, 2023

An optimal time variable learning framework for
Deep Neural Networks∗

Harbir Antil, Hugo D́ıaz, and Evelyn Herberg

Feature propagation in Deep Neural Networks (DNNs) can be asso-
ciated to nonlinear discrete dynamical systems. The novelty, in this
paper, lies in letting the discretization parameter (time step-size)
vary from layer to layer, which needs to be learned, in an optimiza-
tion framework. The proposed framework can be applied to any
of the existing networks such as ResNet, DenseNet or Fractional-
DNN. This framework is shown to help overcome the vanishing and
exploding gradient issues. Stability of some of the existing contin-
uous DNNs such as Fractional-DNN is also studied. The proposed
approach is applied to an ill-posed 3D-Maxwell’s equation.

AMS 2000 subject classifications: 34A08, 49J15, 68T05, 82C32.

Keywords and phrases: Deep learning, Deep Neural Network, frac-
tional time derivatives, fractional neural network, residual neural net-
work, optimal network architecture, exploding gradients, vanishing gra-
dients.

1. Introduction

Consider a network architecture, for example, residual neural network
(ResNet)

(1.1) y[�] = y[�−1] + τσ(y[�−1], θ[�−1]),

which contains a hyperparameter τ . It is also possible to consider other ar-
chitectures such as feedforward networks etc. The above neural network can
be understood as the time-discretization of a non-linear ordinary differential
equation (ODE). The feature vector y[�] is computed by forward propaga-
tion from the previous layers feature vector y[�−1] and network parameters,

∗This work is partially supported by NSF grants DMS-2110263, DMS-1913004,
DMS-2111315, the Air Force Office of Scientific Research (AFOSR) under Award
NO: FA9550-22-1-0248, and Department of Navy, Naval PostGraduate School under
Award NO: N00244-20-1-0005.

501

https://www.intlpress.com/site/pub/pages/journals/items/amsa/_home/_main/index.php

502 Harbir Antil et al.

which are collected in θ[�−1], using an activation function σ. In most of the
existing literature, τ is a given fixed constant. The main novelty of this work
lies in

replacing τ by learning variables τ [�]

and the treatment of these τ [�]. These variables can be understood as the
‘time step-sizes’ in Deep Neural Networks (DNNs). This paper considers
them as optimization variables, not as hyperparameters. Furthermore, the
parameters τ [�] are allowed to differ from layer to layer, i.e., time grid can
be non-equidistant. Notice that this τ -variable framework can be applied
to any of the existing networks of type (1.1). The deep learning optimiza-
tion problem will now also learn optimal parameters τ [�] in addition to the
standard DNN parameters. As will be illustrated throughout the article,
the presented approach is not just a scaling of the activation function σ by
τ [�]. This will become evident when applying the proposed framework to
Fractional-DNNs, where τ [�] enters in multiple ways, see Remark 5.1. For a
PyTorch implementation of τ -variable DNNs, we refer to [7].

This proposed approach presents multiple advantages, including:

• The proposed framework leads to optimal adaptive time discretiza-
tions of DNNs, such as ResNets and Fractional-DNNs, tailored to the
optimization/learning problem. This is different than time adaptive
approaches in [16, 10] where adaptivity is tailored to the forward prob-
lem (1.1) but not the learning (optimization) problem.

• The proposed framework can further help (as is rigorously established)
overcome the vanishing and exploding gradient problems in networks
such as ResNets and Fractional-DNNs. Notice, that motivation behind
introducing ResNets [34, 33] was vanishing gradients and Fractional-
DNNs was vanishing and exploding gradients [5]. Fractional derivatives
are nonlocal in nature, therefore solution at current time step require
information about solution at all the previous time steps, i.e., the
system has memory effects. Additionally, fractional derivatives have
less smoothing requirements. For a complete theoretical analysis of
fractional DNN, see [1].

• If τ [�] for any layer � is close to zero, then the associated layer is
redundant and can be deleted without sacrificing the accuracy. Thus
leading to small yet accurate DNNs.

• Variable τ [�] helps improve the training error decay, see Figure 1.

The main idea to approximate parameterized PDEs and solve the in-
verse problems using Fractional-DNNs has been recently introduced in [3].

An optimal time variable learning framework for DNNs 503

Figure 1: The panel shows the mean squared error during training when the
variable-τ framework is applied to a ResNet and a Fractional DNN for an
ill-posed 3D-Maxwell’s equation. More details are available in Section 7.

The present article not only introduces the aforementioned variable time
step framework, but for the first time, to the best of our knowledge, also
applies the DNNs, such as ResNets and Fractional-DNNs, to ill-posed prob-
lems such as Maxwell’s equations with Gauss’s law. A comparison of these
standard DNNs with their time-step variable versions has also been carried
out. The problem is ill-posed in the following sense: Nédélec finite elements
are traditionally used to discretize Maxwell’s equations. However, they are
curl-conforming and thus the Gauss’s law (divergence condition) cannot be
directly imposed [17]. The DNNs are shown to generalize well on the unseen
data and physical domains.

Deep learning is a nascent field of research with many exciting applica-
tions, for example imaging science [5, 33, 39, 51, 62], biomedical applications
[14, 30, 42], satellite imagery, remote sensing [11, 59, 64], segmentation [53],
and gaming [56]. Recently, this topic is starting to receive significant at-
tention from mathematicians [19, 23]. Especially, the fact that DNNs of
type (1.1) can be viewed as optimization problems constrained by discrete
dynamical systems [5, 10, 13, 28, 29, 47, 55] and partial differential equations
[46, 54]. In these settings, the state-of-the-art is to consider an equidistant
time grid, where the time step-size τ is chosen before running the optimiza-
tion algorithm to identify weights, i.e. τ is a hyperparameter.

The articles [31, 38] suggest to consider τ [�] as hyperparameters for
physics-informed neural networks and ResNets, respectively. In both cases
the hyperparameters τ [�] are seen as scalings applied, outside [31] and inside

504 Harbir Antil et al.

[38], the activation function. We also refer to [32] where parameterized ReLU
was first introduced. In [38], a global τ = τ [�] for all � is considered leading
to training error improvement and more accurate solutions, which will also
hold true for our more general setting. In [31], a sequence of τ [�], fulfilling
a probabilistic condition, is chosen to avoid exploding gradients. In con-
trast, we let the optimization algorithm learn τ [�] and provide deterministic
arguments to overcome the vanishing and exploding gradient problems.

Outline. This article is organized as follows. Section 2 introduces some ba-
sic preliminary results and notation. We introduce definitions of fractional
derivatives and state a generic DNN. We also describe an extension of this
DNN to include a recently introduced bias ordering idea from [2] which of-
fers multiple advantages such as narrowing the parameter search space. This
is followed by Section 3 where the relation between continuous DNNs and
dynamical systems is considered. Special attention is given to two contin-
uous version of DNNs: ResNet (DNN with standard time derivative) and
Fractional-DNN (DNN with fractional time derivative). Stability results for
these two DNNs are also provided. Notice, that Fractional-DNNs have been
recently introduced in [5] for classification and further extended in [3] to
inverse problems with PDEs. They have multiple advantages over ResNets
as they can incorporate memory into the network due to the nonlocal nature
of fractional derivatives and due to the low regularity requirements of frac-
tional derivatives, they can be applied to non-smooth functions. As stated
above, one of the main motivations behind introducing Fractional-DNN was
to overcome vanishing and exploding gradients. The article [5] provides nu-
merical evidence of overcoming the vanishing gradient problem.

Next, in Section 4 we state selected DNN architectures and compare
them for a fixed τ . The new framework with variable τ [�] is applied to the
architectures of Section 4 in Section 5. Notice that our approach is broad and
can be applied to any network architecture of type (1.1) and it is independent
of the choice of the loss functional. Clearly, the proposed approach inherits
all the positive aspects of these existing networks. Additionally, the new
framework is rigorously shown to overcome vanishing and exploding gradient
issues (cf. Section 6).

Finally, in Section 7 we illustrate the efficacy of our approach with the
help of an ill-posed 3D-Maxwell’s equation. The numerical examples validate
the above mentioned advantages of the proposed framework. In particular,
stability and network reduction.

An optimal time variable learning framework for DNNs 505

2. Preliminaries

The goal of this section is to introduce the relevant notation and abstract
optimization problems arising while training the DNNs. The content of this
section is well-known [5, 3, 2].

Symbol Description
L ∈ N Number of network layers (i.e. network depth)
N ∈ N Number of distinct data samples
n� Number of nodes in layer �
y[�] ∈ R

n� Feature vector in layer �
σ Activation function
W [�] ∈ R

n�+1×n� Weights in layer �
b[�] ∈ R

n�+1 Biases in layer �
τ [�] ∈ R Time step-size in layer �
θ[�] ∈ R

n�+1(n�+1)+1 Vector of all variables (weights, biases and
time step-size) in layer �

P �
j Projection matrix from layer j onto layer �

φ Adjoint variables
F Network represented as a function
f� Layer function
J Loss function
λ1, λ2, β ∈ R Regularization parameters
L Lagrangian
{u, S(u)} Input / Output pair of training data
Γ(·) Euler’s Gamma function

2.1. Caputo fractional derivative

In preparation for the Fractional-DNN architecture, we next introduce the
left and right Caputo fractional derivatives for absolutely continuous func-
tions and refer to [4, Definitions 2.1 and 2.4, and Proposition 2.3] and [41,
(2.4.17) and (2.4.18)] for details.

Definition 2.1 (Left Caputo Fractional Derivative). Let y∈W 1,1([0, T];X),
with X denoting a Banach space. The left Caputo fractional derivative of
order γ ∈ (0, 1) is given by

(2.1) ∂γ
t y(t) = cγ

∫ t

0

y′(r)

(t− r)γ
dr,

where cγ := 1
Γ(1−γ) and Γ(·) is Euler’s Gamma function.

506 Harbir Antil et al.

Definition 2.2 (Right Caputo Fractional Derivative). Let y ∈
W 1,1([0, T];X), with X denoting a Banach space. The right Caputo frac-
tional derivative of order γ ∈ (0, 1) is given by

∂γ
T−ty(t) = −cγ

∫ T

t

y′(r)

(r − t)γ
dr.

Next, we introduce the general deep learning problem as an optimization
problem with DNN constraints.

2.2. Deep learning problem

Consider a neural network architecture with an input layer of dimension n0,
L− 1 hidden layers of dimension n� for � = 1, . . . , L− 1 and an output layer
of dimension nL. Then we can represent this network as a function

(2.2) F = fL−1 ◦ fL−2 ◦ · · · ◦ f0,

where {f�}L−1
�=0 are the layer functions. These layer functions are parame-

terized by weight matrices W [�] ∈ R
n�+1×n� and bias vectors b[�] ∈ R

n�+1 .
The definition of f� depends on the network architecture. We will introduce
different options in Section 4.

The weights and biases are identified during a training process that re-

quires solving an optimization problem. Let
{
u(i), S(u(i))

}N
i=1

(input/ output
pairs) denote the training data. Then the goal is to match the output of the
DNN with the data points S(u(i)). This is accomplished by minimizing a
loss functional J and the resulting optimization problem is given by:

(2.3)

min
{W [�]}L−1

�=0 ,{b[�]}L−2
�=0

J
(
{(y[L](i), S(u(i)))}i, {W [�]}�, {b[�]}�

)
subject to y[L](i) = F

(
u(i); ({W [�]}�, {b[�]}�)

)
i = 1, . . . , N.

One standard choice for the loss function is the mean squared error

J :=
1

2N

N∑
i=1

‖y[L](i) − S(u(i))‖22.

Another example is the cross-entropy, see for more examples [26]. The choice
of J is dictated by the application. For our cause, it is not relevant which

An optimal time variable learning framework for DNNs 507

of these options is chosen, since our focus is on DNNs represented by the
operator F .

It is also common to add regularization, for example, �1 and �2 regular-
izations on weights and biases

(2.4) Jλ1
= J +

λ1

2

L−1∑
�=0

(
‖W [�]‖22 + ‖W [�]‖1

)
+

λ1

2

L−2∑
�=0

(
‖b[�]‖22 + ‖b[�]‖1

)
,

where λ1 > 0 is the regularization parameter. Notice that the 2-norms for
the weight matrices are in fact Frobenius norms.

Before, we continue, we emphasize that recently, the article [2] has ex-
tended the above generic network (2.3) by incorporating ordering among the
bias vector components in each layer. The main idea is that in each layer �,
with � = 0, . . . , L− 2, one enforces

(2.5) b
[�]
j ≤ b

[�]
j+1, j = 1, . . . , n�+1 − 1,

where the subscript j indicates the bias vector component. This approach
offers multiple advantages as highlighted in [2]. Our numerical examples fur-
ther provides a comparison between with and without bias ordering frame-
work. Notice that the bias ordering is implemented using a penalty frame-
work, see [2] for details.

Next, we provide a mathematical background behind learning the time
step-sizes τ [�]. To start, we discuss a link between some DNNs and dynamical
systems.

3. Continuous DNNs

In this section, we study the continuous structure of multiple DNNs, cf. (1.1)
and (2.2). This section mainly focuses on the stability of these architectures,
which will follow from a connection with dynamical systems. For other ap-
proaches we refer to [8, 31] and references therein. Since we are primarily
interested in stability results, we start with a basic remark on a (finite)
network with a Lipschitz activation function, like ReLU. The finite com-
position of Lipschitz functions is also a Lipschitz function, and therefore
differentiable almost everywhere by Rademacher’s theorem. In the following
we show some historical connections between neural networks and dynam-
ical systems. Later on we consider continuous Fractional-DNNs make use
of fractional derivatives. These derivatives are nonlocal operators and one
notices that solution at a current time depends on the entire history, i.e.,
fractional derivatives enable memory into the DNN.

508 Harbir Antil et al.

3.1. Ordinary differential equations and neural networks

The relation between Neural Networks (NNs) and differential equations is
not new. In fact, in the late ’80s, in [50] the following model was considered
for the activity of j-th neuron:

(3.1)
dyj
dt

= −αyj + βσ
(∑

k

wjkyk

)
+ bj ,

where α and β are (given) positive constants, the weights {wjk} represent
the connection strength between the k-th and j-th neurons, and bj represents
a bias. Note that most modern neural network architectures are related to
stationary solutions of the ODE above. In the present work we restrict our
focus to a different connection with dynamical systems (cf. (1.1)), which
is more recent, mainly because it has been tested more thoroughly. Also,
because we are interested in optimal control, we will primarily focus on
the ideas presented in [5], [16], and [54]. Nevertheless, for completeness,
we also mention some other related works [22] and [57] from a dynamical
systems point of view, [60] for universal maps with memory, [43] for problems
in the frequency domain, [24] for a Runge-Kutta based NN, PINNs [12]
for PDE-related problems, and SINDy [40] for data-driven model discovery.
Also, when ReLU is considered as the activation function, a DNN is a high-
dimensional, piecewise linear function. Therefore, some techniques from the
Finite Element and the Monte Carlo methods can be used for its analysis,
cf. [36].

Motivated by ResNets [33], the authors in [16] relate DNNs of type (1.1)
to a recurrence relation obtained when numerically solving a system of
ODEs. For instance, for given f : R × R �→ R and y0 ∈ R, consider the
problem: Find a function y, such that:

y′(t) = f(t, y(t)), in (0, T),

y(0) = y0.
(3.2)

A solution for this system can be approximated, under mild assumptions on
y and f , by the Euler method:

y(t+ τ)− y(t) =

∫ t+τ

t
y′(s)ds =

∫ t+τ

t
f(s, y(s))ds ≈ τ · f(t, y(t)),

where we have (formally) used the fundamental theorem of calculus and a
left Riemann-sum approximation. Namely, we can understand the layers of

An optimal time variable learning framework for DNNs 509

a DNN as samples from a continuous system that evolves from the input to
the output. Here, the first and last layers are special cases due to common
upsampling/downsampling techniques.

It is worth mentioning, that in [16, B.2] the authors consider f =
f(y(t), t, θ), where θ represents the parameters of the DNN. Namely, θ is
independent of t and therefore their ODE system is limited (essentially) to
autonomous systems. Thus, DNNs generated with the method given in [16]
are smooth by construction. This property allows one to use well-known
results in the theory of dynamical systems, control theory, adaptive ODE
solvers, among others. An interesting application where smooth trajectories
are desired is when self-intersecting trajectories/surfaces are not allowed as
in shape optimization (manifold surfaces), cf. [52, 63]. It is clear that the
additional smoothness also limits the usability of the model [21]. Obviously,
the architecture of a neural network must match its purpose, i.e. the given
data and desired application case.

Besides the networks of type (3.2), the present work also focuses on
problems where the system underneath depends on its history in a nonlocal
way. The latter is most commonly found in systems with Hysteresis or de-
layed effects. Note that the derivative in (3.2) is a local operator, this follows
from its pointwise limit definition. Therefore, based on [3, 4, 5] we consider
a fractional derivative based approach. As pointed out in [3, 5], this serves
two main purposes: it acts as a global operator (memory effect), and the
order of a differential equation is allowed to be less than 1, which reduces
the smoothness of the system.

3.2. Stability of continuous fractional-DNN

As mentioned before, ResNet-like architectures can be connected to a clas-
sical ODE system, and therefore we can apply the well-known theories to
analyze the properties of the DNN [16, 54]. A commonly desired property is
the continuous dependence on the data. In the context of machine learning
this means that input variables, which are “close” should produce outputs
of the DNN which are also “close”. Of course, in the context of real-life
applications, the notions of distance is not always known, neither is the
right dimension, nor the smoothness/regularity for the system underneath.
Following [3, 5], we consider a DNN architecture that can be related to
a different notion of derivative, the so-called fractional derivative, see Sec-
tion 2.1, and here we show a stability result for this notion of derivative
with respect to the initial data. In order to do so, we consider Ω to be an
open, bounded and connected subset of Rd, define E :=

(
L2(Ω), ‖ · ‖Ω

)
, and

510 Harbir Antil et al.

let f : Dom(f) ⊆ [0,∞) × E �→ E. To establish the stability of continuous

Fractional-DNN, we consider a dynamical system for y. Notice that similar

structure holds for the continuous Fractional-DNN (cf. (5.6))

∂γ
t y = f(t, y), with y(0) = y0,(3.3)

where y0 ∈ E, and f satisfies the standard assumptions:⎧⎨⎩
There exist positive constants T and r such that f restricted to
[0, T]×Br(y0) is continuous, bounded and Lipschitz with
respect to the second argument.

(H)

The last hypothesis implies there exists L > 0 such that

‖f(t, y1)− f(t, y2)‖Ω ≤ L‖y1 − y2‖Ω ∀t ∈ [0, T], and ∀y1, y2 ∈ Br(y0).

Let us remark that E can be replaced by any other space with the Radon-

Nikodym property but based on the most common loss functions we restrict

the analysis to L2(Ω). From [4] we have the following result connecting the

strong and generalized Caputo derivatives

Lemma 3.1. Let γ ∈ (0, 1), and T > 0. If y ∈ W 1,1 ((0, T);E) then the

following equality holds in the L1((0, T];E)-sense

∂γ
t y(t) = Dγ

t (y − y(0))(t),(3.4)

for a.e. t ∈ (0, T], where Dγ
t denotes the Left Riemann-Liouville fractional

derivative, cf. [4, Definition 2.2].

Proof. The proof follows from [4, Proposition 2.3], and the fact that every

reflexive Banach space has the Radon-Nikodym property.

We write the Left Caputo derivative in the generalized Caputo derivative

form (3.4), because several of the well-known results, which hold for standard

ODEs, also have their counterparts in the generalized Caputo derivative

setting. For instance, the solution operator for a non-autonomous fractional

ODE can be represented in terms of a Volterra integral, cf. [20, Theorem

2.1]. By using this integral representation, the next proposition shows the

stability of the fractional ODE (3.3) with respect to its initial value, when

the solution is smooth enough.

An optimal time variable learning framework for DNNs 511

Proposition 3.2. Given y0 ∈ E, and f that satisfies (H). If yα, yβ ∈
W 1,1((0, T);E) solve (3.3) with initial conditions yα,0 and yβ,0 both in Br(y0).
Then,

‖yα − yβ‖L1(0,T ;E) ≤ C‖yα,0 − yβ,0‖Ω,(3.5)

where C = C(γ, T, L) > 0.

Proof. By Lemma 3.1, and because E is reflexive and therefore has the
Radon-Nikodym property, we can recast (3.3) as (3.4), with y(0)∈{yα,0, yβ,0},
and represent each solution in terms of a nonlinear Volterra integral, cf. [20,
Lemma 2.1]. Namely, if yα, yβ represent the solutions for (3.3) with corre-
sponding initial conditions yα,0, yβ,0, then for t ∈ [0, T], and a.e. x ∈ Ω

yα(x, t) = yα,0(x) + cγ

∫ t

0

1

(t− τ)γ
f(τ, yα(x, τ))dτ,

yβ(x, t) = yβ,0(x) + cγ

∫ t

0

1

(t− τ)γ
f(τ, yβ(x, τ))dτ,

where we recall cγ = 1
Γ(1−γ) . Then,

‖yα(·, t)− yβ(·, t)‖Ω

≤ ‖yα,0 − yβ,0‖Ω + cγ

∫ t

0

1

(t− τ)γ
‖f(τ, yα)− f(τ, yβ)‖Ω dτ

≤ ‖yα,0 − yβ,0‖Ω + cγ

∫ t

0

1

(t− τ)γ
L ‖yα(·, τ)− yβ(·, τ)‖Ω dτ

Finally, from Gronwall’s inequality in its integral form

‖yα(·, t)− yβ(·, t)‖Ω ≤ ‖yα, − yβ,0‖Ω exp

(
L

Γ(1− γ)

∫ t

0

1

(t− τ)γ
dτ

)
= ‖yα,0 − yβ,0‖Ω exp

(
L

Γ(1− γ)

t1−γ

1− γ

)
,

and integrating over (0, T) concludes the proof.

Remark 3.3. It is important to point out that the previous results assume
the regularity W 1,1((0, T);E), but for most problems in Machine Learning
the regularity of solutions is still an open question. Even at the “discrete
level” the regularity depends on the data, DNN architecture, optimization

512 Harbir Antil et al.

algorithm, loss function, among others factors. Another difficulty is that
DNNs can have different number of neurons in each layer, i.e., the space E
can change in time.

Finally, and as mentioned before, a DNN with Lipschitz activation func-
tions defines a locally Lipschitzian operator. Later in Section 6, we will ex-
plore how the activation function and weights affect locally the gradient of
a DNN, and therefore the Lipschitz constant, and we will study the vanish-
ing and exploding gradients problem of various DNNs under the variable−τ
framework which is introduced in Section 5.

4. Network architectures with fixed τ -parameter

Let us begin by stressing that in general the proposed framework with vari-
able τ can be applied to any DNN. We will illustrate our ideas using three
representative DNNs. Subsequently, we will describe their strengths and
weaknesses.

The first network architecture is ResNet [33]. As described in the previ-
ous section (see (3.2)), this network arises after adding an identity map to a
standard feedforward network. This leads to connectivity between the adja-
cent layers. In order to connect all layers and additionally be able to approx-
imate non-smooth functions, we refer to DenseNet [37] and Fractional-DNN
[5]. We remark that there also exist other approaches that attempt to induce
multilayer connections, e.g. Highway Net [58], AdaNet [18], ResNetPlus [15],
etc.

DenseNet is an ad-hoc method that uses the feature maps of all preced-
ing layers as inputs into all subsequent layers. Meanwhile, Fractional-DNN
can be viewed as a time-discretization of a fractional in time non-linear
ODE of type (3.3), connecting all layers in a mathematically rigorous man-
ner. Both approaches, DenseNet and Fractional-DNN, improve the vanishing
gradient effect issue due to the memory effect incorporated. Furthermore,
Fractional-DNN allows approximation of non-smooth functions and thus can
also potentially help with exploding gradients.

We recall the ResNet [33] with equidistant time-steps τ , cf. (1.1). The
feature vector y[�] ∈ R

n� in layer � = 1, . . . , L is computed by forward prop-
agation in the following way

y[�] = P �
�−1y

[�−1] + τσ
(
W [�−1]y[�−1] + b[�−1]

)
, � = 1, . . . , L,

where P 1
0 = 0 ∈ R

n0×n1 and y[0] = u. Here, σ is a nonlinear activation
function, for instance, ReLU [26], τ is the fixed time-step length and u is

An optimal time variable learning framework for DNNs 513

the input data. Notice that, if all the layers are of same size, then P �
�−1

equals an identity matrix. In general, P �
�−1 will allow layers to have different

sizes, i.e.,

dim(P �
�−1y

[�−1]) = dim(y[�]).

While ResNet does introduce connectivity between adjacent layers, we are
also interested in fully connected networks, for instance, a DenseNet [37].

In a DenseNet the connection through all layers is achieved by the
following forward propagation

y[�] =

�−1∑
i=0

P �
i y

[i] + σ
(
W [�−1]y[�−1] + b[�−1]

)
, � = 1, . . . , L,

where y[0] = u is the input data.
Notice that this method does not contain a time step-size like parameter.

It is possible to artificially add a parameter τ before the activation function
σ. The connection of the resulting expression to a dynamical system remains
unclear. Instead of DenseNet, we focus on Fractional-DNN. In addition, to
connecting all layers, the Fractional-DNN can be understood as a time-
discretization of a dynamical system of type (3.3). Hence, learning the time
step-sizes is a meaningful task in this setup.

We recall the Fractional-DNN, with equidistant time-steps τ , from
[5, 3]. It corresponds to a time-discretization of a system of type (3.3). The
forward propagation for the Fractional-DNN is given by

y[�] = P �
�−1y

[�−1] −
�−1∑
j=1

a�−j(P
�
j y

[j] − P �
j−1y

[j−1])

+ τγΓ(2− γ)σ
(
W [�−1]y[�−1] + b[�−1]

)
,

where � = 1, . . . , L, y[0] = u, and P �
j as before. Moreover

a�−j := (�+ 1− j)1−γ − (�− j)1−γ .

Remark 4.1. In Section 5.2 below, we will consider a Fractional-DNN with
variable τ , i.e., τ [�] for � = 1, . . . , L−1. In this case, the coefficients a�−j will
depend on τ [j], . . . , τ [�].

We conclude this section by emphasizing that depending on the number
of DNN outputs, the last layer may have different size, which can be captured

514 Harbir Antil et al.

via

y[L] = W [L−1]y[L−1].

For the remainder of the paper, we will assume such a setup for the last
layer.

5. Variable-τ framework for DNNs

Instead of a fixed τ , we propose to use a different τ [�] for each layer, which
is learned during the training process. This allows us to optimize the “time
step-sizes” τ [�], resulting in what can be viewed as an adaptive time-discre-
tization of the ODE tailored to the optimization (learning) problem. The
resulting optimization problem is given by (cf. 2.3)

min
{W [�]}L−1

�=0 ,{b[�]}L−2
�=0 ,{τ [�]}L−2

�=0

Jλ

(
{(y[L](i), S(u(i)))}i, {W [�]}�, {b[�]}�, {τ [�]}�

)
subject to y[L](i) = F

(
u(i); ({W [�]}�, {b[�]}�, {τ [�]}�)

)
i = 1, . . . , N.

(5.1)

Constraints on τ [�], for instance, non-negativity can be easily incorporated.
Recall, from (2.4) that Jλ1

contains the regularization for the weights W [�]

and b[�]. Additional regularization on τ [�] can be easily introduced as

Jλ := Jλ1
+

λ2

2

L−2∑
�=0

(
‖τ [�]‖22 + ‖τ [�]‖1

)
,

where λ = λ(λ1, λ2).
We apply the τ -variable framework to the ResNet and the Fractional-

DNN discussed above.

5.1. ResNet with variable τ

Consider (5.1) with F denoting the ResNet with variable τ

y[�] = P �
�−1y

[�−1] + τ [�−1]σ(W [�−1]y[�−1] + b[�−1]), � = 1, . . . , L− 1,

y[L] = W [L−1]y[L−1].

(5.2)

For simplicity of notation, we write J instead of Jλ and collect W [�], b[�],
and τ [�] for all � into one vector θ and denote the adjoint variables by φ.

An optimal time variable learning framework for DNNs 515

Following the approach from [5] and to derive the optimality system, we
introduce the Lagrangian functional

L(y, θ, φ) = J(θ)−
L−1∑
�=1

〈
y[�]−P �

�−1y
[�−1]−τ [�−1]σ(W [�−1]y[�−1]+b[�−1]), φ[�]

〉
−
〈
y[L] −W [L−1]y[L−1], φ[L]

〉
.

Setting the variation of L with respect to φ equals zero, we recover the state
equation (5.2). Similarly, setting the variation of L with respect to y equals
zero, we arrive at the adjoint system

φ[�] = (P �+1
�)�φ[�+1] + τ [�](W [�])�

(
φ[�+1]
 σ′(W [�]y[�] + b[�])

)
,

� = L− 2, . . . , 1,

φ[L−1] = (W [L−1])�φ[L],

φ[L] = ∂y[L]J(θ) = y[L] − S(u),

where the last equality is due to the specific choice of the least-squares
loss function. It will be different in case of the cross-entropy softmax, for
instance.

Since we will be solving the above optimization problem using a gradient-
based method, we also need to evaluate the derivatives with respect to θ:

∂W [L−1]L = φ[L](y[L−1])� + ∂W [L−1]J(θ),

∂W [�]L = y[�]
(
φ[�+1]
 τ [�]σ′(W [�]y[�] + b[�])

)�
+ ∂W [�]J(θ),

∂b[�]L = (φ[�+1])�τ [�]σ′
(
W [�]y[�] + b[�]

)
+ ∂b[�]J(θ),

∂τ [�]L =
〈
σ(W [�]y[�] + b[�]), φ[�+1]

〉
+ ∂τ [�]J(θ),

for � = 0, . . . , L− 2.
Next, we state the Fractional-DNN [5] but now with variable τ [�]. Re-

call that, in contrast to a ResNet, the Fractional-DNN allows connectivity
between all the layers.

5.2. Fractional-DNN with variable τ

Consider a time-discretization t0 ≤ t1 ≤ · · · ≤ tL with L ∈ N and set
I� := (t�, t�+1] and τ [�] = t�+1 − t� for 0 ≤ � ≤ L − 1. Throughout, we will
assume that τ [�] > 0 to justify division by τ [�].

516 Harbir Antil et al.

We generalize the numerical scheme introduced in [45, 44] to a non-

equidistant time discretization and obtain the discrete approximation of the

left-sided Caputo fractional derivative of order γ ∈ (0, 1). For 0 ≤ � ≤ L−1,

we have that:

∂γ
t y(x, t�+1) = cγ

∫ t�+1

0

∂ty(x, t)

(t�+1 − t)γ
dt = cγ

�∑
j=0

∫
Ij

∂ty(x, t)

(t�+1 − t)γ
dt(5.3)

= cγ

�∑
j=0

y(x, tj+1)− y(x, tj)

τ [j]

∫
Ij

1

(t�+1 − t)γ
dt+ r�+1

γ

where we have used the finite difference approximation. Here r�+1
γ denotes

the remainder from the Taylor formula which can be estimated as described

in [49, Section 3.2.1]. After carrying out the integration in (5.3), we arrive

at

∂γ
t y(x, t�+1) = cγ

�∑
j=0

y(x, tj+1)− y(x, tj)

τ [j]
1

(1− γ)

(5.4)

·

⎛⎝⎛⎝ �∑
i=j

τ [i]

⎞⎠1−γ

−

⎛⎝ �∑
i=j+1

τ [i]

⎞⎠1−γ⎞⎠+ r�+1
γ

= cγ−1

�∑
j=0

1

τ [j]

⎛⎝⎛⎝ �∑
i=j

τ [i]

⎞⎠1−γ

−

⎛⎝ �∑
i=j+1

τ [i]

⎞⎠1−γ⎞⎠
· (y(x, tj+1)− y(x, tj)) + r�+1

γ .

Analogously, we obtain the approximation of the right-sided Caputo frac-

tional derivative of order γ ∈ (0, 1) for 0 ≤ � ≤ L− 1:

∂γ
T−ty(x, t�) = −cγ−1

L−1∑
j=�

1

τ [j]

⎛⎝(j∑
i=�

τ [i]

)1−γ

−
(

j−1∑
i=�

τ [i]

)1−γ
⎞⎠(5.5)

· (y(x, tj+1)− y(x, tj)) + r�γ .

Before, we apply the above discretization to the Fractional-DNN formu-

lation, we consider two generic nonlinear ODEs of type (3.3) (cf. e.g. [5,

An optimal time variable learning framework for DNNs 517

Section 4.1]) with γ ∈ (0, 1):

(5.6)
∂γ
t y(x, t) = f(t, y(x, t)), y(x, 0) = y0,

∂γ
T−ty(x, t) = f(t, y(x, t)), y(x, T) = yT .

This also links back to Subsection 3.2, where the stability of the above

continuous DNN was discussed. Here, we will move on to formulate the

discrete version.

Using the discretizations from (5.4) and (5.5) in (5.6), for 0 ≤ � ≤ L−1,

we arrive at

y(·, t�+1) = y(·, t�)−
�−1∑
j=0

a�,j(y(·, tj+1)− y(·, tj)) + (τ [�])γc−1
γ−1f(t�, y(·, t�)),

y(·, t�) = y(·, t�+1) +

L−1∑
j=�+1

bj,�(y(·, tj+1)− y(·, tj)) + (τ [�])γc−1
γ−1f(t�, y(·, t�)),

where we denote y(·, t�) = y(x, t�) in the above equations, with

a�,j :=
(τ [�])γ

τ [j]

⎛⎝⎛⎝ �∑
i=j

τ [i]

⎞⎠1−γ

−

⎛⎝ �∑
i=j+1

τ [i]

⎞⎠1−γ⎞⎠ ,

bj,� :=
(τ [�])γ

τ [j]

⎛⎝(j∑
i=�

τ [i]

)1−γ

−
(

j−1∑
i=�

τ [i]

)1−γ
⎞⎠ .

Notice that the equidistant case, τ [�] = τ for all �, considered throughout

the literature, is a special case of the above setting. Additionally, in the

equidistant setting, we have aj,� = bj,�, which may not hold in the above

generic setting.

After these preparations, we are ready to apply the τ -variable framework

to Fractional-DNN. Here, we take into account that the feature vectors y[�]

may have different sizes across the layers. Thus, as in case of τ -variable

ResNet, we introduce projection matrices P �
j for j = 0, . . . , � − 1 and � =

1, . . . , L − 1 with dim(P �
j y

[j]) = dim(y[�]). The resulting Fractional DNN

518 Harbir Antil et al.

with variable τ is

(5.7)

y[�] = P �
�−1y

[�−1] −
�−2∑
j=0

a�−1,j(P
�
j+1y

[j+1] − P �
j y

[j])

+ (τ [�−1])γc−1
γ−1σ(W

[�−1]y[�−1] + b[�−1]), � = 1, . . . , L− 1

y[L] = W [L−1]y[L−1].

Remark 5.1. Before we proceed further, we stress that the τ -variable
framework is not merely a scaling of the activation by τ [�]. Indeed, in (5.7)
the scaling in front of σ is not simply τ [�] but is (τ �−1)γc−1

γ−1. Furthermore,

a�−1,j also contains τ [j], . . . , τ [�−1], which makes the impact of the time step-
sizes much more complex than scaling of σ.

As in the ResNet case we next derive the optimality conditions. This
requires introducing the Lagrangian formulation as before. In this fractional
derivative setting, we observe a subtle issue. It is well-known that there
are two approaches to derive the optimality conditions – optimize-then-
discretize and discretize-then-optimize [6, 35]. Below, in the τ -variable frac-
tional setting, we observe that the two approaches do not coincide. It is not
difficult to see that in the first case, optimize-then-discretize, we obtain the
following adjoint equation for � = L− 2, . . . , 1,

(5.8)

φ[�] = (P �+1
�)�φ[�+1] +

L−2∑
j=�+1

bj,�((P
j+1
�)�φ[j+1] − (P j

�)
�φ[j])

+ (τ [�])γc−1
γ−1

[
(W [�])�

(
φ[�+1]
 σ′(W [�]y[�] + b[�])

)]
,

φ[L−1] =
(
W [L−1]

)�
φ[L],

φ[L] = ∂y[L]J(θ).

Next, we derive the adjoint equations for the second approach, i.e., discretize-
then-optimize. We begin by introducing the Lagrangian

L(y, θ, φ) =J(θ)−
L−1∑
�=1

〈y[�] − P �
�−1y

[�−1] +

�−2∑
j=0

a�−1,j(P
�
j+1y

[j+1] − P �
j y

[j])

− (τ [�−1])γc−1
γ−1σ(W

[�−1]y[�−1] + b[�−1]), φ[�]〉

−
〈
y[L] −W [L−1]y[L−1], φ[L]

〉
.

An optimal time variable learning framework for DNNs 519

Setting the variation of L with respect to φ equal zero, we obtain the state
equation (5.7). To derive the adjoint equation, we calculate the variation of
L with respect to y[�] for every � = 1, . . . , L. A detailed calculation can be
found in Appendix A.1. Setting this variation equal to zero, we arrive at the
following adjoint system for � = L− 2, . . . , 1,

φ[�] = (1− a�,�−1)(P
�+1
�)�φ[�+1] +

L−1∑
j=�+2

(aj−1,� − aj−1,�−1)(P
j
�)

�φ[j]

+ (τ [�])γc−1
γ−1

[
(W [�])�

(
φ[�+1]
 σ′(W [�]y[�] + b[�])

)]
,

φ[L−1] =
(
W [L−1]

)�
φ[L],

φ[L] = ∂y[L]J(θ).

(5.9)

Below, we collect all summands that contain factors bj,� in (5.8) on the left
side, and all summands that contain factors aj,� in (5.9) on the right side.
We see that the two adjoint equations given in (5.8) and (5.9) differ in the
following term

L−2∑
j=�+1

bj,�((P
j+1
�)�φ[j+1] − (P j

�)
�φ[j])

�=
L−2∑

j=�+1

aj,�(P
j+1
�)�φ[j+1] −

L−1∑
j=�+1

aj−1,�−1(P
j
�)

�φ[j]

In our computations, we have implemented the discretize-then-optimize ap-
proach, i.e. (5.9). Finally, we compute the derivative with respect to θ:

∂W [L−1]L = φ[L](y[L−1])� + ∂W [L−1]J(θ),

∂W [�]L = y[�]
(
φ[�+1]
 (τ [�])γc−1

γ−1σ
′(W [�]y[�] + b[�])

)�
+ ∂W [�]J(θ),

∂b[�]L = (φ[�+1])�(τ [�])γc−1
γ−1σ

′
(
W [�]y[�] + b[�]

)
+ ∂b[�]J(θ),

∂τ [�]L = −
L−2∑
k=�

min{k−1,�}∑
j=0

∂τ [�](ak,j)
〈
P k+1
j+1 y

[j+1] − P k+1
j y[j], φ[k+1]

〉
+
〈
γ(τ [�])γ−1c−1

γ−1σ(W
[�]y[�] + b[�]), φ[�+1]

〉
+ ∂τ [�]J(θ).

520 Harbir Antil et al.

for � = 0, . . . , L − 2. Details on the computation of ∂τ [�]L can be found in
Appendix A.2. Next, we examine the impact of variable τ onto the stability
of networks such as ResNets and Fractional-DNNs.

6. Vanishing and exploding gradients

It is well known that optimization problems with DNN constraints can suf-
fer from vanishing and exploding gradients, see e.g. [9, 25]. In this section,
we analyze the structure of the derivatives for several network architectures
such as feedforward network, ResNet, DenseNet, Fractional-DNN, and the
consequences of application of τ -variable framework on these networks. We
will identify various conditions to help overcome the aforementioned chal-
lenges.

For simplicity of the notation, we define the abbreviation a[�] :=
σ(W [�]y[�] + b[�]) and omit the projection matrices P �

�−1, i.e. n� = n for
all layers �. While the following result may not be new for the standard case
with τ [�] = τ ∈ R for all �, but to the best of our knowledge, this is new for
variable τ [�].

Theorem 6.1 (Feedforward Network and ResNet). Consider the feedfor-
ward network and ResNet with τ -variable framework

y[�] = τ [�−1]a[�−1], � = 1, . . . , L− 1,

y[�] = y[�−1] + τ [�−1]a[�−1], � = 1, . . . , L− 1.

Let θ[k] = (W [k](:), b[k], τ [k])� be the parameters associated with layer k for
k = 0, . . . , L− 2. Then the respective derivatives take the form

dθ[j]y[�] =

j+1∏
i=�−1

(
τ [i]dy[i]a[i]

)
∂θ[j](τ [j]a[j]),(6.1)

dθ[j]y[�] =

j+1∏
i=�−1

(
I+ τ [i]dy[i]a[i]

)
∂θ[j](τ [j]a[j]),(6.2)

for all � = 1, . . . , L− 1 and j = 0, . . . , �− 1.

Proof. For the feedforward neural network we can compute with chain rule

dθ[j]y[�] = dθ[j]τ [�−1]a[�−1]

= τ [�−1]dy[�−1]a[�−1] · dθ[j]y[�−1]

An optimal time variable learning framework for DNNs 521

= τ [�−1]dy[�−1]a[�−1] · dθ[j]τ [�−2]a[�−2].

where · denotes the standard matrix multiplication. By iterating we arrive

at

dθ[j]y[�] =

j+1∏
i=�−1

(
τ [i]dy[i]a[i]

)
dθ[j]y[j+1] =

j+1∏
i=�−1

(
τ [i]dy[i]a[i]

)
∂θ[j](τ [j]a[j]).

Similarly, for the ResNet, we obtain

dθ[j]y[�] = dθ[j](y[�−1] + τ [�−1]a[�−1])

= dθ[j]y[�−1] + τ [�−1]dy[�−1]a[�−1] · dθ[j]y[�−1]

= (I+ τ [�−1]dy[�−1]a[�−1]) dθ[j]y[�−1],

where I ∈ R
n×n denotes the identity matrix, with n = n� constant through-

out all layers �. By iterating we arrive at

dθ[j]y[�] =

j+1∏
i=�−1

(
I+ τ [i]dy[i]a[i]

)
dθ[j]y[j+1]

=

j+1∏
i=�−1

(
I+ τ [i]dy[i]a[i]

)
∂θ[j](τ [j]a[j]),

where we use that dθ[j]y[j] = 0. This concludes the proof.

Remark 6.2. Since σ is applied componentwise, special caution needs to

be exercised when deriving dy[i]a[i]. Let r
[i]
j be the jth row of W [i]y[i] + b[i],

namely
∑n

m=1W
[i]
j,my

[i]
m + b

[i]
j for j ∈ {1, . . . , n}. Then, with a slight abuse of

notation, it holds

dy[i]a[i] = dy[i]σ(W [i]y[i] + b[i])

= dy[i]

(
σ(r

[i]
j)
)n
j=1

= diag(σ′(r[i]1), . . . , σ′(r[i]n)) ·W [i],

where σ′(r[i]j) is the one-dimensional derivative of σ at r
[i]
j . Furthermore, for

the partial derivative ∂θ[j](τ [j]a[j]), we recall θ[j] = (W [j](:), b[j], τ [j])� ∈ R
N ,

522 Harbir Antil et al.

with N = n2 + n + 1 and the fact that a[j] depends on W [j] and b[j], but
not τ [j]. Consequently, we see

∂θ[j](τ [j]a[j]) =
(
τ [j]∂W [j](:)a

[j] τ [j]∂b[j]a
[j] a[j]

)
∈ R

n×N .

As pointed out above, the standard feedforward neural network, where
τ [�] = 1 for all �, can suffer from vanishing and exploding gradients, which
can be a challenge for optimization with deep networks [9, 25]. Consider the
structure of the derivatives in (6.1) with τ [�] = 1 for all �, e.g. for the final
hidden layer with � = L− 1,

dθ[j]y[L−1] =

j+1∏
i=L−2

(
dy[i]a[i]

)
∂θ[j]a[j].

Especially in the one-dimensional case, it is obvious that if the partial deriva-
tives dy[i]a[i] are smaller than 1, the product will tend to 0 as the number of
layers L increases, which leads to vanishing gradients. On the other hand, if
the partial derivatives dy[i]a[i] are larger than 1, the product will tend to ∞
as the number of layers L increases, which leads to exploding gradients. The
feedforward neural network with variable τ , can potentially help overcome
both problems, since now we have flexibility with respect to τ [�]. But one
needs to be careful as if the gradient components are really small, then τ [�]

needs to be really large to compensate, which could lead to ill-conditioning
issues.

A more appropriate approach is the standard ResNet with τ [�] = τ ∈
R for all �. It is known to be stable with respect to vanishing gradients.
Recalling the gradient from (6.2)

dθ[j]y[L−1] =

j+1∏
i=L−2

(
I+ τ [i]dy[i]a[i]

)
∂θ[j](τ [j]a[j]),

it becomes clear that this stability is achieved by the added identity I in
every part of the product. Hence, even if the Jacobians dy[i]a[i] vanish, the
product still contains the identity matrices. This advantage carries over to
the τ -variable framework.

Furthermore, the introduction of τ [�] in ResNet allows us to tackle the
exploding gradients problem. This property has also been discussed, using
probabilistic bounds, in [31]. Our approach is deterministic. The standard
ResNet architecture does not have this property. Appropriate small τ [�] can

An optimal time variable learning framework for DNNs 523

prevent the product from exploding with growing number of layers. However,
choosing τ [�] too small may lead to vanishing gradient problem again, as we
will illustrate in the following simple example. Recall that, we do not tune
τ [�] by hand, but let the optimization find it.

Example 6.3. Consider the ResNet architecture with variable τ in one
dimenstion, i.e. one node per layer. We have

dθ[1]y[2] = ∂θ[1](τ [1]a[1]),

dθ[0]y[2] = (1 + τ [1]dy[1]a[1]) ∂θ[0](τ [0]a[0]).

Assume that dy[1]a[1] is large, so that it leads to a large dθ[0]y[2]. This prob-

lem can be overcome, if τ [1] attains a small value. However, this may lead to
dθ[1]y[2] being accordingly small in its first two components, i.e. the deriva-
tives by the weights and biases. Consequently, fixing one potential exploding
gradient problem, can cause another gradient to vanish. However, as em-
phasized earlier, we do not tune τ [�] by hand, but let the optimization find
optimal values.

We also analyze the respective derivatives in the DenseNet architecture
with variable τ . Finding a closed form for dθ[j]y[�] is not so easy for this
network architecture, but we can derive a recursive relation in terms of
lower order terms.

Theorem 6.4. Consider the DenseNet with τ -variable framework

y[�] =

�−1∑
k=0

y[k] + τ [�−1]a[�−1], � = 1, . . . , L− 1.

Then the derivatives for i = �, . . . , j + 2 can be recursively written as

dθ[j]y[i] = dθ[j]

i−2∑
k=j+1

y[k] + (I+ τ [i−1]dy[i−1]a[i−1]) dθ[j]y[i−1],

dθ[j]y[j+1] = ∂θ[j](τ [j]a[j]).

Proof. For i = �, . . . , j + 2 we employ the chain rule of differentiation and
use that dθ[j]y[k] = 0 for k < j + 1 to arrive at

dθ[j]y[i] = dθ[j]

(
i−1∑
k=0

y[k] + τ [i−1]a[i−1]

)

524 Harbir Antil et al.

= dθ[j]

i−2∑
k=j+1

y[k] + dθ[j]y[i−1] + τ [i−1]dθ[j]a[i−1]

= dθ[j]

i−2∑
k=j+1

y[k] + (I+ τ [i−1]dy[i−1]a[i−1]) dθ[j]y[i−1].

The case i = j+1 is special, since the chain rule does not need to be applied
here. It simply holds

dθ[j]y[j+1] = dθ[j]

(
j∑

k=0

y[k] + τ [j]a[j]

)
= ∂θ[j](τ [j]a[j]),

because k < j + 1. The proof is complete.

Remark 6.5. In Theorem 6.4 we can successively insert the expressions
for the lower order terms in the higher order terms, so that finally dθ[j]y[�]

depends only on ∂θ[j](τ [j]a[j]) and dy[i]a[i] for i = j+1, . . . , �−1. Furthermore,
we see that every next lower order term enters with a factor

(I+ τ [i]dy[i]a[i]),

so that one can overcome the vanishing gradients problem in a DenseNet
(both fixed and variable τ cases). To discuss the exploding gradients prob-
lem we consider for example the derivative dθ[j]y[L−1], where one summand
will be

∏L−2
i=j+1

(
τ [i]dy[i]a[i]

)
∂θ[j](τ [j]a[j]). In the standard one-dimensional

DenseNet architecture with τ [�] = 1 for all �, we see that the above product
tends to ∞ with a growing number of layers L if dy[i]a[i] > 1 for all i. The τ -
variable architecture can help deal with this problem, see also Example 6.8.

Similarly to the above cases, we can express derivatives of Fractional-
DNN architecture, with variable τ , in terms of lower order terms.

Theorem 6.6. Consider the Fractional-DNN with τ -variable framework

y[�] = y[�−1] −
�−2∑
k=0

a�,k(y
[k+1] − y[k]) + (τ [�−1])γc−1

γ−1a
[�−1], � = 1, . . . , L− 1.

Then the derivatives for i = �, . . . , j + 2 can be recursively written as

dθ[j]y[i] = dθ[j]

i−2∑
k=j+1

(ai,k − ai,k−1)y
[k]

An optimal time variable learning framework for DNNs 525

+
(
(1− ai,i−2)I+ (τ [i−1])γc−1

γ−1 dy[i−1]a[i−1]
)
dθ[j]y[i−1],

dθ[j]y[j+1] = c−1
γ−1 ∂θ[j]((τ [j])γa[j]).

Proof. First of all, we rewrite the forward propagation for � = 1, . . . , L − 1
in Fractional-DNN

y[�] = y[�−1] −
�−2∑
k=0

a�,k(y
[k+1] − y[k]) + (τ [�−1])γc−1

γ−1a
[�−1]

= a�,0y
[0] +

�−2∑
k=1

(a�,k − a�,k−1)y
[k] + (1− a�,�−2)y

[�−1]

+ (τ [�−1])γc−1
γ−1a

[�−1].

Then for i = �, . . . , j + 2 we use chain rule and dθ[j]y[k] = 0 for k < j + 1 to
obtain

dθ[j]y[i] = dθ[j]

(
ai,0y

[0] +

i−2∑
k=1

(ai,k − ai,k−1)y
[k]

+ (1− ai,i−2)y
[i−1] + (τ [i−1])γc−1

γ−1a
[i−1]

)
= dθ[j]

i−2∑
k=j+1

(ai,k − ai,k−1)y
[k]

+
(
(1− ai,i−2)I+ (τ [i−1])γc−1

γ−1 dy[i−1]a[i−1]
)
dθ[j]y[i−1].

Finally, for i = j + 1, we exploit again dθ[j]y[k] = 0 for k < j + 1, and derive

dθ[j]y[j+1] = dθ[j]

(
aj+1,0y

[0] +

j−1∑
k=1

(aj+1,k − aj+1,k−1)y
[k]

+ (1− aj+1,j−1)y
[j] + (τ [j])γc−1

γ−1a
[j]
)

= c−1
γ−1 ∂θ[j]((τ [j])γa[j]).

This completes the proof.

Remark 6.7. Again, the lower order term representations can be succes-
sively inserted into the higher order terms until we arrive at dθ[j]y[�] depend-
ing only on ∂θ[j]((τ [j])γa[j]) and dy[i]a[i] for i = j + 1, . . . , � − 1. Here, the

526 Harbir Antil et al.

next lower order term enters with a factor(
(1− ai,i−2)I+ (τ [i−1])γc−1

γ−1 dy[i−1]a[i−1]
)
,

which allows us to overcome the vanishing gradient problem in Fractional-

DNNs. Furthermore, the multiplication by (τ [i−1])γ in this factor can help us

to deal with exploding gradients. This is similar to ResNet with variable τ .

Example 6.8. To get an idea of how different network architectures in-

fluence the derivatives, the derivative dθ[0]y[3] is displayed here for the four

different options that have been considered in this section, i.e., feedforward

neural network, ResNet, DenseNet and Fractional DNN:

dθ[0]y[3] = τ [2]dy[2]a[2] · τ [1]dy[1]a[1] · ∂θ[0](τ [0]a[0]),

dθ[0]y[3] =
(
I+ τ [1]dy[1]a[1] + τ [2]dy[2]a[2] + τ [1]τ [2]dy[2]a[2] · dy[1]a[1]

)
· ∂θ[0](τ [0]a[0]),

dθ[0]y[3] =
(
2I+ τ [1]dy[1]a[1] + τ [2]dy[2]a[2] + τ [1]τ [2]dy[2]a[2] · dy[1]a[1]

)
· ∂θ[0](τ [0]a[0]),

dθ[0]y[3] =
(
(1− a2,0 − a3,0 + a2,0a3,1)I+ (1− a3,1)(τ

[1])γc−1
γ−1dy[1]a[1]

+ (1− a2,0)(τ
[2])γc−1

γ−1dy[2]a[2] + (τ [1])γ(τ [2])γc−2
γ−1dy[2]a[2] · dy[1]a[1]

)
· c−1

γ−1∂θ[0]((τ [0])γa[0]).

In conclusion, ResNet, DenseNet and Fractional-DNN have a visible ad-

ditive structure in the derivatives, which helps with the vanishing gradients

problem. Furthermore, the parameters τ [�] can help overcome both vanishing

and exploding gradients.

7. Numerical results

In this section, we apply the τ -variable framework to a ResNet and a Frac-

tional DNN with and without bias ordering (2.5). A thorough compari-

son is carried out in the context of an ill-posed 3D parametrized Maxwell’s

equation with Gauss’s law. This problem is ill-posed because the standard

Nédélec finite element is only curl conforming and cannot directly impose

the Gauss’s law. In all the cases, we apply the smoothed version of standard

An optimal time variable learning framework for DNNs 527

ReLU(y) = max{0, y} as the activation function

smoothReLU(y) =

{
max{0, y}, if |y| > η
1
4ηy

2 + 0.5y + 0.25η, if y ∈ [−η, η] .

We have found that η = 10−4 is a robust choice for the examples under
consideration. Notice, that one can also use other activation functions which
can differ from layer to layer.

7.1. Maxwell’s equations

Our findings suggests that the τ -variable framework outperforms the stan-
dard approach (with fixed τ) for deeper networks, see Figure 1. This is
expected, since the effect of variable τ [�] will be more prominent when more
layers (and consequently more time-step parameters τ [�]) are present. On the
other hand, for shallow networks, the τ -variable framework provides com-
paratively less improvements, see Figure 3(c). Nevertheless, the τ -variable
framework applied to ResNet yields error improvements compared to a stan-
dard ResNet for model extrapolation, see Figure 4. These results are also
comparable to the approximation obtained with the finite element method
(FEM) with the lowest order Nédélec space, cf. Figure 3(d).

Consider the Maxwell-Dirac equations. Our goal is to learn u : Ω ⊂
R
3 �→ R

3 that satisfies

curl
(
μ−1curlu

)
= f in Ω,

div(εu) = ρ in Ω,

u× n = g on ∂Ω,

(7.1)

where μ and ε are positive definite symmetric tensors in L∞(Ω)3, f ∈
L2(Ω)3, ρ ∈ L2(Ω) and g ∈ H

− 1

2

‖ (divΓ; ∂Ω). This problem is particularly

difficult at the discrete level due to its divergence-related constraints and
requires rather tailored algorithms to deal with it, see for instance [17].
Therefore, an interesting question is to approximate the map:

(x,f(x),μ(x), ρ(x)) �→ u(x),

that can lead to a reasonable and noise-robust approximation of the solution
u to (7.1), note that we ignore the boundary data g. This approach is similar
to a surrogate model where its output could be used as an initial guess by an
iterative method like the domain decomposition method or in the reduced

528 Harbir Antil et al.

basis method [61]. Nevertheless, those problems are beyond the scope of the
present paper, and it will be studied in future works.

This learning problem is challenging because the solutions to (7.1) can
have discontinuities, while most neural networks, except for the ones with
the Heaviside activation function, lead to continuous approximations. Also,
it is still not clear how to incorporate the geometry (domain Ω) of the
problem in a meaningful way. Thus, we consider an example with a known
smooth solution and we compare it with an approximation obtained by
various DNNs and by the lowest order Nédélec space of the first kind, cf.
[48], denoted byN0(Ω). Here, we consider the basis proposed in [27]. In order
to do that, let us consider ε = I3×3, and for a smooth ϕ : Ω �→ R

+ we define
μ−1(x) = ϕ(x)I3×3, then curl

(
μ−1 curlu

)
= ∇ϕ× curlu+ ϕ curl (curlu).

Thus, if we consider

u : Ω �→ R
3, (x1, x2, x3) �→ I1(r(x1, x2, x3))eθ,(7.2)

ϕ : Ω �→ R, (x1, x2, x3) �→
1

2
(x21 + x22 + 1),

where Ω is the cylinder {(x1, x2, x3) ∈ R
3 : x21 + x22 ≤ 1 and x3 ∈ [0, 1]}, Iν

is the modified Bessel functions of the first kind of order ν, r(x1, x2, x3) =√
x21 + x22, and eθ(x1, x2, x3) = (x21 + x22)

− 1

2 (−x2, x1, 0), we obtain:

curlu = I0(r)ez, curl (curlu) = −u, divu = 0, and

curl
(
μ−1 curlu

)
= −rI0(r)eθ − ϕu =: f .

Because u is divergence free, we consider the reduced map
(x,f(x),ϕ(x)) �→ u(x), where x = (x1, x2, x3), and u(x) = (u1(x),u2(x),
u3(x)). In order to generate the input/output data for the DNNs, we con-
sider points {xi}Ni=1 ⊂ Ω randomly chosen from Ω obtained with Matlab’s
function unifrnd along with philox as the random number algorithm. Here,
we set N = 12,000. Then, {(xi, f(xi), ϕ(xi))}Ni=1 and {u(xi)}Ni=1 can be uti-
lized as input/output data. We are now ready to train and compare several
DNNs.

Neural network size & network reduction

The bigger the network that we use for training, the bigger the computa-
tional time and the memory requirements. We employ the τ -variable frame-
work and start with a ResNet architecture with 5 hidden layers with 10
nodes each. As target functional we implement the mean squared error with

An optimal time variable learning framework for DNNs 529

no regularization, i.e. λ1 = λ2 = 0. Additionally, we consider bias ordering
(B.O.) with a fixed Moreau-Yosida parameter β = 10. After 1000 steep-
est descent steps we observe the following result: The relative error in the
Euclidean norm on the test set is 0.07, and we see τ [1], τ [3] and τ [4] are ap-
proximately 0. Recalling the ResNet structure with variable τ , (5.2), it is
obvious that e.g. from τ [1] ≈ 0 we can deduce y[2] ≈ P 2

1 y
[1]. Consequently,

we delete the hidden layers 2,4 and 5, cf. Figure 2. The reduced network
with 2 hidden layers achieves the same relative error on the test set, i.e.
0.07.

Figure 2: Left: Optimal weights and biases for ResNet with variable τ with 5
hidden layers and 10 nodes each with bias ordering. Right: Reduced ResNet
with 2 hidden layers, i.e. hidden layers 1 and 3 from the larger network. The
color of the dots indicates the bias value and the color of the lines indicates
the magnitude of the weight.

While the same relative error is obtained with the reduced network, we
aim at achieving even better results, therefore we next consider a larger
network size with 6 hidden layers and 50 nodes in each layer (6-50). The
proposed variable-τ approach seems to always outperform its constant τ
counterpart, see Figure 1. As stated before, this is expected because the
variable-τ framework and also Fractional-DNN have a bigger impact for
deeper architectures with more hidden layers. Let us remark that the curves
in Figure 1 are not monotone because we have only plotted the mean squared
error term. In case of the entire J we do observe monotone behavior as
expected. Even though we see in Table 1 that τ [�] > 0 for all � in this setup,
motivated by the reduction in the previous architecture of 5 hidden layers
and 10 nodes per layer, instead of (6-50), we also consider a network with 2
hidden layers with 50 nodes per layer (2-50), which yields better results, cf.
Figure 3.

530 Harbir Antil et al.

Results: 6 layers-50 nodes vs. 2 layers-50 nodes

From now on, uNN (x) will denote the approximation of u obtained with a
neural network at a point x, the specific architecture will be clear from the
context. Note that, uNN (x) = (uNN

1 (x),uNN
2 (x),uNN

3 (x)) ∈ R
3.

Figure 3: Comparison between various DNN architectures and FEM. Top
row: L2-error between an exact solution and DNN approximation (6 hid-
den layers with a width of 50 each) or FEM approximation. B.O. indicates
bias ordering. The left and right panels correspond to fixed and variable τ ,
respectively. Bottom row: The left panel shows the mean squared error
during training of different DNNs with 2 hidden layers with a width of 50
nodes each. The right panel displays the L2-error between an exact solution
and DNN approximation for the same DNNs and FEM.

We compare the neural network results with an approximation obtained
with the FEM, see Figure 3(a), 3(b), and 3(d). To do that, we consider the
unit cube (0, 1)3, denoted by Ω̃ as a domain. The unit cube is considered, to
test how well the Neural Network performs for unseen data, and to test its
extrapolation properties. Recall that the training data has been generated

An optimal time variable learning framework for DNNs 531

Table 1: Optimal learned τ variables for various DNN architectures with τ -
variable framework with 6 layers and 2 layers. These are the same network
architectures that are considered in Figure 3

6-50 τ [0] τ [1] τ [2] τ [3] τ [4] τ [5] 2-50 τ [0] τ [1]

ResNet 0.92 0.95 0.99 0.95 0.92 0.88 0.84 0.87
ResNet, B.O. 0.70 0.94 1.00 0.96 0.86 0.70 0.28 0.51
Frac-DNN 0.59 0.70 0.53 0.34 0.28 0.30 0.94 0.93
Frac-DNN, B.O. 0.67 0.80 0.78 0.68 0.44 0.04 0.85 0.95

on Ω, which is cylindrical. For the FEM, we consider 10 uniform refinements
of the unit cube (0, 1)3 and denote by h the mesh size of each one. Then, we
compute ‖u−uNN‖

˜Ω and ‖u−uh‖˜Ω, where ‖ · ‖˜Ω denotes the L2(Ω̃)3-norm

and uh denotes the best approximation of u into N0(Ω̃), with respect to the
H(curl; Ω̃)-norm.

In Figure 3(d), we observe that, for the DNN with 2 layers and for
large h, the DNN approach gives a better approximation than the Lowest
Order Nédélec space. We further notice that, as h gets smaller, uNN needs
to be evaluated at more points in Ω̃ \ Ω and it is not obvious if the DNN
approximation will remain stable. However, Figure 3(a), 3(b), and 3(d) show
that the DNN approximation remains stable.

There exist several ways to measure how well a neural network per-
forms. For instance, for the case of 2 layers and 50 nodes, the training error
is slightly better with the ResNet-based architectures, cf. Figure 3(c), while
a smaller error on unseen data is achieved with Fractional-DNNs, cf. Fig-
ure 3(d). Furthermore, when we plot the error on the square (−1, 1)2×{0.5},
we see that Fractional-DNNs, cf. Figure 4(c) and 4(d), extrapolate better
than ResNets, cf. Figure 4(a) and 4(b). In the ResNet setting, employing
the τ -learning framework (Figure 4(b)) yields to slightly better results than
fixing τ (Figure 4(a)). Additionally, from its definition, we know u3 ≡ 0,
cf. (7.2). Hence, we present quiver plots of the first two components of
u(·, x3) for any x3, and uNN (·, 0.5), in Figure 5. The two plots seem to co-
incide. Therefore, we further present pointwise errors restricted to Ω, where
the pointwise error is measured in the (R2) Euclidean norm. For Fractional-
DNN with variable τ (2-50) with no bias ordering, inside Ω, we observe that
−0.0051 ≤ uNN

3 (x) ≤ 0.0077, i.e., the constraints violation is of the order
of approximation error. Meanwhile, ResNet with variable τ achieves better
results in this test case.

Besides improving the training, the approximation could be further im-
proved if we know a priori some qualitative properties of the exact solu-
tion. Then, they could be forced in the loss functional, similarly, as it is

532 Harbir Antil et al.

Figure 4: Comparison of testing errors between ResNet, ResNet with τ -
learning framework, Fractional-DNN and Fractional-DNN with τ -learning
framework (2-50).

done with PINNs, cf. [12]. It is important to mention that several other
numerical examples were considered to test the robustness of our τ -variable
framework. For instance, we considered problems where the standard Neural
ODEs (cf. [16]) struggle to obtain good approximations, as pointed out in
[21]. We obtained similar results to the ones presented here. For the sake of
brevity, those results have been excluded.

Conclusion

A time variable learning framework for DNNs has been introduced, which
in general can be applied to any DNN. However, from a mathematical per-
spective, DNN architectures which can be related to dynamical systems
are of interest, since learning τ then corresponds to optimal adaptive time

An optimal time variable learning framework for DNNs 533

Figure 5: u, uNN and pointwise error on Ω, at x3 = 0.5 (x1x2-plane).

stepping. Consequently, special emphasis has been put on applying the τ -
variable framework to ResNet and Fractional-DNN. The τ -variable frame-
work is argued to overcome vanishing and exploding gradient challenges.
The numerical results suggest that DNNs with τ -variable framework out-
perform their counterparts with fixed τ for deep architectures and enjoy an
improved training error decay. Moreover, this method has the potential of
identifying redundant layers, so that the network size can be reduced while
maintaining the quality of the prediction.

Appendix A. Derivatives of the Lagrangian L

We provide detailed calculations of derivatives needed in Section 5.2. To this
end we recall

L(y, θ, φ) = J(θ)−
L−1∑
�=1

〈y[�] − P �
�−1y

[�−1] +

�−2∑
j=0

a�−1,j(P
�
j+1y

[j+1] − P �
j y

[j])

534 Harbir Antil et al.

− (τ [�−1])γc−1
γ−1σ(W

[�−1]y[�−1] + b[�−1]), φ[�]〉

−
〈
y[L] −W [L−1]y[L−1], φ[L]

〉
A.1. Derivative with respect to y[�]

Here, we calculate the variation of L with respect to y[�] for � = 1, . . . , L:

∂y[�]L(y, θ, φ) = ∂y[�]J(θ)− ∂y[�]

(
L−1∑
k=1

〈y[k] − P k
k−1y

[k−1], φ[k]〉
)

− ∂y[�]

⎛⎝L−1∑
k=1

〈
k−2∑
j=0

ak−1,j(P
k
j+1y

[j+1] − P k
j y

[j]), φ[k]

〉⎞⎠
+ ∂y[�]

(
L−1∑
k=1

〈
(τ [k−1])γc−1

γ−1σ(W
[k−1]y[k−1] + b[k−1]), φ[k]

〉)
− ∂y[�]

〈
y[L] −W [L−1]y[L−1], φ[L]

〉
.

From e.g. [5, Section 4.2.] we have most components of this expression al-
ready given. The main difference lies in the factors ak−1,j , since the contained
τ [j], . . . , τ [k−1] are variable now. We only calculate the remaining unknown
term, i.e. the second line in the above equation. First we rewrite the double
sum in the following way:

−
L−1∑
k=1

〈
k−2∑
j=0

ak−1,j(P
k
j+1y

[j+1] − P k
j y

[j]), φ[k]

〉

=

L−2∑
k=0

⎛⎝k−1∑
j=0

ak,j〈P k+1
j y[j], φ[k+1]〉 −

k−1∑
j=0

ak,j〈P k+1
j+1 y

[j+1], φ[k+1]〉

⎞⎠
=

L−2∑
k=0

⎛⎝k−1∑
j=0

ak,j〈P k+1
j y[j], φ[k+1]〉 −

k∑
j=1

ak,j−1〈P k+1
j y[j], φ[k+1]〉

⎞⎠ .

Now we take the derivative with respect to y[�] and can apply the sum rule
of differentiation:

L−2∑
k=0

k−1∑
j=0

ak,j ∂y[�]〈y[j], (P k+1
j)�φ[k+1]〉−

L−2∑
k=0

k∑
j=1

ak,j−1 ∂y[�]〈y[j], (P k+1
j)�φ[k+1]〉

An optimal time variable learning framework for DNNs 535

=

L−2∑
k=0,�≤k−1

ak,�(P
k+1
�)�φ[k+1] −

L−2∑
k=0,�≤k

ak,�−1(P
k+1
�)�φ[k+1]

=

L−2∑
k=�+1

ak,�(P
k+1
�)�φ[k+1] −

L−2∑
k=�

ak,�−1(P
k+1
�)�φ[k+1]

For � = L and � = L − 1 this derivative vanishes. For � = 1, . . . , L − 2 we

can slightly rewrite to get

L−2∑
k=�+1

ak,�(P
k+1
�)�φ[k+1] −

L−2∑
k=�

ak,�−1(P
k+1
�)�φ[k+1]

=

L−1∑
k=�+2

(ak−1,� − ak−1,�−1)(P
k
�)

�φ[k] − a�,�−1(P
�+1
�)�φ[�+1].

Now, the derivative can be assembled.

A.2. Derivative with respect to τ [�]

Care must be observed as ak,j contains τ [j], . . . , τ [k]. The derivative of

L(y, θ, φ) with respect to τ [�] for � = 0, . . . , L − 2 therefore consists of the

following terms:

∂τ [�]L(y, θ, φ) = ∂τ [�]J(θ)−∂τ [�]

⎛⎝L−1∑
k=1

〈
k−2∑
j=0

ak−1,j(P
k
j+1y

[j+1]−P k
j y

[j]), φ[k]

〉⎞⎠
+ ∂τ [�]

(
L−1∑
k=1

〈
(τ [k−1])γc−1

γ−1σ(W
[k−1]y[k−1] + b[k−1]), φ[k]

〉)
.

We make an index shift from k − 1 to k, use the sum rule of differentiation

and the fact that only τ [j], . . . , τ [k] are contained in ak,j to obtain

∂τ [�]

⎛⎝−
L−1∑
k=1

〈
k−2∑
j=0

ak−1,j(P
k
j+1y

[j+1] − P k
j y

[j]), φ[k]

〉⎞⎠
= −

L−2∑
k=0

k−1∑
j=0

∂τ [�](ak,j)
〈
P k+1
j+1 y

[j+1] − P k+1
j y[j], φ[k+1]

〉

536 Harbir Antil et al.

= −
L−2∑
k=�

min{k−1,�}∑
j=0

∂τ [�](ak,j)
〈
P k+1
j+1 y

[j+1] − P k+1
j y[j], φ[k+1]

〉
.

Using the above equality, we arrive at

∂τ [�]L(y, θ, φ)

= ∂τ [�]J(θ)−
L−2∑
k=�

min{k−1,�}∑
j=0

∂τ [�](ak,j)
〈
P k+1
j+1 y

[j+1] − P k+1
j y[j], φ[k+1]

〉
+
〈
γ(τ [�])γ−1c−1

γ−1σ(W
[�]y[�] + b[�]), φ[�+1]

〉
.

For implementations we may want to understand the double summation in

more detail. In fact, it can be split up into 3 terms in the following way:

−
L−2∑
k=�

min{k−1,�}∑
j=0

∂τ [�](ak,j)
〈
P k+1
j+1 y

[j+1] − P k+1
j y[j], φ[k+1]

〉

= −
�−1∑
j=0

∂τ [�](a�,j)
〈
P �+1
j+1y

[j+1] − P �+1
j y[j], φ[�+1]

〉

−
L−2∑

k=�+1

�−1∑
j=0

∂τ [�](ak,j)
〈
P k+1
j+1 y

[j+1] − P k+1
j y[j], φ[k+1]

〉

−
L−2∑

k=�+1

∂τ [�](ak,�)
〈
P k+1
�+1 y

[�+1] − P k+1
� y[�], φ[k+1]

〉
.

Now for each of the above terms we can easily compute the contained

derivative using basic differentiation rules. Employing the product rule for

j = 0, . . . , �− 1, i.e. j < �, we get

∂τ [�](a�,j) = (1− γ)
(τ [�])γ

τ [j]

⎛⎝⎛⎝ �∑
i=j

τ [i]

⎞⎠−γ

−

⎛⎝ �∑
i=j+1

τ [i]

⎞⎠−γ⎞⎠
+ γ

(τ [�])γ−1

τ [j]

⎛⎝⎛⎝ �∑
i=j

τ [i]

⎞⎠1−γ

−

⎛⎝ �∑
i=j+1

τ [i]

⎞⎠1−γ⎞⎠ .

An optimal time variable learning framework for DNNs 537

For j = 0, . . . , �− 1 and k = �+ 1, . . . , L− 2, i.e. j < � < k, we have

∂τ [�](ak,j) = (1− γ)
(τ [k])γ

τ [j]

⎛⎝⎛⎝ k∑
i=j

τ [i]

⎞⎠−γ

−

⎛⎝ k∑
i=j+1

τ [i]

⎞⎠−γ⎞⎠ .

And finally, using the product rule again for k = �+ 1, . . . , L− 2, i.e. � < k,
we see

∂τ [�](ak,�) =
(τ [k])γ

(τ [�])2

⎛⎝(k∑
i=�+1

τ [i]

)1−γ

−
(

k∑
i=�

τ [i]

)1−γ
⎞⎠

+ (1− γ)
(τ [k])γ

τ [�]

(
k∑

i=�

τ [i]

)−γ

References

[1] Harbir Antil, Livia Betz, and Daniel Wachsmuth. Strong stationarity
for optimal control problems with non-smooth integral equation con-
straints: Application to continuous dnns. To appear: Applied Mathe-
matics and Optimization, 2023.

[2] Harbir Antil, Thomas S. Brown, Rainald Löhner, Fumiya Togashi, and
Deepanshu Verma. Deep neural nets with fixed bias configuration. Nu-
merical Algebra, Control and Optimization, 2022.

[3] Harbir Antil, Howard C Elman, Akwum Onwunta, and Deepanshu
Verma. A deep neural network approach for parameterized pdes and
bayesian inverse problems. Machine Learning: Science and Technology,
4(3):035015, Aug 2023.

[4] Harbir Antil, Ciprian G. Gal, and Mahamadi Warma. A unified frame-
work for optimal control of fractional in time subdiffusive semilinear
pdes. Discrete and Continuous Dynamical Systems – Series S, 10 2021.
MR4438772

[5] Harbir Antil, Ratna Khatri, Rainald Löhner, and Deepanshu Verma.
Fractional deep neural network via constrained optimization. Machine
Learning: Science and Technology, 2(1):015003, 2020.

[6] Harbir Antil, Drew P. Kouri, Martin-D. Lacasse, and Denis Ridzal, ed-
itors. Frontiers in PDE-constrained optimization, volume 163 of The

https://mathscinet.ams.org/mathscinet-getitem?mr=4438772

538 Harbir Antil et al.

IMA Volumes in Mathematics and its Applications. Springer, New

York, 2018. Papers based on the workshop held at the Institute for

Mathematics and its Applications, Minneapolis, MN, June 6–10, 2016.

MR3839310

[7] Harbir Antil and Deepanshu Verma. fractional-DNN, May 2023.

https://github.com/Center-for-Math-AI/Fractional DNNs.git.

[8] Trevor Avant and Kristi A. Morgansen. Analytical bounds on the

local lipschitz constants of relu networks. ArXiv, 2104.14672, 2021.

MR4605342

[9] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term

dependencies with gradient descent is difficult. IEEE Transactions on

Neural Networks, 5(2):157–166, 1994.

[10] Martin Benning, Elena Celledoni, Matthias J. Ehrhardt, Brynjulf

Owren, and Carola-Bibiane Schönlieb. Deep learning as optimal control

problems: Models and numerical methods. Journal of Computational

Dynamics, 6(2):171–198, 2019. MR4043228

[11] Benjamin Bischke, Prakriti Bhardwaj, Aman Gautam, Patrick Helber,

Damian Borth, and Andreas Dengel. Detection of flooding events in

social multimedia and satellite imagery using deep neural networks. In

MediaEval, 2017.

[12] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and

George Em Karniadakis. Physics-informed neural networks (pinns) for

fluid mechanics: A review, 2021. MR3995303

[13] Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and

Elliot Holtham. Reversible architectures for arbitrarily deep residual

neural networks. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 32, 2018.

[14] Hao Chen, Qi Dou, Lequan Yu, Jing Qin, and Pheng-Ann Heng. Voxres-

net: Deep voxelwise residual networks for brain segmentation from 3D

MR images. NeuroImage, 170:446–455, 2018. Segmenting the Brain.

[15] Kunjin Chen, Kunlong Chen, Qin Wang, Ziyu He, Jun Hu, and Jin-

liang He. Short-term load forecasting with deep residual networks. IEEE

Transactions on Smart Grid, 10(4):3943–3952, 2018.

[16] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Du-

venaud. Neural ordinary differential equations, 2019.

https://mathscinet.ams.org/mathscinet-getitem?mr=3839310
https://github.com/Center-for-Math-AI/Fractional_DNNs.git
https://arxiv.org/abs/2104.14672
https://mathscinet.ams.org/mathscinet-getitem?mr=4605342
https://mathscinet.ams.org/mathscinet-getitem?mr=4043228
https://mathscinet.ams.org/mathscinet-getitem?mr=3995303

An optimal time variable learning framework for DNNs 539

[17] Patrick Ciarlet, Haijun Wu, and Jun Zou. Edge element methods for
Maxwell’s equations with strong convergence for Gauss’ laws. SIAM J.
Numer. Anal., 52(2):779–807, 2014. MR3188392

[18] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri,
and Scott Yang. Adanet: Adaptive structural learning of artificial neural
networks. In International Conference on Machine Learning, pages 874–
883. PMLR, 2017. MR3590993

[19] Ronald DeVore, Boris Hanin, and Guergana Petrova. Neural network
approximation. Acta Numer., 30:327–444, 2021. MR4298220

[20] Kai Diethelm and Neville J. Ford. Analysis of fractional differential
equations. J. Math. Anal. Appl., 265(2):229–248, 2002. MR1876137

[21] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neu-
ral odes, 2019.

[22] Weinan E. A proposal on machine learning via dynamical systems.
Commun. Math. Stat., 5(1):1–11, 2017. MR3627592

[23] Weinan E. Machine learning: Mathematical theory and scientific ap-
plications. Notices of the American Mathematical Society, 66(11):1813–
1820, 2019. MR3971087

[24] Robert M. Farber, Alan S. Lapedes, Ramiro Rico-Mart́ınez, and Ioan-
nis G. Kevrekidis. Identification of continuous-time dynamical sys-
tems: Neural network based algorithms and parallel implementation.
In Richard F. Sincovec, David E. Keyes, Michael R. Leuze, Linda R.
Petzold, and Daniel A. Reed, editors, PPSC, pages 287–291. SIAM,
1993.

[25] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of train-
ing deep feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, pages
249–256. JMLR Workshop and Conference Proceedings, 2010.

[26] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org. MR3617773

[27] Jayadeep Gopalakrishnan, Luis E. Garćıa-Castillo, and Leszek F.
Demkowicz. Nédélec spaces in affine coordinates. Comput. Math. Appl.,
49(7-8):1285–1294, 2005. MR2141266

[28] Stefanie Gunther, Lars Ruthotto, Jacob B Schroder, Eric C Cyr, and
Nicolas R Gauger. Layer-parallel training of deep residual neural net-

https://mathscinet.ams.org/mathscinet-getitem?mr=3188392
https://mathscinet.ams.org/mathscinet-getitem?mr=3590993
https://mathscinet.ams.org/mathscinet-getitem?mr=4298220
https://mathscinet.ams.org/mathscinet-getitem?mr=1876137
https://mathscinet.ams.org/mathscinet-getitem?mr=3627592
https://mathscinet.ams.org/mathscinet-getitem?mr=3971087
http://www.deeplearningbook.org
https://mathscinet.ams.org/mathscinet-getitem?mr=3617773
https://mathscinet.ams.org/mathscinet-getitem?mr=2141266

540 Harbir Antil et al.

works. SIAM Journal on Mathematics of Data Science, 2(1):1–23, 2020.

MR4060448

[29] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural

networks. Inverse Problems, 34(1):014004, 2017. MR3742361

[30] Kerstin Hammernik, Teresa Klatzer, Erich Kobler, Michael P Recht,

Daniel K Sodickson, Thomas Pock, and Florian Knoll. Learning a vari-

ational network for reconstruction of accelerated MRI data. Magnetic

Resonance in Medicine, 79(6):3055–3071, 2018. MR3706322

[31] Soufiane Hayou, Eugenio Clerico, Bobby He, George Deligiannidis, Ar-

naud Doucet, and Judith Rousseau. Stable resnet. In International

Conference on Artificial Intelligence and Statistics, pages 1324–1332.

PMLR, 2021.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving

deep into rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1026–1034, 2015.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-

ual learning for image recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 770–778,

2016.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity

mappings in deep residual networks. In Computer Vision–ECCV 2016:

14th European Conference, Amsterdam, The Netherlands, October 11–

14, 2016, Proceedings, Part IV 14, pages 630–645. Springer, 2016.

[35] Michael Hinze, René Pinnau, Michael Ulbrich, and Stefan Ulbrich. Opti-

mization with PDE Constraints, volume 23 of Mathematical Modelling:

Theory and Applications. Springer, New York, 2009. MR2516528

[36] Qingguo Hong, Jonathan W. Siegel, and Jinchao Xu. A priori analysis

of stable neural network solutions to numerical PDEs, 2021.

[37] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-

berger. Densely connected convolutional networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages

4700–4708, 2017.

[38] Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis.

Adaptive activation functions accelerate convergence in deep and

https://mathscinet.ams.org/mathscinet-getitem?mr=4060448
https://mathscinet.ams.org/mathscinet-getitem?mr=3742361
https://mathscinet.ams.org/mathscinet-getitem?mr=3706322
https://mathscinet.ams.org/mathscinet-getitem?mr=2516528

An optimal time variable learning framework for DNNs 541

physics-informed neural networks. Journal of Computational Physics,

404:109136, 2020. MR4051868

[39] Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael

Unser. Deep convolutional neural network for inverse problems in imag-

ing. IEEE Transactions on Image Processing, 26(9):4509–4522, 2017.

MR3670561

[40] Eurika Kaiser, J. Nathan Kutz, and Steven L. Brunton. Sparse identi-

fication of nonlinear dynamics for model predictive control in the low-

data limit. Proc. A., 474(2219):20180335, 25, 2018. MR3895998

[41] Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo. Theory and

applications of fractional differential equations, volume 204 of North-

Holland Mathematics Studies. Elsevier Science B.V., Amsterdam, 2006.

MR2218073

[42] Dongwook Lee, Jaejun Yoo, Sungho Tak, and Jong Chul Ye. Deep resid-

ual learning for accelerated mri using magnitude and phase networks.

IEEE Transactions on Biomedical Engineering, 65(9):1985–1995, 2018.

[43] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu,

Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar.

Fourier neural operator for parametric partial differential equations,

2021. MR4582511

[44] Yumin Lin, Xianjuan Li, and Chuanju Xu. Finite difference/spectral

approximations for the fractional cable equation. Math. Comp.,

80(275):1369–1396, 2011. MR2785462

[45] Yumin Lin and Chuanju Xu. Finite difference/spectral approxima-

tions for the time-fractional diffusion equation. J. Comput. Phys.,

225(2):1533–1552, 2007. MR2349193

[46] Hailiang Liu and Peter Markowich. Selection dynamics for deep neu-

ral networks. Journal of Differential Equations, 269(12):11540–11574,

2020. MR4152217

[47] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite

layer neural networks: Bridging deep architectures and numerical dif-

ferential equations. In International Conference on Machine Learning,

pages 3276–3285. PMLR, 2018.

[48] Jean-Claude Nédélec. Mixed finite elements in R
3. Numer. Math.,

35(3):315–341, 1980. MR0592160

https://mathscinet.ams.org/mathscinet-getitem?mr=4051868
https://mathscinet.ams.org/mathscinet-getitem?mr=3670561
https://mathscinet.ams.org/mathscinet-getitem?mr=3895998
https://mathscinet.ams.org/mathscinet-getitem?mr=2218073
https://mathscinet.ams.org/mathscinet-getitem?mr=4582511
https://mathscinet.ams.org/mathscinet-getitem?mr=2785462
https://mathscinet.ams.org/mathscinet-getitem?mr=2349193
https://mathscinet.ams.org/mathscinet-getitem?mr=4152217
https://mathscinet.ams.org/mathscinet-getitem?mr=0592160

542 Harbir Antil et al.

[49] Ricardo H. Nochetto, Enrique Otárola, and Abner J. Salgado. A PDE
approach to space-time fractional parabolic problems. SIAM J. Numer.
Anal., 54(2):848–873, 2016. MR3478958

[50] Fernando J. Pineda. Generalization of back-propagation to recurrent
neural networks. Phys. Rev. Lett., 59:2229–2232, 1987. MR0913691

[51] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks
for image classification: A comprehensive review. Neural Computation,
29(9):2352–2449, 2017. MR3866781

[52] Wolfgang Ring and Benedikt Wirth. Optimization methods on Rieman-
nian manifolds and their application to shape space. SIAM J. Optim.,
22(2):596–627, 2012. MR2968868

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In International
Conference on Medical Image Computing and Computer-Assisted In-
tervention, pages 234–241. Springer, 2015.

[54] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by
partial differential equations. Journal of Mathematical Imaging and Vi-
sion, 62(3):352–364, 2020. MR4082375

[55] Carola-Bibiane Schoenlieb, Martin Benning, Matthias Ehrhardt, Bryn-
julf Owren, and Elena Celledoni. Research data supporting” deep learn-
ing as optimal control problems”. 2019. MR4043228

[56] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas
Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354–359, 2017.

[57] Sho Sonoda and Noboru Murata. Transport analysis of infinitely deep
neural network. Journal of Machine Learning Research, 20(2):1–52,
2019. MR3911409

[58] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber.
Training very deep networks. arXiv preprint arXiv:1507.06228, 2015.

[59] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-resolution via
deep recursive residual network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3147–3155, 2017.

[60] Vasily E. Tarasov. Differential equations with fractional derivative and
universal map with memory. J. Phys. A, 42(46):465102, 13, 2009.
MR2552008

https://mathscinet.ams.org/mathscinet-getitem?mr=3478958
https://mathscinet.ams.org/mathscinet-getitem?mr=0913691
https://mathscinet.ams.org/mathscinet-getitem?mr=3866781
https://mathscinet.ams.org/mathscinet-getitem?mr=2968868
https://mathscinet.ams.org/mathscinet-getitem?mr=4082375
https://mathscinet.ams.org/mathscinet-getitem?mr=4043228
https://mathscinet.ams.org/mathscinet-getitem?mr=3911409
https://arxiv.org/abs/arXiv:1507.06228
https://mathscinet.ams.org/mathscinet-getitem?mr=2552008

An optimal time variable learning framework for DNNs 543

[61] Quyen Tran, Harbir Antil, and Hugo Dı́az. Optimal control of parame-
terized stationary maxwell’s system: Reduced basis, convergence analy-
sis, and a posteriori error estimates. Mathematical Control and Related
Fields, 2022. MR4518560

[62] Songtao Wu, Shenghua Zhong, and Yan Liu. Deep residual learning for
image steganalysis. Multimedia Tools and Applications, 77(9):10437–
10453, 2018.

[63] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie,
and Bharath Hariharan. Pointflow: 3d point cloud generation with con-
tinuous normalizing flows. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 4541–4550, 2019.

[64] Qiang Zhang, Qiangqiang Yuan, Chao Zeng, Xinghua Li, and Yan-
cong Wei. Missing data reconstruction in remote sensing image with
a unified spatial–temporal–spectral deep convolutional neural network.
IEEE Transactions on Geoscience and Remote Sensing, 56(8):4274–
4288, 2018.

Harbir Antil

The Center for Mathematics and Artificial Intelligence (CMAI)

and Department of Mathematical Sciences

George Mason University

Fairfax, VA 22030

USA

E-mail address: hantil@gmu.edu

Hugo D́ıaz

Department of Mathematical Sciences

University of Delaware

Newark, DE 19716

USA

E-mail address: hugodiaz@udel.edu

Evelyn Herberg

The Center for Mathematics and Artificial Intelligence (CMAI)

and Department of Mathematical Sciences

George Mason University

Fairfax, VA 22030

USA

E-mail address: evelyn.herberg@iwr.uni-heidelberg.de

Received July 21, 2022

https://mathscinet.ams.org/mathscinet-getitem?mr=4518560
mailto:hantil@gmu.edu
mailto:hugodiaz@udel.edu
mailto:evelyn.herberg@iwr.uni-heidelberg.de

	Introduction
	Preliminaries
	Caputo fractional derivative
	Deep learning problem

	Continuous DNNs
	Ordinary differential equations and neural networks
	Stability of continuous fractional-DNN

	Network architectures with fixed tau-parameter
	Variable-tau framework for DNNs
	ResNet with variable tau
	Fractional-DNN with variable tau

	Vanishing and exploding gradients
	Numerical results
	Maxwell's equations

	Conclusion
	Derivatives of the Lagrangian L
	Derivative with respect to y ell
	Derivative with respect to tau ell

	References

