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Optimal transportation of raw material from suppliers to customers
is an issue in supply chain that we address here with a continuous
model. A least-squares method is designed to solve the prescribed
Jacobian problem that arises in optimal transportation in two di-
mensions of space. An iterative algorithm allows to decouple the
variational aspects of the problem from the nonlinearities and from
the weak treatment of the boundary conditions. Numerical experi-
ments illustrate the transport of material in several configurations.
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1. Introduction

Optimal transportation has raised many challenging mathematical prob-
lems in the literature [1, 17, 21]. It has also many applications in other
communities, such as logistics and operations research, when considering
the transport of raw material along a supply chain [14, 16]. When consid-
ering a continuous approach, modeling the optimal transport problem has
led to strong links with, e.g., the Monge-Ampère equation [9, 11, 12] or the
prescribed Jacobian equation [10].

Our underlying application of interest is the transport of food waste ma-
terial from suppliers to a warehouse [5], which is commonly addressed with
a discrete method [20] within the operational research community, typically
using graph theory and linear and/or integer programming techniques. From
a continuous viewpoint, optimal transport can be used to describe the phys-
ical transport of material from point A (source) to point B (destination). In
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the spirit of Monge [13], material has to be transported from suppliers (or
sources) to destination points.

Using various models, many numerical methods have been proposed in
the literature to approximate the solution to the optimal transport prob-
lem [16], ranging from finite differences approaches [2, 4] to finite element
methods [3, 18, 22].

In this work, we extend the methodology presented in [6, 7] to solve a
prescribed Jacobian equation for the optimal mapping, together with nu-
merical methods designed when solving the 2D Monge-Ampère equation [8].
The main differences are the enforcement of so-called transport boundary
conditions, and an original mix of numerical algorithms that are all tributes
to Prof. R. Glowinski. The methodology relies on a least-squares approach
and a relaxation algorithm of the ADMM type to decouple the variational
aspects of the problem from the nonlinearities, which require mathemati-
cal programming approaches. The discretization method employs low order,
piecewise linear, mixed finite elements. Numerical experiments illustrate the
characteristics of the approach and show directions for future research.

2. Mathematical model

Let us describe first the optimal transport problem in the sense of Monge
[13]. Let Ω be a bounded domain of R

2 and X ,Y ⊂ Ω two subdomains
of Ω. Let f : X → R

2 and g : Y → R
2 be given (mass) densities. The

optimal transport problem consists in moving these mass densities from X
onto Y while minimizing transportation costs. The problem is thus to find
a mapping m : X → Y such that

(1) f(x, y) = g(m(x, y)) |det∇m(x, y)| ,

where ∇m denotes the gradient of the mapping m, with condition

(2) m(X ) = Y.

One constraint is that the total mass in X is equal to the total mass in Y.
This implies the following necessary condition

(3)

∫
X
f(x, y)dxdy =

∫
Y
g(x, y)dxdy.

At the same time, we minimize the transportation cost c = c(m) defined by

(4) c(m) =

∫
X

∣∣(x, y)T −m(x, y)
∣∣2 f(x, y)dxdy.
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It has been proved, see, e.g., [21], that there exists a mapping that satisfies
(1) and minimizes (4). This mapping is the unique gradient of a convex
function. It is also proved that the implicit condition (2) may be replaced
by the following boundary condition

(5) m(∂X ) = ∂Y.

Figure 1 illustrates a sketch of the situation.

Figure 1: Sketch of the optimal transport problem mapping a domain X
onto another domain Y.

The underlying application is thus to transport a material from one place
(suppliers) to another (customers) while minimizing the corresponding cost.
The mathematical model we propose here relies on solving the prescribed
Jacobian equation [10] with transport boundary condition, see, e.g., [18]. The
partial differential equation involving the Jacobian determinant we want to
solve reads as follows: find m : X → Y satisfying

(6)

⎧⎨
⎩det∇m(x, y) =

f(x, y)

g(m(x, y))
, ∀(x, y) ∈ X ,

m(∂X ) = ∂Y.

A simpler problem has been investigated in [10] from a theoretical point
of view, when considering Dirichlet boundary conditions with the identity
function. The corresponding problem is of the following type

{
det∇m(x, y) = f(x, y), ∀(x, y) ∈ X ,

m (x, y) = (x, y)T , a.e. (x, y) ∈ ∂X .

A numerical method for the solution of this Dirichlet problem has been
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proposed in [6, 7]. One of the objectives is to modify it to incorporate implicit
transport boundary conditions such as those in (6).

3. Numerical method

3.1. Least-squares framework

We detail here the numerical method used to solve (6). Following [18], we
extend the least-squares approach in [7] to account for the transport bound-
ary conditions, and incorporate new algorithms into it. Let us define the
following functional spaces

Q(m) =

{
q ∈

(
L2 (X )

)2×2
, q = qT , detq =

f

g(m)

}
,

V =
(
H1 (X )

)2
,

B =
{
b ∈ (C (∂X ))2 ,b(x, y) ∈ ∂Y

}
.

Note that, unlike in [7], Q(m) includes only symmetric tensors since it has
been proved that the optimal transportation map m is the gradient of a
convex potential function. Let us introduce auxiliary variables q ∈ Q(m)
and b ∈ B to decouple the variational aspects of the problem from the
nonlinearities and from the implicit treatment of the boundary conditions.

Let 0 < α < 1 be a given parameter, and let us define the following
functionals:

J1(m,q) =
1

2

∫
X
‖∇m− q‖2dxdy;

J2(m,b) =
1

2

∫
∂X

|m− b|2 ds;

J(m,q,b) = αJ1(m,q) + (1− α)J2(m,b).

The least-squares problem reads as follows: find {m,p,b} ∈ V× Q(m)× B
such that

(7) J (m,p,b) ≤ J (u,q,a) , ∀ {u,q,a} ∈ V ×Q(u)× B.

3.2. Relaxation algorithm

For the solution of (7), we propose a relaxation algorithm of the ADMM-
type. Let m0 ∈ V be a given function (typically the identity function
m0(x, y) = (x, y)T ). Then, for n ≥ 0:
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1. When mn is known, we look for

(8) bn+1 = argmin
a∈B

J2 (m
n,a) ;

2. When mn is known, we look for

(9) pn+1 = arg min
q∈Q(mn)

J1 (m
n,q) ;

3. When pn+1 and bn+1 are known, we look for

(10) mn+1/2 = argmin
v∈V

J
(
v,pn+1,bn+1

)
;

4. When mn+1/2 is known, we update the solution by

(11) mn+1 = mn + ω
(
mn+1/2 −mn

)
,

where ω ∈ (0, 2) is a relaxation parameter that helps controlling the

convergence speed, and we set n → n+ 1.

Looking closely at the relaxation algorithm, we observe that (8) is a local

projection problem on the boundary of the domain, which can be solved

algebraically. Problem (9) is a local algebraic nonlinear problem, which is

reminiscent of those addressed in [8]. Finally, (10) is a global linear varia-

tional problem. The solution methods for each of those will be detailed in

the following sections.

3.3. Numerical solution of the local boundary projections

Problem (8) can be solved pointwise, as it does not involve any derivatives.

It corresponds to solving

min
b∈B

|mn(x, y)− b(x, y)|2 , ∀(x, y) ∈ ∂X .

Since the approximation mn(x, y) does not necessarily belong to ∂Y for all

(x, y) ∈ ∂X , there is a mismatch with b(x, y) ∈ ∂Y. Thus this minimization

problem is an L2-projection of mn(x, y) onto ∂Y. Here, the same solution

method is adopted as in [18].
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3.4. Numerical solution of the local nonlinear problems

We focus here on the solution of (9). Since mn is known, the solution pn+1

is obtained by solving the minimization problem

(12) pn+1 = arg min
q∈Q(mn)

[∫
X

1

2
|q|2 dxdy −

∫
X
∇mn : qdxdy

]
.

Problem (12) can be solved pointwise since it does not involve any derivative
for the variable q. The solution can be obtained, locally for all (x, y) ∈ X ,
as

(13) pn+1 (x, y) = arg min
q∈E(mn,x,y)

[
1

2
|q|2 − b : q

]
,

where

E(mn,x,y) =
{
q (x, y) ∈ R

2×2, q12 = q21,

q11 (x, y) q22 (x, y)− q12 (x, y) q21 (x, y) =
f (x, y)

g(mn(x, y))

}
,

and b = ∇mn (x, y). Problem (13) is solved with the Qmin algorithm de-
scribed in [8, 19], and briefly recalled here.

Setting pn+1(x, y) = Sn+1(x, y)Λn+1(x, y)Sn+1(x, y)T , we reformulate
(13) as: find (Λn+1(x, y),Sn+1(x, y)) ∈ Ef (x, y) solution of

(14) min
(Λ,S)∈Ef (x,y)

[
1

2
(μ2

1 + μ2
2)− trace

(
bSΛST

)]
,

where Ef (x, y) =
{
(Λ,S) , Λ = diag(μ1, μ2), μ1μ2 =

f(x,y)
g(mn(x,y)) , S

TS = I
}
.

Let b′ = b/
√

f(x, y)/g(mn(x, y)), M =

(
0 1
1 0

)
and � = (μ1, μ2)

T

where {μ1, μ2} being the spectrum of A which belongs to the following set

A1 =
{
A ∈ R

2×2 , A = AT , �TM� = 2 , M� ≥ 0
}
.

If we take {λ1, λ2} to be the spectrum of b′, then, the constraint �TM� = 2
corresponds to λ1+λ2 = 1, and the constraint M� ≥ 0 ensures that λ1, λ2 ≥
0. Further details can be found in [19]. Problem (14) is therefore equivalent
to

(15) min
A∈A1

trace
[
AA− 2b′A

]
,
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which, after some simplification, is reduced to the following one-dimensional
equation

β2
1

(1 + μ)2
= 2 +

β2
2

(1− μ)2
,

where β1 = (λ1+λ2)/
√
2 and β2

2 = (λ2
1+λ2

2)/2−λ1λ2, which is solved with
a Newton algorithm.

3.5. Numerical solution of the linear variational problems

Finding the solution of (10) is equivalent to solving:

(16) min
v∈V

{
α

2

∫
X

∣∣∇v − pn+1
∣∣2 dxdy +

(1− α)

2

∫
∂X

∣∣v − bn+1
∣∣2 ds} .

We derive the first optimality conditions corresponding to (16) and obtain
the variational formulation: find mn+1/2 ∈ V such that

α

∫
X
∇mn+1/2 : ∇vdxdy + (1− α)

∫
∂X

mn+1/2 · vds

= α

∫
X
pn+1 : ∇vdxdy + (1− α)

∫
∂X

bn+1 · vds,

for all v ∈ V. This weak formulation corresponds to the strong formulation
of an elliptic partial differential equation, with Robin boundary conditions:
find mn+1/2 : X → R

2 such that

−αΔmn+1/2 = αpn+1 in X ,

(1− α)mn+1/2 + α∇mn+1/2 · n = (1− α)bn+1 + α∇ · pn+1 · n on ∂X .

Note that the case when α = 1 (Neuman boundary conditions) is not well-
posed, while the case when α = 0 corresponds to the case with Dirichlet
boundary conditions. In the numerical experiments hereafter, we take α =
1/2.

4. Finite element approximation

Let h > 0 be a space discretization step and let Th be a discretization of
X . Let Xh be the discretized version of X ; for the sake of simplicity of the
notation, let us assume that Xh ≡ X . Let Qh be the space defined as

Qh =
{
q ∈ L2 (Xh)

2×2 , q|T ∈ R
2×2, ∀T ∈ Th

}
,



554 Alexandre Caboussat and Dimitrios Gourzoulidis

equipped with the discrete inner product and corresponding norm:

((p,q))0h =
∑
T∈Th

|T | p|T : q|T , |||q|||0h =
√

((q,q))0h.

Let Qf,g,mh,h be the finite dimensional subset approximating Q(m) and
defined by

Qf,g,mh,h =

{
q ∈ Qh, q = qT , detq|T =

[
f

g(mh)

]
T

, ∀T ∈ Th
}
,

where
[
F
]
T
denotes the average of the generic quantity F over a generic ele-

ment T . Let Vh be the finite dimensional subspace of V given by continuous
piecewise linear finite elements:

Vh =
{
v ∈

(
C0

(
Xh

))2
, v|T ∈ (P1)

2 , ∀T ∈ Th
}
,

where P1 is the space of the two-variable polynomials of degree ≤ 1. We
define a discrete inner product and the corresponding norm for Vh as

(u,v)0h =
∑
T∈Th

m∑
i=1

Wiu (ζi) · v (ζi) , ‖u‖0h =
√

(u,u)0h ,

with Wi the weights and ζi the evaluation points of a Gauss quadrature
rule, m denoting the number of points of the quadrature rule. Finally, let us
consider a sequence of successive points yi ∈ ∂Y, with y0 = yN+1 (to form
a closed loop). The piecewise linear approximation of ∂Yh is defined by the
union of segments

∂Yh =

N⋃
i=0

[yi,yi+1].

Let Bh be the finite dimensional subspace of B defined as:

(17) Bh =
{
b ∈ (C (∂Xh))

2 , b|[yi,yi+1]
∈ (P1)

2 , ∀i = 0, . . . , N
}
.

The discrete formulation of the least-squares method to solve (7) reads
as follows: find {mh,ph,bh} ∈ Vh × Qf,g,mh,h × Bh such that

(18) J (mh,ph,bh) ≤ J (uh,qh,ah) , ∀ {uh,qh,ah} ∈ Vh×Qf,g,uh,h× Bh.
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The discrete formulation of the relaxation algorithm (8)–(11) becomes the
following: we initialize first the algorithm with m0

h ∈ Vh. Then, for n ≥ 0,

1. We solve the projection problem

bn+1
h = PYh

(mn
h),

where PYh
(·) is the orthogonal projection operator on the discrete

boundary ∂Yh described, e.g., in [18].
2. We solve the discrete local nonlinear problem:

(19) pn+1
h = arg min

qh∈Qf,g,mn
h
,h

[
((qh,qh))

2
0h − ((∇mn

h,q))0h

]
.

The solution of the discrete minimization problem (19), pn+1
h , is ob-

tained using the algorithm Qmin on each element T of Th, in an iden-
tical manner as the solution of the continuous problem described in
Section 3.4.

3. We solve the discrete linear variational problem:

min
vh∈Vh

{
α

2

∣∣∣∣∣∣∇vh − pn+1
h

∣∣∣∣∣∣2
0h

+
(1− α)

2

∫
∂Xh

∣∣vh − bn+1
h

∣∣2 ds} .(20)

We derive the first optimality conditions corresponding to (20) and

obtain the, finite element based, variational formulation: findm
n+1/2
h ∈

Vh such that

α
((

∇m
n+1/2
h ,∇vh

))
0,h

+ (1− α)

∫
∂Xh

m
n+1/2
h · vhds

= α
((
pn+1
h ,∇vh

))
0,h

+ (1− α)

∫
∂Xh

bn+1
h · vhds,

for all vh ∈ Vh.

4. We update the solution with mn+1
h = mn

h + ω
(
m

n+1/2
h −mn

h

)
.

5. Numerical experiments

Numerical experiments are presented in order to validate the convergence
and accuracy properties of the least-squares methodology. For computational
domains, we consider square and disk domains. Typical triangulations of
these domains are illustrated in Figure 2. The relaxation parameter ω is set
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to approx. 1 initially, and then is increased to ω = 2. The stopping criterion
for the relaxation algorithm is ‖mn

h −mn−1
h ‖0h < 10−8. The parameter α is

set to α = 0.5.

Figure 2: Typical finite element meshes used for the numerical experiments.
Left: structured mesh for a square domain (h = 0.0125); Right: structured
mesh for the unit disk domain (h  0.0209).

In order to accelerate the performance of our algorithm, the gradients are
post-processed with a gradient reconstruction procedure. More specifically,
for any vh ∈ Vh, and for any vertex P of the finite element triangulation:

∂vh

∂xi
(P ) :=

∑
T∈Th,P∈T

|T | ∂vh

∂xi

∣∣∣∣
T∑

T∈Th,P∈T
|T |

, i = 1, 2.

5.1. Validation test case: identity map

First, we consider the test case for which the exact solution is the identity
map when X ≡ Y. The source and target functions are selected as f = 1
and g = 1. The exact solution is m (x, y) = (x, y)T .

Table 1 illustrates the convergence order of the method in the L2(Ω) and
H1(Ω) norms, and shows convergence with order one for both. Moreover,
‖∇mh−ph‖L2(Ω) also decreases with order one as the mesh size h is reduced.

5.2. Transport of a circle to an ellipse

Let us consider a test for which X �= Y are both enclosed into a sufficiently
large domain Ω. Let us consider Ω = (−4, 4) × (−2, 2). In this test case we
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Table 1: Validation test case: Identity map. Computational results for several
mesh sizes h. The columns describe the L2- and H1-norms of the error, rates
of convergence, norm of the residual, and number of relaxation algorithm
iterations

h ‖m−mh‖L2(Ω) |m−mh|H1(Ω) ‖∇mh − ph‖L2(Ω) iter
0.100 2.22e-02 3.75e-02 3.71e-02 69
0.0500 1.12e-02 0.98 1.92e-02 0.89 1.88e-02 69
0.0250 5.70e-03 0.97 9.71e-03 0.98 9.51e-03 69
0.0125 2.87e-03 0.97 4.89e-03 0.99 4.79e-03 69

map the unit circle

X =
{
(x, y) ∈ Ω : x2 + y2 < 1

}
,

into the ellipse domain

Y =

{
(x, y) ∈ Ω :

(x− 2)2

22
+

y2

0.52
< 0.25

}
.

The domain X is equipped with finite element triangulations such as those
illustrated in Figure 2. We consider f = 1 and g = 1 defined on X and Y re-
spectively. An exact solution of this map is given by m(x, y) =
(2x+ 2, 0.5y)T .

Figure 3 illustrates the optimal transport from the source domain X
(left) into the target domain Y (right). One can observe that the symmetry of
the original mesh points is conserved after transport. Table 2 illustrates the
convergence orders in the L2 (X ) and H1 (X ) norms. Both norms show again
convergence with order (actually better than) one, which is appropriate for
mixed piecewise linear finite elements. Similarly, ‖∇uh−ph‖L2(X ) also shows
an order one convergence order.

Table 2: Transport of a circle to an ellipse. Computational results for several
mesh sizes h. The columns describe the L2- and H1-norms of the error, rates
of convergence, norm of the residual, and number of relaxation algorithm
iterations

h ‖m−mh‖L2(X ) |m−mh|H1(X ) ‖∇mh − ph‖L2(X ) iter
0.0831 9.08e-01 1.16e+00 2.01e-01 859
0.0416 3.31e-01 1.45 5.62e-01 1.04 1.02e-01 609
0.0208 1.20e-01 1.46 2.60e-01 1.11 5.57e-02 499
0.0104 6.09e-02 1.46 1.40e-01 0.89 2.94e-02 449
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Figure 3: Transport of a circle to an ellipse. Snapshots of the supports of the
original and final density functions. The results are obtained on structured
mesh of the unit disk with h = 0.0209.

5.3. Transport of a Gaussian to a Gaussian

We consider the optimal transportation of a Gaussian density onto another
Gaussian density. Let us recall that the probability distribution of a generic
Gaussian density reads as follows:

ψ(x0,y0),σ(x, y) =
2

σ
√
2π

exp

(
−1

2

(x− x0)
2 + (y − y0)

2

σ2

)
,

where (x0, y0) is the center, and σ the strandard deviation. Here we analyze
the scenario where the source function is f is f(x, y) = ψ(−0.7,−0.7),0.2(x, y)
and the target function is g(x, y) = ψ(0.7,0.7),0.2(x, y). The domain X is
defined in (−2, 2)2 and ∂Y = ∂X . For this numerical experiment, the exact
solution is not known.

In order to help the convergence of the algorithm and safeguard it, we
practically replace the right hand side of (6) by a regularized version:

f(x, y)

g(m(x, y))
→ max

(
ε+ f(x, y)

ε+ g(m(x, y))
, 10

)
,

where, in the experiments, ε = 10−5. This regularization helps to control
the ratio of the source and target functions, ensuring that it does not lead
to instabilities in our algorithm, while not affecting the expected solution.
We consider a single numerical experiment with a step size h = 0.025 and
a maximum of 2,500 iterations. Based on these preliminary results, we can
make the following remarks:
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• The L2 norm of the residual ‖∇mh−ph‖L2(X ), is approximately 1.625.

This quantity measures the difference between the solutions of the

linear and the non-linear problems.

• The residual of the equation ‖ det∇m(x, y)− f(x,y)
g(m(x,y))‖L2(X ) is approx-

imately 4.4567.

• The integrals of the source and target densities over X , given by∫
X f(x, y)dxdy and

∫
X g(x, y)dxdy, are both equal to 1 by definition.

However, the integral of the transformed target density over X , com-

puted as
∫
X g(m(x, y)), is 0.77, suggesting a loss in density during the

transport.

• On the other hand, the peak amplitude of the source function f(x, y)

is 3.98943 at (−0.7,−0.7), while that of the transformed target func-

tion g (m (x, y)) is 3.98531 at (−0.65,−0.65). This suggests that peak

amplitude was preserved while the position of the peak shifts slightly.

This effect highlights the fact that the transport may have to be solved

in smaller steps (see, e.g., [15]).

• The L2 norm of the difference between the source density and the

transformed target density, denoted as ‖f(x, y)−g (m (x, y)) ‖L2(X ), is

0.53.

Figure 4 shows the source function f(x, y) and the target density g (m(x, y))

after a partial shift. Figure 5 illustrates the numerical approximation of each

component of m.

Figure 4: Transport of a Gaussian to another Gaussian. Left: source func-
tion f(x, y); Right: transported density g (m(x, y)). The results are obtained
using a structured mesh of the square domain with a grid size of h = 0.025.



560 Alexandre Caboussat and Dimitrios Gourzoulidis

Figure 5: Transport of a Gaussian to another Gaussian. Snapshots of the
first component (left) and the second component (right) of the numerical
approximation of m. The results are obtained using a structured mesh of
the square domain with a grid size of h = 0.025.

6. Conclusions

A numerical method based on a least-squares approach has been presented to
solve an optimal transport problem in two dimensional space. Inspired from
[18], the framework includes a combination of several algorithms inspired
from previous works [6, 7], in particular the Qmin algorithm [8].

Numerical results in simple situations have highlighted the appropriate
convergence order of the method, and even super-convergence in some cases.
Numerical experiments have also illustrated the need to investigate further
iterative approaches for transport to avoid numerical diffusion, for instance
when including Gaussian densities. Perspectives include the incorporation
of non-convex cost functions to model obstacles, and the incorporation of
several sources and destinations for real-life applications.
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[9] Caffarelli, L. A. and Cabré, X. (1995). Fully Nonlinear Elliptic Equa-
tions. American Mathematical Society. MR1351007

[10] Dacorogna, B. and Moser, J. (1990). On a partial differential equation
involving the Jacobian determinant. Annales de l’I.H.P. Analyse non
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