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Dedicated to the memory of Professor Roland Glowinski

The exact distributed controllability of the semi-linear wave equa-

tion ∂tty − Δy + g(y) = f1ω posed over multi-dimensional and

bounded domains, assuming that g ∈ C1(R) satisfies the growth

condition lim sup|r|→∞ g(r)/(|r| ln1/2 |r|) = 0 has been obtained

by Fu, Yong and Zhang in 2007. The proof based on a non con-

structive Leray-Schauder fixed point theorem makes use of pre-

cise estimates of the observability constant for a linearized wave

equation. Assuming that the derivative of g does not grow faster

than β ln1/2 |r| at infinity for β > 0 small enough and is uniformly

Hölder continuous on R with exponent s ∈ (0, 1], we design a con-

structive proof yielding an explicit sequence converging to a con-

trolled solution for the semi-linear equation, at least with order

1 + s after a finite number of iterations. Numerical experiments in

the two-dimensional case illustrate the results. This work extends

to a multi-dimensional case, enriches with additional results and

completes with some numerical experiments the study in 2021 by

Münch and Trélat devoted to the one-dimensional situation.
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1. Introduction

Let Ω be a bounded domain of Rd, d ∈ {2, 3} with C1,1 boundary and

ω ⊂⊂ Ω be a non-empty open set. Let T > 0 and denote QT := Ω× (0, T ),

qT := ω × (0, T ) and ΣT := ∂Ω × (0, T ). We consider the semi-linear wave
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equation

(1)

⎧⎪⎨
⎪⎩
Ly + g(y) = f1ω, in QT ,

y = 0, on ΣT ,

(y(·, 0), ∂ty(·, 0)) = (u0, u1), in Ω,

where L := ∂tt − Δ denotes the wave operator, (u0, u1) ∈ V := H1
0 (Ω) ×

L2(Ω) is the initial state of y and f ∈ L2(qT ) is a control function. Here
and throughout the paper, g : R → R is a function of class C1 such that
|g(r)| ≤ C(1 + |r|) ln(2 + |r|) for every r ∈ R and some C > 0. Then, (1)
has a unique global weak solution in C([0, T ];H1

0 (Ω))∩C1([0, T ];L2(Ω)) (see
[6, 9]).

The exact controllability for (1) in time T is formulated as follows: for
any (u0, u1), (z0, z1) ∈ V , find a control function f ∈ L2(qT ) such that
the weak solution of (1) satisfies (y(·, T ), ∂ty(·, T )) = (z0, z1). Assuming a
growth condition on the non-linearity g at infinity, this problem has been
solved in [21].

Theorem 1.1. [21, Theorem 2.2] For any x0 ∈ Rd \ Ω, let Γ0 = {x ∈
∂Ω, (x − x0) · ν(x) > 0} and, for any ε > 0, Oε(Γ0) = {y ∈ Rd | |y − x| ≤
ε for x ∈ Γ0}. Assume

(H0) T > 2maxx∈Ω |x− x0| and ω ⊇ Oε(Γ0) ∩ Ω for some ε > 0.

If g satisfies

(H1) lim sup|r|→∞
|g(r)|

|r| ln1/2 |r| = 0

then (1) is exactly controllable in time T .

This result improves [32] where a stronger condition of the support ω is
made, namely that ω is a neighborhood of ∂Ω and that T > diam(Ω \ ω).
In Theorem 1.1, Γ0 is the usual star-shaped part of the whole boundary of
Ω introduced in [33] and ν(x) denotes the outward normal derivative at any
point x ∈ ∂Ω.

A special case of Theorem 1.1 is when g is globally Lipschitz continuous,
which gives the main result of [43], later generalized to an abstract setting
in [26] using a global version of the inverse function theorem and improved
in [41] for control domains ω satisfying the classical multiplier method of
Lions [33]. Theorem 1.1 extends to the multi-dimensional case the result

of [44] under the condition lim sup|r|→∞
|g(r)|

|r| ln2 |r| = 0, relaxed later on in

[6], following [16], and in [34]. The exact controllability for subcritical non-
linearities is obtained in [14] assuming the sign condition rg(r) ≥ 0 for every
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r ∈ R. This latter assumption has been weakened in [25] to an asymptotic

sign condition leading to a semi-global controllability result in the sense that

the final data (z0, z1) is prescribed in a precise subset of V .

The proof given in [21, 32] is based on a fixed-point argument introduced

in [42, 44] that reduces the exact controllability problem to the obtention of

suitable a priori estimates for the linearized wave equation with a potential

(see Proposition A.1 in Appendix A). More precisely, it is shown that the

operator Λ : L∞(0, T ;Ld(Ω)) → L∞(0, T ;Ld(Ω)) where y := Λ(z) is a con-

trolled solution through the control function f of the linear boundary value

problem

⎧⎪⎨
⎪⎩
Ly + ĝ(z)y = −g(0) + f1ω, in QT ,

y = 0, on ΣT ,

(y(·, 0), ∂ty(·, 0)) = (u0, u1), in Ω,

ĝ(r) :=

⎧⎨
⎩

g(r)− g(0)

r
if r 	= 0,

g′(0) if r = 0,

(2)

satisfying (y(·, T ), ∂ty(·, T )) = (z0, z1) has a fixed point. The control f is

chosen in [32] as the one of minimal L2(qT )-norm. The existence of a fixed

point for the compact operator Λ is obtained by using the Leray-Schauder’s

degree theorem. In particular, under the growth assumption (H1), it is

shown a stability property of the operator Λ, i.e. the existence of a con-

stant M = M(‖(u0, u1)‖V , ‖(z0, z1)‖V ) such that Λ(BL∞(0,T ;Ld(Ω))(0,M)) ⊂
BL∞(0,T ;Ld(Ω))(0,M).

This article is concerned with the determination of strongly conver-

gent sequences (yk, fk)k∈N toward a state-control pair for the nonlinear sys-

tem (1). The controllability of nonlinear partial differential equations has

attracted a large number of works in the last decades (see the monograph

[13] and references therein). However, very few are concerned with the ap-

proximation of exact controls for nonlinear partial differential equations,

and the construction of convergent control approximations for controllable

nonlinear equations remains in general an open question. This is notably

due to the fact that the available controllability results are based on non

constructive fixed arguments. Thus, the Picard iterates (yk)k∈N associated

with the operator Λ, defined for any y0 ∈ L∞(0, T ;Ld(Ω)) by yk+1 = Λ(yk),

k ≥ 0, remains bounded in L∞(0, T ;Ld(Ω)) but has no reason to converge

(we refer to [20] where divergence is observed numerically in a parabolic

case).

Recently, two constructions of convergent sequences have been proposed

in the one-dimensional case with Ω = (0, 1): the first one in [39] is based on
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a least-squares approach: the extremal problem

min
(y,f)∈A

E(y, f), E(y, f) := ‖∂tty − ∂xxy + g(y)− f1ω‖2L2(QT )

is considered where A is a closed subset of L2(QT )× L2(qT ) containing the
initial condition and controllability requirement at the initial and final time
respectively. Assuming notably that g ∈ C1(R) satisfies for some β > 0 small
enough the asymptotic condition

(H′
1) lim sup|r|→∞

|g′(r)|
ln1/2 |r| ≤ β

a minimizing sequence for E is constructed and proved to converge strongly
to a state-control pair for (1). We refer to [39, Theorem 2.3] for a precise
statement. The least-squares approach turns out to be related to the oper-
ator ΛN : L∞(QT ) → L∞(QT ), where for any z ∈ L∞(QT ), y = ΛN (z) is a
controlled solution through the control f of

(3)

⎧⎪⎨
⎪⎩
∂tty − ∂xxy + g′(z) y = f 1ω + g′(z)z − g(z), in QT ,

y = 0, on ΣT ,

(y(·, 0), ∂ty(·, 0)) = (u0, u1) in Ω

satisfying (y(·, T ), ∂ty(·, T )) = (z0, z1). Again, for each z, the control of
minimal L2(qT ) norm is considered. A similar strategy has been successfully
applied in [30] for a semi-linear 1D heat equation. The second one in [2]
focuses on the boundary controllability and considers the operator ΛF :
L∞(QT ) → L∞(QT ), where for any z ∈ L∞(QT ), y = ΛF (z) is a controlled
solution through the control f of

(4)

⎧⎪⎨
⎪⎩
∂tty − ∂xxy = −g(z), in QT ,

y(0, ·) = 0, y(1, ·) = f, on (0, T ),

(y(·, 0), ∂ty(·, 0)) = (u0, u1) in Ω

satisfying (y(·, T ), ∂ty(·, T )) = (z0, z1). For each z, the state-control pair
(y, f) is chosen as the minimizer of an L2 functional involving parametrized
Carleman weights. Under the asymptotic condition (H′

1), it is shown that the
operator ΛF is contracting for a small enough parameter β and large enough
Carleman parameters (we refer to [2, Theorem 8] for a precise statement).
This provides a convergent sequence (yk, fk)k∈N to a state-control pair for
the nonlinear equation. Remark that a similar operator has also been used
recently for a semi-linear heat equation in [17].
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The objective of the present paper is two-fold: first, we extend the least-
squares approach introduced in [39] to a multi-dimensional case. With re-
spect to the one-dimensional case studied in [39], the controlled solution
is not anymore in L∞(QT ) but in L∞(0, T ;Lp(Ω)) for some p related to
the dimension of Ω. This requires a finer analysis in order to estimate the
observability constant. Second, we give some numerical illustrations of the
method (not provided in [39]) both in the one and two dimensional cases.
This requires the approximation of exact controls for linear wave equations,
which is known to be a delicate issue, since the works of Glowinski (see the
monograph [23] and the recent review [37]).

The paper is organized as follows. In Sections 2 and 3, we adapt [39]
to the higher dimension without reproducing all the arguments. More pre-
cisely, we define the non-convex optimization problem (5) involving the least-
squares functional E. We show that any critical point (y, f) for E such that
g′(y) ∈ L∞(0, T ;Ld(Ω)) is also a zero of E. This is done by introducing a
descent direction (Y 1, F 1) for E at any (y, f) for which E′(y, f) · (Y 1, F 1)
is proportional to

√
E(y, f). A minimizing sequence based on (Y 1, F 1) is

then proved to converge to a controlled pair for the semi-linear wave equa-
tion (1) under assumptions on g similar to (H′

1). We refer to Theorem 3.1
for a precise statement of our result. Section 4 provides several comments: in
particular, we emphasize that the minimizing sequence still converge with-
out any asymptotic property on the nonlinearity g if the initial condition
and target are small enough (see Proposition 4.1). Section 5 then illustrates
the result with some numerical experiments in one and two dimensions. Sec-
tion 6 concludes. In Appendix A, we recall some a priori estimates for the
linearized wave equation with potential in L∞(0, T ;Ld(Ω)) and source term
in L2(QT ).

As far as we know, the method introduced and analyzed in this work is
the first one providing an explicit, algorithmic construction of exact controls
for semi-linear wave equations with non-Lipschitz non-linearity and defined
over multi-dimensional bounded domains.

We also mention some recent constructive approach but assuming small-
ness assumptions on the initial data to be controlled (see [8] devoted to the
one-dimension case) or Lipschitz properties on the nonlinearity (see [40]).

This work extends the one-dimensional study addressed in [39], for which
the solution is uniformly bounded with respect to both the time and space
variable. In contrast, the multi-dimensional case for which the solution does
not belong to L∞(QT ), requires finer analysis: we refer for instance to
Lemma 3.3. With respect to [39], some proofs very closed to the one di-
mensional case are omitted; on the contrary, the proof of Proposition 4.1,
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left to the reader in [39], is given in the present work. With respect to [39],
we also provide some numerical experiments (including for d = 1).

For parabolic equations with Lipschitz non-linearity, we mention [27].
Actually, this work devoted to controllability problems takes their roots in
earlier works, namely [28, 29], concerned with the approximation of solution
of Navier-Stokes type problem, through least-squares methods: they refine
the analysis performed in [31, 36] inspired from the seminal contribution [3].

Throughout, we denote by ‖ · ‖∞ the usual norm in L∞(R), by (·, ·)X
the scalar product of X (if X is a Hilbert space) and by 〈·, ·〉X,Y the duality
product betweenX and Y . The notation ‖·‖2,qT stands for ‖·‖L2(qT ) and ‖·‖p
for ‖ · ‖Lp(QT ), p ∈ N�. We also denote by C a positive constant depending
only on Ω and T that may vary from line to line.

In the rest of the paper, we assume that the open set ω and the time T
satisfy (H0).

2. The least-squares functional and its properties

2.1. The least-squares problem

We define the Hilbert space

H =
{
(y, f) ∈ L2(QT )× L2(qT ), y ∈ C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω))

| Ly ∈ L2(QT )
}

endowed with the inner product

((y, f), (y, f))H = (y, y)2 +
(
(y(·, 0),∂ty(·, 0)), (y(·, 0), ∂ty(·, 0))

)
V

+ (Ly, Ly)2 + (f, f)2,qT

and the norm ‖(y, f)‖H :=
√

((y, f), (y, f))H.

Remark 2.1. Endowed with the norm

‖(y, ∂ty)‖L∞(0,T ;V ) := ‖y‖L∞(0,T ;H1
0 (Ω)) + ‖∂ty‖L∞(0,T ;L2(Ω)),

the space C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) is a Banach space and H ↪→(

C([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω))

)
×L2(qT ) continuously. Indeed, if (y, f)∈

H, we get from [33, Lemme 3.6, p. 39] that

‖(y, ∂ty)‖L∞(0,T ;V ) ≤ C
(
‖Ly‖L2(QT ) + ‖(y(·, 0), ∂ty(·, 0))‖V

)
from which we deduce that ‖(y, ∂ty)‖L∞(0,T ;V ) + ‖f‖L2(qT ) ≤ C‖(y, f)‖H.
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Let (u0, u1), (z0, z1) ∈ V . We define the non-empty subspaces of H

A =

{
(y, f) ∈ H | (y(·, 0), ∂ty(·, 0))=(u0, u1), (y(·, T ), ∂ty(·, T ))=(z0, z1)

}
,

A0 =

{
(y, f) ∈ H | (y(·, 0), ∂ty(·, 0)) = (0, 0), (y(·, T ), ∂ty(·, T )) = (0, 0)

}
.

Remark that (0, 0) ∈ A0 while A contains the controlled pairs for the linear

wave equation.

We consider the following non convex extremal problem:

(5) inf
(y,f)∈A

E(y, f), E(y, f) :=
1

2

∥∥Ly + g(y)− f1ω
∥∥2
2
.

The functional E is well-defined in A. Precisely,

Lemma 2.1. There exists a positive constant C > 0 such that E(y, f) ≤
C(1 + ‖(y, f)‖3H) for any (y, f) ∈ A.

Proof. A priori estimate for the linear wave equation reads as

‖(y, ∂ty)‖2L∞(0,T ;V ) ≤ C
(
‖Ly‖22 + ‖(u0, u1)‖2V

)
for any y such that (y, f) ∈ A. Using that |g(r)| ≤ C(1 + |r|) log(2 + |r|) for
every r ∈ R and some C > 0, we infer that

‖g(y)‖22 ≤ C2

∫
QT

(
(1 + |y|) log(2 + |y|)

)2

≤ C2

∫
QT

(1 + |y|)3 ≤ C2(|QT |3 + ‖y‖3L3(QT )
)

≤ C2
(
|QT |3 + ‖y‖3L∞(0,T ;H1

0 (Ω))

)
from which we get E(y, f) ≤ C

(
‖Ly‖22+ ‖f‖22,qT + |QT |3+ ‖y‖3L∞(0,T ;H1

0 (Ω))

)
and the result.

Within the hypotheses of Theorem 1.1, the infimum of the functional of

E is zero and is reached by at least one pair (y, f) ∈ A, solution of (1) and

satisfying (y(·, T ), ∂ty(·, T )) = (z0, z1). Conversely, any pair (y, f) ∈ A for

which E(y, f) vanishes is solution of (1). In spite of the lack of convexity

of the functional E, we are going to construct a minimizing sequence which
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always converges to a zero of E. In this respect, we formally look, for any
(y, f) ∈ A, for a pair (Y 1, F 1) ∈ A0 solution of

(6)

⎧⎪⎨
⎪⎩
LY 1 + g′(y) · Y 1 = F 11ω +

(
Ly + g(y)− f 1ω

)
, in QT ,

Y 1 = 0, on ΣT ,

(Y 1(·, 0), ∂tY 1(·, 0)) = (0, 0), in Ω.

Since (Y 1, F 1) belongs to A0, F
1 is a null control for Y 1. Among the controls

of this linear equation, we select the control of minimal L2(qT ) norm. In the
sequel, we shall call the corresponding solution (Y 1, F 1) ∈ A0 the solution
of minimal control norm. We have the following property.

Proposition 2.1. For any (y, f) ∈ A, there exists a pair (Y 1, F 1) ∈ A0

solution of (6). Moreover, the pair (Y 1, F 1) of minimal control norm satisfies
the following estimates:

(7) ‖(Y 1, ∂tY
1)‖L∞(0,T ;V ) + ‖F 1‖2,qT ≤ Ce

C‖g′(y)‖2

L∞(0,T ;Ld(Ω))

√
E(y, f),

and

(8) ‖(Y 1, F 1)‖H ≤ C
(
1+ ‖g′(y)‖L∞(0,T ;L3(Ω))

)
e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω))

√
E(y, f)

for some positive constant C > 0.

Proof. The first estimate follows Proposition A.2 and the equality ‖Ly +
g(y)− f 1ω‖2 =

√
2E(y, f). The second one follows from

‖(Y 1, F 1)‖H ≤ ‖LY 1‖2 + ‖Y 1‖2 + ‖F 1‖2,qT + ‖Y 1(·, 0), ∂tY 1(·, 0)‖V
≤ ‖Y 1‖2 + ‖g′(y)Y 1‖2 + 2‖F 1‖2,qT +

√
2
√

E(y, f)

≤ C
(
1 + ‖g′(y)‖L∞(0,T ;L3(Ω))

)
e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω))

√
E(y, f)

using that

‖g′(y)Y 1‖22 ≤
∫ T

0
‖g′(y)‖2L3(Ω)‖Y 1‖2L6(Ω)

≤ C‖g′(y)‖2L∞(0,T ;L3(Ω))‖Y 1‖2L∞(0,T ;H1
0 (Ω)).

2.2. Main properties of the functional E

Given any s ∈ (0, 1], we introduce for any g ∈ C1(R) the following hypothesis:
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(Hs) [g′]s := supa,b∈R
a �=b

|g′(a)−g′(b)|
|a−b|s < +∞

meaning that g′ is uniformly Hölder continuous with exponent s. In par-
ticular, g satisfies (H1) if and only if g′ is Lipschitz continuous (in this
case, g′ is almost everywhere differentiable and g′′ ∈ L∞(R), and we have
[g′]s ≤ ‖g′′‖∞).

The interest of the pair (Y 1, F 1) ∈ A0 lies in the following result.

Proposition 2.2. Assume that g satisfies (Hs) for some s ∈ (0, 1]. Let
(y, f) ∈ A and let (Y 1, F 1) ∈ A0 be a solution of (6). Then the derivative
of E at the point (y, f) ∈ A along the direction (Y 1, F 1) satisfies

(9) E′(y, f) · (Y 1, F 1) = 2E(y, f).

Proof. We check that for all (Y, F ) ∈ A0 the functional E is differentiable at
the point (y, f) ∈ A along the direction (Y, F ) ∈ A0. For any λ ∈ R, simple
computations lead to the equality

E(y + λY, f + λF ) = E(y, f) + λE′(y, f) · (Y, F ) + h((y, f), λ(Y, F ))

with

(10) E′(y, f) · (Y, F ) :=
(
Ly + g(y)− f 1ω, LY + g′(y)Y − F 1ω

)
2

and

h((y, f), λ(Y, F )) :=
λ2

2

(
LY + g′(y)Y − F 1ω, LY + g′(y)Y − F 1ω

)
2

+ λ
(
LY + g′(y)Y − F 1ω, l(y, λY )

)
2

+
(
Ly + g(y)− f 1ω, l(y, λY )

)
+

1

2
(l(y, λY ), l(y, λY ))

where l(y, λY ) := g(y + λY ) − g(y) − λg′(y)Y . The application (Y, F ) →
E′(y, f) · (Y, F ) is linear and continuous from A0 to R as it satisfies

|E′(y, f) · (Y, F )|
≤ ‖Ly + g(y)− f 1ω‖2‖LY + g′(y)Y − F 1ω‖2

≤
√

2E(y, f)

(
‖LY ‖2 + ‖g′(y)‖L∞(0,T ;L3(Ω))‖Y 1‖L∞(0,T ;H1

0 (Ω))+‖F‖2,qT
)

≤
√

2E(y, f)max
(
1, ‖g′(y)‖L∞(0,T ;L3(Ω))

)
‖(Y, F )‖H.

(11)
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Similarly, for all λ ∈ R�,∣∣∣∣ 1λh((y, f), λ(Y, F ))

∣∣∣∣ ≤|λ|
2
‖LY + g′(y)Y − F 1ω‖22

+

(
|λ|‖LY + g′(y)Y − F 1ω‖2

+
√

2E(y, f) +
1

2
‖l(y, λY )‖2

)
1

|λ|‖l(y, λY )‖2.

For any (x, y) ∈ R2 and λ ∈ R, we then write g(x+λy)− g(x) =
∫ λ
0 yg′(x+

ξy)dξ leading to

|g(x+ λy)− g(x)− λg′(x)y| ≤
∣∣∣∣
∫ λ

0
|y||g′(x+ ξy)− g′(x)|dξ

∣∣∣∣
≤

∣∣∣∣
∫ λ

0
|y|1+s|ξ|s |g

′(x+ ξy)− g′(x)|
|ξy|s dξ

∣∣∣∣
≤ [g′]s|y|1+s |λ|1+s

1 + s
.

It follows that |l(y, λY )| = |g(y + λY ) − g(y) − λg′(y)Y | ≤ [g′]s
|λ|1+s

1+s |Y |1+s

and

(12)
1

|λ|
∥∥l(y, λY )

∥∥
2
≤ [g′]s

|λ|s
1 + s

∥∥|Y |1+s
∥∥
2
.

But
∥∥|Y |1+s

∥∥2
2
=‖Y ‖2(s+1)

2(s+1)≤C‖Y ‖2(s+1)
L∞(0,T ;L4(Ω)); consequently, |

1
λ |‖l(y, λY )‖2

→ 0 as λ → 0 and |h((y, f), λ(Y, F ))| = o(λ). Eventually, the equality (9)

follows from the definition of the pair (Y 1, F 1) given in (6).

Remark that from the equality (10), the derivative E′(y, f) is indepen-
dent of (Y, F ). We can then define the norm

‖E′(y, f)‖A′
0
:= sup

(Y,F )∈A0\{0}

E′(y, f) · (Y, F )

‖(Y, F )‖H

associated with A′
0, the topological dual of A0.

Combining the equality (9) and the inequality (7), we deduce the fol-

lowing estimate of E(y, f) in term of the norm of E′(y, f).
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Proposition 2.3. For any (y, f) ∈ A, the following inequalities hold true:

(13)

1√
2max

(
1, ‖g′(y)‖L∞(0,T ;L3(Ω))

)‖E′(y, f)‖A′
0

≤
√

E(y, f)

≤ 1√
2
C

(
1 + ‖g′(y)‖L∞(0,T ;L3(Ω))

)
e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω))‖E′(y, f)‖A′
0

where C is the positive constant from Proposition 2.1.

Proof. (9) rewrites E(y, f) = 1
2E

′(y, f) · (Y 1, F 1) where (Y 1, F 1) ∈ A0 is
solution of (6) and therefore, with (8)

E(y, f) ≤ 1

2
‖E′(y, f)‖A′

0
‖(Y 1, F 1)‖A0

≤ 1

2
C
(
1+‖g′(y)‖L∞(0,T ;L3(Ω))

)
e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω))‖E′(y, f)‖A′
0

√
E(y, f).

On the other hand, the left inequality follows from (11).

Consequently, any critical point (y, f) ∈ A of E (i.e., E′(y, f) vanishes)
such that ‖g′(y)‖L∞(0,T ;L3(Ω)) is finite is a zero for E, a pair solution of the
controllability problem. In other words, any sequence (yk, fk)k>0 satisfying
‖E′(yk, fk)‖A′

0
→ 0 as k → ∞ and for which ‖g′(yk)‖L∞(0,T ;L3(Ω)) is uni-

formly bounded is such that E(yk, fk) → 0 as k → ∞. We insist that this
property does not imply the convexity of the functional E (and a fortiori
the strict convexity of E, which actually does not hold here in view of the
multiple zeros for E) but show that a minimizing sequence for E can not be
stuck in a local minimum.

On the other hand, the left inequality indicates the functional E is flat
around its zero set. As a consequence, gradient-based minimizing sequences
may achieve a low speed of convergence (we refer to [38] and also [31] devoted
to the Navier-Stokes equation where this phenomenon is observed).

We end this section with the following fundamental estimate.

Lemma 2.2. Assume that g satisfies (Hs) for some s ∈ (0, 1]. For any
(y, f) ∈ A, let (Y 1, F 1) ∈ A0 be defined by (6). For any λ ∈ R the following
estimate holds

(14) E
(
(y, f)− λ(Y 1, F 1)

)
≤ E(y, f)

(
|1− λ|+ |λ|1+s c(y)E(y, f)s/2

)2

with c(y) := C
(1+s)

√
2
[g′]sd(y)1+s and d(y) := Ce

C‖g′(y)‖2

L∞(0,T ;Ld(Ω)) .



640 Arthur Bottois et al.

Proof. Estimate (12) applied with Y = Y 1 reads

∥∥l(y, λY 1)
∥∥
2
≤ [g′]s

|λ|1+s

1 + s

∥∥|Y 1|1+s
∥∥
2
.

But ‖|Y 1|1+s
∥∥2
2
= ‖Y 1‖2(s+1)

2(s+1) ≤ C‖Y 1‖2(s+1)
L∞(0,T ;H1

0 (Ω)) with (7) lead to

(15)
∥∥|Y 1|1+s

∥∥
2
≤ C

(
CeC‖g′(y)‖L∞(0,T ;Ld(Ω)

)1+s

E(y, f)
1+s

2 .

Eventually, we write

2E
(
(y, f)− λ(Y 1, F 1)

)
=

∥∥∥∥(Ly + g(y)− f 1ω
)
− λ

(
LY 1 + g′(y)Y 1 − F 1ω

)
+ l(y,−λY 1)

∥∥∥∥2
2

=

∥∥∥∥(1− λ)
(
Ly + g(y)− f 1ω

)
+ l(y,−λY 1)

∥∥∥∥2
2

≤
(∥∥(1− λ)

(
Ly + g(y)− f 1ω

)∥∥
2
+
∥∥l(y,−λY 1)

∥∥
2

)2

≤ 2

(
|1− λ|

√
E(y, f) + [g′]s

|λ|1+s

1 + s

∥∥|Y 1|1+s
∥∥
2

)2

≤ 2

(
|1−λ|

√
E(y, f)+[g′]s

|λ|1+s

1 + s
C

(
CeC‖g′(y)‖L∞(0,T ;Ld(Ω)

)1+s

E(y, f)
1+s

2

)2

(16)

and we get the result.

3. Convergence of a minimizing sequence for E

Equality (9) shows that −(Y 1, F 1) given by the solution of (6) is a descent

direction for E. Therefore, we define, for any fixed m ≥ 1, the following

minimizing sequence (yk, fk)k>0 ∈ A

(17)

⎧⎪⎨
⎪⎩
(y0, f0) ∈ A,

(yk+1, fk+1) = (yk, fk)− λk(Y
1
k , F

1
k ), k ∈ N,

λk = argminλ∈[0,m]E
(
(yk, fk)− λ(Y 1

k , F
1
k )
)
,
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where (Y 1
k , F

1
k ) ∈ A0 is the solution of minimal control norm of

(18)

⎧⎪⎨
⎪⎩
LY 1

k + g′(yk) · Y 1
k = F 1

k 1ω + Lyk + g(yk)− fk1ω, in QT ,

Y 1
k = 0, on ΣT ,

(Y 1
k (·, 0), ∂tY 1

k (·, 0)) = (0, 0), in Ω.

The real m ≥ 1 is arbitrarily fixed and is introduced in order to keep the

sequence (λk)k∈N bounded.

Given any s ∈ (0, 1], we set

(19) β�(s) :=

√
s

2C(2s+ 1)

where C > 0, only depending on Ω and T , is the constant appearing in

Proposition A.2. In this section, we prove our main result.

Theorem 3.1. Assume that g′ satisfies (Hs) for some s ∈ (0, 1] and

(H2) There exists α ≥ 0 and β ∈ [0, β�(s)) such that |g′(r)| ≤ α +

β ln1/2(1 + |r|) for every r ∈ R.

Then, for any (y0, f0) ∈ A, the sequence (yk, fk)k∈N defined by (17) strongly

converges to a pair (y, f) ∈ A satisfying (1) and the condition

(y(·, T ), yt(·, T )) = (z0, z1), for all (u0, u1), (z0, z1) ∈ V .

Moreover, the convergence is at least linear and is at least of order 1 + s

after a finite number of iterations

This result remains true for s = 0 (remark that [g′]0 < ∞ is equivalent

to g′ ∈ L∞(R)) under the additional smallness assumption on ‖g′‖∞:

(H3)
√
2C‖g′‖∞eC‖g′‖2

∞|Ω|2/d < 1

with C the constant appearing in Proposition A.2. We refer to [39] devoted

to the case d = 1 for the details.

The proof of Theorem 3.1 consists in showing that the decreasing se-

quence (E(yk, fk))k∈N converges to zero. In view of (13), this property is

related to the uniform property of the observability constant

e
C‖g′(yk)‖2

L∞(0,T ;Ld(Ω))
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with respect to k. In order to fix some notations and the main ideas of the
proof of Theorem 3.1, we first prove in Section 3.1 the convergence of the se-
quence (yk, fk)k∈N under the stronger condition that g′ ∈ L∞(R), sufficient

to ensure the boundedness of the sequence
(
e
C‖g′(yk)‖2

L∞(0,T ;Ld(Ω))

)
k∈N. Then,

in Section 3.2, we prove Theorem 3.1 by showing that under the assump-
tion (H2), the sequence (yk, fk)k∈N is actually bounded in A. This implies

the same property for the real sequence e
C‖g′(yk)‖2

L∞(0,T ;Ld(Ω)) , and then the
announced convergence.

3.1. Proof of the convergence under the additional assumption
g′ ∈ L∞(R)

We establish the following preliminary result which coincides with Theorem
3.1 in the simpler case β = 0.

Proposition 3.1. Assume that g′ satisfies (Hs) for some s ∈ (0, 1] and
that g′ ∈ L∞(R). For any (y0, f0) ∈ A, the sequence (yk, fk)k∈N defined by
(17) strongly converges to a pair (y, f) ∈ A satisfying (1) and the condition
(y(·, T ), yt(·, T )) = (z0, z1). Moreover, the convergence is at least linear and
is at least of order 1 + s after a finite number of iterations.

Proceeding as in [29, 39], Proposition 3.1 follows from the following
lemma.

Lemma 3.1. Under the hypotheses of Proposition 3.1, for any (y0, f0) ∈ A,
there exists a k0 ∈ N such that the sequence (E(yk, fk))k≥k0

tends to 0 as
k → ∞ with at least a rate s+ 1.

Proof. Since g′ ∈ L∞(R), the nonnegative constant c(yk) in (14) is uniformly
bounded w.r.t. k: we introduce the real c > 0 as follows

(20) c(yk) ≤ c :=
C

(1 + s)
√
2
[g′]s

(
CeC‖g′‖2

∞|Ω|2/d
)1+s

, ∀k ∈ N.

|Ω| denotes the measure of the domain Ω. For any (yk, fk) ∈ A, let us then
denote the real function pk by

pk(λ) := |1− λ|+ λ1+scE(yk, fk)
s/2, ∀λ ∈ [0,m].

Lemma 2.2 with (y, f) = (yk, fk) then allows to write that

√
E(yk+1, fk+1) = min

λ∈[0,m]

√
E((yk, fk)− λ(Y 1

k , F
1
k )) ≤ pk(λ̃k)

√
E(yk, fk)

(21)
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with pk(λ̃k) := minλ∈[0,m] pk(λ). Assume first that s > 0. The optimal λ̃k is

given by

λ̃k :=

⎧⎨
⎩

1

(1+s)1/sc1/s
√

E(yk,fk)
, if (1 + s)1/sc1/s

√
E(yk, fk) ≥ 1,

1, if (1 + s)1/sc1/s
√

E(yk, fk) < 1

leading to

pk(λ̃k) =

⎧⎨
⎩1− s

(1+s)
1
s
+1

1

c1/s
√

E(yk,fk)
, if (1 + s)1/sc1/s

√
E(yk, fk) ≥ 1,

c E(yk, fk)
s/2, if (1 + s)1/sc1/s

√
E(yk, fk) < 1.

(22)

Accordingly, we may distinguish two cases:

• If (1 + s)1/sc1/s
√

E(y0, f0) < 1, then c1/s
√

E(y0, f0) < 1, and thus

c1/s
√

E(yk, fk) < 1 for all k ∈ N since the sequence (E(yk, fk))k∈N is de-

creasing. Hence (21) implies that

c1/s
√

E(yk+1, fk+1) ≤
(
c1/s

√
E(yk, fk)

)1+s ∀k ∈ N.

It follows that c1/s
√

E(yk, fk) → 0 as k → ∞ with a rate equal to 1 + s.

• If (1 + s)1/sc1/s
√

E(y0, f0) ≥ 1 then we check that the set I := {k ∈
N, (1 + s)1/sc1/s

√
E(yk, fk) ≥ 1} is a finite subset of N; indeed, for all

k ∈ I, (21) implies that

c1/s
√

E(yk+1, fk+1) ≤
(
1− s

(1 + s)
1

s
+1

1

c1/s
√

E(yk, fk)

)
c1/s

√
E(yk, fk)

≤ c1/s
√

E(yk, fk)−
s

(1 + s)
1

s
+1

(23)

and the strict decrease of the sequence (c1/s
√

E(yk, fk))k∈I . Thus there ex-

ists k0 ∈ N such that for all k ≥ k0, (1+s)1/sc1/s
√

E(yk, fk) < 1, that is I is a

finite subset of N. Arguing as in the first case, it follows that
√

E(yk, fk) → 0

as k → ∞.

It follows in particular from (22) that the sequence (pk(λ̃k))k∈N decreases

as well.
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Proof of Proposition 3.1. In view of (8), we write

(
1 + ‖g′(y)‖L∞(0,T ;L3(Ω))

)
e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω))

≤ (1 + ‖g′‖∞|Ω|1/3)eC‖g′‖2
∞|Ω|2/d

≤ e2C‖g′‖2
∞|Ω|2/d

using that (1 + u)eu
2 ≤ e2u

2

for all u ∈ R+. It follows that

(24)

k∑
n=0

|λn|‖(Y 1
n , F

1
n)‖H ≤ mCeC‖g′‖2

∞|Ω|2/d
k∑

n=0

√
E(yn, fn).

Using that pn(λ̃n) ≤ p0(λ̃0) for all n ≥ 0, we can write for n > 0,

(25)

√
E(yn, fn) ≤ pn−1(λ̃n−1)

√
E(yn−1, fn−1)

≤ p0(λ̃0)
√

E(yn−1, fn−1)

≤ (p0(λ̃0))
n
√

E(y0, f0).

Then, using that p0(λ̃0) = minλ∈[0,m] p0(λ) < 1 (since p0(0) = 1 and p′0(0) <
0), we finally obtain the uniform estimate

k∑
n=0

|λn|‖(Y 1
n , F

1
n)‖H ≤ mCeC‖g′‖2

∞|Ω|2/d
√

E(y0, f0)

1− p0(λ̃0)

for which we deduce (since H is a complete space) that the series∑
n≥0 λn(Y

1
n , F

1
n) converges in A0. Writing from (17) that (yk+1, fk+1) =

(y0, f0)−
∑k

n=0 λn(Y
1
n , F

1
n), we conclude that (yk, fk) strongly converges in

A to (y, f) := (y0, f0) +
∑

n≥0 λn(Y
1
n , F

1
n).

Let us now pass to the limit in (18). We write that ‖g(yk)−g(y)‖L2(QT ) ≤
‖g′‖∞‖yk−y‖L2(QT ) and thus g(yk) → g(y) in L2(QT ). Moreover, (g′(yk))k∈N
is a bounded sequence of L2(QT ) since g′ ∈ L∞. Then, using that (Y 1

k , F
1
k )

goes to zero as k → ∞ in A0, we pass to the limit in (18) and get that
(y, f) ∈ A solves (1). Moreover, since the limit (y, f) belongs to A, we have
that (y(·, T ), yt(·, T )) = (z0, z1) in Ω. Eventually, for all k > 0

‖(y, f)− (yk, fk)‖H =

∥∥∥∥
∞∑

p=k+1

λp(Y
1
p , F

1
p )

∥∥∥∥
H
≤ m

∞∑
p=k+1

‖(Y 1
p , F

1
p )‖H

(26)
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≤ mC

∞∑
p=k+1

√
E(yp, fp) ≤ mC

∞∑
p=k+1

p0(λ̃0)
p−k

√
E(yk, fk)

≤ mC
p0(λ̃0)

1− p0(λ̃0)

√
E(yk, fk)

and conclude from Lemma 3.1 to the convergence of order at least 1+s after

a finite number of iterates.

Remark 3.1. In particular, along the sequence (yk, fk)k∈N defined by (17),

the inequality (26) is a coercivity type property for the functional E; we

emphasize, in view of the non uniqueness of the zeros of E, that an estimate

(similar to (26)) of the form ‖(y, f)− (y, f)‖H ≤ C
√

E(y, f) does not hold

for all (y, f) ∈ A. We also emphasize that the sequence (yk, fk)k∈N and its

limits (y, f) are uniquely determined from the initialization (y0, f0) ∈ A and

from the selection criterion chosen for the state-control pair (Y 1
k , F

1
k ).

Remark 3.2. Estimate (24) implies the uniform estimate on the sequence

(‖(yk, fk)‖H)k∈N:

‖(yk, fk)‖H ≤ ‖(y0, f0)‖H +mCeC‖g′‖2
∞|Ω|2/d

k−1∑
n=0

√
E(yn, fn)

≤ ‖(y0, f0)‖H +mCeC‖g′‖2
∞|Ω|2/d

√
E(y0, f0)

1− p0(λ̃0)
.

In particular, for the less favorable case for which (1+s)1/sc1/s
√

E(y0, f0) ≥
1, we get

√
E(y0,f0)

1−p0(˜λ0)
= (1+s)

1
s
+1

s c1/sE(y0, f0), (see (22)) leading to

‖(yk, fk)‖H ≤ ‖(y0, f0)‖H +mCeC‖g′‖2
∞|Ω|2/d (1 + s)

1

s
+1

s
c1/sE(y0, f0),

and then, in view of (20), to the explicit estimate in term of the data

‖(yk, fk)‖H ≤‖(y0, f0)‖H

+m
(1 + s)

s

(
C[g′]s√

2

)1/s(
CeC‖g′‖2

∞|Ω|2/d
) 2s+1

s

E(y0, f0).

Remark 3.3. Recalling that the constant c is defined in (20), if
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(1 + s)1/sc1/s
√

E(y0, f0) ≥ 1, inequality (23) implies that

c1/s
√

E(yk, fk) ≤ c1/s
√

E(y0, f0)− k
s

(1 + s)
1

s
+1

, ∀k ∈ I.

Hence, the number of iteration k0 to achieve a rate 1 + s is estimated as
follows:

k0 =

⌊
(1 + s)

(
c1/s(1 + s)1/s

√
E(y0, f0)

)
− 1

s

⌋
+ 1

where �x� denotes the integer part of x. As expected, this number increases
with

√
E(y0, f0) and ‖g′‖∞. If (1 + s)1/sc1/s

√
E(y0, f0) < 1, then k0 = 0.

In particular, as s → 0+, k0 → ∞ if c > 1, i.e. if (H3) does not hold.

The following convergence also holds, independently of the dimension
of Ω. We refer to [39, Section 3, step 2] for the proof.

Lemma 3.2. Assume that g′ satisfies (Hs) for some s ∈ (0, 1] and that
g′ ∈ L∞(R). The sequence (λk)k>k0

defined in (17) converges to 1 as k → ∞
at least with order 1 + s.

3.2. Proof of Theorem 3.1

In this section, we relax the condition g′ ∈ L∞(R) and prove Theorem 3.1
under the assumption (H2). This assumption implies notably that |g(r)| ≤
C(1+ |r|) ln(2+ |r|) for every r ∈ R, mentioned in the introduction to state
the well-posedness of (1). The case β = 0 corresponds to the case developped
in the previous section, i.e. g′ ∈ L∞(R).

Within this more general framework, the difficulty is to have a uniform

control with respect to k of the observability constant Ce
C‖g′(yk)‖2

L∞(0,T ;Ld(Ω))

appearing in the estimates for (Y 1
k , F

1
k ), see Proposition 2.1. In other terms,

we have to show that the sequence (yk, fk)k∈N uniquely defined in (17) is
uniformly bounded in A, for any (y0, f0) ∈ A.

The following intermediate result is crucial as it gives an estimate of the
observability constant in term of an L∞(0, T, Lp(Ω)) norm of the state.

Lemma 3.3. Let C > 0, only depending on Ω and T be the constant ap-
pearing in Proposition A.2. Assume that g satisfies (H2) and 2Cβ2 ≤ 1.
Then for any (y, f) ∈ A,

e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω)) ≤ 2Cmax(1, e2Cα2 |Ω|2)
(
1 +

‖y‖L∞(0,T ;Lp�(Ω))

|Ω|1/p�

)2Cβ2
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for any p� ∈ N� with p� < ∞ if d = 2 and p� ≤ 6 if d = 3.

Proof. We use the following inequality (direct consequence of the inequality

(3.8) in [32]):

(27) e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω)) ≤ C

(
1 + sup

t∈(0,T )

∫
Ω
eC|g′(y)|2

)
, ∀(y, f) ∈ A.

Writing that |g′(y)|2 ≤ 2
(
α2 + β2 ln(1 + |y|)

)
, we get that

∫
Ω eC|g′(y)|2 ≤

e2Cα2 ∫
Ω(1 + |y|)2Cβ2

. Assuming 2Cβ2 ≤ p�, Hölder inequality leads to

∫
Ω
eC|g′(y)|2 ≤ e2Cα2

(∫
Ω
(1 + |y|)p�

) 2Cβ2

p�

|Ω|1−
2Cβ2

p�

≤ e2Cα2 |Ω|
(
1 +

‖y‖Lp�(Ω)

|Ω|1/p�

)2Cβ2

.

It follows from (27) that for every (y, f) ∈ A,

e
C‖g′(y)‖2

L∞(0,T ;Ld(Ω)) ≤ C

(
1 + e2Cα2 |Ω|

(
1 +

‖y‖L∞(0,T ;Lp� (Ω))

|Ω|1/p�

)2Cβ2)

≤ Cmax(1, e2Cα2 |Ω|)
(
1+

(
1+

‖y‖L∞(0,T ;Lp� (Ω))

|Ω|1/p�

)2Cβ2)

≤ 22Cβ2

Cmax(1, e2Cα2 |Ω|)
(
1 +

‖y‖L∞(0,T ;Lp� (Ω))

|Ω|1/p�

)2Cβ2

and the result.

Lemma 3.4. Assume that g satisfies (H2) and 2Cβ2 ≤ 1. For any (y, f) ∈
A, the unique solution (Y 1, F 1) ∈ A0 of (6) satisfies

‖(Y 1, ∂tY
1)‖L∞(0,T ;V ) + ‖F 1‖2,qT ≤ d(y)

√
E(y, f)

with d(y) :=C3(α)(1+
‖y‖L∞(0,T ;L1(Ω))

|Ω| )2Cβ2

and C3(α) :=2Cmax(1, e2Cα2 |Ω|).

Proof. Lemma 3.3 with p� = 1 and estimate (7) lead to the result.

Proof of Theorem 3.1. If the initialization (y0, f0) ∈ A is such that

E(y0, f0) = 0, then the sequence (yk, fk)k∈N constant equal to (y0, f0) is

convergent. We assume in the sequel that E(y0, f0) > 0.
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We are going to prove that, for any β < β�(s), there exists a constant
M > 0 such that the sequence (yk)k∈N defined by (17) enjoys the uniform
property

(28) ‖yk‖L∞(0,T ;L1(Ω)) ≤ M, ∀k ∈ N.

The convergence of the sequence (yk, fk)k∈N in A will then follow by proceed-
ing as in Section 3.1. Remark preliminary that the assumption β < β�(s)
implies 2Cβ2 < s

2s+1 ≤ 1 since s ∈ (0, 1].

Proof of the uniform property (28) for some M large enough. As for n = 0,
from any initialization (y0, f0) chosen in A, it suffices to take M larger than
M1 := ‖y0‖L∞(0,T ;L1(Ω)). We then proceed by induction and assume that, for
some n ∈ N, ‖yk‖L∞(0,T ;L1(Ω)) ≤ M for all k ≤ n. This implies in particular
that,

d(yk) ≤ dM (β) := C3(α)

(
1 +

M

|Ω|

)2Cβ2

, ∀k ≤ n

and then

(29) c(yk) ≤ cM (β) :=
C

(1 + s)
√
2
[g′]s d

1+s
M (β), ∀k ≤ n.

Then, we write that

‖yn+1‖L∞(0,T ;L1(Ω)) ≤ ‖y0‖L∞(0,T ;L1(Ω)) +

n∑
k=0

λk‖Y 1
k ‖L∞(0,T ;L1(Ω)).

But, Lemma 3.4 implies that ‖Y 1
k ‖L∞(0,T ;L1(Ω)) ≤ dM (β)

√
E(yk, fk) for all

k ≤ n leading to

(30) ‖yn+1‖L∞(0,T ;L1(Ω)) ≤ ‖y0‖L∞(0,T ;L1(Ω)) +mdM (β)

n∑
k=0

√
E(yk, fk).

Moreover, inequality (25) implies that

n∑
k=0

√
E(yk, fk) ≤

1

1− p0(λ̃0)

√
E(y0, f0)

where p0(λ̃0) is given by (22) with c = cM (β).
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Now, we take M large enough so that (1 + s)1/sc
1/s
M (β)

√
E(y0, f0) ≥ 1

i.e.

(31)

(
C√
2
[g′]s

)1/s

C3(α)
2/s

(
1 +

M

|Ω|

) 4Cβ2

s √
E(y0, f0) ≥ 1.

Such M exists since
√

E(y0, f0) > 0 is independent of M and since the

left hand side is of order O(M
4Cβ2

s ) with 4Cβ2

s > 0. We denote by M2 the
smallest value of M such that (31) hold true.

Then, from (22), we get that p0(λ̃0) = 1 − s

(1+s)
1
s
+1

1

c
1/s
M (β)

√
E(y0,f0)

and

therefore

1

1− p0(λ̃0)
=

(1 + s)
1

s
+1

s
c
1/s
M (β)

√
E(y0, f0)

so that
∑n

k=0

√
E(yk, fk) ≤ (1+s)

1
s
+1

s c
1/s
M (β)E(y0, f0). It follows from (30)

that

‖yn+1‖L∞(0,T ;L1(Ω))≤‖y0‖L∞(0,T ;L1(Ω))+mdM (β)
(1+s)

1

s
+1

s
c
1/s
M (β)E(y0, f0).

The definition of cM (β) (see (29)) then gives

‖yn+1‖L∞(0,T ;L1(Ω)) ≤ ‖y0‖L∞(0,T ;L1(Ω))

+
m(1 + s)

s

(
C[g′]s√

2

)1/s(
C3(α)

)1+ 2

s

E(y0, f0)

(
1 +

M

|Ω|

) (2Cβ2)(2s+1)

s

.

Now, we take M > 0 large enough so that the right hand side is bounded
by M , i.e.

‖y0‖L∞(0,T ;L1(Ω))

+
m(1 + s)

s

(
C[g′]s√

2

)1/s(
C3(α)

)1+ 2

s

E(y0, f0)

(
1 +

M

|Ω|

) (2Cβ2)(2s+1)

s

≤ M.

(32)

SuchM exists under the assumption β < β�(s) equivalent to (2Cβ2)(2s+1)
s < 1.

We denote by M3 the smallest value of M such that (32) holds true. Even-
tually, taking M := max(M1,M2,M3), we get that ‖yn+1‖L∞(0,T ;L1(Ω)) ≤ M
as well. We have then proved by induction the uniform property (28) for
some M large enough.
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Proof of the convergence of the sequence (yk, fk)k∈N. In view of Lemma

3.3 with p� = 1, the uniform property (28) implies that the observability

constant Ce
C‖g′(yk)‖2

L∞(0,T ;Ld(Ω)) appearing in the estimates for (Y 1
k , F

1
k ) (see

Proposition 2.1) is uniformly bounded with respect to the parameter k. As

a consequence, the constant c(yk) appearing in the instrumental estimate

(14) is bounded by cM (β) given by (29). Consequently, the developments of

Section 3.1 apply with c = cM (β). Theorem 3.1 then follows from the proof

of Proposition 3.1 except for the limit in (18) with respect to k (since g′ is not
anymore in L∞(QT )). Since g ∈ C1(R), a.e in QT there exists 0 ≤ θ(x, t) ≤ 1

such that

|g(yk(x, t))− g(y(x, t))|
= |g′(y(x, t) + θ(x, t)yk(x, t))||yk(x, t)− y(x, t)|
≤ (α+ β ln1/2

(
1 + |y(x, t) + θ(x, t)yk(x, t)|

)
)|yk(x, t)− y(x, t)|

≤ (α+ β(|y(x, t)|1/2 + |yk(x, t)|1/2))|yk(x, t)− y(x, t)|

and thus

‖g(yk)− g(y)‖2 ≤
(
α|QT |1/4 + β(‖y‖1/22 + ‖yk‖1/22 )

)
‖yk − y‖4.

Since yk → y in L4(QT ), it follows that g(yk) → g(y) in L2(QT ). Moreover,

since (yk)k∈N is a bounded sequence of L4(QT ), the estimate

‖g′(yk)‖2 ≤ C(α+ β‖yk‖1/22 )‖yk‖4

implies that (g′(yk))k∈N is a bounded sequence of L2(QT ). Then, using that

(Y 1
k , F

1
k ) goes to zero as k → ∞ in A0, we pass to the limit in (18) and get

that (y, f) ∈ A solves (1).

Remark 3.4. Remark that M := max(M2,M3) since M3 ≥ M1. The con-

stant M2 can be made explicit since the constraint (31) implies that

(
C[g′]s√

2

)1/s

C3(α)
2/s

(
1 +

M

|Ω|

) 4Cβ2

s √
E(y0, f0) ≥ 1,

equivalent to

(
1 +

M

|Ω|

)2Cβ2

≥ C3(α)
−1

√
E(y0, f0)

−s/2
(

C√
2
[g′]s

)−1/2

.
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In particular, M2 is large for small values of
√

E(y0, f0), for any s > 0. On
the other hand, the constant M3 is no explicit, hence whether M2 > M3 or
M3 > M2 depend on the values of

√
E(y0, f0) and ‖y0‖L∞(0,T ;L1(Ω)). Remark

that
√

E(y0, f0) can be large and ‖y0‖L∞(0,T ;L1(Ω)) small, and vice versa.

4. Comments

Asymptotic condition. The asymptotic condition (H2) on g′ is slightly
stronger than the asymptotic condition (H1) made in [21]: this is due to
our linearization of (1) which involves r → g′(r) while the linearization (2)
in [21] involves r → (g(r) − g(0))/r. There exist cases covered by Theorem
1.1 in which exact controllability for (1) is true but that are not covered by
Theorem 3.1. Note however that the example g(r) = a+br+cr ln1/2(1+ |r|),
for any a, b ∈ R and for any c > 0 small enough (which is somehow the limit
case in Theorem 1.1) satisfies (H2) as well as (Hs) for any s ∈ (0, 1].

Link with Newton method. Defining F : A → L2(QT ) by F (y, f) := (Ly +
g(y)−f 1ω), we have E(y, f) = 1

2‖F (y, f)‖22 and we observe that, for λk = 1,
the algorithm (17) coincides with the Newton algorithm associated to the
mapping F . This explains the super-linear convergence property in Theorem
3.1, in particular the quadratic convergence when s = 1. The optimization
of the parameter λk gives to a global convergence property of the algorithm
and leads to the so-called damped Newton method applied to F (we refer
to [15, chapter 8]). Section 5.3 provides some numerical illustrations of this
property.

Initialization with the controlled pair of the linear equation. The number
of iterates to achieve convergence (notably to enter in a super-linear regime)
depends on the size of the value E(y0, f0). A natural example of an initial-
ization (y0, f0) ∈ A is the unique solution of minimal control norm of (1)
with g = 0 (i.e., in the linear case). Under the assumption (H2), this leads
to the estimate

E(y0, f0) =
1

2
‖g(y0)‖22 ≤ |g(0)|2|QT |+ 2

∫
QT

|y0|2
(
α2 + β2 ln(1 + |y0|)

)
.

Local controllability when removing the growth condition (H2). If the real
E(y0, f0) is small enough, we may remove the growth condition (H2) on g′.

Proposition 4.1. Assume g′ satisfies (Hs) for some s ∈ (0, 1]. Let
(yk, fk)k>0 be the sequence of A defined in (17). There exists a constant
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C([g′]s) such that if E(y0, f0) ≤ C([g′]s), then (yk, fk)k∈N → (y, f) in A
where f is a null control for y solution of (1). Moreover, the convergence is

at least linear and is at least of order 1+s after a finite number of iterations.

Proof. In this proof, the notation ‖ · ‖∞,d stands for ‖ · ‖L∞(0,T ;Ld(Ω)). We

note D := C
(1+s)

√
2
[g′]s and ek := c(yk)E(yk, fk)

s/2 with c(y) := Dd(y)1+s

and d(y) := CeC‖g′(y)‖2
∞,d . (21) then reads

(33)
√

E(yk+1, fk+1) ≤ min
λ∈[0,m]

(
|1− λ|+ λ1+sek

)√
E(yk, fk).

We write |g′(yk)− g′(yk − λkY
1
k )| ≤ [g′]s|λkY

1
k |s so that

‖g′(yk+1)‖2∞,d

≤ ‖g′(yk)‖2∞,d +
(
[g′]sλ

s
k‖(Y 1

k )
s‖∞,d

)2
+ 2‖g′(yk)‖∞,d[g

′]sλ
s
k‖(Y 1

k )
s‖∞,d

and

eC‖g′(yk+1)‖2
∞,d

≤ eC‖g′(yk)‖2
∞,deC

(
[g′]sλs

k‖(Y 1
k )s‖∞,d

)2

e2C‖g′(yk)‖∞,d

(
[g′]sλs

k‖(Y 1
k )s‖∞,d

)
leading to

c(yk+1)

c(yk)
≤

(
eC

(
[g′]sλs

k‖(Y 1
k )s‖∞,d

)2

e2C‖g′(yk)‖∞,d

(
[g′]sλs

k‖(Y 1
k )s‖∞,d

))1+s

.

We infer that ‖(Y 1
k )

s‖∞,d = ‖Y 1
k ‖s∞,sd. Moreover, estimate (7) leads to

‖Y 1
k ‖s∞,sd ≤ ds(yk)E(yk, fk)

s/2 =
c(yk)

s

1+s

D
s

1+s

E(yk, fk)
s/2

≤ D− s

1+s c(yk)E(yk, fk)
s/2

using that c(yk) ≥ 1 (by increasing the constant C if necessary). Conse-

quently,

eC
(
[g′]sλs‖(Y 1

k )s‖∞,d

)2

≤ eC
(
[g′]sλsD

− s
1+s ek

)2

:= eC1e2k .

Similarly,

‖g′(yk)‖∞,d‖(Y 1
k )

s‖∞,d ≤ ‖g′(yk)‖∞,dd
s(yk)E(yk, fk)

s/2
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≤ ‖g′(yk)‖∞,d

(
CeC‖g′(y)‖2

∞,d

)s

E(yk, fk)
s/2

≤
(
CeC‖g′(y)‖2

∞,d

)s+1

E(yk, fk)
s/2

≤ c(yk)

D
E(yk, fk)

s/2 =
ek
D

using that a ≤ CeCa2

for all a ≥ 0 and C > 0 large enough. It follows that

e2C‖g′(yk)‖∞,d

(
[g′]sλs

k‖(Y 1
k )s‖∞,d

)
≤ e2C[g′]sλs

k

ek
D := eC2ek

and then c(yk+1)
c(yk)

≤ (eC1e2k+C2ek)1+s. By multiplying (33) by c(yk+1), we ob-

tain the inequality

ek+1 ≤ min
λ∈[0,m]

(
|1− λ|+ ekλ

1+s
)

(eC1e2k+C2ek)1+s ek.

If 2ek<1, the minimum is reached for λ=1 leading ek+1

ek
≤ ek(e

C1e2k+C2ek)1+s.
Consequently, if the initial guess (y0, f0) belongs to the set {(y0, f0) ∈
A, e0 < 1/2, e0(e

C1e20+C2e0)1+s < 1}, the sequence (ek)k>0 goes to zero as
k → ∞. Since c(yk) ≥ 1 for all k ∈ N, this implies that the sequence
(E(yk, fk))k>0 goes to zero as well. Moreover, from (7), we get

D‖(Y 1
k , F

1
k )‖H ≤ ek

√
E(yk, fk)

and repeating the arguments of the proof of Proposition 3.1, we conclude
that the sequence (yk, fk)k>0 converges to a controlled pair for (1).

These computations do not assume (H2) for g. However, the small-
ness assumption on e0 requires a smallness assumption on E(y0, f0) (since
c(y0) > 1). This is equivalent to assume the controllability of (1). Alter-
natively, in the case g(0) = 0, the smallness assumption on E(y0, f0) is
achieved as soon as ‖(u0, u1)‖V is small enough. Therefore, the convergence
result stated in Proposition 4.1 is equivalent to the local controllability prop-
erty for (1). Proposition 4.1 can also be seen as a consequence of the usual
convergence of the Newton method: when E(y0, f0) is small enough, i.e.,
when the initialization is close enough to the solution, then λk = 1 for every
k ∈ N and we recover the standard Newton method.

Weakening of the condition (Hs). Given any s ∈ (0, 1], we introduce for
any g ∈ C1(R) the following hypothesis:
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(H
′
s) There exist α, β, γ ∈ R+ such that |g′(a) − g′(b)| ≤ |a − b|s

(
α +

β(|a|γ + |b|γ)
)
, ∀a, b ∈ R

which coincides with (Hs) if γ = 0 for α + β = [g′]s. If γ ∈ (0, 1) is small
enough and related to the constant β appearing in the growth condition
(H2), Theorem 3.1 still holds if (Hs) is replaced by the weaker hypothe-

sis (H
′
s). Precisely, if g satisfies (H2) and (H

′
s) for some s ∈ (0, 1], then the

sequence (yk, fk)k∈N defined by (17) fulfills the estimate

E(yk+1, fk+1) ≤ E(yk, fk) min
λ∈[0,m]

(
|1− λ|+ λ1+sc(yk)E(yk, fk)

s/2
)2

with c(y) := 1
(1+s)

√
2

(
α + 2β‖yk‖γ∞,6γ + βmγd(y)γE(y0, f0)

γ/2
)
d(y)1+s and

d(y) := Ce
C‖g′(y)‖2

L∞(0,T ;Ld(Ω)) . Using Lemma 3.3 with p� = 6γ ≤ 6 and
proceeding as in the proof of Theorem 3.1, one may prove by induction
that the sequence (‖yk‖L∞(0,T ;L6(Ω)))k∈N is uniformly bounded under the

condition γ+2Cβ2(1+2s)
s < 1 and then deduce the convergence of the sequence

(yk, fk)k∈N.

5. Numerical illustrations

In this section, we illustrate our results of convergence. We provide some
practical details about the algorithm (17), then discuss some experiments in
one and two space dimension performed with the software FreeFem++ [24].

5.1. Algorithm

We introduce a cut-off χ of the form χ(x, t) = χ1(x)χ2(t), where χ1 ∈ C∞
0 (ω)

and χ2 ∈ C∞
0 (0, T ) take values in [0, 1]. In the sequel, we consider controls

of minimal L2
χ(qT )-norm, with L2

χ(qT ) :=
{
f |

∫
qT

f2χ−1 < +∞
}
. Besides,

for k ∈ N, we denote ek := ∂ttyk −Δyk + g(yk)− fk1ω. Then, algorithm (17)
can be expanded as follows.

1. Initialization – We compute the state-control pair (y0, f0) ∈ A solution
of

(34)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ly0 = f01ω, in QT ,

y0 = 0, on ΣT ,

(y0(·, 0), ∂ty0(·, 0)) = (u0, u1), in Ω,

(y0(·, T ), ∂ty0(·, T )) = (z0, z1), in Ω,



Constructive exact controls for semi-linear wave equations 655

where f0 is the control of minimal L2
χ(qT )-norm. We then evaluate

e0 = g(y0).
Assume now that (yk, fk) ∈ A and en ∈ L2(QT ) are computed for
some k ≥ 0.

2. Evaluation of the least-squares functional –We compute the error func-
tional E(yk, fk) =

1
2‖ek‖22. If

√
2E(yk, fk) ≤ 10−5, then the algorithm

stops.
3. Descent direction – We compute the state-control pair (Y 1

k , F
1
k ) ∈ A0

solution of

(35)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

LY 1
k + g′(yk)Y

1
k = F 1

k 1ω + ek, in QT ,

Y 1
k = 0, on ΣT ,

(Y 1
k (·, 0), ∂tY 1

k (·, 0)) = (0, 0), in Ω,

(Y 1
k (·, T ), ∂tY 1

k (·, T )) = (0, 0), in Ω,

where F 1
k is the control of minimal L2

χ(qT )-norm.
4. Optimal descent step – We compute the optimal descent step λk as

the minimizer in [0, 1] of λ �→ E
(
(yk, fk)−λ(Y 1

k , F
1
k )
)
, evaluated using

the expression

E
(
(yk, fk)− λ(Y 1

k , F
1
k )
)
=

1

2

∥∥(1− λ)ek + lk(λ)
∥∥2
2
,

where lk(λ) := g(yk − λY 1
k )− g(yk) + λg′(yk)Y 1

k . This is done with 20
iterations of the trichotomy method on the interval [0, 1].

5. Update – We set (yk+1, fk+1) = (yk, fk)−λk(Y
1
k , F

1
k ). We then evaluate

ek+1 = (1− λk)ek + lk(λk) and return to step 2.

In the sequel, we denote by k� = min
{
k ≥ 0 |

√
2E(yk, fk) ≤ 10−5

}
and

define the corresponding approximation of the solution in A by

(y�, f�) = (y0, f0)−
k�∑
k=0

λk(Y
1
k , F

1
k ).

Then, in order to measure a posteriori the quality of this approximation, we
shall compute the relative term

ET :=
‖(y, ∂ty)(·, T ; f�)‖V
‖(y, ∂ty)(·, T ; 0)‖V

,

where y(·, τ ; f�) (resp. y(·, τ ; 0)) is the solution at time τ of (1) with control
equal to f = f� (resp. f = 0).
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The introduction of the cut-off χ together with regularity assumptions on
the initial datum (u0, u1) make the state-control pairs (y0, f0) and (Y 1

k , F
1
k )

regular as well (we refer to [18] extended in [2] for weighted functionals). This
allows to give a meaning to ek = ∂ttyk −Δyk + g(yk) − fk1ω as an L2(QT )
function. Moreover, this involves stability properties with respect to the dis-
cretization parameters for the standard finite-dimensional approximations
of systems (34) to (37) below.

5.2. Experiments in 2D

We consider a two-dimensional case for which Ω = (0, 1)2. The controllability
time is equal to T = 3 and the control domain ω is depicted on Figure 1.
The triplet (Ω, ω, T ) satisfies (H0). Moreover, for any real constant cg, we
consider the non-linear function g defined by

g(r) = −cg r ln
1/2(2 + |r|), ∀r ∈ R.

We check that g satisfies (Hs) for s = 1 and (H2) for |cg| small enough. Re-
mark that the unfavorable situation in which the norm of the corresponding
uncontrolled solution of (1) grows corresponds to positive values of cg. As for
the initial and final data, we consider (u0, u1) = (100 sin(πx1) sin(πx2), 0)
and (z0, z1) = (0, 0) respectively.

Figure 1: Control domain ω ⊂ Ω = (0, 1)2 (black part).

In order to determine the state-control pairs (y0, f0) and (Y 1
n , F

1
n) of

(34) and (35) respectively, we employ the discretize-then-control method
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introduced by Glowinski-Li-Lions in the seminal work [22], based on the
unconstrained minimization of the conjugate functional.

Concerning problem (34), for any (w0, w1) ∈ H := L2(Ω)×H−1(Ω), we
consider the adjoint system

(36)

⎧⎪⎨
⎪⎩
∂ttϕ−Δϕ = 0, in QT ,

ϕ = 0, on ΣT ,

(ϕ(·, T ), ∂tϕ(·, T )) = (w0, w1), in Ω,

and the functional

J�
0 (w0, w1) :=

1

2

∫
qT

|ϕ|2χ− 〈u0, ∂tϕ(·, 0)〉H1
0 (Ω),H−1(Ω) + (u1, ϕ(·, 0))L2(Ω)

+ 〈z0, w1〉H1
0 (Ω),H−1(Ω) − (z1, w0)L2(Ω).

Then, the control f0 of minimal L2
χ(qT )-norm is given by f0 = ϕ0χ, where

ϕ0 is the solution of (36) associated with the minimizer (ŵ0, ŵ1) of J
�
0 over

H. The resolution of this minimization problem is done using the Fletcher-
Reeves conjugate gradient algorithm, initialized with (w0, w1) = (0, 0). The
stopping criterion is ‖gp‖H ≤ 10−5‖g0‖H , where gp denotes the gradient of
J�
0 at iteration p.

Concerning problem (35), for any (w0, w1) ∈ H , we consider the adjoint
system

(37)

⎧⎪⎨
⎪⎩
Lϕ+ g′(yn)ϕ = 0, in QT ,

ϕ = 0, on ΣT ,

(ϕ(·, T ), ∂tϕ(·, T )) = (w0, w1), in Ω,

and, for all k > 0 the functional

J�
k (w0, w1) :=

1

2

∫
qT

|ϕ|2χ+

∫
QT

ekϕ.

Then, the control F 1
k of minimal L2

χ(qT )-norm is given by F 1
k = ϕkχ, where

ϕk is the solution of (37) associated with the minimizer (ŵ0, ŵ1) of J�
k

over H. The resolution of this minimization problem is done using the
Fletcher-Reeves conjugate gradient algorithm, initialized with the minimizer
of the functional J�

k−1. The stopping criterion is ‖gp‖H ≤ 10−5‖g0‖H , where
gp denotes the gradient of J�

k at iteration p.
To compute the solution of the state systems (34)–(35) and the adjoint

systems (36)–(37), we use a time-marching method combining an explicit
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Table 1: cg = 1 – Norms of (yk, fk) w.r.t. k defined by the algorithm (17)

k
√
2E(yk, fk) λk

‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2
χ(qT )

‖fk−1‖L2
χ(qT )

‖yk‖L2(QT ) ‖fk‖L2
χ(qT )

0 7.32× 101 1. – – 37.653 1339.39
1 9.62× 10−1 1. 1.72× 10−1 3.29× 10−1 37.113 1265.62
2 1.03× 10−5 1. 3.83× 10−4 1.06× 10−3 37.115 1265.77
3 6.42× 10−15 – 4.44× 10−9 9.34× 10−9 37.115 1265.77

centered finite-difference scheme in time and a finite-element approximation

in space. We consider a uniform discretization (ti)i=0,...,N of the time interval

[0, T ] and denote by δt = T/N the time discretization parameter. Besides,

we consider a family T = {Th, h > 0} of regular triangulations of Ω such that

Ω =
⋃

K∈Th
K. The family is indexed by h = maxK∈Th

|K|. For every time ti,

the variables ϕ0(·, ti), ϕn(·, ti), y0(·, ti) and Y 1
n (·, ti) are approximated in the

space Ph =
{
ph ∈ C(QT ) | ph|K ∈ P1(K), ∀K ∈ Th

}
where P1(K) denotes

the space of polynomials of degree one. We refer to [5] for convergence results

in this setting. We also refer to [1, 7, 19, 35]. In the sequel, we mainly use

a regular triangulation Th with fineness h = 1/64 and a time step equal

to δt = h/3 in order to satisfy the CFL condition arising from the explicit

scheme with respect to the time variable.

We now present some simulations for several values of the constant cg.

• Case cg = 1 – Table 1 collects some norms from the sequence (yk, fk)k∈N
associated with the value cg = 1. The convergence of the algorithm is ob-

served after k� = 3 iterations. The optimal steps λk are equal to one so that

the algorithm (17) coincides with the Newton algorithm (see the second

item of Section 4). Figure 2-left depicts with respect to the time variable

the L2(Ω)-norm of the controlled solution y� = yk=k� (red solid line) to be

compared with the L2(Ω)-norm of the controlled solution yk=0 of the linear

equation (blue dash-dotted line) used to initialize the algorithm (equiva-

lently, this controlled solution corresponds to cg = 0). The effect of the

non-linearity is reduced as the dynamics of the two controlled solutions are

similar. The figure also depicts the L2(Ω)-norm of the uncontrolled solution

(blue dashed line) and displays a periodic behavior. Similarly, Figure 2-

right depicts the L2
χ(qT )-norm of the null control f� = fk=k� (red solid line)

and fk=0 (blue dash-dotted line). By construction, these controls vanish at

the initial and final times. The corresponding value of the relative error

ET = 2.53 × 10−4 indicates a notable reduction of the solution at time T

thought the action of the control.
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Figure 2: cg = 1 – Left: – ( ) ‖y�(·, t)‖L2(Ω); ( ) ‖y0(·, t)‖L2(Ω);
( ) ‖y(·, t; 0)‖L2(Ω) vs t; Right: ( ) ‖f�(·, t)‖L2

χ(ω)
; ( ) ‖f0(·, t)‖L2

χ(ω)
vs t.

Table 2: cg = 5 – Norms of (yk, fk) w.r.t. k defined by the algorithm (17)

k
√

2E(yk, fk) λk
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2
χ(qT )

‖fk−1‖L2
χ(qT )

‖yk‖L2(QT ) ‖fk‖L2
χ(qT )

0 3.66× 102 1. – – 37.653 1339.39
1 4.87× 101 0.996 9.50× 10−1 1.05× 100 31.353 1223.44
2 8.65× 10−1 1. 7.67× 10−2 1.50× 10−1 32.101 1348.12
3 5.82× 10−5 1. 3.91× 10−4 7.37× 10−4 32.104 1348.09
4 7.17× 10−14 – 1.45× 10−8 3.24× 10−8 32.104 1348.09

• Case cg = 5 – Table 2 and Figures 3 collect the results obtained for
the value cg = 5. The relative error takes the value ET = 2.36 × 10−4. The
convergence is quadratic and is obtained after k� = 4 iterations.

• Case cg = 10 – Table 3 and Figures 4 collect the results obtained
for the value cg = 10. We compute the relative error ET = 2.64 × 10−5.
The convergence is observed after k� = 4 iterations. As before, the optimal
steps are very close to one. The main difference with the previous situations
for which cg = 1 and cg = 5 is the behavior of the uncontrolled solution
which grows exponentially with respect to the time variable, as shown in
Figure 4-left. As expected, this larger value of cg induces a larger gap be-
tween the non-linear control and the linear one. We observe notably that
the non-linear control f� acts stronger from the beginning, precisely in order
to balance the initial exponential growth of the solution outside the subset
ω. We also observe that the control reduces the oscillations of the corre-
sponding controlled solution (in comparison with the solution of the linear
equation). For larger values of cg, we suspect a different dynamic yielding
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Figure 3: cg = 5 – Left: – ( ) ‖y�(·, t)‖L2(Ω); ( ) ‖y0(·, t)‖L2(Ω);
( ) ‖y(·, t; 0)‖L2(Ω) vs t; Right: ( ) ‖f�(·, t)‖L2

χ(ω)
; ( ) ‖f0(·, t)‖L2

χ(ω)
vs t.

Table 3: cg = 10 – Norms of (yk, fk) w.r.t. k defined by the algorithm (17)

k
√

2E(yk, fk) λk
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2
χ(qT )

‖fk−1‖L2
χ(qT )

‖yk‖L2(QT ) ‖fk‖L2
χ(qT )

0 7.32× 102 1 – – 37.653 1339.39
1 1.59× 102 0.998 1.76× 100 9.40× 10−1 57.718 1164.11
2 2.43× 100 1 8.82× 10−2 1.30× 10−1 59.934 1138.75
3 4.09× 10−3 1 1.62× 10−3 5.66× 10−3 59.892 1141.01
4 1.80× 10−9 – 1.10× 10−6 2.96× 10−6 59.891 1141.01

to the first values of the optimal step λk being far from one (as observed in
[29] for the resolution of the Navier-Stokes system with large values of the
Reynolds number). However, for larger values of cg (for instance cg = 20),
the exponential growth behavior of the free solution used to initialize the
algorithm leads to numerical instabilities and overflows in the computation
of the controlled pair (Y 1

k , F
1
k ) solution of (35), where the potential g′(yk)

appears. This leads to the divergence of the conjugate gradient algorithm
including for very fine discretizations and the non-convergence of the least-
squares algorithm. In the next section, we shall employ a different method
of approximation allowing to consider larger values of cg, as it fails within
the strategy control-then-discretize.

• Case cg = −20 – For negative values of cg leading to rg(r) ≥ 0 for every
r, the situation is more favorable from a computational viewpoint. Table 4
and Figures 5 are concerned with the value cg = −20. The convergence is
observed after k� = 4 iterations and leads to ET = 3.64× 10−4. We observe
that the uncontrolled solution oscillates faster as cg decreases. This leads to
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Figure 4: cg = 10 – Left: – ( ) ‖y�(·, t)‖L2(Ω); ( ) ‖y0(·, t)‖L2(Ω);
( ) ‖y(·, t; 0)‖L2(Ω) vs t; Right: ( ) ‖f�(·, t)‖L2

χ(ω)
; ( ) ‖f0(·, t)‖L2

χ(ω)
vs t.

Table 4: cg = −20 – Norms of (yk, fk) w.r.t. k defined by the algorithm (17)

k
√

2E(yk, fk) λk
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2
χ(qT )

‖fk−1‖L2
χ(qT )

‖yk‖L2(QT ) ‖fk‖L2
χ(qT )

0 1.46× 103 1 – – 37.653 1339.39
1 2.70× 102 0.985 1.38× 100 1.69× 100 42.479 2601.16
2 1.55× 101 1 1.57× 10−1 1.43× 10−1 44.309 2696.17
3 1.94× 10−2 1 3.68× 10−3 5.13× 10−3 44.34 2700.73
4 9.66× 10−9 – 2.88× 10−6 4.80× 10−6 44.34 2700.73

an oscillatory dynamic of the optimal control pair (y�, f�). We also observe
that the norm of the control f� is significantly greater than the norm of f0,
the initial control associated with the linear case.

Table 5 associated with the value cg = 5 provides a numerical evidence
of the convergence of the approximation (y�h, f

�
h) with respect to the value

of h. Actually, in view of the inequality

‖f − fh
k ‖ ≤ ‖f − fk‖+ ‖fk − fh

k ‖, ∀k ∈ N, ∀h > 0,

the convergence result stated in Theorem 3.1 for the sequence (fk)k∈N and
the convergence, for any k, of the approximation (fh

k )h>0 of the linear control
fk implies that fh

k is a finite dimensional approximation of f , a control
for (1). We observe that the level of the discretization has no influence on the
speed of convergence of the least-squares algorithm: we observe that k� = 4.

To end this section, we compare our least-squares approach with two
fixed-point methods. We first consider the method associated with the oper-
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Figure 5: cg = −20 – Left: – ( ) ‖y�(·, t)‖L2(Ω); ( ) ‖y0(·, t)‖L2(Ω);
( ) ‖y(·, t; 0)‖L2(Ω) vs t; Right: ( ) ‖f�(·, t)‖L2

χ(ω)
; ( ) ‖f0(·, t)‖L2

χ(ω)
vs t.

Table 5: cg = 5 – Norm of (y�h, f
�
h) w.r.t. h

h k� ‖y�h‖L2(QT ) ‖f�
h‖L2

χ(qT ) ET,h

1/10 4 27.278 753.111 8.88× 10−2

1/20 4 31.431 1397.7 1.00× 10−2

1/40 4 32.026 1353.28 8.91× 10−4

1/80 4 32.123 1350.24 1.37× 10−4

1/100 4 32.134 1350.11 8.27× 10−5

1/120 4 32.139 1350.06 5.71× 10−5

ator Λ : L∞(0, T ;Ld(Ω)) → L∞(0, T ;Ld(Ω)) mentioned in the introduction
where y = Λ(z) solves (2). This leads to the algorithm:

(38) y0 ∈ L2(QT ), yk+1 = Λ(yk), k ≥ 0.

With the same data and initialization, Table 6 collects some norms with
respect to k for cg = 5. The L2

χ(qT )-norm of the control is smaller than the
one from the least-squares algorithm (967.97 vs 1348.09) but leads to a larger
L2(QT )-norm of the controlled solution (36.901 vs 32.104). The convergence
is linear and reached after k� = 10 iterations leading to ET = 2.15 × 10−4.
Figure 6 displays the time evolution of the norms of yk� and fk� for the
final iteration. We observe that the approximation obtained differs from
those of Figures 3. For these data, the sequence converges for |cg| < 15
approximately. For larger values, we observe the non-convergence of the
method suggesting that the operator Λ is not contracting in general.
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Table 6: cg = 5 – Norms for the sequence defined by the fixed-point algo-
rithm (38)

k
√
2E(yk, fk)

‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2
χ(qT )

‖fk−1‖L2
χ(qT )

‖yk‖L2(QT ) ‖fk‖L2
χ(qT )

0 3.66× 102 – – 37.653 1339.39
1 4.73× 101 1.04× 100 1.31× 100 37.828 1031.1
2 2.65× 100 5.83× 10−2 1.71× 10−1 36.867 972.97
3 1.70× 10−1 3.74× 10−3 1.39× 10−2 36.901 967.508
4 1.05× 10−2 2.54× 10−4 1.02× 10−3 36.9 968.005
5 2.42× 10−3 5.27× 10−5 1.25× 10−4 36.901 967.973
6 5.20× 10−4 1.20× 10−5 2.63× 10−5 36.901 967.972
7 1.62× 10−4 3.57× 10−6 7.13× 10−6 36.901 967.97
8 4.39× 10−5 9.84× 10−7 1.96× 10−6 36.901 967.97
9 1.28× 10−5 2.83× 10−7 5.56× 10−7 36.901 967.97
10 3.59× 10−6 7.99× 10−8 1.57× 10−7 36.901 967.97

Figure 6: Fixed-point algorithm (38); cg = 5 – Left: ‖yk�(·, t)‖L2(Ω) ( ) and
‖y0(·, t)‖L2(Ω) ( ) vs t; Right: ‖fk�(·, t)‖L2

χ(ω)
( ) and ‖f0(·, t)‖L2

χ(ω)
( )

vs t.

The second fixed-point method is associated with the operator ΛF :
L2(QT ) → L2(QT ) and defined by y = ΛF (z), where y is a controlled solu-
tion of

(39)

⎧⎪⎨
⎪⎩
Ly = f1ω − g(z), in QT ,

y = 0, on ΣT ,

(y(·, 0), ∂ty(·, 0)) = (u0, u1), in Ω,

satisfying (y(·, T ), ∂ty(·, T )) = (z0, z1). The function f is selected as the con-
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trol of minimal L2
χ(qT )-norm. Any fixed point of ΛF is a controlled solution

for (1). Theorem 1.1 implies the existence of at least one fixed point for ΛF .
The controllability of the system (39) allows to define the sequence (yk)k∈N
as follows:

(40) y0 ∈ L2(QT ), yk+1 = ΛF (yk), k ≥ 0.

With the same data and initialization, Table 7 collects some norms with
respect to k for cg = 5. The function fk is the control of minimal L2

χ(qT )-
norm for yk solution of (39). The L2-norm of the controlled pair is greater
than the one obtained from the least-squares algorithm. The convergence
is significantly slower and reached after k� = 50 iterations leading to ET =
2.02 × 10−4. The convergence is again linear. Figures 7 depicts the time
evolution of the norms of yk� and fk� for the final iteration. We check that
the approximation obtained differs from those of Figures 3. For these data,
the sequence converges for |cg| < 7 approximately. For larger values, we
observe the non-convergence of the method suggesting that the operator ΛF

is not contracting in general. We refer to [2] for d = 1 (extended in [12] and
boundary controllability, the operator ΛF is proved to be contracting when
associated to a different control cost.

Figure 7: Fixed-point algorithm (40); cg = 5 – Left: ‖yk�(·, t)‖L2(Ω) ( ) and
‖y0(·, t)‖L2(Ω) ( ) vs t; Right: ‖fk�(·, t)‖L2

χ(ω)
( ) and ‖f0(·, t)‖L2

χ(ω)
( )

vs t.

5.3. Experiments in 1D

In order to bypass the numerical instabilities observed for large values of
cg in Subsection 5.2, we employ, in the one-dimensional setting, a different
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Table 7: cg = 5 – Norms for the sequence defined by the fixed-point algo-
rithm (40)

k
√
2E(yk, fk)

‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖fk−fk−1‖L2
χ(qT )

‖fk−1‖L2
χ(qT )

‖yk‖L2(QT ) ‖fk‖L2
χ(qT )

0 3.66× 102 – – 37.653 1339.39
1 3.29× 102 8.82× 10−1 1.64× 100 50.427 2333.24
2 1.97× 102 3.95× 10−1 7.55× 10−1 51.157 2339.62
3 7.41× 101 1.41× 10−1 2.58× 10−1 51.492 2032.67
4 2.94× 101 5.55× 10−2 8.26× 10−2 52.085 1988.9
5 1.58× 101 2.91× 10−2 2.91× 10−2 52.667 1994.82
6 1.05× 101 1.91× 10−2 2.05× 10−2 53.102 2003.63
7 7.31× 100 1.31× 10−2 1.27× 10−2 53.43 2009.52
8 5.19× 100 9.21× 10−3 9.58× 10−3 53.671 2014.45
9 3.71× 100 6.53× 10−3 6.63× 10−3 53.848 2018.1
10 2.66× 100 4.66× 10−3 4.84× 10−3 53.978 2020.95
. . . . . . . . . . . . . . . . . .
46 2.87× 10−5 4.87× 10−8 5.37× 10−8 54.334 2029.72
47 2.10× 10−5 3.56× 10−8 3.93× 10−8 54.334 2029.72
48 1.54× 10−5 2.60× 10−8 2.87× 10−8 54.334 2029.72
49 1.13× 10−5 1.91× 10−8 2.10× 10−8 54.334 2029.72
50 8.23× 10−6 1.39× 10−8 1.54× 10−8 54.334 2029.72

method, not based on the minimization of J� but on the direct approxi-
mation of the optimality condition associated with the controllability. We
refer to [10, 11] where this method – falling in the framework control-then-
discretize – has been introduced and to [4] for a numerical analysis.

We consider Ω = (0, 1). The controllability time is equal to T = 2.5 and
the control domain is the interval ω = (0.2, 0.4). For any cg ∈ R and α > 0,
we consider the non-linear function g defined by

g(r) = −cg r ln
α(2 + |r|), ∀r ∈ R.

For α = 1/2, we check that g satisfies (Hs) for s = 1 and (H2) for |cg| small
enough. Moreover, in this one-dimensional setting, it is known (see [44]) that
the semi-linear wave equation (1) is exactly controllable up to α = 2. As for
the initial and final data, we consider (u0, u1) = (100 sin(πx1) sin(πx2), 0)
and (z0, z1) = (0, 0) respectively.

In order to determine the state-control pairs (y0, f0) and (Y 1
k , F

1
k ) of (34)

and (35) respectively, we employ the space-time mixed formulation method
used in [11].
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Concerning problem (34), we set M := L2(0, T ;H1
0 (Ω)),

Φ0 :=
{
ϕ ∈ L2(QT ); Lϕ ∈ L2(0, T ;H−1(Ω)) in QT , ϕ = 0 on ΣT

}
,

and for (ϕ, μ) ∈ Φ0 ×M , we consider the Lagrangian

L0(ϕ, μ) :=
1

2

∫
qT

|ϕ|2χ−
∫ T

0
〈Lϕ, μ〉H−1(Ω),H1

0 (Ω)

− 〈u0, ∂tϕ(·, 0)〉H1
0 (Ω),H−1(Ω) + (u1, ϕ(·, 0))L2(Ω)

+ 〈z0, ∂tϕ(·, T )〉H1
0 (Ω),H−1(Ω) − (z1, ϕ(·, T ))L2(Ω).

Then, the control f0 of minimal L2
χ(qT )-norm is given by f0 = ϕ0χ, where

(ϕ0, μ0) ∈ Φ0×M is the unique saddle point of L0. Note also that it appears
that μ0 is the controlled solution y0 of (34) associated with the control f0.

Concerning problem (35), we set

Φk :=
{
ϕ ∈ L2(QT ); Lϕ+g′(yk)ϕ ∈ L2(0, T ;H−1(Ω)) in QT , ϕ = 0 on ΣT

}
,

and for (ϕ, μ) ∈ Φk ×M , we consider the Lagrangian

Lk(ϕ, μ) :=
1

2

∫
qT

|ϕ|2χ−
∫ T

0
〈Lϕ+ g′(yk)ϕ, μ〉H−1(Ω),H1

0 (Ω) +

∫
QT

ekϕ.

Then, the control F 1
k of minimal L2

χ(qT )-norm is given by F 1
k = ϕkχ, where

(ϕk, μk) ∈ Φk×M is the unique saddle point of Lk. Note also that it appears
that μk is the controlled solution Y 1

k of (35) associated with the control F 1
k .

To approximate the saddle point of L0 and Lk, we solve a finite-element
discretization of the mixed formulation associated with these Lagrangians.
We consider a family T = {Th, h > 0} of regular triangulations of QT such
that QT =

⋃
K∈Th

K. The family is indexed by h = maxK∈Th
|K|. The

functions ϕ0 and ϕk are approximated in the space Φh =
{
ϕh ∈ C1(QT ) |

ϕh|K ∈ P(K), ∀K ∈ Th
}

where P(K) denotes the reduced Hsieh-Clough-
Tocher C1-element. The functions μ0 and μk are approximated in the space
Mh =

{
μh ∈ C(QT ) | μh|K ∈ P1(K), ∀K ∈ Th

}
where P1(K) denotes the

space of polynomials of degree 1. In the sequel, we mainly use a regular
triangulation Th with fineness h = 1/64.

We now present some simulations for large values of cg in the case α =
1/2 and α = 2.

• Case α = 1/2, cg = 50 – We set α = 1/2 and we compute the sequence
(yk, fk)k∈N associated with the value cg = 50. The convergence of the algo-
rithm is observed after k� = 21 iterations. The corresponding value of the



Constructive exact controls for semi-linear wave equations 667

relative error is ET = 6.24× 10−17. Figure 8-left depicts the evolution of the
error

√
2E(yk, fk) (red dots, left axis), as well as the evolution of the opti-

mal steps λk (blue stars, right axis). Here, we can clearly see the two rates
of convergence described in Theorem 3.1. At first, the values of λk are close
to 0, while the error decreases linearly. Afterwards, around iteration k = 16,
λk reaches the value 1 while the error decreases quadratically. Note that,
due to numerical instabilities, the numerical method used in Subsection 5.2
does not converge for cg greater than 7.

Figure 8: Evolution of
√

2E(yk, fk) (•, left axis) and λk (�, right axis) w.r.t
k; Top: α = 1/2, cg = 50; Bottom: α = 2, cg = 3.

• Case α = 2, cg = 3 – We set α = 2 and we compute the sequence
(yk, fk)k∈N associated with the value cg = 3. The convergence of the algo-
rithm is observed after k� = 49 iterations. The corresponding value of the
relative error is ET = 1.18 × 10−17. Figure 8-right depicts the evolution of
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the error
√

2E(yk, fk) (red dots, left axis), as well as the evolution of the
optimal step λk (blue stars, right axis). In this case, the switch between
the linear convergence (corresponding to the damped Newton regime) and
the quadratic convergence (corresponding to the classical Newton regime)
occurs around iteration k = 45.

6. Conclusion

Exact controllability of (1) has been established in [21], under a growth
condition on g, by means of a Leray-Schauder fixed point argument that is
not constructive. In this paper, under a slightly stronger growth condition
and under the additional assumption that g′ is uniformly Hölder continuous
with exponent s ∈ (0, 1], we have designed an explicit algorithm and proved
its convergence of a controlled solution of (1). Moreover, the convergence
is super-linear of order greater than or equal to 1 + s after a finite number
of iterations. Our approach gives a new and constructive proof of the exact
controllability of (1). The method is general and may be applied to any other
equations or systems – not necessarily of hyperbolic nature – for which a
precise observability estimate for the linearized problem is available: we refer
to [27, 30, 17] addressing the case of the heat equation. We also mention the
recent extension [2] of this constructive method to address controllability
problem (initially investigated in [43]).

Numerical experiments reported are in agreement with the theoretical
convergence: in particular, the convergence is, after a finite number of it-
erations, super-linear to be compared with the linear rate observed with
algorithms derived from simpler linearizations. The experiments also con-
firm that the numerical method developed in [10, 11] and based on the direct
resolution of the optimality system (35)–(37) turns out to be very robust
with respect to the size of the potential and allows to consider large am-
plitudes of the nonlinearity, in contrast with the standard minimization of
the corresponding conjugate functional (introduced in [22]). We also empha-
sized that the convergence of the least-squares algorithm still holds without
growth assumptions on the nonlinear function if the initial condition and
final target are small enough.

The case for which the nonlinearities enjoy a sign type condition as
mentioned in the introduction and leading to uniform controllability results
with respect to the initial data will be discussed in a future work.
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Appendix A. Appendix: controllability results for the wave
equation

We recall some a priori estimates for the linear wave equation with potential
in L∞(0, T ;Ld(Ω)), d ∈ N� and right hand side in L2(QT ).

Proposition A.1 ([32, Theorem 2.1]). Assume that ω and T satisfy (H0)
(see Theorem 1.1). For any d ∈ N�, A ∈ L∞(0, T ;Ld(Ω)) and (φ0, φ1) ∈
H := L2(Ω)×H−1(Ω), the weak solution φ of

(41)

⎧⎪⎨
⎪⎩
Lφ+Aφ = 0, in QT ,

φ = 0, on ΣT ,

(φ(·, 0), ∂tφ(·, 0)) = (φ0, φ1), in Ω,

satisfies the observability inequality ‖φ0, φ1‖H ≤ Ce
C‖A‖2

L∞(0,T ;Ld(Ω))‖φ‖2,qT
for some C > 0 only depending on Ω and T .

Classical arguments then lead to following controllability result.

Proposition A.2. Let d in N�, A ∈ L∞(0, T ;Ld(Ω)), B ∈ L2(QT ) and
(z0, z1) ∈ V := H1

0 (Ω) × L2(Ω). Assume that ω and T satisfy (H0). There
exists a control function u ∈ L2(qT ) such that the weak solution of

(42)

⎧⎪⎨
⎪⎩
Lz +Az = u1ω +B, in QT ,

z = 0, on ΣT ,

(z(·, 0), ∂tz(·, 0)) = (z0, z1), in Ω,

satisfies (z(·, T ), zt(·, T )) = (0, 0) in Ω. Moreover, the unique pair (u, z) of
minimal control norm satisfies

(43) ‖u‖2,qT +‖(z, ∂tz)‖L∞(0,T ;V ) ≤ C

(
‖B‖2+‖z0, z1‖V

)
e
C‖A‖2

L∞(0,T ;Ld(Ω))

for some constant C > 0 only depending on Ω and T .

Let p� ∈ N� such that p� < ∞ if d = 2 and p� < 6 if d = 3.
We next discuss some properties of the operator Λ : L∞(0, T ;Lp�

(Ω)) →
L∞(0, T ;Lp�

(Ω)) defined by Λ(ξ) = yξ, a null controlled solution of the lin-
ear boundary value problem (2) with the control fξ of minimal L2(qT ) norm.
Proposition A.2 with B = −g(0) gives

(44) ‖(yξ, ∂tyξ)‖L∞(0,T ;V ) ≤ C
(
‖u0, u1‖V + ‖g(0)‖2

)
e
C‖ĝ(ξ)‖2

L∞(0,T ;Ld(Ω))



670 Arthur Bottois et al.

where the function ĝ is defined in (2). We assume that g ∈ C1(R) satisfies
the following asymptotic condition (slightly weaker than (H1)): there exists

a β small enough such that lim sup|r|→∞
|g(r)|

|r| ln1/2 |r| ≤ β, i.e.

(̂H1) There exist α ≥ 0 and β ≥ 0 small enough such that |g(r)| ≤
α+ β(1 + |r|) ln1/2(1 + |r|) for every r ∈ R.

This implies that ĝ satisfies |ĝ(r)| ≤ α+ β ln1/2(1 + |r|) for every r ∈ R

and some constant α > 0. This also implies that ĝ(ξ) ∈ L∞(0, T ;Ld(Ω)) for

any ξ ∈ L∞(0, T ;Lp�

(Ω)). Assuming 2Cβ
2 ≤ 1 and proceeding as in the

proof of Lemma 3.3, we get, for all ξ ∈ L∞(0, T ;Lp�

(Ω)),

e
C‖ĝ(ξ)‖2

L∞(0,T ;Ld(Ω)) ≤ C1

(
1 +

‖ξ‖L∞(0,T ;Lp� (Ω))

|Ω|1/p�

)2Cβ
2

,

for some C1 = C1(α). Using (44), we then infer for all ξ ∈ L∞(0, T ;Lp�

(Ω))
that

‖yξ‖L∞(0,T ;Lp� (Ω)) ≤ C
(
‖u0, u1‖V +‖g(0)‖2

)
C1

(
1+

‖ξ‖L∞(0,T ;Lp� (Ω))

|Ω|1/p�

)2Cβ
2

.

Taking β small enough so that 2Cβ
2
< 1, we conclude that there exists

M > 0 such that ‖ξ‖L∞(0,T ;Lp� (Ω)) ≤ M implies ‖Λ(ξ)‖L∞(0,T ;Lp� (Ω)) ≤ M .
This is the argument (introduced in [44] for the one-dimensional case and)
used in [32] to prove the controllability of (1).
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[11] Nicolae Ĉındea and Arnaud Münch. A mixed formulation for the direct
approximation of the control of minimal L2-norm for linear type wave
equations. Calcolo, 52(3):245–288, 2015. MR3386074
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