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We present a novel distributed Lagrange multiplier/fictitious do-
main (DLM/FD) method for simulating fluid-particle interaction
in viscoelastic fluids in Stokes regime. The results concerning an
ellipsoid rotating in a three dimensional (3D) bounded shear flow
are obtained for Deborah number (De) up to 4. The averaged angu-
lar velocities of a prolate ellipsoid rotating only in the shear plane
have been validated in Giesekus fluid and its period of rotation be-
comes larger when increasing the value of De. For a freely rotating
prolate ellipsoid placed in the middle between two moving walls in
Oldroyd-B fluids, kayaking motion is stable for lower De and then
tilted log-rolling becomes stable when De exceeds a critical value.
Similar results are also obtained for a rotating oblate ellipsoid.
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1. Introduction

Ellipsoid is a common shape of an object in the nature and can be found
everywhere in different scales such as sedimentation [1, 2, 3, 4, 5, 6, 7],
bubbles in the fluids [8, 9], colloids [10, 11, 12, 13], and swimmers [14]. There
are prolific studies about the motion or behaviors of spherical particle in
fluids but relatively rare researches about the ellipsoid due to its complexities
[15, 16, 17]. The complexities are not only because of the possible behaviors
due to the axisymmetric structure of ellipsoid including the ratio of semi-
major and semi-minor axes called aspect ratio (AR) and the initial direction
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of ellipsoid’s semi-major axis called the initial orientation vector, but also
because of the interaction between ellipsoids and fluid due to fluid viscosity,
elasticity, and inertia.

For a neutrally buoyant axisymmetric particle rotating in a steady vis-
cous unbounded shear flow of a Newtonian fluid at the Stokes regime, Jeffery
[18] found the “Jeffery orbits” which is the existence of infinitely many dif-
ferent periodic orbits and the particular orbit is selected based on the initial
orientation vector. As studied in [19], the inertia effects lift the degeneracy
of Jeffery orbits and determine the stabilities of the log-rolling and tumbling
orbits of ellipsoids rotating at very small Reynolds numbers. For prolate el-
lipsoids, the tumbling of semi-major axis in the shear plane is stable and
log-rolling (i.e., its semi-major axis aligns the vorticity direction) is unstable.
On the other hand, for not too disk-like oblate ellipsoids, log-rolling is stable
(i.e., its semi-minor axis aligns the vorticity direction) and tumbling of semi-
minor axis in the shear plane is unstable. For very flat oblate ellipsoids, both
log-rolling and tumbling are stable. But the complexity of non-Newtonian
fluids strongly alter the particle dynamics observed in a simple shear flow of
Newtonian fluids. For ellipsoid suspensions in a parallel-plate shear flow of
non-Newtonian fluids, Gunes et al. [20] provided some observations through
experiments about how ellipsoids transport in viscoelastic fluids. They found
that the increasing shear rate not only causes the period of rotation to be-
come larger but also makes the orientation of ellipsoids changing from the
vorticity direction (log-rolling mode) to flow direction and those ellipsoids
show the kayaking mode during this process. Abtahi et al. [21] investigated
the behavior of a prolate spheroid in shear flow of a shear-thinning Carreau
fluid and found that shear-thinning rheology does not lift the degeneracy of
Jeffery orbits observed in Newtonian fluids, but the instantaneous rate of
rotation and trajectories of the orbits are modified.

D’Avino et al. [22] studied the motion of prolate ellipsoids in a shear
flow of Giesekus viscoelastic fluids without particle inertial effect in Stokes
regime. They identified four regions characterized by different dynamical
behaviors of an prolate ellipsoid with AR = 4 through the Deborah number,
which is defined as De = γ̇λ1 where γ̇ is the shear rate and λ1 is the fluid
relaxation time. For De ≤ 2 (region I), the log-rolling motion is stable.
For 2 < De < 2.6 (region II), the semi-major axis is tilted in the flow-
vorticity plane with the semi-axis closer to the shear plane for a higher
De in this region. In region III, i.e., 2.6 ≤ De ≤ 2.75, both tilted and flow
alignment orientations coexist. But it needs a very long transient to reach the
flow direction. Finally, only alignment along the flow direction is stable for
De > 2.75 (region IV). Wang et al. [23] focused on the motion of neutrally
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buoyant prolate ellipsoids (AR = 4) in a bounded shear flow of Giesekus
fluids for De from 0 to 4. Their results are different from those reported in
[22] since the effect of fluid and particle inertia is included when studying
the rotating motion of prolate ellipsoids. For a prolate ellipsoid with it mass
center placed in the middle between two moving walls, before the Deborah
number reaches the critical value (between 1.8 and 2), its major axis rotates
as a kayaking motion instead of log-rolling. For De ≥ 2, the prolate ellipsoid
moves tilted forwardly and its orientation is closer to the flow direction.
But for a prolate ellipsoid placed away from the middle between two walls
initially, it migrates toward the nearby wall due to fluid elasticity, and its
semi-major axis is turned to the vorticity axis direction (resp., slightly away
from the vorticity) during the migration for lower (resp., higher) De values.
Li et al. [24] investigated the motion of a neutrally buoyant prolate ellipsoid
in viscoelastic shear flows with fluid inertia (Rep �= 0). For a prolate ellipsoid
with larger aspect ratio (AR = 4) in a Giesekus fluid with weak fluid inertia,
the fluid elasticity increases the particle rotation period and stabilizes its
orientation.

To simulate the motion of ellipsoids in a bounded shear flow of Giesekus
fluids in three dimensions (3D), we have generalized a distributed Lagrange
multiplier/fictitious domain (DLM/FD) method developed in [25] and [26]
for simulating the motion of neutrally buoyant particles in either Newtonian
or Oldroyd-B fluids in 3D to Giesekus fluids and then combined such method
with an operator splitting scheme and a matrix-factorization approach for
treating numerically the constitutive equations of the conformation tensor
of Giesekus fluids. In this matrix-factorization approach (see [26] and [27]),
which is a technique closely related to the one developed by Lozinski and
Owens in [28], we solve the equivalent equations so that the semi-positive
definiteness of the conformation tensor at the discrete time level can be pre-
served. In this article, the particle inertia has been considered in simulations
since the particle inertia has its effect on the motion of a long body as studied
in [19]). This aforementioned method has been validated by comparing the
numerical results of a prolate ellipsoid rotating velocity in a bounded shear
flow of Giesekus fluids with the results reported in [22]. We have further
tested the rotation behaviors of a prolate ellipsoid for the Deborah number
up to 4; our results show the prolate rotation dynamics in a bounded shear
flow of Oldroyd-B fluids are qualitatively same as those reported in [23] and
[24]. For an oblate ellipsoid, it is not surprising to find that its rotating dy-
namics is closely related to the prolate rotation behaviors. The content of
this article is as follows. In Section 2 we present the DLM/FD formulation
for an one ellipsoid problem in 3D Giesekus fluid and the related numerical
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Figure 1: An example of a shear flow region with an ellipsoid.

schemes. In Section 3 we first validate our methodology by comparing nu-
merical results for angular velocity of a prolate ellipsoid with those available
in literature. The study of rotation dynamics of prolate and oblate ellipsoids
are also presented. Conclusions are summarized in Section 4.

2. Models and numerical methods

2.1. DLM/FD formulation

Fictitious domain formulations using distributed Lagrange multiplier for
flow around freely moving particles at finite Reynolds numbers and their
associated computational methods have been developed and tested in, e.g.,
[29, 30, 31, 32, 33, 34, 35]. For simulating the motion of a neutrally buoyant
particle in three-dimensional fluid flows of Newtonian and Oldroyd-B fluids
at the infinitesimal Reynolds numbers, a similar DLM/FD method has been
developed and validated in [25] and [26]. In this section, we discuss first the
formulation for the case of an ellipsoid and then the associated numerical
treatments for simulating its motion in a 3D bounded shear flow of Giesekus
fluids. Let Ω ⊂ IR3 be a rectangular parallelepiped filled with a Giesekus
fluid and containing a freely moving rigid ellipsoidal particle B centered at
G = {G1, G2, G3}t (see Figure 1). The governing equations are presented in
the following

−∇ · σs −∇ · τ = ρfg in Ω \B(t), t ∈ (0, T ),(1)

∇ · u = 0 in Ω \B(t), t ∈ (0, T ),(2)
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u = g0 on Γ× (0, T ), with

∫
Γ
g0 · n dΓ = 0,(3)

∂C

∂t
+ (u ·∇)C− (∇u)C−C(∇u)t

= − 1

λ1
(C− I)− α

λ1
(C− I)2 in Ω \B(t),(4)

C(x, 0) = C0(x), x ∈ Ω \B(0), C = CL on Γ−.(5)

In (1), g denotes gravity and the Cauchy stress tensor σ is split into two

parts, a Newtonian (solvent) part σs and a viscoelastic part τ , with:

σs = −pI+ 2μD(u),

τ =
η

λ1
(C− I),

where D(u) = (∇u + (∇u)t)/2 is the rate of deformation tensor, u is the

flow velocity, p is the pressure, C is the conformation tensor, I is the identity

tensor, μ = η1λ2/λ1 is the solvent viscosity of the fluid, η = η1 − μ is the

elastic viscosity of the fluid, η1 is the fluid viscosity, ρf is the fluid density,

λ1 is the relaxation time of the fluid, and λ2 is the retardation time of the

fluid. The conformation tensorC is symmetric and positive definite (see, e.g.,

[36]). In (3), Γ is the union of the bottom boundary Γ1 and top boundary Γ2

as in Figure 1 and n is the unit normal vector pointing outward to the flow

region, Γ−(t) in (5) being the upstream portion of Γ at time t. In (4), α is

a constitutive parameter ruling the shear-thinning intensity. (As α = 0, (4)

is the constitutive equation of Oldroyd-B model without shear thinning).

Based on a thermodynamic analysis, the value of α must lay in the range

of 0 to 1/2 (see [37] and [38]). The boundary conditions given in (3) are

g0 = {−U, 0, 0}t on Γ1 and g0 = {U, 0, 0}t on Γ2 for a bounded shear flow.

Hence we have Γ−(t) = ∅. We assume also that the flow is periodic in the

x1 and x2 directions with the periods L1 and L2, respectively, a no-slip

condition taking place on the boundary of particle γ(= ∂B), namely

(6) u(x, t) = V(t) + ω(t)×
−−−→
G(t)x, ∀x ∈ ∂B(t), t ∈ (0, T )

with
−−−→
G(t)x = {x1 − G1(t), x2 − G2(t), x3 − G3(t)}t. In addition to (6), the

motion of particle B satisfies the following Euler-Newton’s equations

dG

dt
= V,(7)
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dθ

dt
= ω,(8)

Mp
dV

dt
= Mp g + FH ,(9)

d(Ipω)

dt
= TH ,(10)

V(0) = V0, ω(0) = ω0,G(0) = G0, θ(0) = θ0,(11)

where Mp and Ip are the mass and inertia tensor of B, respectively, V is

the velocity of the center of mass, ω is the angular velocity and θ is the

inclination angle of the particle. The hydrodynamic forces and torque are

given by

(12) FH = −
∫
∂B

σn ds, TH = −
∫
∂B

−→
Gx× σn ds.

Remark 1. As reported in [19], at the infinitesimal Reynolds numbers, the

particle and fluid inertial effects determine the stability of a prolate ellipsoid

rotating motion in a shear flow of a Newtonian fluid. Its major axis tumbling

in the shear plane is stable and the motion of a prolate ellipsoid rotating

with respect to its major axis perpendicular to the shear plane (so called log-

rolling) is unstable. With only the effect of particle inertia, similar results

of a prolate ellipsoid rotating in a shear flow of a Newtonian fluid were

also obtained in [25] via a DLM/FD formulation at the Stokes regime. In

this article, via the above problem (1)–(12), we would like to study the

effect of particle inertia on the motion of ellipsoids in viscoelastic fluids at

the infinitesimal Reynolds numbers (i.e., without the fluid inertia effect).

To obtain a distributed Lagrange multiplier/fictitious domain formula-

tion for the above problem (1)–(12), we proceed as in [29, 31], namely: (i) we

derive first a global variational formulation (of the virtual power type) of

problem (1)–(12), (ii) we then fill the region occupied by the rigid body by

the surrounding fluid (i.e., embed Ω \B(t) in Ω) with a constraint that the

fluid inside the rigid body region has a rigid body motion, and then (iii) we

relax the rigid body motion constraint by using a distributed Lagrange mul-

tiplier, obtaining thus the following fictitious domain formulation over the

entire region Ω:

For a.e. t ∈ (0, T ), find u(t) ∈ Vg0
, p(t) ∈ L2

0(Ω), C(t) ∈ VC, V(t) ∈ IR3,
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G(t) ∈ IR3, ω(t) ∈ IR3, λ(t) ∈ Λ(t) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∫
Ω
p∇ · vdx+ 2μ

∫
Ω
D(u) : D(v) dx−

∫
Ω
(∇ · τ ) · v dx

−< λ,v −Y − ξ ×−→
Gx >Λ(t) +Mp

dV

dt
·Y

+
d(Ipω)

dt
· ξ =

(
1− ρf

ρs

)
Mp g ·Y + ρf

∫
Ω
g · v dx,

∀v ∈ V0, ∀Y ∈ IR3, ∀ξ ∈ IR3,

(13)

∫
Ω
q∇ · u(t) dx = 0, ∀q ∈ L2(Ω),(14)

< μ,u(t)−V(t)− ω(t)×−→
Gx >Λ(t) = 0, ∀μ ∈ Λ(t),(15) ∫

Ω

(
∂C

∂t
+ (u ·∇)C− (∇u)C−C(∇u)t

)
: s dx(16)

= −
∫
Ω

1

λ1
(C− I) : s dx−

∫
Ω

α

λ1
(C− I)2 : s dx,(17)

∀s ∈ VC,with C = I in B(t),

dG

dt
= V,(18)

C(x, 0) = C0(x), ∀x ∈ Ω,with C0 = I in B(0),(19)

G(0) = G0, V(0) = V0, ω(0) = ω0, B(0) = B0,(20)

where the function spaces in problem (13)–(20) are defined by

Vg0
= {v|v ∈ (H1(Ω))3, v = g0 on Γ, v is periodic in the x1 and

x2 directions with periods L1 and L2, respectively},
V0 = {v|v ∈ (H1(Ω))3, v = 0 on Γ, v is periodic in the x1 and x2

directions with periods L1 and L2, respectively},

L2
0(Ω) =

{
q|q ∈ L2(Ω),

∫
Ω
q dx = 0

}
,

VC = { C | C ∈ (H1(Ω))3×3, C is periodic in the x1 and x2

directions with periods L1 and L2, respectively},
Λ(t) = (H1(B(t)))3,

and for any μ ∈ H1(B(t))3 and any v ∈ V0, the pairing < ·, · >Λ(t) in (13)
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and (15) is defined by

< μ,v >Λ(t) =

∫
B(t)

(μ · v + d2∇μ : ∇v) dx

where d is a scaling constant, a typical choice for d being the diameter of
particle B.

Remark 2. In relation (13), the term 2
∫
ΩD(u):D(v) dx can be replaced by∫

Ω∇u:∇v dx. Also the gravity term g in (13) can be absorbed into the
pressure term.

Remark 3. We use two normal vectors to track the orientation of the ellipsoid
and x1, x2 are the points of the tips of the vectors. The actions of x1 and
x2 are described by the following equations

dxi

dt
= V(t) + ω(t)×

−−−−→
G(t)xi,xi(0) = xi,0, i = 1, 2.

Remark 4. In the system (13)–(20), the treatment of neutrally buoyant par-
ticles is quite different from those considered in, e.g., [32, 33, 34] for the
cases of neutrally buoyant particles in incompressible viscous flow modeled
by the full Navier-Stokes equations. For the particle-flow interaction under
creeping flow conditions considered in this article, there is no need to add
any extra constraint on the Lagrange multiplier as in [32, 33, 34].

2.2. Numerical methods

For the space discretization, we have chosen P1-iso-P2 and P1 finite element
spaces for the velocity field and pressure, respectively, (like in Bristeau et
al. [39] and Glowinski [40]), that is

Wh = {vh|vh ∈ (C0(Ω))3,vh|T ∈ (P1)
3, ∀T ∈ Th,vh is periodic in the

x1 and x2 directions with the periods L1 and L2, respectively},
W0h = {vh|vh ∈ Wh, vh = 0 on Γ},
L2
h = {qh|qh ∈ C0(Ω), qh|T ∈ P1, ∀T ∈ T2h, qh is periodic in the x1

and x2 directions with the periods L1 and L2, respectively},

L2
0h =

{
qh|qh ∈ L2

h,

∫
Ω
qh dx = 0

}
,

where h is the space discretization mesh size, Th is a regular tetrahedral
mesh covering Ω, T2h is another tetrahedral mesh also covering Ω, twice
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Figure 2: An example of collocation points chosen on ∂B.

coarser than Th, and P1 is the space of the polynomials in three variables of
degree ≤ 1. The finite dimensional space for approximating VC is defined
by

VCh
= {sh|sh ∈ (C0(Ω))3×3, sh|T ∈ (P1)

3×3, ∀T ∈ Th, sh is periodic in the

x1 and x2 directions with the periods L1 and L2, respectively}.

For simulating the particle motion in fluid flows, a typical finite dimen-
sional space approximating Λ(t) (e.g., see [31, 33, 34]) is defined as follows:

let {yi}N(t)
i=1 be a set of points covering B(t); the discrete multiplier space

Λh(t) is defined by

(21) Λh(t) =

{
μh|μh =

N(t)∑
i=1

μiδ(x− yi), μi ∈ IR3, ∀i = 1, . . . , N(t)

}
,

where δ(·) is the Dirac measure at x = 0. Then, we define a pairing over
Λh(t)×W0h by

(22) < μh,vh >Λh(t)
=

N(t)∑
i=1

μi · vh(yi), ∀μh ∈ Λh(t), vh ∈ W0h.

A typical set {yj}N(t)
j=1 of the points of B(t) to be used in (22) is defined as

{yj}N(t)
j=1 = {yj}N1(t)

j=1 ∪ {yj}N(t)
j=N1(t)+1
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where {yj}N1(t)
j=1 (resp., {yj}N(t)

j=N1(t)+1) is the set of those vertices of the ve-

locity grid Th contained in B(t) and whose distance to ∂B(t) ≥ h/2 (resp., is
a set of selected points of ∂B(t), as shown in Fig. 2). As in [25] and [26], for
simulating particle interactions in Stokes flow, we have modified the discrete
pairing < ·, · >Λh(t) as follows:

< μh,vh >Λh(t)
=

N1(t)∑
i=1

μi · vh(yi)

+

N(t)∑
i=N1(t)+1

M∑
j=1

μi · vh(yi) Dh(yi − xj) h
3,(23)

for μh ∈ Λh(t) and vh ∈ W0h where h is the uniform finite element mesh
size for the velocity field, {xj}Mj=1 is the set of grid points of the velocity
field, and the function Dh(X− ξ) is defined as

(24) Dh(X− ξ) = δh(X1 − ξ1)δh(X2 − ξ2)δh(X3 − ξ3)

withX = {X1, X2, X3}t, ξ = {ξ1, ξ2, ξ3}t, the one–dimensional approximate
Dirac measure δh being defined by

(25) δh(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
8h

(
3− 2|s|

h +

√
1 + 4|s|

h − 4( |s|h )2
)
, |s| ≤ h,

1
8h

(
5− 2|s|

h −
√

−7 + 12|s|
h − 4( |s|h )2

)
, h ≤ |s| ≤ 2h,

0, otherwise.

The above approximate delta functions δh and Dh are the typical ones used
in the popular immersed boundary method developed by Peskin, e.g, [41,
42, 43].

To fully discretize system (13)–(20), we reduce it first to a finite di-
mensional initial value problem using the above finite element spaces (after
dropping most of the sub-scripts h’s). Next, we combine the Lozinski-Owens
factorization approach (see, e.g., [27, 28]) with the Lie scheme (e.g., see
[44, 45]) to decouple the above finite element analogue of system (13)–(20)
into a sequence of sub-problems and apply the backward Euler schemes to
time-discretize some of these sub-problems. Finally we obtain thus the fol-
lowing sequence of sub-problems (where �t(> 0) is a time-discretization
step and tn = n�t):

(26) C0 = C0,G
0 = G0,V

0 = V0, and ω0 = ω0 are given;
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For n ≥ 0, Cn, Gn, Vn, ωn being known, we compute the approximate

solution at t = tn+1 via the following fractional steps:

1. We first predict the position and the translation velocity of the center

of mass as follows:

dG

dt
= V(t),(27)

Mp
dV

dt
= 0,(28)

d(Ipω)

dt
= 0,(29)

dxi

dt
= V(t) + ω(t)×

−−−−→
G(t)xi, xi(t

n) = xn
i , i = 1, 2,(30)

V(tn) = Vn, (Ipω)(tn) = (Ipω)n,G(tn) = Gn,(31)

for tn < t < tn+1. Then setVn+ 1

5 = V(tn+1), (Ipω)n+
1

5 = (Ipω)(tn+1),

Gn+ 1

5 = G(tn+1), x
n+ 1

5

1 = x1(t
n+1), and x

n+ 1

5

2 = x2(t
n+1). After the

center Gn+ 1

5 and x
n+ 1

5

1 , x
n+ 1

5

2 are known, the position Bn+ 1

5 occupied

by the particle is determined.

2. Next, we enforce the rigid body motion in Bn+ 1

5 and solve for un+ 2

5 ,

pn+
2

5 , Vn+ 2

5 and ωn+ 2

5 simultaneously as follows:

Find un+ 2

5 ∈ Wh, u
n+ 2

5 = g0h on Γ, pn+
2

5 ∈ L2
0h, λ

n+ 2

5 ∈ Λ
n+ 1

5

h ,

Vn+ 2

5 ∈ IR3, ωn+ 2

5 ∈ IR3 so that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∫
Ω
pn+

2

5∇ · v dx+ μ

∫
Ω
∇un+ 2

5 : ∇v dx

−
∫
Ω

(
∇ · η

λ1
(Cn − I)

)
· v dx+Mp

Vn+ 2

5 −Vn+ 1

5

�t
·Y

+
I
n+ 1

5
p ωn+ 2

5 − (Ipω)n+
1

5

�t
· ξ =

(
1− ρf

ρs

)
Mpg ·Y

+< λn+ 2

5 , v −Y − ξ ×
−−−−→
Gn+ 1

5x >
Λ

n+1
5

h

,

∀v ∈ W0h, Y ∈ IR3, ξ ∈ IR3,

(32)

∫
Ω
q∇ · un+ 2

5 dx = 0, ∀q ∈ L2
h,(33)

< μ,un+ 2

5 −Vn+ 2

5 − ωn+ 2

5 ×
−−−−→
Gn+ 1

5x >
Λ

n+1
5

h

= 0, ∀μ ∈ Λ
n+ 1

5

h .(34)
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3. We then compute An+ 3

5 via the solution of

(35)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω

∂A(t)

∂t
: s dx+

∫
Ω
(un+ 2

5 ·∇)A(t) : s dx = 0, ∀s ∈ VAh
,

A(tn) = An, where An(An)t = Cn,

A(t) ∈ VAh
, t ∈ [tn, tn+1],

and set An+ 3

5 = A(tn+1).

4. We then compute An+ 4

5 via the solution of

⎧⎪⎨
⎪⎩
∫
Ω

(
An+ 4

5 −An+ 3

5

�t
−(∇un+ 2

5 )An+ 4

5 +
1

2λ1
An+ 4

5

)
:s dx = 0,

∀s ∈ VAh
;An+ 4

5 ∈ VAh
.

(36)

and set

(37) Cn+ 4

5 = An+ 4

5 (An+ 4

5 )t +
�t

λ1
I.

5. Finally we obtain Cn+1 via the solution of

(38)

⎧⎪⎨
⎪⎩
∫
Ω

(
Cn+1 −Cn+ 4

5

�t
+

α

λ1
(Cn+ 4

5 − I)2
)

: s dx = 0,

∀s ∈ VCh
;C ∈ VCh

,

and set

(39) Cn+1 = I in Bn+ 1

5 .

Set Gn+1 = Gn+ 1

5 , xn+1
1 = x

n+ 1

5

1 , xn+1
2 = x

n+ 1

5

2 , Vn+1 = Vn+ 2

5 , and

(Ipω)n+1 = I
n+ 1

5
p ωn+ 2

5 .

In (35)–(37), the spaceVAh
is defined similarly toVCh

. The multiplier space

Λ
n+ 1

5

h in (32)–(34) is defined according to the position of Bn+ 1

5 .

2.3. On the solution of the sub-problems

In system (32)–(34), there are two multipliers, namely, p and λ. We have
solved this system via an Uzawa-conjugate gradient method driven by both
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multipliers developed in [25, 46] for 2D and 3D flow simulations. Prob-

lems (26)–(31) is just a system of ordinary differential equations. They are

solved using the forward Euler method with a sub-time step to predict the

translation velocity of the mass center and then the position of mass cen-

ter. At the steps 3 and 4 of algorithm (27)–(39), we have considered the

equations verified by A instead of those verified by the conformation ten-

sor C due to the use of a factorization approach (e.g., see [27] for details).

In the implementation, this kind of the Lozinski-Owens’ scheme relies on

the matrix factorization C = AAT of the conformation tensor, and then

on a reformulation in terms of A of the time dependent equation model-

ing the evolution of C, providing automatically that C is at least positive

semi-definite (and symmetric). The matrix factorization based method in-

troduced in [28] has been applied, via an operator splitting scheme coupled

to a FD/DLM method, to the simulation of two-dimensional and three-

dimensional particulate flows of Oldroyd-B in, e.g., [26, 27, 35, 47]. The

equation (35) is a pure advection problem. We solve this equation by a

wave-like equation method (see, e.g., [45, 48]) which is a numerical dissipa-

tion free explicit method. Since the advection problem is decoupled from the

other ones, we can choose a proper sub-time step so that the CFL condition

is satisfied.

Problem (36) gives a simple equation at each grid point which can be

solved easily if we use trapezoidal quadrature rule to compute the integrals.

The value of ∇un+ 2

5 at each interior grid node is obtained by the averaged

value of those values computed in all tetrahedral elements having the grid

node as a vertex, however for the grid node on Γ it is obtained by applying

linear extrapolation via the values of two neighboring interior nodes as dis-

cussed in [49]. Problem (38) can be solved by a similar approach. Instead

of having time discretization by the backward Euler’s method to obtain

problem (36), let’s consider its differential equation at each grid point as

follows

(40)
∂A

∂t
− (∇U)A+

1

2λ1
A = 0, tn < t < tn+1, A(tn) = A0,

where the initial condition is A0 = An+3/5 and the approximation of ∇U

is computed by the 2nd order schemes developed in [49] for U = un+ 2

5 . The

closed-form solution of (40) is

(41) A(t) = e
− (t−tn)

2λ1 e(t−tn)∇U A0,
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which can be easily incorporated into algorithm (26)–(39). The above closed-
form solution has been adapted to obtain numerical solutions reported in
[35]. When solving Giesekus fluid flow problem, the differential equation at
each grid point of problem (38) is

(42)
dC

dt
= − α

λ1
(C− I)2, tn < t < tn+1, C(tn) = C0,

where the initial condition is C0 = Cn+ 4

5 . The closed-form solution of prob-
lem (42) is

(43) C(t) =

(
C0 +

α

λ1
(C0 − I)(t− tn)

)(
I+

α

λ1
(C0 − I)(t− tn)

)−1

.

This closed-form solution can also be combined easily with algorithm (26)–
(39).

In [26], we have combined our DLM/FD method with an operator split-
ting scheme and matrix-factorization approach to numerically treat the con-
stitutive equations of the conformation tensor of Oldroyd-B fluids. In this
article, we have generalized the technique developed in [26] to solve the
Stokes equation coupling with an ellipsoid rotating in a Giesekus fluid. For
α = 0 in (4) and (16), step 5 in algorithm (26)–(39) has been dropped for an
Oldroyd-B fluid, but the closed-form solution in (41) has been used instead
of solving problem (36). For α �= 0, the solution of problem (38) is directly
computed from the closed-form solution (43).

3. Numerical results and discussion

3.1. A prolate ellipsoid rotating in the shear plane

We have considered the cases of a neutrally buoyant ellipsoid which is placed
at the middle between two moving walls initially as shown in Fig. 3 in a
bounded shear flow of Giesekus fluids as constitutive parameter α = 0.2. The
densities of the fluid and that of the particle are ρf = ρs = 1 g cm−3 and the
viscosity μf = 1 poise. The computational domain is Ω = (−H/2, H/2) ×
(−H/2, H/2) × (−H/2, H/2) for H = 4 cm. The shear rate γ̇ = 1 sec−1

so the speed of the top wall is U = H/2 cm/sec and that of the bottom
wall is −U = −H/2 cm/sec. The mesh sizes for velocity field are h = 1/24,
1/32, and 1/48, the mesh size for the pressure is 2h, and the time step
is �t = 0.001. The Deborah number is De = γ̇λ1. For all the numerical
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Figure 3: A single prolate ellipsoid in a two wall driven bounded shear flow
with its mass center at (0, 0, 0).

Figure 4: Comparison of the averaged angular velocity of a single prolate
ellipsoid rotating in Giesekus fluids for different values of De (= λ1γ̇).

simulations, we assume that all dimensional quantities are in the centimeter,
gram and second units.

To study the rotating angular velocity of a prolate ellipsoid, we consider
the mass center of ellipsoid is fixed at (0, 0, 0) with λ1 = 0.01, 0.1, 0.25,
0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0 sec. The retardation
time is λ2 = βλ1 = λ1/11. The semi-major and two semi-minor axes are
a = 0.2 cm and b = c = 0.1 cm, the major axis and one of the minor
axis being on the x1x3-plane with an initial inclination angle of 0 with
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Figure 5: The averaged angular velocity (top) and rotation period (bottom)
of a single prolate ellipsoid rotating in Giesekus fluids for different blockage
ratios.

respect to x3-axis. The aspect ratio is AR = a/b = 2. The blockage ratio is
K = 2a/H = 0.1. In order to valid the averaged angular velocity reported
in [22], we consider a prolate ellipsoid with its major axis tumbling in x1x3-
plane (the shear plane). The averaged rotating velocities of prolate ellipsoid
reported in Fig. 4 are consistent with those obtained in [22] up to De = 1.5.
The effect of blockage ratio on the averaged angular velocity is shown in
Fig. 5. The two walls do slow down the rotation velocity for larger blockage
ratios. For the rotating period shown in Fig. 5, the higher De number does
have longer period, which is consistent with those finding reported in, e.g.,
[20]. Finally, it is interesting to see that, without shear-thinning effect (i.e.,
α = 0), the average rotation velocity is slower in Oldroyd-B fluids as shown
in Fig. 6 for larger De numbers.
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Figure 6: The comparison of averaged angular velocity of a single prolate
ellipsoid rotating in Oldroyd-B and Giesekus fluids for different De values.

Figure 7: The initial setup of a prolate ellipsoid: Its mass center is fixed at
(0, 0, 0). The red line lays on the x2x3 plane and the major axis of prolate
ellipsoid is the red segment from the center of prolate to the blue “*” on the
surface of ellipsoid. The initial angle θ is the angle from x3 axis to the red
line.

3.2. The motions of an ellipsoid in a bounded shear flow

As discussed in Introduction, a prolate ellipsoid rotating dynamics in a
bounded shear flow of Giesekus fluids has been studied in [22, 23], and
[24]. In this section we like to study its rotating behaviors in a bounded
shear flow of Oldroyd-B fluids. The particle inertia effect is taking into ac-
count in our study. The fluid density ρf and ellipsoid density ρs are both
equal to 1 g cm−3 and viscosity μf is 1 poise. The computational domain is
Ω = (−1.5, 1.5) × (−1, 1) × (−0.5, 0.5). The shear rate γ̇ is fixed at 1 sec−1
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Figure 8: Kayaking motions: the orientation trajectories of a prolate ellipsoid
with three initial angles θ = 0◦ (left), 45◦ (middle), and 90◦ (right). The blue
“*” (resp., “+”) indicates the starting (resp., end) position.
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Figure 9: The x2-coordinates of the orientation with three initial angles θ =
0◦ (left), 45◦ (middle), and 90◦ (right).

so the speed of the top wall is U = 1 cm/sec and the speed of bottom wall is

−U = −1 cm/sec. Then for each Deborah number mentioned later, its relax-

ation time is λ1 = De/γ̇ and retardation time is λ2 = λ1/8. The semi-major

and two semi-minor axes of the ellipsoid are a = 0.2, b = 0.1, and c = 0.1.

The aspect ratio is AR = a/b = 2. The blockage ratio is K = 2a/1 = 0.4.

For the initial position of the ellipsoid in Fig. 7, we fix its mass center at (0,

0, 0) and set the major axis and one of the minor axis being on the x1x3-
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Figure 10: Log-rolling motion: the orientation trajectories of an ellipsoid
with three initial angles θ = 0◦ (left), 45◦ (middle), and 90◦ (right). The
blue “*” (resp., “+”) indicates the starting (resp., end) position.

plane with an initial inclination angle θ = 0◦, 45◦, and 90◦ with respect to
x3-axis. So the initial tips of the unit vector in the direction of the prolate
major axis are (0,0,1) for θ = 0◦, (0,

√
2/2,

√
2/2) for θ = 45◦, and (0,1,0)

for θ = 90◦, respectively. Since the mass center of prolate ellipsoid is fixed
at (0, 0, 0), the prolate orientation can be represented by either the tip of
unit vector in the direction of prolate major axis or the tip of a unit vector
in the opposite direction. In order to compare the orientations of prolate
ellipsoid under different initial angles and Deborah numbers, all the figures
are plotted from the points with positive x2-coordinates.

The orientation trajectories of prolate ellipsoid and histories of x2-co-
ordinates of the orientation are shown in Figs. 8, 9, 10, and 11 as De =
0.25, 0.5, 1, 2, 3, and 4. For 0.25 ≤ De ≤ 2 and θ = 0◦, the ellipsoid rotates
with the major axis tumbling in the shear plane (x2 = 0) at the beginning.
Then the prolate major axis kayaks with respect to the origin and the tip of
unit vector leaves the shear plane. Finally, a stable orbit is reached. In Fig. 8,
the four left plots are the kayaking motion of prolate ellipsoid with the initial
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Figure 11: The x2-coordinates of the orientation with three initial angles
θ = 0◦ (left), 45◦ (middle), and 90◦ (right) for De = 3.

Figure 12: The initial setup of an oblate ellipsoid: Its mass center is fixed
at (0, 0, 0). The red line lays on the x2x3 plane and the minor axis of oblate
ellipsoid is the red segment from the center of prolate to the blue “*” on the
surface of ellipsoid. The initial angle θ is the angle from x3 axis to the red
line.

angle of θ = 0◦ for De = 0.25, 0.5, 1, and 2. Also the three left plots of Fig. 9

show that the x2-coordinate of orientation unit vector associated with the

major axis approaches to a periodic steady state. Similarly, for θ = 45◦ and

90◦, the prolate ellipsoid kayaks and its x2-coordinate of orientation goes

to a periodic steady state. For the fluids with same Deborah number, these

periodic steady states are basically the same for those three different initial

angles. In Fig. 9 (a), the x2-coordinates of the orientation unit vector go

to the periodic steady state after t = 250 sec as De = 1. We observe the

same phenomena as De = 1.5 and 2 in Fig. 9 (b) and (c). We also observe

a different stable motion as De = 3 and 4. Instead of kayaking motion, the

major axis of prolate ellipsoid first rotate several times then the tip of unit

vector (associated with the major axis) turns forward and the major axis

lays down, follows the flow forward direction with certain angle, and at the
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Figure 13: Kayaking motions: the orientation trajectories of an oblate ellip-
soid with initial angles θ = 0◦ (left) and 45◦ (right) for De = 0.5, 1, and 2.
Tilted log-rolling motion: fixed orientation unit vector for De = 2.5. The
blue “*” (resp., “+”) indicates the starting (resp., end) position.
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Figure 14: Two different views of the oblate orientation and velocity field
projected on the x1x3-plane for De = 2.5 at t = 400.

same time ellipsoid is log-rolling with respect to its major axis as shown
in Fig. 10. In Fig. 11, the x2-coordinates of orientation go from the initial
position to the fixed point after t = 300. Our results of a prolate rotating
in Oldroyd-B fluids are slightly different from the rotating dynamics of a
prolate ellipsoid in Giesekus fluids reported in [22, 23], and [24]; but there
are some similarities, too. For De ≤ 2, log-rolling motion is not stable in
Oldroyd-B fluids which is similar to the results obtained by Wang et al.
in [23], but log-rolling is stable in Giesekus fluids when the effect of fluid
and particle inertia on the rotation motion was not included as in [22]. For
De = 3 and 4, the prolate major axis has about a stable fixed direction (up
to each initial angle), which is close to those obtained in [22, 23], and [24] for
higher De numbers. But like the bistability one obtained in [22], the prolate
major axis can reach two different directions as shown in Fig. 10.

To study the rotation behavior of an oblate ellipsoid, we have replaced
the prolate considered and discussed previously by an oblate and kept ev-
erything else the same. The semi-minor and two semi-major axes of oblate
ellipsoid are a = 0.1, b = 0.2, and c = 0.2. Then the aspect ratio is
AR = a/b = 1/2. With respect to its fixed mass center at (0, 0, 0), the
initial inclination angle is either θ = 0◦ and 45◦ as explained in Fig. 12. The
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Figure 15: (i) The history of the prolate mass center height (top). (ii) The
prolate orientation trajectory with initial angle θ = 45◦ (bottom left).
(iii) The prolate orientation and velocity field projected on the x1x3-plane
at t = 373 (bottom right).

orientation unit vector for an oblate ellipsoid is the minor axis direction.

The minor axis of oblate ellipsoid kayaks as those tip trajectories shown in

Fig. 13, which indicates kayaking motion is stable for an oblate rotating in

Oldroyd-B fluids for De = 0.5, 1, and 2. But for De = 2.5, the unit orienta-

tion vector turns to a fixed direction and the oblate rotates with respect to
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it, i.e., the oblate ellipsoid has a stable tilted log-rolling motion (see Figs. 13

and 14). Those results are different from the rotating dynamics of an oblate

in a Newtonian fluid obtained in [19].

For a prolate ellipsoid freely moving in a Giesekus fluid, Wang et al.

[23] obtained that such prolate ellipsoid migrates toward the closer moving

wall due to fluid elasticity, and its semi-major axis is slightly away from the

vorticity axis direction for De = 3. Our prolate ellipsoid considered above is

now allowed to move freely in an Oldroyd-B fluid for De = 3. We have placed

its initial mass center at (0, 0, 0.1) initially with the initial angle θ = 45◦.
Then later it does migrate next to the top moving wall and its semi-major

axis is slightly away from the vorticity axis direction (see Fig. 15) so that the

prolate ellipsoid is rolling against the wall. Our result is consistent with the

results obtained in [23]. For the oblate considered above with its initial mass

center at (0, 0, 0.1) initially with the initial angle θ = 45◦, it migrates next to

the top moving wall. But its orientation unit vector kayaks (see Fig. 16) in

a slightly different way. Thus its mass center is closest to the wall when the

orientation unit vector is about parallel to the x3-direction (i.e., two major

axes are about parallel to the x1x2-plane); but it is farthest away when the

orientation unit vector is about parallel to the x1x2-plane (i.e., the oblate

lands on edge against the wall).

4. Conclusions

In this article, we have discussed a DLM/FD method for simulating fluid-

particle interaction in three-dimensional shear flow of Oldroyd-B and

Giesekus fluids. The methodology is validated by comparing the numeri-

cal results associated with a neutrally buoyant rigid ellipsoidal particle in

Giesekus fluids. For the cases of a prolate ellipsoid placed in the middle be-

tween two walls in Oldroyd-B fluids, the simulation results do not depend on

initial angles but Weissenberg numbers. As Wi = 1, 1.5, and 2, the prolate

ellipsoid kayaks and the x2-coordinate of its tip is oscillating to a steady

state. As De = 3, and 4, the ellipsoid first kayaks then its tip turns forward,

its major axis follows the flow forward direction with certain angle, and its

motion becomes a tilted log-rolling. But like the bistability one obtained in

[22], the prolate major axis can reach two different directions.

For an oblate rotating in Oldroyd-B fluids for De = 0.5, 1, and 2, kayak-

ing motion is stable. But for De = 2.5, the unit orientation vector turns to

a fixed direction and the oblate rotates with respect to it, i.e., the oblate

ellipsoid has a stable tilted log-rolling motion.
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Figure 16: (i) The history of the oblate mass center height (top). (ii) The
oblate orientation trajectory with initial angle θ = 45◦ (bottom left).
(iii) The oblate orientation and velocity field projected on the x1x3-plane at
t = 200 (bottom right).

For a prolate ellipsoid freely moving in an Oldroyd-B fluid, it migrates
toward the closer moving wall due to fluid elasticity. It rolls against the wall
with its semi-major axis slightly away from the vorticity axis direction for
De = 3. But for an oblate ellipsoid, it migrates next to the top moving wall
and then rolls on the top wall in a way that it lands on edge against the
wall periodically.
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