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We show that a coupled system of wave equations can be exactly
synchronized by p-groups with respect to different groupings under
the same control matrix.
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1. Introduction

Let Ω be a bounded domain with a smooth boundary Γ in R
n. Denote by

χω the characteristic function of a subdomain ω of Ω. Let A be a matrix of
order N and D be a full column-rank matrix of order N × (N − p), both
with constant elements. Consider the following system for the state variable
U = (u(1), . . . , u(N))T with the internal control H = (h(1), . . . , h(N−p))T :{

U ′′ −ΔU +AU = DχωH in (0,+∞)× Ω,

U = 0 on (0,+∞)× Γ.
(1)

Recall that for any given initial data (Û0, Û1) ∈ (H1
0 (Ω) × L2(Ω))N

and any given function H ∈ (L1
loc(0,+∞;L2(Ω)))N−p, system (1) admits

a unique weak solution U in the space

(2) (C0
loc([0,+∞);H1

0 (Ω)) ∩ C1
loc([0,+∞);L2(Ω)))N

with continuous dependence (Proposition 2.1 in [5]).
Let

(3) 0 = n0 < n1 < · · · < np = N
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be a partition with nr−nr−1 � 2 for 1 � r � p. We arrange the components

of the state variable U into p groups:

(4) (u(1), . . . , u(n1)), (u(n1+1), . . . , u(n2)), . . . , (u(np−1+1), . . . , u(np)).

System (1) is exactly synchronizable by p-groups at time T > 0, if for

any given initial data (Û0, Û1) ∈ (H1
0 (Ω) × L2(Ω))N , there exist a control

function H ∈ (L1
loc(0,+∞;L2(Ω)))N−p and some functions ur for 1 � r � p:

(5) ur ∈ C0
loc([0,+∞);H1

0 (Ω)) ∩ C1
loc([0,+∞);L2(Ω)),

such that the corresponding solution U to system (1) satisfies

t � T : u(k) = ur, nr−1 + 1 � k � nr, 1 � r � p.(6)

Accordingly, (u1, . . . , ur)
T will be called the exactly synchronizable state by

p-groups.

Let Sr be a full row-rank matrix of order (nr − nr−1 − 1)× (nr − nr−1):

(7) Sr =

⎛⎜⎜⎜⎝
1 −1

1 −1
. . .

. . .

1 −1

⎞⎟⎟⎟⎠ , 1 � r � p.

Define the (N − p)×N matrix Cp by

(8) Cp =

⎛⎜⎜⎜⎝
S1

S2

. . .

Sp

⎞⎟⎟⎟⎠ .

Let

Ker(Cp) = Span{e1, . . . , ep},(9)

where

(10) er = (0, . . . , 0,
(nr−1+1)

1 , . . . ,
(nr)

1 , 0, . . . , 0)T , 1 � r � p.
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(6) can be rewritten as

t � T : U =

p∑
r=1

urer(11)

or equivalently,

t � T : CpU = 0.(12)

The matrix A satisfies the condition of Cp-compatibility if there exists
a unique matrix Ap of order (N − p), such that

(13) CpA = ApCp.

The synchronization by p-groups of system (1) with respect to the spe-
cific grouping (4) was studied in [5]. In particular, we have

Theorem 1.1 (Theorem 3.1 in [5]). Let Ω ⊂ R
m be a bounded domain

with smooth boundary Γ satisfying the usual multiplier control condition and
ω ⊂ Ω be a neighbourhood of Γ. Assume that A satisfies the condition of Cp-
compatibility (13). Then system (1) is exactly synchronizable by p-groups at
the time T > 2d0(Ω), where d0(Ω) denotes the diameter of Ω, if and only if

(14) rank(CpD) = N − p.

However, when p � 2, the situation of the grouping (4) could be very
complicated. The goal of this work is to extend the previous study on the
specific grouping (4) to the general one.

Let σ be a permutation of the set {1, . . . , N}. We arrange the components
of the state variable U into p groups:

(15) (uσ(1), . . . , uσ(n1)), (uσ(n1+1), . . . , uσ(n2)), . . . , (uσ(np−1+1), . . . , uσ(np)).

When the solution U to system (1) satisfies

t � T : uσ(k) = ur, nr−1 + 1 � k � nr, 1 � r � p(16)

for some functions ur with 1 � r � p, system (1) will be called exactly
synchronizable by p-groups with respect to the grouping (15).

Accordingly, define the matrix C
(σ)
p by

Ker(C(σ)
p ) = Span(e

(σ)
1 , . . . , e(σ)p ),(17)
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where

(e(σ)r )i = (er)σ(i), 1 � i � N, 1 � r � p.(18)

Then the exact synchronization by p-groups (16) can be rewritten as

t � T : U =

p∑
r=1

ure
(σ)
r ,(19)

or equivalently,

t � T : C(σ)
p U = 0.(20)

For 1 � r � p, the size (nr − nr−1) of each group varies following the
repartition (3), and the components in each group (uσ(nr−1+1), . . . , uσ(nr)) is
determined by the permutation σ.

We will show in Theorem 3.1 that there exists a control matrix D of
order N × (N − p), such that system (1) is exactly synchronizable by p-

groups with respect to any given C
(σ)
p and C

(σ′)
p groupings by (17) on some

appropriate basis.

2. Family of generalized synchronizations

Denote by θ
(j)
i the Jordan chains associated with the eigenvalue ai of A:

(21) θ
(0)
i = 0, (A− aiI)θ

(j)
i = θ

(j−1)
i , 1 � i � d, 1 � j � μ̂i.

Let Mp be the set of multi-indices μ = (μ1, . . . , μd) ∈ N
d of length p:

(22) 0 � μi � μ̂i, |μ| =
d∑

i=1

μi = p.

For any given μ ∈ Mp, we define a matrix Θμ of order (N − p)×N by

(23) Ker(Θμ) = Span(θ
(1)
1 , . . . , θ

(μ1)
1 ; . . . ; θ

(1)
d , . . . , θ

(μd)
d ).

Instead of (12), if the solution U satisfies

t � T : ΘμU = 0,(24)
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we say that system (1) is exactly Θμ-synchronizable, or generalized synchro-

nizable with respect to Θμ. We refer to [4] for a systematic study and some

interesting results on this topic.

Clearly, the matrix Θμ gives an equivalence class for the relation

(25) Θμ ∼ Θμ′ ⇐⇒ Ker(Θμ) = Ker(Θμ′).

As μ runs through the set Mp, (23) provides the family of all the matrices

which satisfy the condition of Θμ-compatibility:

AKer(Θμ) ⊆ Ker(Θμ).(26)

By [2, Proposition 2.15], there exists a matrix Aμ of order (N − p), such

that ΘμA = AμΘμ. Applying Θμ to system (1) and setting Wμ = ΘμU , we

get the reduced system{
W ′′

μ −ΔWμ +AμWμ = ΘμDχωH in (0,+∞)× Ω,

Wμ = 0 on (0,+∞)× Γ.
(27)

Noting (24), the exact Θμ-synchronization of system (1) is equivalent to the

exact controllability of the reduced system (27), which contains (N − p)

equations. By [5, Theorem 2.7], we have

Proposition 2.1. Let Ω ⊂ R
m be a bounded domain with smooth boundary

Γ satisfying the usual multiplier control condition and ω ⊂ Ω be a neighbour-

hood of Γ. Assume that A satisfies the condition of Θμ-compatibility (26).

Then the original system (1) is exactly Θμ-synchronizable if and only if

rank(D) = rank(ΘμD) = N − p.(28)

Our objective is to find a matrix D such that the rank condition (28)

will be satisfied by all the multi-indices μ ∈ Mp for the same system. Note

that the cardinal of Mp could be much bigger than rank(D), it is not trivial

(even it is surprising) that only one control matrix D can satisfy the rank

condition (28) for all μ ∈ Mp.

The following result is a simplified version of the generalized Vander-

monde matrix, the proof of which is adapted from a collection of Ecole

Polytechnique.
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Proposition 2.2. Let 0 < a1 < · · · < an and 0 < γ1 < · · · < γn. The deter-
minant of the following generalized Vandermonde matrix is strictly positive:

(29) det

⎛⎜⎜⎜⎝
aγ1

1 aγ1

2 · · · aγ1
n

aγ2

1 aγ2

2 · · · aγ2
n

...
...

. . .
...

aγn

1 aγn

2 · · · aγn
n

⎞⎟⎟⎟⎠ > 0.

Proof. We first show that for any given real coefficients c1, . . . , cn not all
zero, the function

fn(x) = c1x
γ1 + c2x

γ2 + · · ·+ cnx
γn , x > 0

has at most (n− 1) strictly positive zeros.
The conclusion is trivial for n = 1. Assume that it is true for the value

(n−1). Assume by contradiction that fn has n strictly positive zeros, so has
the function

gn(x) =
fn(x)

xγ1
= c1 + c2x

γ2−γ1 + · · ·+ cnx
γn−γ1 , x > 0.

By Rolle’s Theorem, the derivative

g′n(x) = c2(γ2 − γ1)x
γ2−γ1−1 + · · ·+ cn(γn − γ1)x

γn−γ1−1

has (n− 1) strictly positive zeros, so has the function

xγ1+1g′n(x) = c2(γ2 − γ1)x
γ2 + · · ·+ cn(γn − γ1)x

γn ,

which contradicts the induction’s hypothesis for the value (n− 1).
Now we return to prove (29), which is obviously true for n = 1. Assume

that it is true for the value (n− 1). Let

f(x) = det

⎛⎜⎜⎜⎜⎜⎝
aγ1

1 aγ1

2 · · · aγ1

n−1 xγ1

aγ2

1 aγ2

2 · · · aγ2

n−1 xγ2

...
...

. . .
...

...
a
γn−1

1 a
γn−1

2 · · · a
γn−1

n−1 xγn−1

aγn

1 aγn

2 · · · aγn

n−1 xγn

⎞⎟⎟⎟⎟⎟⎠ .

Developing the determinant according to the last column, we get

f(x) = c1x
γ1 + c2x

γ2 + · · ·+ cnx
γn ,
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where

cn = det

⎛⎜⎜⎜⎝
aγ1

1 aγ1

2 · · · aγ1

n−1

aγ2

1 aγ2

2 · · · aγ2

n−1
...

...
. . .

...
a
γn−1

1 a
γn−1

2 · · · a
γn−1

n−1

⎞⎟⎟⎟⎠ > 0

by the induction hypothesis for the value (n − 1). Since f vanishes at

x = a1, . . . , an−1, by what has been shown in the first step, f has at most

(n − 1) strictly positive zeros, then a1, . . . , an−1 exhaust the zeros on the

interval (0,+∞). By continuity, f keeps a constant sign for x > an−1, in

particular, we get f(an) > 0, which gives (29) for the value n. The proof is

then complete.

Proposition 2.3. Let

(30) G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1N−p

a21 a22 · · · a2N−p
...

...
...

...
ai1 ai2 · · · aiN−p
...

...
...

...
aN1 aN2 · · · aNN−p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

0 < a1 < a2 < · · · < aN−p.(31)

Let

(32) Q = (θ
(1)
1 , . . . , θ

(μ̂1)
1 , . . . , θ

(1)
d , . . . , θ

(μ̂d)
d ).

Defining

(33) D = QG,

condition (28) holds for all μ ∈ Mp.

Proof. By Lemma 2.2, we have rank(D) = N − p.

Let

(34) Q−T = (η
(1)
1 , . . . , η

(μ̂1)
1 , . . . , η

(1)
d , . . . , η

(μ̂d)
d ).
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Then

(θ
(k)
i , η

(l)
j ) = δijδkl.

It follows that

Im(ΘT
μ ) = Ker(Θμ)

⊥ = Span(η
(μ1+1)
1 , . . . , η

(μ̂1)
1 ; . . . ; η

(μd+1)
d , . . . , η

(μ̂d)
d ).

(35)

Let

mi =

i−1∑
j=1

μ̂i, 1 � i � d.

Defining

(36) E(j)
i = (0, . . . , 0,

(mi+j−1)

1 , 0, . . . , 0)T , 1 � j � μ̂i, 1 � i � d

and

Eμ̄ = Span(E(μ1+1)
1 , . . . , E(μ̂1)

1 ; . . . ; E(μd+1)
d , . . . , E(μ̂d)

d ),

we have

ΘT
μ = Q−TEμ̄.

It follows that

ΘμD = ET
μ̄Q

−1QG = ET
μ̄G.

The matrix ET
μ̄G is in fact the extraction of (N − p) rows from the matrix

G, namely, we have

(37) ET
μ̄G =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

aj11 aj12 · · · aj1N−p

aj21 aj22 · · · aj2N−p
...

...
...

...
...

...
...

...

a
jN−p

1 a
jN−p

2 · · · a
jN−p

N−p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where the indices ji(i = 1, . . . , N − p) are defined by (36) so that

1 � j1 < j2 < · · · < jN−p � N.(38)

Still by Lemma 2.2, under conditions (31) and (38), the determinant of (37)
is strictly positive. The proof is achieved.
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Finally, combining Propositions 2.1 and 2.3, we get

Theorem 2.1. Let Ω ⊂ R
m be a bounded domain with smooth boundary

Γ satisfying the usual multiplier control condition and ω ⊂ Ω be a neigh-
bourhood of Γ. Assume that the control matrix D is given by (33). Then
system (1) is exactly Θμ-synchronizable for all μ ∈ Mp.

3. Family of synchronizations by groups

We will establish the relationship between the exact Θμ-synchronization and

the exact synchronization by p-groups with respect to a C
(σ)
p -grouping. We

first show the following

Proposition 3.1. Let the matrices Θμ and C
(σ)
p be given by (23) and (17)

respectively. If system (1) is exactly Θμ-synchronizable, then it is exactly

synchronizable by p-groups with respect to the C
(σ)
p -grouping on some appro-

priate basis.

Proof. Since rank(Θμ) = rank(C
(σ)
p ) = N − p, there exists an invertible

matrix P such that

Θμ = C(σ)
p P.(39)

Applying P to system (1) and setting Ũ = PU , we get{
Ũ ′′ −ΔŨ + PAP−1Ũ = PDχωH in (0,+∞)× Ω,

Ũ = 0 on (0,+∞)× Γ.
(40)

Accordingly, the final condition (24) becomes

t � T : C(σ)
p Ũ = 0.(41)

Since system (1) is exactly Θμ-synchronizable under the control matrix D,
therefore, system (40) is exactly synchronizable by p-groups with respect to

the C
(σ)
p -grouping under the control matrix PD.

We next examine the possibility to convert every exact Θμ-synchro-
nization to some exact synchronizations by p-groups with respect to different

C
(σ)
p -groupings. This requires certain additional conditions on the structure

of the coupling matrix. We first give some preliminaries.
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Proposition 3.2. The matrix A admits two Jordan chains if and only if
there exist μ, μ′ ∈ Mp, such that Ker(Θμ) ∩Ker(Θμ′) �= {0}.

Proof. Assume that A admits d Jordan chains with d � 2.

If μ̂1 > p, we define

Ker(Θμ) = Span{θ(1)1 , . . . , θ
(p)
1 },

Ker(Θμ′) = Span{θ(1)1 , . . . , θ
(p−1)
1 , θ

(1)
2 }.

Clearly, θ
(1)
1 ∈ Ker(Θμ) ∩Ker(Θμ′).

If μ̂1 � p, noting
∑d

i=1 μ̂i = N > p, there exists an integer d0 with
1 � d0 < d, such that μ̂1+ · · ·+ μ̂d0

= p0 � p, but μ̂1+ · · ·+ μ̂d0
+ μ̂d0+1 > p.

We define

Ker(Θμ) = Span{θ(1)1 , . . . , θ
(μ̂1)
1 , . . . , θ

(1)
d0

, . . . , θ
(μ̂d0)
d0

, θ
(1)
d0+1, . . . , θ

(p−p0)
d0+1 },

Ker(Θμ) = Span{θ(1)1 , . . . , θ
(μ̂1)
1 , . . . , θ

(1)
d0

, . . . , θ
(μ̂d0−1)
d0

, θ
(1)
d0+1, . . . , θ

(p−p0+1)
d0+1 }.

Then, we get again θ
(1)
1 ∈ Ker(Θμ)∩Ker(Θμ′). Another sense is trivial.

Proposition 3.3. Let C
(σ)
p and C

(σ′)
p be given by (17), respectively, Θμ and

Θμ′ be given by (23). There exists an invertible matrix P such that

Θμ = C(σ)
p P, Θμ′ = C(σ′)

p P(42)

if and only if

dim(Ker(Θμ) ∩Ker(Θμ′)) = dim(Ker(C(σ)
p ) ∩Ker(C(σ′)

p )) := q > 0.

(43)

Proof. Assume that condition (42) holds. Then we have

P (Ker(Θμ) ∩Ker(Θμ′)) = Ker(C(σ)
p ) ∩Ker(C(σ′)

p ).

Noting

p∑
r=1

e(σ)r = e with e = (1, 1, . . . , 1)T ∈ Ker(C(σ)
p ) ∩Ker(C(σ′)

p ),

we get thus (43).
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Conversely, assume that (43) holds, then we have

Ker(Θμ) ∩Ker(Θμ′) = Span(θ1, . . . , θq).

We complete (θ1, . . . , θq) to get a basis of Ker(Θμ):

Ker(Θμ) = Span(θ1, . . . , θq, θ
(μ)
q+1, . . . , θ

(μ)
p ),

respectively a basis of Ker(Θμ′):

Ker(Θμ′) = Span(θ1, . . . , θq, θ
(μ′)
q+1, . . . , θ

(μ′)
p ).

We easily check the linear independence of the family

(θ1, . . . , θq, θ
(μ)
q+1, . . . , θ

(μ)
p , θ

(μ′)
q+1, . . . , θ

(μ′)
p ).(44)

In fact, let al(l = 1, . . . q) and bl, cl(l = 1+ q, . . . p) be some coefficients such

that
q∑

l=1

alθl +

p∑
l=q+1

blθ
(μ)
l +

p∑
l=q+1

clθ
(μ′)
l = 0.

Then
q∑

l=1

alθl +

p∑
l=q+1

blθ
(μ)
l ∈ Ker(Θμ) ∩Ker(Θμ′),

therefore
p∑

l=q+1

blθ
(μ)
l ∈ Ker(Θμ) ∩Ker(Θμ′).

Since (θ
(μ)
q+1, . . . , θ

(μ)
p ) �∈ Ker(Θμ′), we get

∑p
l=q+1 blθ

(μ)
l = 0. Similarly, we

have
∑p

l=q+1 clθ
(μ′)
l = 0. We get thus the linear independence of the fam-

ily (44).

Similarly, we can write

Ker(C(σ)
p ) = Span(e1, . . . , eq, e

(σ)
q+1, . . . , e

(σ)
p ),(45)

Ker(C(σ′)
p ) = Span(e1, . . . , eq, e

(σ′)
q+1, . . . , e

(σ′)
p ),(46)

where er for 1 � r � q are defined by (18).
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Moreover, we easily check that the families

(θ1, . . . , θq, θ
(μ)
q+1, . . . , θ

(μ)
p , θ

(μ′)
q+1, . . . , θ

(μ′)
p ),

(e1, . . . , eq; e
(σ)
q+1, . . . , e

(σ)
p ; e

(σ′)
q+1, . . . , e

(σ′)
p )

are linearly independent. Therefore, there exists an invertible matrix P such
that

P (θ1, . . . , θq, θ
(μ)
q+1, . . . , θ

(μ)
p , θ

(μ′)
q+1, . . . , θ

(μ′)
p )(47)

= (e1, . . . , eq; e
(σ)
q+1, . . . , e

(σ)
p ; e

(σ′)
q+1, . . . , e

(σ′)
p ),

namely,

PKer(Θμ) = Ker(C(σ)
p ), PKer(Θμ′) = Ker(C(σ′)

p ).

Then, we get

Ker(Θμ) = Ker(C(σ)
p P ), Ker(Θμ′) = Ker(C(σ′)

p P ).

Noting (25), we get (42).

Now we give the main theorem in this work.

Theorem 3.1. Let Ω ⊂ R
m be a bounded domain with smooth boundary Γ

satisfying the usual multiplier control condition and ω ⊂ Ω be a neighbour-
hood of Γ. Assume that A admits two Jordan chains. Then there exists a
control matrix D of order N × (N − p), such that system (1) is exactly syn-

chronizable by p-groups with respect to any given C
(σ)
p and C

(σ′)
p groupings

by (17) on some appropriate basis.

Proof. Since A admits two Jordan chains, by Proposition 3.2, we have

(48) dim(Ker(Θμ) ∩Ker(Θμ′)) = q > 0.

We can thus arbitrarily chose the matrices C
(σ)
p and C

(σ′)
p such that (43)

holds. Then, by Proposition 3.3, there exists an invertible matrix P such
that (42) holds. By Theorem 2.1, system (1) is exactly Θμ and Θ′

μ-synchro-
nizable under the same control matrix D. Noting (42) and Proposition 3.1,

system (1) is exactly synchronizable by p-groups with respect to the C
(σ)
p

and C
(σ′)
p -groupings under the same control matrix D on the commun ba-

sis P .
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Remark 3.1. Because of the restrictive condition (43), only a part of the

exact C
(σ)
p -synchronizations can be realized under the same control matrix D.

The number of C
(σ)
p -synchronizations depends on the structure of the cou-

pling matrix A. For a better understanding, in Theorem 3.1, we only expli-
cate the case of two Jordan chains. We will not deepen the discussion on the
topic in this short note. Instead, we give one example of three Jordan chains
for illustrating the preceding abstract results.

Example. In this example, we have N = 6, p = 2. Let

A =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1
0 0

0 1
0 0

0 1
0 0

⎞⎟⎟⎟⎟⎟⎟⎠
with three Jordan chains of length 2:

θ
(1)
1 =

⎛⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ , θ
(2)
1 =

⎛⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ ; θ
(1)
2 =

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ , θ
(2)
2 =

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
and

θ
(1)
3 =

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎠ , θ
(2)
3 =

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since A is already Jordanized, we have Q = I in (32) and D = G
in (33). We first exhaust the matrices of generalized synchronization Θμ

given by (23).

Ker(Θ(2,0,0)) = Span(θ
(1)
1 , θ

(2)
1 ) with μ1 = 2, μ2 = μ3 = 0, μ = (2, 0, 0),

Ker(Θ(1,1,0)) = Span(θ
(1)
1 , θ

(1)
2 ) with μ1 = 1, μ2 = 1, μ3 = 0, μ = (1, 1, 0)
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and

Ker(Θ(0,2,0)) = Span(θ
(1)
2 , θ

(2)
2 ), Ker(Θ(0,1,1)) = Span(θ

(1)
2 , θ

(1)
3 ),

Ker(Θ(0,0,2)) = Span(θ
(1)
3 , θ

(2)
3 ), Ker(Θ(1,0,1)) = Span(θ

(1)
1 , θ

(1)
3 ),

or equivalently by (35),

Θ(2,0,0) =

⎛⎜⎜⎝
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎠ , Θ(1,1,0) =

⎛⎜⎜⎝
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎠ ,

Θ(0,2,0) =

⎛⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎠ , Θ(0,1,1) =

⎛⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞⎟⎟⎠ ,

Θ(0,0,2) =

⎛⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎠ , Θ(1,0,1) =

⎛⎜⎜⎝
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞⎟⎟⎠ .

By Theorem 2.1, system (1) is exactly Θμ-synchronizable for all μ ∈ Mp

under the same control matrix D:

D =

⎛⎜⎜⎜⎜⎜⎜⎝

1 a b c
1 a2 b2 c2

1 a3 b3 c3

1 a4 b4 c4

1 a5 b5 c5

1 a6 b6 c6

⎞⎟⎟⎟⎟⎟⎟⎠ , 1 < a < b < c.

Since

Ker(Θ(2,0,0)) ∩Ker(Θ(1,1,0)) ∩Ker(Θ(1,0,1)) = Span(θ
(1)
1 ),

the three matrices Θ(2,0,0),Θ(1,1,0) and Θ(1,0,1) satisfy condition (43). We can

arbitrarily chose three matrices defined by (45)-(46) as follows:

Ker(C
(σ)
2 ) = Span(e1, e

(σ)
2 ),

Ker(C
(σ′)
2 ) = Span(e1, e

(σ′)
2 ),



Family of synchronizations 139

Ker(C
(σ′′)
2 ) = Span(e1, e

(σ′′)
2 ),

where

σ =

(
1 2 3 4 5 6
1 3 5 2 4 6

)
,

σ′ =

(
1 2 3 4 5 6
1 2 3 4 5 6

)
,

σ′′ =

(
1 2 3 4 5 6
1 3 6 2 4 5

)
,

or equivalently with

e1 =

⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎟⎠ , e
(σ)
2 =

⎛⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎠ , e
(σ′)
2 =

⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ , e
(σ′′)
2 =

⎛⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then we define the matrix P by (47) such that

Pθ
(1)
1 = e1, Pθ

(2)
1 = e

(σ)
2 , Pθ

(1)
2 = e

(σ′)
2 , Pθ

(1)
3 = e

(σ′′)
2 .

By Proposition 3.3, we have

θ(2,0,0) = C
(σ)
2 P, θ(1,1,0) = C

(σ′)
2 P, θ(1,0,1) = C

(σ′′)
2 P.

By Theorem 3.1, system (1) is exactly synchronized by 2-groups under the
control matrix D with respect to the following three groupings:

σ-partition: u1 = u3 = u5, u2 = u4 = u6,

σ′-partition: u1 = u2 = u3, u4 = u5 = u6,

σ′′-partition: u1 = u3 = u6, u2 = u4 = u5.

The above choice of basis is only an example, there are many other amusing
groupings with large N .

Remark 3.2. For clarity, we have only considered the internal controllabil-
ity of Dirichlet problem (1). Obviously, the approach can be applied to the
internal controllability of Neumann problem.
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