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A second-order partitioned method for
bioconvective flows with concentration dependent

viscosity

Madeline Edwards, Martina Bukac, and Catalin Trenchea

This work is focused on the mathematical and computational mod-
eling of bioconvection, which describes the mixing of fluid and
micro-organisms exhibiting negative geotaxis movement under the
force of gravity. The collective population moves towards the sur-
face of the fluid, generating a Rayleigh–Taylor instability, where
initial fingers of organisms plummet to the bottom. The inherent
drive to swim vertically generates large collective flow patterns that
persist in time. We model the flow using the Navier-Stokes equa-
tions for an incompressible, viscous fluid, coupled with the trans-
port equation describing the concentration of the micro-organisms.
We use a nonlinear semigroup approach to prove the existence
of solutions. We propose a partitioned, second-order, time adap-
tive numerical method based on the Cauchy’s one-legged ‘θ-like’
scheme. We prove that the method is energy-stable, and for small
time steps, the iterative procedure in the partitioned algorithm is
linearly convergent. The numerical results confirm the expected
second-order of accuracy. We also present a computational study
of a chaotic system describing bioconvection of motile flagellates.
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1. Introduction

The following work presents a mathematical and computational modeling
of bioconvection, which describes the mixing of fluid and micro-organisms
exhibiting negative geotaxis movement under the force of gravity. The col-
lective population moves towards the surface of the fluid, generating insta-
bility at the top layer causing initial fingers of organisms to plummet to
the bottom of the container. The inherent drive to swim vertically gener-
ates large collective flow patterns that persist in time. The physical system
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is mathematically modeled by the incompressible, viscous, Navier-Stokes

equations, coupled with a transport equation for the concentration of the

micro-organisms.

1.1. The mathematical model

Let Ω ⊂ R
d, d = 2, 3, be a bounded domain with smooth boundary ∂Ω.

Let c(x, t) denote the concentration of microorganisms at point x =

(x1, · · · , xd)∈Ω, at time t> 0, and let u= {uj(x, t)}dj=1 and p(x, t) denote

the velocity and the pressure of the culture fluid.

The collective dynamics of negative geotactic micro-organisms immersed

in a viscous fluid can be modelled by the system of partial differential equa-

tions, coupling the Navier–Stokes equations with a convective transport

equation:

∂u

∂t
(x, t)−∇·

(
ν(c(x, t))D(u(x, t)

)
+ (u(x, t)·∇)u(x, t) +∇p(x, t)

= −g(1 + γc(x, t))id + f(x, t),(1)

(∇ · u)(x, t) = 0,(2)

∂c

∂t
(x, t)−ΘΔc(x, t) + (u(x, t) · ∇)c(x, t) + U

∂c

∂xd
(x, t) = 0,(3)

for all x ∈ Ω, t > 0. Here D(u) = 1
2(∇u + ∇uT ) denotes the symmetric

part of the stress tensor, f is a body force, g represents the acceleration

due to gravity, and Θ and U are the diffusion rate and mean velocity of

upward swimming of the micro-organism, respectively. The parameter γ > 0

represents the relative difference of the density ρ0 of the micro-organism

from that of the density ρm of the culture fluid, that is, γ = ρ0

ρm
− 1. The

vector id = (0, · · · , 1)T denotes the vertical unit vector in R
d, so that the

term −g(1 + γc)id captures the effect of gravity on organisms at the upper

surface. The equations (1) and (2) are the Navier–Stokes type equations for

the incompressible viscous culture fluid, and represent the conservation of

momentum and conservation of mass for Newtonian fluids. The equation (3)

describes the transport of micro-organisms, where U > 0, and the U ∂c
∂xd

term represents the effect of mean upward swimming of micro-organisms.

The equation (3) can be written as a conservation equation:

d

dt
c+∇ · J = 0, x ∈ Ω, t > 0,
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where d
dt = ∂

∂t + (u · ∇) is the derivative along the fluid particle, and J =
−Θ∇c+ Ucid is the flux of micro-organisms.

The boundary conditions are of Dirichlet type for the fluid, and no-flux
for the concentration, such that at each point x ∈ ∂Ω, t > 0:

u = 0, Θ
∂c

∂n
− cUnd = 0,(4)

where n = (n1, . . . , nd) denotes the exterior unit normal vector on ∂Ω. We
also prescribe initial conditions on u, p, and c, that is, u(x, 0) = u0(x),
p(x, 0) = p0(x), and c(x, 0) = c0(x), for all x ∈ Ω.

In an ideal Newtonian fluid, the viscosity ν is assumed to be constant.
However, this assumption has been shown not to hold generally. In real-
life suspensions it was observed that the viscosity ν = ν(c) depends on the
concentration of the micro-organisms, see e.g., [17] for a list of references
with proven explicit expressions of ν(c). The nonlinear viscosity yields better
approximations, especially for the bottom heavy micro-organisms, since the
viscous drag force is the major reason for their upward swimming. Hence,
we consider the 3D generalized bioconvection model whose viscosity depends
on the concentration ν = ν(c).

First we point out that the concentration is positive, c(x, t) > 0 for all
x ∈ Ω, t > 0. This is an immediate consequence of the maximum principle
in [45, pp. 174], [5] (for its proof in the constant diffusion case, see Lemma
4.2 in [36, pp. 141]). We also note that the no-flux boundary condition for
the concentration (4) ensures the conservation of the total mass of micro-
organisms: α =

∫
Ω c(x, t)dx =

∫
Ω c0(x)dx, for any t ≥ 0. Integrating (3)

over Ω, we obtain:

0 =
∂

∂t

∫
Ω
c(x, t)dx−

∫
Ω

(
ΘΔc(x, t)− U

∂c

∂xd
(x, t)

)
dx

+

∫
Ω
u(x, t) · ∇c(x, t)dx,

hence the total mass of micro-organisms is constant in time:

∂

∂t

∫
Ω
c(x, t)dx = 0, ∀t > 0.(5)

Indeed, the second term in the right-hand side above (5) vanishes, by using
the divergence theorem and the no-flux condition in (4). The third terms
also vanishes, by applying the incompressibility condition (2) and the ho-
mogeneous Dirichlet boundary condition for the velocity.
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Let us define the kinetic energy of the fluid flow, and respectively the
potential energy of the system by

KE(t) =
1

2

∫
Ω
|u(x, t)|2 dx, PE(t) = αg

∫
Ω
c(x, t) · (xd − xmin

d ) dx,

where xmin
d is the ‘bottom’ of Ω in the vertical direction. Testing the Navier-

Stokes equation (1) with u(x, t), and using the incompressibility condi-
tion (2) and the homogeneous boundary conditions on the flow, we obtain

1

2

d

dt

∫
Ω
|u(x, t)|2dx+

∫
Ω
ν(c)|D(u)|2dx

=

∫
Ω
−g(1 + γc(x, t))idu dx+

∫
Ω
f(x, t)u dx.

Similarly, testing the transport equation (3) with γg(xd − xmin
d ) gives

0 =
d

dt
αg

∫
Ω
c(x, t)(xd − xmin

d )dx+ γg

∫
Ω
Θ

∂c

∂xd
dx− γg

∫
Ω
cu · iddx

− γgU

∫
Ω
c dx,

and therefore we have the total energy balance equation:

d

dt

(
KE+ PE

)
+

∫
Ω
ν(c)|D(u)|2dx

=

∫
Ω
f(x, t)u dx+ g

∫
Ω

(
γ
(
Uc−Θ∇c · id

)
− u · id

)
dx.(6)

1.2. Previous work

Within the works of [27, 37], the problem of bioconvection is extended to
two-dimensions with a rigid bottom, lateral boundaries, and a stress-free
top. In the context of wide chambers under these conditions, multiple plumes
form and are periodic in the axial direction. The stability of a single plume is
considered and studied. The Rayleigh number is modified to be independent
of the height of the chamber. The system is discretized using a conserva-
tive finite-difference scheme on a staggered mesh. The stability of the system
and single plume is analyzed across changes in aspect ratio (grid size), swim-
ming speed of the micro-organisms, and gryotaxis number. The results are
consistent with the findings of [19, 20, 31, 42] where instability of the top
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layer forms as micro-organisms collect in the top layer of the fluid. These

instabilities are observed as potential energy converts into kinetic energy

[31].

The study of bioconvection and stability is extended to periodic condi-

tions [28, 29, 37] and periodic solutions [21]. The existence and uniqueness

of a 3D time-periodic solution is proven for weak solutions [21]. The three-

dimensional chamber allows for the formation of bioconvective plumes which

become unstable as depth increases. This instability causes ‘blobs’ to ap-

pear periodically around the plume [28, 29]. The wavelength of the periodic

plumes is analyzed across changes of concentration, diffusion coefficient, and

depth of chamber impacting the resulting bioconvective patterns [29]. The

wavelength is found to be most sensitive to the ratio of swimming speed and

diffusivity but less sensitive to changes in depth of the chamber.

In the case of viscosity depending on the concentration of particles, Ein-

stein derived the theoretical expression for viscosity of small particles at

relatively low concentrations in a suspension. This expression holds under

the assumption that particles do not interact due to low levels of concentra-

tion. However, in the work by Mooney [44], this model is extended to higher

concentrations of rigid spherical particles, which provide good agreement

with experimental data. In particular, Mooney investigates the crowding ef-

fect of two-component rigid spheres in a finite volume, where the size and

concentration of partial volume occupied by component one crowds com-

ponent two. Experimental data for increases in concentration of uniform

sphere sizes relative to viscosity are in good agreement with the analytical

findings of this work, but the experimental comparisons of concentration

due to varying particle sizes or particle interaction is limited. The author

concludes that the crowding effect of particle interaction with changes in

concentration can be analytically described as basic geometric crowding of

spheres.

Following the motivation to extend Einstein’s equation of a dilute sus-

pension of rigid particles to higher concentrations, the work of [25] finds that

Einstein’s formula can only be extended to the situation when the confine-

ment, which is defined as the ratio of particle size width with respect to the

width of the square channel, is less than 0.02. By using a two-way coupling

method of second-order accuracy, the authors find that the differences of the

relative viscosity compared to viscosity calculated from Einstein’s formula

increases as confinement increases. This finding indicates the discrepancy

and inability for Einstein’s equation to accurately capture measurements at

high concentration levels. For non-Newtonian fluids, increasing Reynold’s
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numbers changes the fluid’s properties from thixotropy to dilatancy (shear-

thinning to shear thickening) resulting from the outward particle mitigation.

This property change occurs when the power-law index of the Reynold’s

number increases from less than one to greater than one.

The authors of [10] prove the existence and uniqueness of weak solu-

tions for the generalized stationary system of bioconvection where viscosity

changes with concentration. The system is constructed in three dimensions

and assumes the upward flow of organisms to be small. The challenge of the

generalized system results from nonlinear terms, which the authors are able

to approximate using a Helmholtz decomposition.

In [17], the authors study the existence of weak solutions for biocon-

vective flow in two dimensions, using the Galerkin method to construct

a sequence of approximating solutions within finite-dimensional subspaces.

The uniqueness is proved assuming the uniform boundedness of the stress

tensor ‖D(u)‖L∞(Ω) ≤ C. The numerical experiments are performed using

a backward-Euler time integration and finite element approximations.

The existence of a 3D solution for the system (1)-(3) with constant

ν(c) = ν∗ was proven in [36], using a Galerkin approximation. The corre-

sponding numerical approximations were performed in [32], using an implicit

- explicit type method for time integration, combining the backward-forward

Euler and the leapfrog scheme. Inverse problems of optimal control type for

stationary and time dependent bioconvection were treated in [1, 23], with

possible applications in forecasting the ecological state of atmosphere and

ocean.

1.3. The focus of this work

This work focuses on the development of a partitioned, variable time - step-

ping method for the bioconvection problem. We consider a bioconvection

model as in [17], consisting of a fluid equation and a transport equation,

where the fluid viscosity depends on the concentration. We use a nonlinear

semigroup approach to prove the existence of weak solutions for the con-

tinuous problem. In contrast with previous work by Cao et al. [10], we do

not have a restriction on the up-swimming speed U . For the numerical so-

lution of the problem, a novel partitioned scheme is presented, where the

fluid and the transport problems are decoupled and sub-iteratively solved

using the backward-Euler method with a fractional step until convergence.

After that, the solutions are extrapolated and the time step is adapted. The

backward-Euler discretization combined with extrapolation corresponds to
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the refactorized Cauchy’s ‘θ-like’ method, which is symplectic and second-
order accurate in time when θ = 1

2 , in which case the midpoint method is ob-
tained [16]. Application of this method to bioconvection, in combination with
partitioning, raises new challenges in proving stability and convergence. Here
we show that, under certain assumptions, the sub-iterative process in the
algorithm is linearly convergent, and that the proposed numerical method
is stable. The time adaptivity is based on Milne’s device and a modified
Adams-Bashforth, second-order accurate method for the estimation of the
local truncation error [13, 14, 15, 16, 41]. The expected convergence results
are verified in numerical examples on a benchmark problem based on the
method of manufactured solutions. We also numerically investigate biocon-
vection patterns in a culture of motile flagellates, where the system gives
rise to chaotic solutions.

The rest of this paper is structured as follows. The mathematical model
is analyzed in Chapter 2. The numerical method is presented in Chapter 3,
together with the stability and convergence analysis. Numerical examples
are presented in Chapter 4. Finally, conclusions are drawn in Chapter 5.

2. A nonlinear semigroup approach

Throughout the article, we assume that the kinematic viscosity ν(·) : R → R

is Lipschitz continuous and that there exist positive constants ν∗, ν∗, L such
that:

ν∗ ≤ ν(c1) ≤ ν∗, |ν(c1)− ν(c2)| ≤ L|c1 − c2|, ∀c1, c2 ∈ R.(7)

The assumption (7) is relatively weak [21], and is justified by applications
[8, 11, 24, 38, 44], with the lower bound ν∗ representing the viscosity of
the fluid with no micro-organisms. The upper bound ν∗ is guaranteed to
exist since the volume fraction of the micro-organisms in the container has a
maximum value, due to the geometric structure of the spherical particles [27].
We recall the Poincaré inequality for the velocity (for Ω a subset bounded
at least in one direction):

‖u‖ ≤ CΩ‖∇u‖, ∀u ∈ H1
0 (Ω),(8)

and the Poincaré–Wirtinger inequality for the concentration (for Ω a Lips-
chitz domain, i.e., a bounded connected open subset with a Lipschitz bound-
ary):

‖c− α‖ ≤ CΩ‖∇c‖, ∀c ∈ H1(Ω)(9)
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where α = 1
|Ω|

∫
Ω c.

Let Wm,p(Ω), for an integer m ≥ 1 and 1 ≤ p ≤ ∞, denote the Sobolev
space of real valued functions (and their vector-valued counterparts) which
are in Lp(Ω) together with their weak derivatives of order less than or equal
to m. Let Hm(Ω) = Wm,2(Ω), and denote by ‖·‖m both the norm in Hm(Ω)
and

(
Hm(Ω))d, and by ‖ · ‖ the L2(Ω) and

(
L2(Ω))d norms.

By a classical device due to J. Leray, the boundary value problem (1)-(3)
can be written as an infinite-dimensional Cauchy problem in an appropriate
function space on Ω. To this end, we introduce the following spaces:

H = {u ∈ (L2(Ω))d; ∇ · u = 0} × L2(Ω),

V = {u ∈ (H1
0 (Ω))

d; ∇ · u = 0} ×H1(Ω).

We define the operator A ∈ L(V, V ′) by setting

〈A(u1, c1), (u2, c2)〉 =
∫
Ω

(
ν∗∇u1 · ∇u2 +Θ∇c1 · ∇c2

)
dx(10)

for all (ui, ci) ∈ V . The operator A is a self-adjoint, unbounded operator
on H, with the domain D(A) = {(u, c) ∈ V ∩ (H2(Ω))d+1, Θ ∂c

∂n − Ucnd =
0 on ∂Ω}. We define also a continuous trilinear form B0 on V × V × V by
setting

B0

(
(u1, c1), (u2, c2), (u3, c3)

)
=

∫
Ω

(
(ν(c2)− ν∗)∇u1 · ∇u3(11)

+ (u1 · ∇)u2u3 + (u1 · ∇)c2c3 + g(1 + γc1)idu3 + U
∂c1
∂xd

c3

)
dx,

and a continuous bilinear operator B : V → V ′ with

〈B(u1, c1), (u2, c2)〉 = B0

(
(u1, c1), (u1, c1), (u2, c2)

)
,(12)

for all (ui, ci) ∈ V . We recall (see e.g. [6, 22, 26, 43, 46])∫
Ω

(
(u1 · ∇)u2u3 + (u1 · ∇)c2c3

)
dx

≤ CΩ‖(u1, c1)‖m1
‖(u2, c2)‖m2+1‖(u3, c3)‖m3

(13)

for all (u1, c1) ∈ Hm1(Ω), (u2, c2) ∈ Hm2+1(Ω), (u3, c3) ∈ Hm3(Ω), where

m1 +m2 +m3 ≥
d

2
, if mi �=

d

2
for all i = 1, . . . , d
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and

m1 +m2 +m3 >
d

2
, if mi =

d

2
for any of i = 1, . . . , d.

In particular, it follows by (13) that the operator B is continuous from V to

V ′. Indeed, we have

〈B(u1, c1)− B(u2, c2), (u3, c3)〉
= B0

(
(u1, c1), (u1, c1)− (u2, c2), (u3, c3)

)
− B0

(
(u1, c1)− (u2, c2), (u2, c2), (u3, c3)

)
≤ CΩ

(
‖(u1, c1)‖1‖(u1, c1)− (u2, c2)‖1‖(u3, c3)‖1

+ ‖(u1, c1)− (u2, c2)‖1‖(u2, c2)‖1‖(u3, c3)‖1
)
,

hence

‖B(u1, c1)− B(u2, c2)‖V ′

≤ CΩ‖(u1, c1)− (u2, c2)‖1
(
‖(u1, c1)‖1 + ‖(u2, c2)‖1

)
,

for all (u1, c1), (u2, c2) ∈ V .

The trilinear form B0

(
(u1, c1), (u2, c2), (u2, c2)

)
is well defined and the

following property holds:

B0

(
(u1, c1), (u2, c2), (u2, c2)

)
=

∫
Ω

(
(ν(c2)− ν∗)∇u1 · ∇u2 + g(1 + γc1)idu2 + U

∂c1
∂xd

c2

)
dx.

(14)

Definition 2.1. Let (f , 0) ∈ L2(0, T ;V ′) and (u0, c0) ∈ H. Then (u, c) :

[0, T ] → H is said to be a weak solution to equation (1)-(3) if

(u, c) ∈ L2(0, T ;V ) ∩ Cw([0, T ];H) ∩W 1,1([0, T ];V ′),(15)

d(u, c)

dt
(t) +A(u, c)(t) + B(u, c)(t) = (Pf(t), 0), a.e., t ∈ (0, T ),(16)

and (u, c)(0) = (u0, c0) ∈ H.

Here Cw([0, T ];H) denotes the space of weakly continuous function (u, c) :

[0, T ] → H, while d(u,c)
dt is the strong derivative of (u, c) : [0, T ] → V ′, and

P : (L2(Ω))d → {u ∈ (L2(Ω))d;∇ · u = 0} is the Hodge projection.
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Also (u, c) is said to be a strong solution to equation (1)-(3) if (u, c) ∈
W 1,1([0, T ];H) ∩ L2(0, T ;D(A)) and (16) holds with d(u,c)

dt ∈ L1(0, T ;H)
being the strong derivative of (u, c) : [0, T ] → H.

We would like to treat (16) as a nonlinear Cauchy problem in the space
H. The proof for the existence of weak solutions is based on the semigroup
approach proposed in [4, 7, 39] for the Navier–Stokes equations. Because the
operator A + B is not quasi-m-accretive in H, we first consider a quasi-m-
accretive approximation of the operator B. For each M > 0, we define the
following modified nonlinearity BM : V → V by setting

BM (u, c) =

{ B(u, c), if ‖(u, c)‖H1(Ω) ≤ M,(
M

‖(u,c)‖H1(Ω)

)2
B(u, c), if ‖(u, c)‖H1(Ω) > M,

(17)

and consider the operator GM : D(GM ) ⊂ H → H:

GM = A+ BM , D(GM ) = D(A).(18)

The operator GM is well-defined:

‖GM (u, c)‖ ≤ ‖A(u, c)‖+ CΩ‖(u, c)‖3/21 ‖(u, c)‖1/22

+ (ν(c)− ν∗)‖(u, c)‖2 + g|Ω|1/2 + gγ‖c‖+ U‖∇c‖,(19)

for all (u, c) ∈ D(A) (see Lemma A.1 in Appendix A), and moreover GM is
quasi-m-accretive [3] (see Lemma A.3 in Appendix A). Now, for each M > 0,
we consider the equation

d(u, c)

dt
(t) +A(u, c)(t) + BM (u, c)(t) = (Pf(t), 0), a.e. t ∈ (0, T ),(20)

and (u, c)(0) = (u0, c0).

Proposition 2.1. Let (u0, c0) ∈ D(A) and (f , 0) ∈ W 1,1([0, T ];H) be
given. Then there exists a unique solution (uM , cM ) ∈ W 1,∞([0, T ;H]) ∩
L∞(0, T ;D(A)) ∩ C([0, T ];V ) to (20). Moreover, d+

dt (uM , cM )(t) exists for
all t ∈ [0, T ) and

d+

dt
(uM , cM )(t) +A(uM , cM )(t) + BM (uM , cM )(t) = (Pf(t), 0),(21)

for all t ∈ [0, T ).
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Proof. The conclusion follows from a classical result on existence and unique-
ness of strong solutions for Cauchy problems in reflexive Banach, or uni-
formly convex spaces, with quasi-m-accretive operators see [3, Theorem
1.16]. Since GM (uM , cM ) ∈ L∞(0, T ;H), we derive that

d(uM , cM )

dt
∈ L∞(0, T ;H),

and therefore (uM , cM ) ∈ C([0, T ];V ).

We state now the main existence result for the strong solutions to (1)-(3).
The result follows from the fact that for M sufficiently large, the solution
(uM , cM )(t), defined by Proposition 2.1, is independent ofM on each interval
[0, T ] if d = 2, or on [0, T(u0,c0)] if d = 3.

Theorem 2.1. Assume (7) and (f , 0) ∈ W 1,1([0, T ];H), (u0, c0) ∈ D(A).
Then there exists a unique solution

(u, c) ∈ W 1,∞([0, T ∗];H) ∩ L∞(0, T ∗;D(A)) ∩ C([0, T ∗];V )

such that

d(u, c)

dt
(t) +A(u, c)(t) + B(u, c)(t) = (Pf(t), 0), a.e., t ∈ (0, T ∗),(22)

and (u, c)(0) = (u0, c0), for some T ∗ = T ∗
(u0,c0)

≤ T . In the d = 2 case,
T ∗ = T .
Moreover, (u, c)(t) is right differentiable and

d+(u, c)

dt
(t) +A(u, c)(t) + B(u, c)(t) = (Pf(t), 0), ∀t ∈ [0, T ∗).

Proof. Let M > 0 be fixed, but arbitrary. We first test equation (21) with
(0, cM ), and then with (uM , 0), to obtain:

‖uM (t)‖2 + ‖cM (t)‖2 +
∫ t

0
‖ν(cM )1/2∇uM (s)‖2ds+

∫ t

0
Θ‖∇cM (s)‖2ds

(23)

≤4g2C2
Ω

1

ν∗
|Ω|t+4g2C2

Ω

1

ν∗
γ2‖c0‖2

Θ

U2

(
exp(

U2

Θ
t)−1

)
+‖u0‖2

+‖c0‖2exp(
U2

Θ
t)+

2

ν∗

∫ t

0
‖(Pf(s), 0)‖2V ′ds,
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where we used (10), (14), the Poincaré inequality (8), and the Grönwall
inequality.

Recall that by Proposition 2.1, (uM , cM ) ∈ L∞(0, T ;D(A)). We now
test (21) with (−ΔuM ,−ΔcM ) to obtain:

‖∇uM (t)‖2 + ‖∇cM (t)‖2 +
∫ t

0

(
‖ν(cM )1/2ΔuM (s)‖2 +Θ‖ΔcM (s)‖2

)
ds

(24)

≤ 2

∫ t

0

∫
Ω

(
(uM · ∇)uMΔuM + (uM · ∇)cMΔcM

)
dxds

+ 2g2
1

ν∗

∫ t

0
‖1 + γcM (s)‖2ds+ U2

Θ

∫ t

0

∥∥∥∂cM (s)

∂xd

∥∥∥2ds+ ‖∇u0‖2

+ ‖∇c0‖2 +
2

ν∗

∫ t

0
‖(Pf(s), 0)‖2V ′ds.

In order to prove that the L∞(0, T ;H1(Ω)) norm of (uM , cM ) is independent
of M , we treat separately the spatial dimensions d = 2 and d = 3.

(i) For d = 3, by (13) and the interpolation inequality, we have∫
Ω

(
(uM · ∇)uMΔuM + (uM · ∇)cMΔcM

)
dx

≤ ν∗
2
‖ΔuM‖2 + Θ

2
‖ΔcM‖2 + C0

(
‖∇uM‖6 + ‖∇cM‖6

)
+ C

(
‖uM‖2 + ‖cM‖2 + ‖cM‖3 + ‖cM‖6

)
,

which by (24) gives

‖∇uM (t)‖2 + ‖∇cM (t)‖2

+
1

2

∫ t

0

(
ν(cM )‖ΔuM (s)‖2 +Θ‖ΔcM (s)‖2

)
ds ≤ φ(t),

where

φ(t) := C0

∫ t

0

(
‖∇uM (s)‖6 + ‖∇cM (s)‖6

)
ds

+ 2g2
1

ν∗

∫ T

0
‖1 + γcM (s)‖2ds

+ C

∫ T

0

(
‖uM (s)‖2 + ‖cM (s)‖2 + ‖cM (s)‖3 + ‖cM (s)‖6

)
ds



Numerical approximation of bioconvection 153

+
U2

Θ

∫ T

0

∥∥∥∂cM (s)

∂xd

∥∥∥2ds+ ‖∇u0‖2 + ‖∇c0‖2

+
2

ν∗

∫ T

0
‖(Pf(s), 0)‖2V ′ds.

We note that φ(t) satisfies the integral inequality

φ′(t) ≤ 2C0φ
3(t), ∀t ∈ (0, T ),

and

φ(0) := C0

∫ T

0

(
‖uM (s)‖2 + ‖cM (s)‖2 + ‖cM (s)‖3 + ‖cM (s)‖6

)
ds

+ 2g2
1

ν∗

∫ T

0
‖1 + γcM (s)‖2ds+ U2

Θ

∫ T

0

∥∥∥∂cM (s)

∂xd

∥∥∥2ds
+ ‖∇u0‖2 + ‖∇c0‖2 +

2

ν∗

∫ T

0
‖(Pf(s), 0)‖2V ′ds.

Moreover, by (23), we have that φ(0) is uniformly bounded above:

φ(0) ≤ C1 < ∞, ∀M > 0.

Therefore,

‖∇uM (t)‖2 + ‖∇cM (t)‖2(25)

+
1

2

∫ t

0

(
ν(cM )‖ΔuM (s)‖2 +Θ‖ΔcM (s)‖2

)
ds

≤
( φ2(0)

1− 4C0tφ2(0)

)1/2
≤

( C2
1

1− 4C0C2
1 t

)1/2
, ∀t ∈ (0, T ∗),

where

T ∗ =
1

4C0C2
1

≤ 1

4C0φ2(0)
.

(ii) For d = 2, we similarly have∫
Ω

(
(uM · ∇)uMΔuM + (uM · ∇)cMΔcM

)
dx

≤ ν∗
2
‖ΔuM‖2 + Θ

2
‖ΔcM‖2 + C

(
‖uM‖2‖∇uM‖4 + ‖uM‖2‖∇cM‖4

)



154 Madeline Edwards et al.

+ C
(
‖uM‖2‖∇uM‖2 + ‖cM‖4 + ‖cM‖2‖∇cM‖2

)
,

+ C‖uM‖2‖cM‖4,

which by (24) gives

‖∇uM (t)‖2 + ‖∇cM (t)‖2

+
1

2

∫ t

0

(
ν(cM )‖ΔuM (s)‖2 +Θ‖ΔcM (s)‖2

)
ds

≤ C

∫ t

0

(
‖uM (s)‖2‖∇uM (s)‖4 + ‖uM (s)‖2‖∇cM (s)‖4

)
ds

+ C

∫ T

0

(
‖uM (s)‖2‖∇uM (s)‖2 + ‖cM (s)‖4

)
ds

+ C

∫ T

0

(
‖cM (s)‖2‖∇cM (s)‖2 + ‖uM (s)‖2‖cM (s)‖4

)
ds

+ 2g2
1

ν∗

∫ T

0
‖1 + γcM (s)‖2ds+ U2

Θ

∫ T

0

∥∥∥∂cM (s)

∂xd

∥∥∥2ds
+ ‖∇u0‖2 + ‖∇c0‖2 +

2

ν∗

∫ T

0
‖(Pf(s), 0)‖2V ′ds.

By (23) and the Grönwall inequality this yields

‖∇uM (t)‖2 + ‖∇cM (t)‖2
(26)

+
1

2

∫ t

0

(
ν(cM )‖ΔuM (s)‖2 +Θ‖ΔcM (s)‖2

)
ds

≤ C
(
‖∇u0‖2 + ‖∇c0‖2 +

∫ T

0
‖(Pf(s), 0)‖2V ′ds

)
, ∀t ∈ (0, T ).

In conclusion, from (25) and (26) we infer that for M large enough,

‖(uM , cM )‖1 ≤ M

on (0, T ∗) if d = 3, or on (0, T ) if d = 2. Hence, by definition (17), we
have that BM (uM , cM ) = B(uM , cM ) on (0, T ∗) (respectively on (0, T )),
and consequently (uM , cM ) ≡ (u, c) is a solution to (22). This completes
the proof of existence. The uniqueness is immediate.

We state now the existence of a weak solution for (1)-(3).
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Theorem 2.2. Assume (7). For any initial condition (u0, c0) ∈ H and
(f , 0) ∈ L2(0, T ;V ′) there is at least one weak solution

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

c ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

to (1)-(3), given by

(u, c) = w − lim
m→∞

(uMm
, cMm

) in L2(0, T ;V ), weak-star in L∞(0, T ;H),

d

dt
(u, c) = w − lim

m→∞
d

dt
(uMm

, cMm
) in L

4

3 (0, T ;V ′),

for some m → ∞.

Proof. By (11) and (13) we have

‖BM (uM , cM )‖V ′ ≤ C
(
‖uM‖1/2‖∇uM‖3/2

+ ‖uM‖1/2‖∇uM‖1/2‖∇cM‖+ ‖∇uM‖+ ‖∇cM‖+ g‖1 + γcM‖
)
,

and therefore by (23) we obtain∫ T

0

∥∥∥ d

dt
(uM , cM )

∥∥∥ 4

3

V ′
dt ≤ C.

This allows passing to the limit, on subsequences, in (21).

3. Numerical method

For the semi-discretization in time, let {tn}0≤n≤N denote the mesh points
based on a non-uniform time step τn, such that tn+1 = tn+τn. We also denote
tn+θn = tn+θnτn, for any θn ∈ [0, 1]. The main steps of the proposed method
are described as follows. First, on the interval [tn, tn+θ], we approximate the
solution using the implicit backward-Euler method:

un+θn − un

θnτn
−∇ · (ν(cn+θn)D(un+θn)) + (un+θn · ∇)un+θn +∇pn+θn

= −g(1 + γ cn+θn)id + fn+θn ,

∇ · un+θn = 0,(27)

cn+θn − cn
θnτn

−ΘΔcn+θn + un+θn · ∇cn+θn + U
∂cn+θn

∂xd
= 0.
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Then, on [tn+θn , tn+1], we use the explicit forward Euler method:

un+1 − un+θn

(1− θn)τn
−∇ · (ν(cn+θn)D(un+θn)) + (un+θn · ∇)un+θn

+∇pn+θn = −g(1 + γ cn+θn)id + fn+θn

cn+1 − cn+θn

(1− θn)τn
−ΘΔcn+θn + un+θn · ∇cn+θn + U

∂cn+θn

∂xd
= 0,

(28)

or, equivalently, the linear extrapolations (see e.g., [16]):

un+1 =
1

θn
un+θn −

( 1

θn
− 1

)
un, cn+1 =

1

θn
cn+θn −

( 1

θn
− 1

)
cn.(29)

Finally, for time-adaptivity, we compute the local truncation error T̂n+1

using Milne’s device [13, 14, 15, 16, 41], and given a tolerance εΔt, and
positive parameters rmin, rmax and s, adapt the time step:

τnew = τnmin

⎧⎨⎩rmax,max

⎧⎨⎩rmin, s

(
εΔt

‖T̂n+1‖

) 1

3

⎫⎬⎭
⎫⎬⎭ .(30)

Numbers rmin and rmax are added so that the ratio of τnew and τn stays
between these values. The coefficient s is a ‘safety’ parameter, routinely used
to reduce the number of rejected time steps in the adaptive algorithm. If
‖T̂n+1‖ ≤ εΔt, we set τn+1 = τnew, chose θn+1, and evolve the time interval
tn+2 = tn+1 + θn+1τn+1. Otherwise, we set τn = τnew and go back to the
backward-Euler problem (27).

We note that the equations (27) and (28) can be equivalently written as
the following one-legged θ-method ([18] originally used by Cauchy to prove
the existence of a solution to ordinary differential equations):

un+1 − un

τn
−∇ · (ν(cn+θn)D(un+θn)) + (un+θn · ∇)un+θn +∇pn+θn

= −g(1 + γ cn+θn)id + fn+θn

∇ · un+1 = 0,(31)

cn+1 − cn
τn

−ΘΔcn+θn + un+θn · ∇cn+θn + U
∂cn+θn

∂xd
= 0,

where, by (29),

un+θn = θnun+1 + (1− θn)un, cn+θn = θncn+1(1− θn)cn.
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When θn = 1
2 , (31) gives the midpoint rule. Moreover, under the assumptions

in Theorems 2.2 and 2.1, the steady state equations in (31) have weak and

respectively strong solutions, see e.g. [10].

We also note that the one-leg method (31) for the finite-difference time-

discretization and the finite elements methods for the spatial-discretization,

gives rise to suitable weak solutions in the sense of Scheffer and Caffarelli-

Kohn-Nirenberg, see e.g. [9, 16].

Remark 3.1. Assume that the initial datum and the forcing term satisfy

the assumptions of Theorem 2.1, namely (u0, c0) ∈ D(A) and (f , 0) ∈
W 1,1([0, T ];H). Then, for small time steps τn, depending inverse propor-

tionally with ν3∗ and ν2∗Θ, the operator 1
τn
I + A + B is a contraction on

D(A). Therefore, for all n ≥ 0, the Cauchy method (31) has a unique strong

solution (un, cn) ∈ D(A).

The solution to the backward-Euler step (27) can be computed in a

partitioned way, i.e., by solving the Navier-Stokes equations and transport

equations separately. Let us denote by u
(κ)
n+θn

and c
(κ)
n+θn

the κth-iterates of

the velocity and concentration, respectively, where the initial iterates are

taken to be

u
(0)
n+θn

= (1 + θn)un − θnun−1, c
(0)
n+θn

= (1 + θn)cn − θncn−1.

Then, the iterates are defined by

u
(κ+1)
n+θn

− un

θnτn
−∇·(ν(c(κ)n+θn

)D(u
(κ+1)
n+θn

)) + (u
(κ+1)
n+θn

·∇)u
(κ+1)
n+θn

+∇p
(κ+1)
n+θn

= −g(1+γ c
(κ)
n+θn

)id+fn+θn ,

∇ · u(κ+1)
n+θn

= 0,(32)

c
(κ+1)
n+θn

− cn

θnτn
−ΘΔc

(κ+1)
n+θn

+ u
(κ)
n+θn

· ∇c
(κ+1)
n+θn

+ U
∂c

(κ+1)
n+θn

∂xd
= 0,

for all κ ≥ 0. In Section 3.2, we show that, as κ ↗ ∞, the sequences of

iterates converge

u
(κ)
n+θn

−→ un+θn , c
(κ)
n+θn

−→ cn+θn ,

and in the limit, the system (32) solves (27).
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3.1. Stability bounds

First we note that, analogously to the continuous case (5), the total mass is

conserved at the semi-discrete in time level, giving an L1(Ω) stability bound

for cn. Indeed, integrating (31) over Ω, we have

0 =

∫
Ω

cn+1(x)− cn(x)

τn
dx−

∫
Ω

(
ΘΔcn+θn(x)− U

∂cn+θn(x)

∂xd

)
dx

+

∫
Ω
un+θn(x) · ∇cn+θn(x)dx,

which yields that the total mass of micro-organisms is constant in time:∫
Ω
cn+1(x)dx =

∫
Ω
cn(x)dx, ∀n ≥ 0.(33)

Secondly, similarly to (6), we have

1

τn

(
KEn+1 + PEn+1 −KEn − PEn

)
+

2θn − 1

2τn
‖un+1(x)− un(x)‖2

+

∫
Ω
ν(cn+θn(x))|∇un+θn(x)|2dx =

∫
Ω
fn+θn(x)un+θn(x) dx

+ g

∫
Ω

(
γ
(
Ucn+θn(x)−Θ∇cn+θn(x) · id

)
− un+θn(x) · id

)
dx

=

∫
Ω
fn+θn(x)un+θn(x) dx+ gγU

∫
Ω
c0(x) dx

− g

∫
Ω

(
γΘ∇cn+θn + un+θn

)
· id dx.

Hence, for a insulated system (f = 0) and the midpoint method (θn = 1/2),

the total energy balance at the semi- discrete level writes:

1

τn

(
KEn+1 + PEn+1 −KEn − PEn

)
+

∫
Ω
ν(cn+1/2(x))|∇un+1/2(x)|2dx

= gγU

∫
Ω
c0(x) dx− g

∫
Ω

(
γΘ∇cn+1/2 + un+1/2

)
· id dx.

Next, we prove that the semi-discrete system (31) is well posed, namely

its solution satisfies energy estimates similar to the continuous case, which
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are often referred to as a stability result. Let us denoted by K the following

constant depending only on the parameters of the problem:

K =
C2
Ω

ν∗
g2
(
|Ω|+ 2γ2α2

)
T +

2

ν∗
g2γ2C4

Ω

1

Θ
exp(TU2CΩ/Θ)‖c0‖2 +

1

2
.

Theorem 3.1. Under assumptions (7) we have that the solution to the

semi-discrete problem (31) is bounded in L∞(0, T, L2(Ω))∩L2(0, T,H1(Ω)),

and the following estimate holds

1

2

(
‖uN‖2 + ‖cN‖2

)
+

N−1∑
n=0

2θn − 1

2

(
‖un+1 − un‖2 + ‖cn+1 − cn‖2

)
(34)

+

N−1∑
n=0

τn

∫
Ω

(
ν(cn+θn)− ν∗

)
|D(un+θn)|2 +

Θ

2

N−1∑
n=0

τn‖∇cn+θn‖2

≤ 1

2

(
‖u0‖2 + ‖c0‖2

)
+K +

C2
Ω

2ν∗

N−1∑
n=0

τn‖fn+θn‖
2.

Proof. Testing the momentum equation in (31) with τnun+θn , the trans-

port equations with τncn+θn , using the incompressibility condition and the

boundary conditions (4), and by summing from n = 0 to N − 1, we obtain:

1

2
‖uN‖2 +

N−1∑
n=0

2θn − 1

2
‖un+1 − un‖2 +

N−1∑
n=0

τn

∫
Ω
ν(cn+θn)|D(un+θn)|2

(35)

=
1

2
‖u0‖2 −

N−1∑
n=0

τn

∫
Ω
g(1 + γ cn+θn)i2 un+θn +

N−1∑
n=0

τn

∫
Ω
fn+θnun+θn ,

1

2
‖cN‖2 +

N−1∑
n=0

2θn − 1

2
‖cn+1 − cn‖2 +Θ

N−1∑
n=0

τn‖∇cn+θn‖2

(36)

=
1

2
‖c0‖2 +

N−1∑
n=0

τn

∫
Ω
U
∂cn+θn

∂xd
cn+θndx.

First, using the boundary conditions (4), the trace inequality [30], and the
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discrete Grönwall’s inequality [34], we get:

1

2
‖cN‖2 +

N−1∑
n=0

2θn − 1

2
‖cn+1 − cn‖2 +

Θ

2

N−1∑
n=0

τn‖∇cn+θn‖2(37)

≤ 1

2
exp(2TU2CΩ/Θ)‖c0‖2.

Next, using the Cauchy-Schwarz, the Poincaré (8) and Poincaré-Wirtinger (9)

inequalities, and the (7) lower bound on the fluid viscosity, from (35) we get

the following energy estimate for the flow velocity:

1

2
‖uN‖2 +

N−1∑
n=0

2θn − 1

2
‖un+1 − un‖2

+

N−1∑
n=0

τn

∫
Ω

(
ν(cn+θn)− ν∗

)
|D(un+θn)|2

≤ 1

2
‖u0‖2 +

C2
Ω

ν∗
g2
(
|Ω|+ 2γ2α2

)
T +

2

ν∗
g2γ2C4

Ω

N−1∑
n=0

τn‖∇cn+θn‖2

+
C2
Ω

2ν∗

N−1∑
n=0

τn‖fn+θn‖
2.

Using the mass balance relation (37) we obtain (34), i.e., the time discretiza-

tion is nonlinearly energy stable for all θn ∈ [12 , 1]. From the energy equal-

ity (35)-(37) we note that the method has nonzero numerical dissipation

unless θn = 1/2, which corresponds to the midpoint rule.

3.2. Convergence of the sub-iterations

Proposition 3.1. For small enough time steps

τn ≤ Θ

U2
,(38)

under assumption (7), the iterations {u(κ+1)
n+θn

, c
(κ+1)
n+θn

} satisfying the parti-

tioned method (32) converge weakly in H1(Ω), and strongly in L2(Ω) to the

solution {un+θn , cn+θn} of the coupled system (27).
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Proof. We test (32) with u
(κ+1)
n+θn

and c
(κ+1)
n+θn

, respectively, to obtain

1

2θnτn

(
‖u(κ+1)

n+θn
‖2 − ‖un‖2 + ‖u(κ+1)

n+θn
− un‖2

)
+

∫
Ω
ν(c

(κ)
n+θn

)
∣∣D(u

(κ+1)
n+θn

)
∣∣2

= −g

∫
Ω
(1 + γ c

(κ)
n+θn

)i2u
(κ+1)
n+θn

+

∫
Ω
fn+θnu

(κ+1)
n+θn

,

1

2θnτn

(
‖c(κ+1)

n+θn
‖2 − ‖cn‖2 + ‖c(κ+1)

n+θn
− cn‖2

)
+Θ‖∇c

(κ+1)
n+θn

‖2

=

∫
Ω
U
∂c

(κ+1)
n+θn

∂xd
c
(κ+1)
n+θn

dx.

From the second relation, with an argument similar to the one used for (37),
we have that hence, for small enough time steps, i.e., satisfying (38),( 1

θnτn
− 1

Θ
U2

)
‖c(κ+1)

n+θn
‖2 + 1

2θnτn
‖c(κ+1)

n+θn
− cn‖2 +

Θ

2
‖∇c

(κ+1)
n+θn

‖2

≤ 1

θnτn
‖cn‖2,

the sequence {c(κ)n+θn
}κ is bounded in H1(Ω), and therefore

c
(κ)
n+θn

⇀ cn+θn weakly in H1(Ω), strongly in L2(Ω).

Using the uniform (lower) bound of the viscosity ν(·), from the NSE energy
equality we obtain similarly that

u
(κ)
n+θn

⇀ un+θn weakly in H1(Ω), strongly in L2(Ω).

By the Lipschitz continuity of the viscosity function (7) we have that also

ν(c
(κ)
n+θn

) → ν(cn+θn) strongly in L2(Ω),

and therefore, letting κ ↗ ∞ in (32), we see that the limits un+θn , cn+θn

satisfy (27).

3.2.1. Linear convergence. Denote

δκu = un+θn − u
(κ)
n+θn

, δκp = pn+θn − p
(κ)
n+θn

, δκu = cn+θn − c
(κ)
n+θn

.

Assume now that the initial data is smooth and the time step is small
enough, such that by Remark 3.1, we have that (31) admits a unique strong
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solution (un, cn) ∈ D(A). Then we have the following stronger result, re-
garding the order of convergence of the iterative process (32).

Proposition 3.2. For small time steps, the sequence {u(κ)
n+θn

, c
(κ)
n+θn

} con-
verges linearly to the solution of (27) {un+θn , cn+θn}.

Proof. Subtracting (32) from (27) we obtain

δκ+1
u

θnτn
−∇ ·

(
(ν(cn+θn)− ν(c

(κ)
n+θn

))D(un+θn)
)
−∇ ·

(
ν(c

(κ)
n+θn

)D(δκ+1
u )

)
+
(
δκ+1
u · ∇

)
un+θn + (u

(κ+1)
n+θn

· ∇)δκ+1
u +∇δκ+1

p = −gγ δκc i2,

∇ · δκ+1
u = 0,

δκ+1
c

θnτn
−ΘΔδκ+1

c + δκu · ∇cn+θn + u
(κ)
n+θn

· ∇δκ+1
c + U

∂δ
(κ+1)
c

∂x2
= 0.

Proceeding similarly as in the proof of Theorem 3.1, using the Cauchy-
Schwarz inequality and the bounds (7) on the flow viscosity, we have( 1

θnτn
− 1

2
gγ

)
‖δκ+1

u ‖2 + ν∗‖D(δκ+1
u )‖2

≤ 1

2
gγ‖δκc ‖2 + L

∫
Ω
|δκc | |D(un+θn)| |D(δκ+1

u )|+
∫
Ω

∣∣(δκ+1
u · ∇

)
un+θnδ

κ+1
u

∣∣,
1

θnτn
‖δκ+1

c ‖2 +Θ‖∇δκ+1
c ‖2 ≤

∫
Ω

∣∣∣δκu · ∇cn+θn δ
κ+1
c

∣∣∣.
Using the Ladyzhenskaya (Gagliardo-Nirenberg) inequalities [40], in the d =
2 case, for example, we obtain( 1

θnτn
− 1

2
gγ − 1

ν∗

)
‖δκ+1

u ‖2 +
( 1

θnτn
− 1

2Θ

)
‖δκ+1

c ‖2 + ν∗
2
‖D(δκ+1

u )‖2

+
Θ

2
‖∇δκ+1

c ‖2

≤ C4

16ν∗

(
‖∇un+θn‖2 + ‖∇cn+θn‖2

)2‖δκu‖2 + ν∗
4
‖∇δκu‖2 +

Θ

4
‖∇δκc ‖2

+
(1
2
gγ +

C4L4

|ν∗|2Θ
‖∇un+θn‖2‖Δun+θn‖2

)
‖δκc ‖2.

So for small time steps τn such that

C4

16ν∗

(
‖∇un+θn‖2 + ‖∇cn+θn‖2

)2 ≤ ( 1

θnτn
− 1

2
gγ − 1

ν∗

)
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1

2
gγ +

C4L4

|ν∗|2Θ
‖∇un+θn‖2‖Δun+θn‖2 ≤

( 1

θnτn
− 1

2Θ

)
,

i.e.,

θnτn ≤ min
{(1

2
gγ +

1

ν∗
+

C4

16ν∗

(
‖∇un+θn‖2 + ‖∇cn+θn‖2

)2)−1
,(1

2
gγ +

1

2Θ
+

C4L4

|ν∗|2Θ
‖∇un+θn‖2‖Δun+θn‖2

)−1}
we have linear convergence.

Remark 3.2. The spatial implementation in this work is based on the fi-
nite element method, where we employ inf-sup stable pairs of elements for
the fluid velocity and pressure. The examples considered in our numerical
simulations have small Reynolds numbers, so convection stabilization is not
needed. Otherwise, standard stabilization techniques can be added in the fluid
problem (first equation in (32)).

4. Numerical examples

This section is focused on the numerical simulations of bioconvection. The
problem is discretized in space using the finite element method with uni-
form, conforming meshes, where mesh size is denoted as Δx. The numerical
method is implemented in the finite element solver, FreeFem++ [33]. We
first investigate the rates of convergence of the proposed partitioned numer-
ical method using both the constant and variable viscosity in Example 4.1.
In Example 4.2, we simulate the bioconvection of motile flagellates, follow-
ing the work in [32]. As in [32], we use a constant viscosity, however, we
extend the simulation time and study the effects of small perturbations of
the initial concentration. Similar problem is simulated in Example 4.3, but
now using concentration-dependent viscosity.

4.1. Example 1

In this example, we present the rates of convergence for our method. We con-
sider two test cases for viscosity: (i) viscosity is constant and independent of
concentration, and (ii) viscosity is defined as a function of concentration. In
both examples, a fixed time step is used. Furthermore, we use P2 elements
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for the velocity and concentration, and P1 elements for pressure. The tol-

erance for the sub-iterative backward-Euler problem is set to ε = 10−4 and

the final simulation time is T = 1 s.

Rates of Convergence - Constant Viscosity. We consider a bench-

mark problem, similar to [17], where the domain and parameters are defined

as follows:

Ω = [−1, 1]× [−1, 1], g = 10, γ = 0.1, U = 0.1, Θ = 0.1, ν0 = 0.1.

We define viscosity as ν = ν0. The exact solution is given by:

(39) uref (x, t) = t2 sin(πx) sin(πy), p = cref (x, t) = t2x2y2.

We compute the relative errors between the approximated and exact solu-

tions, which are defined as:

erefu =
‖u− uref‖L2(Ω)

‖uref‖L2(Ω)
, erefc =

‖c− cref‖L2(Ω)

‖cref‖L2(Ω)
.

To compute the rates of convergence, the time step and the mesh size are

refined four times, and their values are given as follows:

{τ,Δx} =

{
0.05

2i
,
0.08

2i

}4

i=0

.

The rates of convergence in the constant viscosity case are presented in

Table 1. We expect first order when θn = 1 and second order when θn = 1/2.

The computed rates are in good agreement with the expected values.

Table 1: Rates of convergence for θ = 1, 1/2 for ν = ν0

θn = 1 τ Δx erefu Rateu erefc Ratec

τ 0.08 4.11679 · 10−2 1.09574 · 10−2

τ/2 0.04 2.15777 · 10−2 0.931979 5.63213 · 10−3 0.960153
τ/4 0.02 1.10509 · 10−2 1.89736 2.85981 · 10−3 1.93791
τ/8 0.01 5.59194 · 10−3 0.982743 1.43772 · 10−3 0.992137

θn = 0.5 τ Δx erefu Rateu erefc Ratec

τ 0.08 3.88742 · 10−3 5.49568 · 10−3

τ/2 0.04 6.61822 · 10−5 2.5543 1.46636 · 10−4 1.90606
τ/4 0.02 1.49089 · 10−5 2.15027 3.79530 · 10−5 1.94995
τ/8 0.01 3.92655 · 10−6 1.92484 9.64102 · 10−6 1.97696
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Rates of Convergence - Viscosity as Function of Concentration.
We extend and modify the previous example to a more complex problem
where the viscosity depends on the concentration, ν = ν(c). Changing vis-
cosity to be a function of concentration is motivated by the practical appli-
cation of the problem, where the collective flow of micro-organisms results
in areas of high and low concentration with respect to the organisms. As
organisms pool together and become density populated in an area, this in-
crease in concentration increases the viscosity of the flow. For this problem,
we assume that the exact solution is the same as in the previous example
(see 39), and the following parameters are used:

Ω = [0, 0.2]× [0, 0.2], g = 1.0, γ = 1.0, U = 1.0, Θ = 1.0, ν0 = 1.0.

We define the viscosity as a function of concentration,

ν(c) =

{
ν0 c ≤ 10−8

ν0(1 + 0.01 c(x, t)) c > 10−8.

The time steps and mesh sizes are defined as:

{τ,Δx} =

{
0.05

2i
,
0.04

2i

}4

i=0

.

The rates of convergence are presented in Table 2.

Table 2: Rates of convergence for θ = 1, 1/2 for ν = ν(c)

θn = 1 τ Δx erefu Rateu erefc Ratec

τ 0.04 5.80196 · 10−5 1.29159 · 10−3

τ/2 0.02 1.42646 · 10−5 2.0241 1.61036 · 10−4 3.00369
τ/4 0.01 6.63115 · 10−6 1.10511 2.21916 · 10−5 2.8593
τ/8 0.005 3.22078 · 10−6 1.04185 5.65963 · 10−6 1.97123

θn = 0.5 τ Δx erefu Rateu erefc Ratec

τ 0.04 1.6856 · 10−4 1.36356 · 10−3

τ/2 0.02 4.8812 · 10−5 1.78795 2.01521 · 10−4 2.75838
τ/4 0.01 1.30425 · 10−5 1.90402 3.96018 · 10−5 2.34729
τ/8 0.005 3.49384 · 10−6 1.90033 9.2243 · 10−6 2.10205

We observe that the backward-Euler method (θn = 1) has a higher rate
of convergence for the first refinement step, but with continued refinements
of the spatial and temporal meshes, the rates of convergence approach order
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one for the velocity and order two for concentration. The relative errors
for θn = 1 saturate quickly with refinements, but we note that the relative
error is small at all rates. The rates of convergence for the midpoint method
(θn = 1/2) are approximately second order. More precisely, a slightly smaller
value is obtained for the velocity, and a slightly larger value is obtained for
the concentration.

4.2. Example 2

In this example, we consider the evolution of bioconvection patterns in
a culture of motile flagellates, as described in [32, run 16]. The computation
domain is defined as Ω = (0, L) × (0, H), with L = 16 and H = 2. At the
bottom and side boundaries we prescribe u = 0, while at the top boundary
we have zero normal flux and zero shear traction:

u · n = 0, τ · σn = 0.

For the concentration, we prescribe a no-flux boundary condition on the
entire boundary as defined in (4). The parameter values used in this example
are obtained from [32] and summarized in Table 3.

Table 3: Parameters used in Example 2

Parameters ν (cm2/s) g (cm/s2) γ (cm2/cells) Θ (cm2/s) U (cm/s)
Values 0.01 980.665 5 · 10−10 0.01 0.1

It is worth noting that the model we are using is similar to the one in [32],
with the only difference being the lack of −gγc term in the momentum
equation in [32]. However, since γ = 5 · 10−10, this term should not affect
much the model/computations. The parameter values used in this example
yield the sublayer Rayleigh number R = 9.80, Schmidt number σ = ν0/Θ =
1, sublayer thickness h = ν/U = 0.1 cm, vertical swimming time Ts =
H/U = 20 s, and vertical diffusion time Td = H2/Θ = 400 s.

The simulations are performed until T = 1200 s is reached. We let θn =
0.5, for all n, and ε = 10−4. P2 − P1 elements are used for the fluid velocity
and pressure, respectively, and P2 elements are used for concentration on a
structured mesh containing 14,400 elements.

Initially, we set u0 = 0, and consider a set of different initial con-
ditions for the concentration, defined as c0 = 105 + δ cells/cm2, where



Numerical approximation of bioconvection 167

δ ∈ {±4 · 10−10,±3 · 10−10,±2 · 10−10,±10−10, 0}. In these simulations,
we use a constant time step, τ = 10−2. For cases δ = 0, δ = ±10−10,
we also perform simulations using adaptive time stepping with parameters
εΔt = 10−4, rmin = 0.5, rmax = 1.2 and s = 0.95. The maximal allowed time
step is set to be 0.1. The local truncation error, T̂n+1, is computed using
an explicit, second order Adams-Bashforth two-step method as described
in [12].

In all simulations, the concentration at the beginning forms layers, with
largest values at the top of the domain (see Figure 1, panel (a)). Around
t = 40 s, the patterns start to emerge. However, the system is chaotic,
and different parameters give different results. The number of falling fingers
ranges between four and seven until the stable solution is reached. The
concentration and velocity at time t = 100 s are shown in Figure 1, panel
(b). Around t = 300 s, the solution starts to stabilize, and a stable, steady
solution is eventually obtained. Interestingly, when the patterns begin to
stabilize after the chaotic regime, the same stable solution is reached in all
considered cases. The concentration and velocity at the final time are shown
in panel (c) of Figure 1.

Similarly as in [32], we calculate the total kinetic (K.E.) and potential
energy (P.E.), defined as

K.E. =
1

2

∫
Ω
u2, P.E. = γg

∫
Ω
cy.

Figure 2 shows the spaghetti plot [35] of the total kinetic energy versus
the total potential energy obtained using different initial conditions, and
both fixed and variable time-stepping. In all the cases considered here, the
chaotic regime begins around t = 68 s, and lasts until roughly t = 150 s. At
that time, all the solutions start behaving in a similar fashion, and seem to
converge to the same stable solution.

We denote some points of interest relative to the energy in Figure 3. We
denote by O the initial energy, and by A the time of onset of Rayleigh-Taylor
instability, which occurs at 39 s. It is computed as the time when the kinetic
energy becomes greater than 10−3. Point B occurs at 43.3 and 48 s. During
that time two fingers in the center of the domain join into one (as shown
in the top right panel). Point C occurs at 74 and 81.25 s, which is when a
similar even happens at the ends of the domain, as shown in the bottom
right panel. Finally, we also denote by D the point when the stable state is
reached, which occurs at 190 s.

The final number of falling fingers being N = 3 (the fingers attached to
the side wall are counted as 0.5), as seen in Figure 1, implies that the aspect
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Figure 1: Concentration (left) and velocity magnitude (right) at times (a)
t = 20 s, (b) t = 100 s, and (c) t = 1200 s obtained using δ = 0, δ = 10−10

and δ = 2 · 10−10.

Figure 2: The total kinetic energy (horizontal axis) versus the total potential
energy (vertical axis) obtained using different variation of initial conditions,
and fixed and adaptive time stepping.
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Figure 3: Times of points of interest superimposed with the plot showing
the total kinetic energy (horizontal axis) versus the total potential energy
(vertical axis) obtained using δ = 0 and fixed time stepping. O denotes
the initial energy, and A denotes the onset of Rayleigh-Taylor instability
(when the kinetic energy becomes greater than 10−3), occurring at 39 s.
Point B occurs at 43.3 and 48 s. The concentration during that time frame
is shown in the top right panel. Point C occurs at 74 and 81.25 s, and the
concentration during that time is shown in the bottom right panel. Finally,
point D occurs at 190 s.

ratio of the convection cells is μ = L/(NH) ≈ 2.6667. In [32, pp. 768], the
authors remark that among the quotients L/(NH), 2.6667 is the closest to
2.34, which is the aspect ratio of the optimum convection cell, predicted
by the linear theory of the thermally driven Bénard-Rayleigh convection.
Nonetheless, they also argue that this may be just a coincidence for the
wavenumber selection, as the ‘final’ state of the numerical results is in a
nonlinear range (T = 400 s in their case, or T = 1200 s in our case).

In the Bénard-Rayleigh problem, the buoyancy is exerted by the dif-
ference between the boundary conditions, while for bioconvection problem,
the buoyancy flux bf = αgnpiU is specified by the upward swimming of
the microorganisms. The authors argue in [32, pp. 772] that the flux-type
Rayleigh number Raf = bfH

4Θ−1ν−1 ≈ 7.84 · 105 is the relevant nondimen-
sional parameter which characterizes the bioconvection at the final stage.
Therefore, the authors clarify the transient selection mode and claim that
their numerical results qualitatively have good ‘coincidence’ with the pat-
terns of Heterosigma akashiwo. They also explain the transient selection
mode proposing and testing the following hypothesis: “the convection sys-
tem evolves such that the total potential energy of the system is minimized”,
also arguing that the system would be more stable against certain perturba-



170 Madeline Edwards et al.

Figure 4: The L2− norm of concentration (top) and velocity (bottom) vari-
ations with respect to the solution obtained using δ = 0 over time.

tions in the state of lower potential energy than in higher potential energy.
This seems to not agree with our plots in Figure 2.

For the cases obtained using the fixed time-stepping, we plot the rela-

tive L2− variations for each simulation with respect to the instance when
δ = 0. Figure 4 shows the variations for concentration (top panel) and ve-
locity (bottom panel). Since the initial conditions are very close together,

the variations are initially nearly zero. As the system becomes chaotic at
around t = 68 s, the variations start to grow, leading to the maximum val-

ues of 83.5% and 100% for concentration and velocity, respectively, obtained
at around t = 150 s. After that, the variations decrease and the concentra-

tion variation stays at 7%, while the velocity variation stays at 4.6%. Even
though the concentration and velocity profiles at the end of the simulations
shown in Figure 1, panel (c), are nearly identical, the small L2− variations

we observe are concentrated at the top of the domain, as shown in Figure 5
for the case when δ = −10−10.

Finally, we plot the time steps used in the adaptive time-stepping algo-
rithm in Figure 6 for δ = 0, δ = −10−10 and δ = 10−10. We observe that

in all three cases, the time steps exhibit similar behavior. Initially, the time
steps oscillate between small and large values, and reach the maximum al-

lowed time step for a short while. As the patterns start to emerge, the time
steps decrease, and then finally increase again to the maximum size as the
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Figure 5: The surface plot of the variation between the solutions obtained
with δ = −10−10 and δ = 0 at time t = 1200 s.

Figure 6: The time steps, τn, used in the adaptive time-stepping algorithm
obtained with δ = 0 (green line), δ = −10−10 (red line) and δ = 10−10 (blue
line).

simulations reach a stable, steady solution. We had a total of 4770 rejected

trials with δ = 0, 4620 rejected trials when δ = −10−10, and 4494 rejected

trials when δ = 10−10. Despite the large number of rejected trials, the adap-

tive time stepping is more efficient than the fixed time stepping, since it

allows the use of large time steps during the majority of the simulation,

while maintaining accuracy by using smaller time steps when needed.

4.3. Example 3

In this example, we consider similar settings as in Example 4.2, but with

viscosity which depends on the concentration. In particular, we consider the
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Figure 7: Concentration obtained using the viscosity model given by (40) on
three different meshes at time t = 1200 s.

following two models for the viscosity:

ν1(c) =

{
ν0, cr ≤ 0,

ν0(1 + 2.5cr + 5.3c2r), cr > 0,
(40)

and

ν2(c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ν0, cr ≤ 0,

ν0(1 + 2.5cr + 5.3c2r), 0 < cr ≤ 10%,

ν0 exp

(
2.5cr

1− 1.4cr

)
, 10 < cr ≤ 60%,

ν0 exp (9.375) , cr > 60%,

(41)

where cr = c/cmax is the relative concentration. We define cmax to be cmax =
6.3 · 107 in (40), and cmax = 7 · 106 in (41). In that way, (40) describes the
constitutive relation for the viscosity in low concentration regime, based on
work by Batchelor [8], and (41) combines the low concentration regime with
the constitutive relation for high concentrations, proposed by Mooney [44].
This relation was also used in [17] to capture both low and high concentration
regimes.

We use fixed time-stepping with τn = 10−2, for all n, and a structured,
Union Jack mesh, where we consider 3 mesh sizes: mesh 1 consisting of 15 ×
120 elements, mesh 2 consisting of 22 × 176 elements, and mesh 3 consisting
of 30 × 240 elements. Other parameter settings are the same as in Table 3.

Figure 7 shows the concentration obtained using the viscosity model
described in (40) on three different meshes. We observe that as we refine the
mesh, the results appear to converge, with concentration pattern showing 3
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Figure 8: Concentration obtained using the viscosity model given by (41) on
three different meshes at time t = 1200 s.

falling fingers (two in the middle and one half on each side). This agrees very
well with the results obtained in Example 4.2, indicating that the constant
viscosity model predicts the same solution as the low concentration viscosity
model.

The results obtained using both low and high concentration model (41)
are shown in Figure 8. When the coarsest mesh (mesh 1) is used, the con-
centration forms three falling fingers. When the intermediate mesh is used,
we obtain three fingers again. However, one of the inner fingers does not
appear to be fully developed. That finger first starts to form around t = 200
s, but then it moves to the right and merges with the next finger. This is
repeated around t = 300 s. At t = 450 s, the finger starts forming again, but
this time it stays in its position until the end of the simulation at T = 1200
s. When the finest mesh (mesh 3) is used, we obtain only two fingers (one
in the middle and one half on each side). In this example, the aspect ratio is
μ = �/H = L/(NH) = 4, and is closer to 2

√
3 ≈ 3.4641, which is the value

the authors in [32] argue that μ should grow to.

5. Conclusions

In this work, we investigate the dynamics of cultive fluid with negative
geotaxis orientation and movement. To solve this system, we propose an
adaptive, partitioned numerical method based on Cauchy’s one-legged ‘θ-
like’ scheme. We prove that the subiterative step in the numerical method is
convergent, and that the scheme is stable. Our numerical study reveals that
the first order of convergence is obtained when θn = 1, and the second order
of convergence is obtained when θn = 1/2, as expected. We also computa-
tionally investigate a more realistic example of bioconvection in a culture
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of motile flagellates. We note that in the proposed numerical method, due
to the extrapolation step, the discrete maximum principle is not necessarily
satisfied. This is one of the drawbacks of the proposed work.

Previous works [2, 31] involving pattern formation arising from biocon-
vection found that patterns were sensitive to changes in domain aspect ra-
tios, initial concentration or density changes. Motivated by the study in [31]
where a constant viscosity is used, we perform a similar example to the one
considered in [31], but with a longer computational time. We also perturb
the initial concentration by the addition of a scalar value of order 10−10. The
resulting solutions of the perturbed concentration yield interesting results.
All solutions are identical in all cases of initial concentration until t = 68
s when the energy trajectories (Fig. 2) evolve along similar paths but devi-
ate slightly from each other. At approximately t = 250 s, the energy plots
come together overlapping trajectories. This overlap demonstrates that in all
cases of perturbations to initial concentration, the approximations converge
to the same stable solution. Some of our observations seem to contradict the
hypothesis presented in [31] that the potential energy is minimized as the
system develops in time. Our findings demonstrate that the stable solution
begins at approximately t = 250 s and continues until our final T = 1200
s, but both the kinetic and potential energy continue to increase slowly in
time. In the Discussion section in [32, pp 774], the authors acknowledge
differences between experimental results and their theoretical results and
numerical conclusions, and say that the exceptions may be attributed to
intermittent generation of fingers and hysteresis.

In several of the perturbed concentration tests, we investigate the time
adaptivity properties of the proposed method. The adaptive scheme requires
small time steps until time t = 200 s. After that, in all cases considered
here, the time step increases to the largest allowed value. This agrees with
the observed dynamics of the system, where the flow patterns across all
simulations rapidly change until t = 200 s. This is the most complex portion
of the simulated time and therefore it is understandable that a smaller time
step is needed for the flow to be appropriately resolved.

We expand our long time simulations of bioconvection to also consider
the case where the fluid viscosity is a function of concentration. Two differ-
ent viscosity models are used: a low concentration model and a model which
includes both low and high concentrations of micro-organisms. In the low
concentration regime, concentration appears to converge to the same stable
solution as we refine the computational mesh. In contrast, the model that
includes both low and high concentration is used, larger differences are ob-
served. Namely, final solutions obtained on different meshes do not have the
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same number of falling fingers. More work is necessary to fully understand
these results, especially related to the chaotic properties of the system. This
is out of scope of this paper, and will be considered in our future work.

Appendix A

Lemma A.1. The operator GM (18) is well-defined and

‖GM (u, c)‖ ≤‖A(u, c)‖+ CΩ‖(u, c)‖3/21 ‖(u, c)‖1/22 + (ν(c)− ν∗)‖(u, c)‖2
+ g|Ω|1/2 + gγ‖c‖+ U‖∇c‖,

for all (u, c) ∈ D(A).

Proof of Lemma A.1. By the definition (18) we have that

‖GM (u, c)‖ ≤ ‖A(u, c)‖+ ‖BM (u, c)‖, ∀(u, c) ∈ D(A).

First we consider the case ‖(u1, c1)‖1 ≤ M . Then, using (13) with m1 =
1,m2 =

1
2 ,m3 = 0, and the interpolation inequality, we have

|〈BM (u1, c1), (u2, c2)〉| = |B0

(
(u1, c1), (u1, c1), (u2, c2)

)
|

≤ CΩ‖(u1, c1)‖3/21 ‖(u1, c1)‖1/22 ‖(u2, c2)‖

+
(
(ν(c1)− ν∗)‖(u1, c1)‖2 + g|Ω|1/2 + gγ‖c1‖+ U‖∇c1‖

)
‖(u2, c2)‖,

and therefore

‖BM (u1, c1)‖ ≤ CΩ‖(u1, c1)‖3/21 ‖(u1, c1)‖1/22 + (ν(c1)− ν∗)‖(u1, c1)‖2
+ g|Ω|1/2 + gγ‖c1‖+ U‖∇c1‖,

for all (u1, c1) ∈ D(A), ‖(u1, c1)‖1 ≤ M .
In the other case, when ‖(u1, c1)‖1 > M , we have similarly that

‖BM (u1, c1)‖

≤ M2

‖(u1, c1)‖21

(
CΩ‖(u1, c1)‖3/21 ‖(u1, c1)‖1/22 + (ν(c1)− ν∗)‖(u1, c1)‖2

+ g|Ω|1/2 + gγ‖c1‖+ U‖∇c1‖
)

≤ CΩ‖(u1, c1)‖3/21 ‖(u1, c1)‖1/22 + (ν(c1)− ν∗)‖(u1, c1)‖2 + g|Ω|1/2 + gγ‖c1‖
+ U‖∇c1‖,
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and therefore (19) follows for all (u, c) ∈ D(A).

In order to prove that the operator GM is quasi-m-accretive, we need the
following preliminary result on monotonicity of the quantised operator BM .

Lemma A.2. There exists a positive constant CM such that

〈BM (u1, c1)− BM (u2, c2), (u1 − u2, c1 − c2)〉

(42)

≥
∫
Ω
(ν(c2)− ν∗)|∇(u1 − u2)|2dx

− ν∗
2
‖∇(u1 − u2)‖2 −

Θ

2
‖∇(c1 − c2)‖2 − CM

(
‖c1 − c2‖2 + ‖u1 − u2‖2

)
,

for all (u1, c1), (u2, c2) ∈ V .

Proof. We split the argument in three cases. First we note that, for d = 3,
by (7), (13) and Hölder’s inequality we have

∫
Ω

(
ν(c1)− ν(c2)

)
∇u1 · ∇(u1 − u2)dx+

∫
Ω

((
(u1 − u2) · ∇

)
u1(u1 − u2)

(43)

+
(
(u1 − u2) · ∇

)
c1(c1 − c2)

≥ −ν∗
2
‖∇(u1−u2)‖2 −

Θ

4
‖∇(c1−c2)‖2

−C
(
‖c1−c2‖2 + ‖u1−u2‖2

)(
‖∇u1‖4+‖∇c1‖4

)
.

(a) For the case ‖(u1, c1)‖H1(Ω), ‖(u2, c2)‖H1(Ω) ≤ M we have that

〈BM (u1, c1)−BM (u2, c2), (u1 − u2, c1 − c2)〉
= 〈B(u1, c1)− B(u2, c2), (u1 − u2, c1 − c2)〉

=

∫
Ω
(ν(c2)− ν∗)|∇(u1 − u2)|2dx

+

∫
Ω
(ν(c1)− ν(c2))∇u1 · ∇(u1 − u2)dx

+

∫
Ω

(
((u1 − u2) · ∇)u1(u1 − u2)

+ ((u1 − u2) · ∇)c1(c1 − c2)
)
dx

+ gγ

∫
Ω
(c1 − c2)id(u1 − u2)dx
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+

∫
Ω
U
∂(c1 − c2)

∂xd
(c1 − c2)dx,

and therefore by (43) and the Cauchy-Schwarz inequality

〈BM (u1, c1)− BM (u2, c2), (u1 − u2, c1 − c2)〉

≥
∫
Ω
(ν(c2)− ν∗)|∇(u1 − u2)|2dx− ν∗

2
‖∇(u1 − u2)‖2

− Θ

2
‖∇(c1 − c2)‖2 − CM

(
‖u1 − u2‖2 + ‖c1 − c2‖2

)
.

(b) For the case of ‖(u1, c1)‖1 > M , ‖(u2, c2)‖1 ≤ M (similar estimates are

obtained when ‖(u1, c1)‖1 ≤ M , ‖(u2, c2)‖1 > M) we have

〈BM (u1, c1)− BM (u2, c2), (u1 − u2, c1 − c2)〉

(44)

=
M2

‖(u1, c1)‖21
B0

(
(u1, c1), (u1, c1), (u1 − u2, c1 − c2)

)
− B0

(
(u2, c2), (u2, c2), (u1 − u2, c1 − c2)

)
=

M2

‖(u1, c1)‖21

(
B0

(
(u1, c1), (u1, c1), (u1 − u2, c1 − c2)

)
− B0

(
(u2, c2), (u2, c2), (u1 − u2, c1 − c2)

))
+
( M2

‖(u1, c1)‖21
− 1

)
B0

(
(u2, c2), (u2, c2), (u1 − u2, c1 − c2)

)
.

In a manner similar to the derivation of (43), the first term in (44) gives

M2

‖(u1, c1)‖21

(
B0

(
(u1, c1), (u1, c1), (u1 − u2, c1 − c2)

)
− B0

(
(u2, c2), (u2, c2), (u1 − u2, c1 − c2)

))
=

M2

‖(u1, c1)‖21

[ ∫
Ω
(ν(c2)− ν∗)|∇(u1 − u2)|2dx

+

∫
Ω
(ν(c1)− ν(c2))∇u1 · ∇(u1 − u2)dx

+

∫
Ω

(
((u1 − u2) · ∇)u1(u1 − u2) + ((u1 − u2) · ∇)c1(c1 − c2)

)
dx
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+ gγ

∫
Ω
(c1 − c2)id(u1 − u2)dx+

∫
Ω
U
∂(c1 − c2)

∂xd
(c1 − c2)dx

]
≥ M2

‖(u1, c1)‖21

∫
Ω
(ν(c2)− ν∗)|∇(u1 − u2)|2dx− ν∗

4
‖∇(u1 − u2)‖2

− Θ

4
‖∇(c1 − c2)‖2 − CM

(
‖c1 − c2‖2 + ‖u1 − u2‖2

)
.

Using the fact that ‖(u2, c2)‖21 ≤ M2, the triangular inequality, the
Poincaré and Holder inequalities, we derive similarly that the last term
in (44) can be bounded below as follows( M2

‖(u1, c1)‖21
− 1

)
B0

(
(u2, c2), (u2, c2), (u1 − u2, c1 − c2)

)
= −‖(u1, c1)‖21 −M2

‖(u1, c1)‖21∫
Ω

(
(ν(c2)− ν∗)∇u2 · ∇(u1 − u2) + (u2 · ∇)u2(u1 − u2)

+ (u2 · ∇)c2(c1 − c2) + g(1 + γc2)id(u1 − u2)

+

∫
Ω
U
∂c2
∂xd

(c1 − c2)dx
)
dx

≥ −(‖(u1, c1)‖1 − ‖(u2, c2)‖1)(‖(u1, c1)‖1 + ‖(u2, c2)‖1)
‖(u1, c1)‖21∫

Ω

∣∣∣(ν(c2)− ν∗)∇u2 · ∇(u1 − u2) + (u2 · ∇)u2(u1 − u2)

+ (u2 · ∇)c2(c1 − c2) + g(1 + γc2)id(u1 − u2)

+ U
∂c2
∂xd

(c1 − c2)
∣∣∣dx

≥ −ν∗
4
‖∇(u1 − u2)‖2 −

Θ

4
‖∇(c1 − c2)‖2

− CM

(
‖u1 − u2‖2 + ‖c1 − c2‖2

)
,

therefore

〈BM (u1, c1)− BM (u2, c2), (u1 − u2, c1 − c2)〉

≥ M2

‖(u1, c1)‖21

∫
Ω
(ν(c2)− ν∗)|∇(u1 − u2)|2dx

−ν∗
2
‖∇(u1 − u2)‖2 −

Θ

2
‖∇(c1 − c2)‖2
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− CM

(
‖c1 − c2‖2 + ‖u1 − u2‖2

)
.

(c) Finally, when ‖(u1, c1)‖H1(Ω), ‖(u2, c2)‖H1(Ω) ≥ M we have that

〈BM (u1, c1)− BM (u2, c2), (u1 − u2, c1 − c2)〉

=
M2

‖(u1, c1)‖21
B0

(
(u1 − u2, c1 − c2), (u1, c1), (u1 − u2, c1 − c2)

)
+
( M2

‖(u1, c1)‖21
− M2

‖(u2, c2)‖21

)
B0

(
(u2, c2), (u2, c2), (u1 − u2, c1 − c2)

)
,

and the argument follows in a manner similar to the previous cases.

Lemma A.3. The operator GM is quasi-m-accretive, i.e., there exists αM

such that GM + αMI is m-accretive (maximal monotone) in H ×H.

Proof. Using (42) in Lemma A.2, and (10), we have that

〈(GM + αMI)(u1, c1)− (GM + αMI)(u2, c2), (u1, c1)− (u2, c2)〉
= ν∗‖∇(u1 − u2)‖2 +Θ‖∇(c1 − c2)‖2

+ 〈BM (u1, c1)− BM (u2, c2), (u1, c1)− (u2, c2)〉
+ αM

(
‖u1 − u2‖2 + ‖c1 − c2‖2

)
≥ ν∗

2
‖∇(u1 − u2)‖2 +

Θ

2
‖∇(c1 − c2)‖2

+
M2

‖(u1, c1)‖21

∫
Ω
(ν(c2)− ν∗)|∇(u1 − u2)|2dx.

for all (u1, c1), (u2, c2) ∈ D(GM ), and any αM ≥ CM .
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