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We construct a class of implicit-explicit (IMEX) schemes for the
Navier-Stokes Cahn-Hilliard (NSCH) system and carry out a rig-
orous error analysis for both semi-discrete and fully discrete (with
a Fourier spectral approximation in space) schemes in the space
periodic case. The schemes are based on the consistent splitting
approach for the Navier-Stokes equations to decouple the compu-
tation of velocity and pressure, and the generalized scalar auxiliary
variable (GSAV) approach to provide uniform bound for the nu-
merical solutions. Our IMEX schemes are fully decoupled and lin-
ear, only requiring to solve a sequence of Poisson type equations at
each time step. With help of the uniform bound for the numerical
solutions, we derive global error estimates in the two dimensional
case as well as local error estimates in the three dimensional case
for temporal orders one to five. We also present some numerical
examples to validate the schemes.
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1. Introduction

We consider in this paper the construction and error analysis of efficient
high-order numerical schemes for the following Navier-Stokes Cahn-Hilliard
(NSCH) system:

∂φ

∂t
+ v · ∇φ = MΔμ,(1.1a)

μ = −λ(Δφ− f(φ)),(1.1b)

∂v

∂t
+ v · ∇v = −∇p+ νΔv + γμ∇φ,(1.1c)
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∇ · v = 0,(1.1d)

with suitable initial conditions and boundary conditions. The above NSCH

system is a phase-field model for a two-phase incompressible and immiscible

fluid flow [2, 3, 21, 22, 25, 31]. The unknowns are the phase function φ,

the velocity v and the pressure p, which is assumed to have zero mean for

uniqueness, the chemical potential μ is a function of φ. Here, f = δF
δφ with

F (φ) = 1
4ε2 (1− φ2)2 where ε is the interfacial width, M > 0 is the mobility

constant, λ > 0 is the mixing coefficient, ν > 0 is the fluid viscosity and

γ > 0 corresponds to the surface tension. The above system, with suitable

boundary conditions, satisfies an energy dissipation law:

(1.2)
dE(φ,v)

dt
= −M‖∇μ‖2 − ν‖∇v‖2 ≤ 0,

where the total energy E(φ,v) is

(1.3) E(φ,v) =

∫
Ω

{λ

2
|∇φ|2 + λF (φ) +

1

2
|v|2

}
dx.

Numerical issues in dealing with the NSCH system (1.1) include in par-

ticular the challenges inherited from the Navier-Stokes equations and Cahn-

Hilliard equation. For the Navier-Stokes equations, the main difficulties are

associated with the nonlinear term and the incompressibility constraint. An

effective way for solving Navier-Stokes equation is to adopt an operator

splitting (or fractional step) approach [26] for which two options are gen-

erally used. The first option is the projection type methods [10, 38] which

decouple the computations of velocity and pressure: it is very efficient as

one only needs to solve a sequence of Poisson type equations at each time

step, the drawback is that most of these schemes, with the exception of con-

sistent splitting schemes [20, 27], suffer from the splitting error which limits

the accuracy of the projection type schemes [19]. (ii) The second option is

advocated by R. Glowinski [6, 7, 18] and seeks to separate the difficulties

due to the nonlinear term and the incompressibility constraint, i.e., in the

first substep, it solves a linearized or nonlinear elliptic equation without the

incompressibility constraint, while in the second substep, it solves a (gen-

eralized) Stokes system without the nonlinear term. This option is robust

and does not suffer the splitting error as in projection type schemes, but

it requires solving a non-definite Stokes system at each time step. For the

Cahn-Hilliard equation, the main difficulty is to deal with the nonlinear
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stiffness due to the interfacial width parameter ε. A simple explicit treat-
ment of the nonlinear term leads to severe time step constraints while an
implicit treatment of the nonlinear term requires solving a nonlinear sys-
tem, whose well-posedness also requires a time step constraint, at each time
step. We refer to [4, 12], and the references therein, for a recent review on
various numerical methods for Cahn-Hilliard equation and related nonlinear
systems.

To design efficient numerical schemes for the NSCH system (1.1), in
addition to deal with the above difficulties associated with the Navier-Stokes
equations and Cahn-Hilliard equation, we also need to treat the nonlinear
coupling terms in (1.1a) and (1.1c) in a way such that the resulting schemes
are easy to implement while the energy dissipation law (1.3) is somewhat
respected in a discrete sense.

The well-posedness of the NSCH system (1.1) has been well established,
see [5, 16], also see [17] for (1.1) with logarithmic potential. The NSCH
system (1.1) has been widely used in numerical simulation of two phase flows,
there are also a few rigorous error analysis for numerical approximations
of (1.1). For examples, in [11, 13, 14, 28], the authors established convergence
and/or error estimates for some coupled nonlinear schemes based on finite-
element or finite-difference for (1.1); more recently in [8, 9, 30, 41], the
authors established error estimates for some fully decoupled linear schemes
for (1.1). All results in these papers are restricted to first- or second-order
schemes.

The main goals of this paper are two-folds: (i) to develop a class of
fully decoupled IMEX schemes based on the consistent splitting approach
for the Navier-Stokes equations [20, 27], which allows us to decouple the
computation of velocity and pressure while being free of splitting errors,
and a generalized scalar auxiliary variable (GSAV) approach [23, 24], which
enables us to show that the numerical solutions are unconditionally stable
for any order; (ii) to derive rigorously optimal error estimates for the schemes
up to fifth-order in the space periodic case.

Our IMEX schemes are fully decoupled and linear, only requiring to
solve a sequence of Poisson type equations at each time step. In particular,
in the case of periodic boundary conditions with a Fourier approximation in
space, the Poisson type equations lead to diagonal systems in the frequency
space so these schemes are extremely efficient. Moreover, the GSAV approach
provides a unconditionally uniform bound for the numerical solutions which
plays an essential role in our error analysis. Our uniform error analysis for
temporal orders of one to five, to the best of our knowledge, provides the
first rigorous error estimates for the NSCH system (1.1) with temporal order
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greater than two. While the general process of the error analysis is similar
to that in [23, 24] for the gradient flows and for Navier-Stokes equations
separately, it is much more difficult as we have to deal with the additional
difficulties caused by the nonlinear coupling between the Cahn-Hillard part
and Navier-Stokes part in (1.1).

The rest of the paper is organized as follows. In the next section, we
provide some preliminaries to be used in the sequel. In Section 3, we describe
our semi-discrete and fully discrete with Fourier-Galerkin SAV schemes for
the Cahn-Hilliard-Navier-Stokes system with periodic boundary conditions,
prove its unconditionally stability. In section 4, we present detailed error
analysis for the kth-order schemes (k = 1, 2, 3, 4, 5) in a unified form. In
section 5, we provide numerical examples to demonstrate the convergence
rates and validate the accuracy of our schemes.

2. Preliminaries

We first introduce some notations. We denote by (·, ·) and ‖ · ‖ the inner
product and the norm in L2(Ω), where Ω ⊂ R

d(d = 2, 3) is a rectangular
domain with periodic boundary conditions, and denote

Hk
p (Ω) = {u(j) (j = 0, 1, · · · , k) ∈ L2(Ω) : u(j) periodic (j = 0, 1, · · · , k−1)},

with norm ‖ · ‖k. For non-integer s > 0, Hs
p(Ω) and the corresponding norm

‖ · ‖s are defined by space interpolation [1]. In particular, we set H0
p (Ω) =

L2(Ω).
Let V be a Banach space, we shall also use the standard notations

Lp(0, T ;V ) and C([0, T ];V ). To simplify the notation, we often omit the
spatial dependence for the exact solution u, i.e., u(x, t) is often denoted by
u(t). We shall use bold faced letters to denote vectors and vector spaces, and
use C to denote a generic positive constant independent of the discretization
parameters.

We now define the following spaces which are particularly used in the
study of Navier-Stokes equations:

H = {v ∈ L2(Ω) : ∇ · v = 0}, V = {v ∈ H1
p (Ω) : ∇ · v = 0}.

Let v ∈ L2(Ω), we define w := Δ−1v as the solution of

Δw = v x ∈ Ω; w periodic with zero mean.

Note that in the periodic case, we can define the operators ∇, ∇· and Δ−1

in the Fourier space by expanding functions and their derivatives in Fourier
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series, and one can easily show that these operators commute with each
other.

We define a linear operator A in L2(Ω) by

(2.1) Av := ∇×∇×Δ−1v, ∀v ∈ L2(Ω).

Since

‖Δw‖2 = ‖∇ ×∇×w‖2 + ‖∇∇ ·w‖2, ∀w ∈ H2
p (Ω),

we derive immediately from the above that

(2.2) ‖Av‖2 = ‖ΔΔ−1v‖2 − ‖∇∇ ·Δ−1v‖2 ≤ ‖v‖2, ∀v ∈ L2(Ω).

Next, we define the trilinear form b(·, ·, ·) and bA(·, ·, ·) by

b(u,v,w) =

∫
Ω
(u · ∇)v ·wdx, bA(u,v,w) =

∫
Ω
A((u · ∇)v) ·wdx.

In particular, we have

b(u,v,w) = −b(u,w,v), ∀u ∈ H, v,w ∈ H1
p (Ω),

which implies

(2.3) b(u,v,v) = 0, ∀u ∈ H, v ∈ H1
p (Ω).

Using (2.2), Hölder inequality and Sobolev inequality, we have [39]

b(u,v,w), bA(u,v,w) ≤ c‖u‖1/21 ‖u‖1/2‖v‖1/2‖v‖1/21 ‖w‖1, d = 2,

(2.4a)

b(u,v,w), bA(u,v,w) ≤ c‖u‖1‖∇v‖1/2‖w‖, d = 3,
(2.4b)

b(u,v,w), bA(u,v,w) ≤ c‖u‖1‖v‖1/21 ‖v‖1/22 ‖w‖, d = 3.

(2.4c)

We also use frequently the following inequalities [39]:

(2.5) b(u,v,w), bA(u,v,w) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c‖u‖1‖v‖1‖w‖1;
c‖u‖2‖v‖0‖w‖1;
c‖u‖2‖v‖1‖w‖0;
c‖u‖1‖v‖2‖w‖0;
c‖u‖0‖v‖2‖w‖1;

d ≤ 4.
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3. The SAV schemes and stability results

In this section, we construct semi-discrete and fully discrete SAV schemes
for the Navier-Stokes Cahn-Hilliard system (1.1) with periodic boundary
conditions, and establish stability results for both semi-discrete and fully
discrete schemes.

3.1. The SAV schemes

Following the ideas in [24] for the general dissipative systems and in [23] for
dealing with Navier-Stokes equations with periodic boundary conditions,
we construct below unconditionally energy stable schemes for (1.1) with
periodic boundary conditions. These schemes can be easily extended to the
case of non-periodic boundary conditions using a similar formulation as in
[40].

For Navier-Stokes equations with periodic boundary conditions, we can
explicitly eliminate the pressure from (1.1c). Indeed, taking the divergence
on both sides of (1.1c), we find

(3.1) −Δp = ∇ · (v · ∇v − γμ∇φ),

from which we derive

∇p = ∇Δ−1Δp = −∇Δ−1∇ · (v · ∇v − γμ∇φ)

= −∇∇ ·Δ−1(v · ∇v − γμ∇φ)

= −(Δ +∇×∇×)Δ−1(v · ∇v − γμ∇φ)

= −v · ∇v + γμ∇φ−∇×∇×Δ−1(v · ∇v − γμ∇φ)

= −v · ∇v + γμ∇φ−A(v · ∇v − γμ∇φ),

(3.2)

where A is defined in (2.1). Hence, (1.1c) is equivalent to (3.1) and

(3.3)
∂v

∂t
− νΔv −A(v · ∇v − γμ∇φ) = 0.

In order to apply the SAV approach, we introduce a SAV,

r(t) = E(φ(t),v(t)) + 1,

and expand (1.1) as

∂φ

∂t
+ v · ∇φ = MΔμ,(3.4a)



IMEX schemes and error analysis for NSCH system 191

μ = −λ(Δφ− f(φ)),(3.4b)

∂v

∂t
− νΔv −A(v · ∇v − γμ∇φ) = 0,(3.4c)

dr

dt
= −M‖∇μ‖2 − ν‖∇v‖2.(3.4d)

We construct below semi-discrete and fully discrete schemes for the ex-
panded system (3.4).

3.1.1. Semi-discrete SAV schemes. We consider first the time dis-
cretization of (3.4) based on the implicit-explicit BDF-k formulae in the
following unified form:

Given rn, φj ,vj (j = n, n − 1, · · · , n − k + 1), we compute φ̄n+1, v̄n+1,
rn+1, pn+1, ξn+1, φn+1 and vn+1 consecutively by

αkφ̄
n+1 −Ak(φ̄

n)

δt
+Bk(v

n) · ∇Bk(φ
n) = MΔμn+1,

(3.5a)

μn+1 = −λ(Δφ̄n+1 − f(Bk(φ
n))),

(3.5b)

αkv̄
n+1−Ak(v̄

n)

δt
− νΔv̄n+1−A(Bk(v

n) · ∇Bk(v
n)− γBk(μ

n)∇Bk(φ
n))=0,

(3.5c)

rn+1 − rn

δt
= − rn+1

E(φ̄n+1, v̄n+1) + 1
(M‖∇μn+1‖2 + ν‖∇v̄n+1‖2),

(3.5d)

ξn+1 =
rn+1

E(φ̄n+1, v̄n+1) + 1
, ηn+1 = 1− (1− ξn+1)k,

(3.5e)

φn+1 = ηn+1φ̄n+1, vn+1 = ηn+1v̄n+1.

(3.5f)

Whenever pressure is needed, it can be computed from

(3.6) Δpn+1 = −∇ · (vn+1 · ∇vn+1 − γμn+1∇φn+1).

In the above, αk, the operators Ak and Bk (k = 1, 2, 3, 4) are given by:

• first-order:

(3.7) α1 = 1, A1(φ
n) = φn, B1(φ

n) = φn;
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• second-order:

(3.8) α2 =
3

2
, A2(φ

n) = 2φn − 1

2
φn−1, B2(φ

n) = 2φn − φn−1;

• third-order:

α3 =
11

6
, A3(φ

n) = 3φn − 3

2
φn−1 +

1

3
φn−2,

B3(φ
n) = 3φn − 3φn−1 + φn−2.

(3.9)

The formulae for k = 4, 5, 6 can also be readily derived by Taylor expansion.

Several remarks are in order:

• We observe from (3.5d) that rn+1 is a first-order approximation to

E(φ(·, tn+1),v(·, tn+1))+ 1 which implies that ξn+1 is a first-order ap-

proximation to 1.

• (3.5a)-(3.5c) are kth-order approximations to (3.4a)-(3.4c) with kth-

order BDF for the linear terms and kth-order Adams-Bashforth ex-

trapolation for the nonlinear terms. Hence, φ̄n+1 and v̄n+1 are kth-

order approximation to φ(·, tn+1) and v(·, tn+1) which, along with (3.5e)

and (3.5f), implies that φn+1 and vn+1 are kth-order approximations

to φ(·, tn+1) and v(·, tn+1).

• The main computational cost is to solve the Poisson type

equation (3.5a)- (3.5c).

3.1.2. Fully discrete schemes with the Fourier spectral method

in space. We now consider Ω = [0, Lx) × [0, Ly) × [0, Lz) with periodic

boundary conditions. We partition the domain Ω = (0, Lx)×(0, Ly)×(0, Lz)

uniformly with size hx = Lx/Nx, hy = Ly/Ny, hz = Lz/Nz and Nx,Ny,Nz

are positive even integers. Then the Fourier approximation space can be

defined as

SN :=

span{eiξjxeiηkyeiτlz : −Nx

2
≤ j ≤ Nx

2
− 1,−Ny

2
≤ k ≤ Ny

2
− 1,

− Nz

2
≤ l ≤ Nz

2
− 1}\R,
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where i =
√
−1, ξj = 2πj/Lx, ηk = 2πk/Ly and τl = 2πl/Lz. Then, any

function u(x, y, z) ∈ L2(Ω) can be approximated by:

u(x, y, z) ≈ uN (x, y, z) =

Nx

2
−1∑

j=−Nx
2

Ny

2
−1∑

k=−Ny

2

Nz
2
−1∑

l=−Nz
2

ûj,k,le
iξjxeiηkyeiτlz,

with the Fourier coefficients defined as

ûj,k,l =
1

|Ω|

∫
Ω
ue−i(ξjx+ηky+τlz)dx.

In the following, we fix Nx = Ny = Nz = N for simplicity, and also set
SN = Sd

N .
Define the L2-orthogonal projection operator ΠN : L2(Ω) → SN by

(3.10) (ΠNu− u,Ψ) = 0, ∀Ψ ∈ SN , u ∈ L2(Ω),

then we have the following approximation results (cf. [29]):

Lemma 1. For any 0 ≤ k ≤ m, there exists a constant C such that

(3.11) ‖ΠNu− u‖k ≤ C‖u‖mNk−m, ∀u ∈ Hm
p (Ω).

We are now ready to describe our fully discrete schemes. Given rn,
φj
N ,vj

N (j = n, n − 1, · · · , n − k + 1), we compute φ̄n+1
N , v̄n+1

N , rn+1, pn+1
N ,

ξn+1, φn+1
N and vn+1

N consecutively by

(αkφ̄
n+1
N −Ak(φ̄

n
N )

δt
, ψN

)
+
(
Bk(v

n
N ) · ∇Bk(φ

n
N ), ψN

)
= M

(
Δμn+1

N , ψN

)
,

(3.12a)

∀ψN ∈ SN ,

(
μn+1
N , ψN

)
= −λ

(
Δφ̄n+1

N − f(Bk(φ
n
N )), ψN

)
, ∀ψN ∈ SN ,

(3.12b)

(αkv̄
n+1
N −Ak(v̄

n
N )

δt
,ψN

)
− ν

(
Δv̄n+1

N ,ψN

)

−
(
A(Bk(v

n
N ) · ∇Bk(v

n
N )− γBk(μ

n
N )∇Bk(φ

n
N )),ψN

)
= 0, ∀ψN ∈ SN ,

(3.12c)

rn+1 − rn

δt
= − rn+1

E(φ̄n+1
N , v̄n+1

N ) + 1
(M‖∇μn+1

N ‖2 + ν‖∇v̄n+1
N ‖2),

(3.12d)
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ξn+1 =
rn+1

E(φ̄n+1
N , v̄n+1

N ) + 1
, ηn+1 = 1− (1− ξn+1)k,

(3.12e)

φn+1
N = ηn+1φ̄n+1

N , vn+1
N = ηn+1v̄n+1

N .

(3.12f)

Note that Fourier approximation of Poisson type equations leads to di-
agonal matrix in the frequency space, so the above scheme can be efficiently
implemented as follows:

(i) Compute φ̄n+1
N and μn+1

N from (3.12a) and (3.12b), v̄n+1
N from (3.12c),

which are Poisson-type equations;
(ii) With φ̄n+1

N , μn+1
N and v̄n+1

N known, determine rn+1 explicitly
from (3.12d);

(iii) Compute ξn+1 and ηn+1
k from (3.12e);

(iv) Update φn+1
N and vn+1

N from (3.12f), go to the next step.

Finally, whenever pressure is needed, it can be computed from

(3.13) Δpn+1
N = −ΠN∇ · (vn+1

N · ∇vn+1
N − γμn+1

N ∇φn+1).

3.2. Stability results

We have the following results concerning the stability of the above schemes.

Theorem 1. Let {rk, ξk, φ̄k
N , φk

N , v̄k
N , vk

N} be the solution of the fully dis-
crete scheme (3.12). Then, given rn ≥ 0, we have rn+1 ≥ 0, ξn+1 ≥ 0, and
for any k, the scheme (3.12) is unconditionally energy stable in the sense
that

(3.14) rn+1 − rn = −δtξn+1(M‖∇μn+1
N ‖2 + ν‖∇v̄n+1

N ‖2) ≤ 0, ∀n.

Furthermore, there exists Mk > 0 such that

(3.15) ‖∇φn+1
N ‖2 ≤ M2

k

λ2
, ‖vn+1

N ‖2 ≤ M2
k , ∀n.

It is clear that same results hold for the semi-discrete schemes (3.5).

Proof. Since the proofs for the fully discrete scheme (3.12) and for the semi-
discrete scheme (3.5) are essentially the same, we shall only give the proof
for the fully discrete scheme (3.12) below.
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Given rn ≥ 0. Since E(φ̄n+1
N , v̄n+1

N ) + 1 > 0, it follows from (3.12d) that

(3.16) rn+1 =
rn

1 + δtM‖∇μn+1
N ‖2+ν‖∇v̄n+1

N ‖2

E(φ̄n+1
N ,v̄n+1

N )+1

≥ 0.

Then we derive from (3.12e) that ξn+1 ≥ 0 and obtain (3.14).

Denote Mr := r0 = E[φ(·, 0),v(·, 0)], then (3.14) implies rn ≤ Mr, ∀n.
It then follows from (3.12e) that

(3.17) |ξn+1| = rn+1

E(φ̄n+1
N , v̄n+1

N ) + 1
≤ 2Mr

λ‖∇φ̄n+1
N ‖2 + ‖v̄n+1

N ‖2 + 2
.

Since ηn+1
k = 1− (1− ξn+1)k, we have ηn+1

k = ξn+1Pk(ξ
n+1) with Pk being

a polynomial of degree k − 1. Then, we derive from (3.17) that there exists
Mk > 0 such that

(3.18) |ηn+1
k | = |ξn+1Pk(ξ

n+1)| ≤ Mk

λ‖∇φ̄n+1
N ‖2 + ‖v̄n+1

N ‖2 + 2
,

which, along with φn+1 = ηn+1
k φ̄n+1 and vn+1

N = ηn+1
k v̄n+1

N , implies

‖∇φn+1
N ‖2 = (ηn+1

k )2‖∇φ̄n+1
N ‖2

≤
( Mk

λ‖∇φ̄n+1
N ‖2 + ‖v̄n+1

N ‖2 + 2

)2‖∇φ̄n+1
N ‖2 ≤ M2

k

λ2
,

(3.19)

and
(3.20)

‖vn+1
N ‖2 = (ηn+1

k )2‖v̄n+1
N ‖2 ≤

( Mk

λ‖∇φ̄n+1
N ‖2 + ‖v̄n+1

N ‖2 + 2

)2‖v̄n+1
N ‖2 ≤ M2

k .

The proof is complete.

We note the above results would hold for corresponding schemes with
non-periodic boundary conditions, see [40] for the case of Navier-Stokes
equations with no-slip boundary conditions.

4. Error analysis

In this section, we carry out a unified error analysis for the fully discrete
schemes (3.12) with 1 ≤ k ≤ 5, and state, as corollaries, similar results for
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the semi-discrete schemes (3.5). We denote

tn = n δt, sn = rn − r(tn),

ēnφ,N=φ̄n
N −ΠNφ(·, tn), enφ,N=φn

N −ΠNφ(·, tn), enφ,Π=ΠNφ(·, tn)− φ(·, tn),
ēnv,N=v̄n

N −ΠNv(·, tn), env,N=vn
N −ΠNv(·, tn), env,Π=ΠNv(·, tn)− v(·, tn),

enμ,N = μn
N −ΠNμ(·, tn), enμ,Π = ΠNμ(·, tn)− μ(·, tn), enμ = enμ,N + enμ,Π,

ēnφ = φ̄n
N − φ(·, tn) = ēnφ,N + enφ,Π, e

n
φ = φn

N − φ(·, tn) = enφ,N + enφ,Π,

ēnv = v̄n
N − v(·, tn) = ēnv,N + env,Π, e

n
v = vn

N − v(·, tn) = env,N + env,Π.

To simplify the notations, we dropped the dependence on N for ēnφ, e
n
φ, ē

n
v

and env in the above, and will do so for some other quantities in the sequel.
We also assume the positive constants M = γ = ν = λ = 1 in (3.12) for
simplicity.

4.1. Several useful lemmas

We will frequently use the following two discrete versions of the Gronwall
lemma.

Lemma 2. (Discrete Gronwall Lemma 1 [36]) Let yk, hk, gk, fk be
four nonnegative sequences satisfying

yn+ δt

n∑
k=0

hk ≤ B+ δt

n∑
k=0

(gkyk+fk) with δt

T/δt∑
k=0

gk ≤ M, ∀ 0 ≤ n ≤ T/δt.

We assume δt gk < 1 for all k, and let σ = max0≤k≤T/δt(1− δtgk)−1. Then

yn + δt

n∑
k=1

hk ≤ exp(σM)(B + δt

n∑
k=0

fk), ∀n ≤ T/δt.

Lemma 3. (Discrete Gronwall Lemma 2 [35]) Let , an, bn, cn, and dn
be four nonnegative sequences satisfying

am + τ

m∑
n=1

bn ≤ τ

m−1∑
n=0

andn + τ

m−1∑
n=0

cn + C, m ≥ 1,

where C and τ are two positive constants. Then

am + τ

m∑
n=1

bn ≤ exp
(
τ

m−1∑
n=0

dn
)(
τ

m−1∑
n=0

cn + C
)
, m ≥ 1.
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Based on Dahlquist’s G-stability theory, Nevanlinna and Odeh
[33] proved the following result which plays an essential role in our error
analysis.

Lemma 4. For 1 ≤ k ≤ 5, there exist 0 ≤ τk < 1, a positive definite
symmetric matrix G = (gij) ∈ Rk,k and real numbers δ0, ..., δk such that

(
αku

n+1 −Ak(u
n), un+1 − τku

n
)
=

k∑
i,j=1

gij(u
n+1+i−k, un+1+j−k)

−
k∑

i,j=1

gij(u
n+i−k, un+j−k)

+ ‖
k∑

i=0

δiu
n+1+i−k‖2,

where the smallest possible values of τk are

τ1 = τ2 = 0, τ3 = 0.0836, τ4 = 0.2878, τ5 = 0.8160.

We also recall the following lemma [32] which will be used to prove local
error estimates in the three-dimensional case.

Lemma 5. Let Φ : (0,∞) → (0,∞) be continuous and increasing, and let
M > 0. Given T∗ such that 0 < T∗ <

∫∞
M dz/Φ(z), there exists C∗ > 0

independent of δt > 0 with the following property. Suppose that quantities
zn, wn ≥ 0 satisfy

zn +

n−1∑
k=0

δtwk ≤ yn := M +

n−1∑
k=0

δtΦ(zk), ∀n ≤ n∗,

with n∗δt ≤ T∗. Then yn∗ ≤ C∗.

We also recall the following result (see Lemma 2.3 in [37]) which we shall
use to deal with the nonlinear term.

Lemma 6. Assume that ‖u‖H1 ≤ Mu, and

|g′(x)| < C(|x|p + 1), p > 0 arbitrary if n = 1, 2; 0<p<4 if n=3.

|g′′(x)| < C(|x|p′
+ 1), p′ > 0 arbitrary if n = 1, 2; 0<p′<3 if n=3.

(4.1)
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Then for any u ∈ H4, there exist 0 ≤ σ < 1 and a constant C(Mu) such
that the following inequality holds:

‖Δg(u)‖2 ≤ C(Mu)(1 + ‖Δ2u‖2σ).

4.2. Error analysis for the phase function and the velocity in 2D

To carry out the error analysis, we need to assume that the solution has
enough regularity. For the Navier-Stokes equations, it is shown in [39] that
in the periodic case, v0 ∈ Hm

p implies that v(·, t) ∈ Hm
p for all t ≤ T , and

furthermore, it is shown in [15] that v has Gevrey class regularity. Similar
results hold for solutions of the Cahn-Hilliard equation [34]. It is therefore
reasonable to expect that solutions of the NSCH system (1.1) should also
have Gevrey class regularity, and we can assume that

v ∈ C([0, T ];Hm
p ), m ≥ 4,

∂jv

∂tj
∈ L2(0, T ;H2

p ) 1 ≤ j ≤ k,
∂k+1v

∂tk+1
∈ L2(0, T ;L2

0),
(4.2)

(4.3)

φ ∈ C([0, T ];H4),
∂jφ

∂tj
∈ L2(0, T ;H2) 1 ≤ j ≤ k,

∂k+1φ

∂tk+1
∈ L2(0, T ;H1).

Theorem 2. Let d = 2, T > 0, v0 ∈ V ∩Hm
p , φ0 ∈ Hm

p , m ≥ 4 and φ, v be

the solution of (1.1). We assume that φ̄i
N , φi

N , v̄i
N and vi

N (i = 1, · · · , k−1)
are computed with a proper initialization procedure such that

‖v̄i
N − v(·, ti)‖, ‖vi

N − v(ti)‖ = O(δtk +N−m),

‖v̄i
N−v(·, ti)‖1, ‖vi

N−v(ti)‖1, ‖φ̄i
N−φ(·, ti)‖1, ‖φi

N − φ(ti)‖1=O(δtk+N1−m),

‖φ̄i
N − φ(·, ti)‖2, ‖φi

N − φ(ti)‖2 = O(δtk +N2−m),

(4.4)

for i = 1, 2, 3, 4, 5. Let φ̄n+1
N , φn+1

N , v̄n+1
N and vn+1

N be computed with the
kth-order scheme (3.12) (1 ≤ k ≤ 5), and

ηn+1
1 = 1− (1− ξn+1)2, ηn+1

k = 1− (1− ξn+1)k (k = 2, 3, 4, 5).

We assume (4.1), (4.2) and (4.3). Then for n + 1 ≤ T/δt with δt ≤
1

1+2k+2Ck+1
0

and N ≥ 2k+2Ck+1
Π + 1, we have

‖φ̄n
N − φ(·, tn)‖22, ‖φn

N − φ(·, tn)‖22 ≤ Cδt2k + CN2(2−m),
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‖v̄n
N − v(·, tn)‖2, ‖vn

N − v(·, tn)‖2 ≤ Cδt2k + CN−2m,

and

δt

n∑
q=0

‖v̄q+1
N − v(·, tq+1)‖21, δt

n∑
q=0

‖vq+1
N − v(·, tq+1)‖21 ≤ Cδt2k + CN2(1−m),

where the constants C0, CΠ and C are dependent on T, Ω, the k× k matrix
G = (gij) in Lemma 4 and the exact solution φ, v, but are independent of
δt and N .

Proof. To simplify the presentation, we assume φ̄i
N = φi

N = ΠNφ(ti), v̄
i
N =

vi
N = ΠNv(ti) and ri = E[φi

N ,vi
N ] + 1 for i = 1, · · · , k − 1 so that (4.4) is

obviously satisfied.
The main task is to prove by induction,

(4.5) |1− ξq| ≤ C0 δt+ CΠN
3−m, ∀q ≤ T/δt,

where the constant C0 and CΠ will be defined in the induction process below.
In the following, we shall use C to denote a constant which can change from
one step to another and we may introduce Ci > 0, i = 1, 2,..., to denote the
upper bound for some specific terms while they are independent of δt,N,C0

and CΠ.
Under the assumption, (4.5) certainly holds for q = 0. Now suppose we

have

(4.6) |1− ξq| ≤ C0 δt+ CΠN
3−m, ∀q ≤ n,

we shall prove below

(4.7) |1− ξn+1| ≤ C0δt+ CΠN
3−m.

We shall first consider k = 2, 3, 4, 5, and point out the necessary modifica-
tions for the case k = 1 later.

Step 1: Bounds for ‖φ̄q‖2, ‖φq‖2, ‖v̄q
N‖, ‖v̄q

N‖1 and ‖vq
N‖1, ∀q ≤ n.

We first recall the inequality

(4.8) (a+ b)k ≤ 2k(ak + bk), ∀a, b > 0, k ≥ 1.

Under the assumption (4.6), if we choose δt small enough andN large enough
such that

(4.9) δt ≤ min{ 1

2k+2Ck
0

, 1}, N ≥ max{2k+2Ck
Π, 1},
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we have
(4.10)

1− (
1

2k+2Ck−1
0

+
N3−m

2k+2Ck−1
Π

) ≤ |ξq| ≤ 1+ (
1

2k+2Ck−1
0

+
N3−m

2k+2Ck−1
Π

), ∀q ≤ n,

and

(1− ξq)k ≤ δtk−1

4
+

Nk(3−m)+1

4
, ∀q ≤ n,

and
(4.11)

1

2
≤ 1− (

δtk−1

4
+

Nk(3−m)+1

4
) ≤ |ηqk| ≤ 1+

δtk−1

4
+

Nk(3−m)+1

4
< 2, ∀q ≤ n.

Then it follows from the above and (3.15) that

(4.12) ‖φq
N‖1, ‖vq

N‖ ≤ Mk, ‖φ̄q
N‖1, ‖v̄q

N‖ ≤ 2Mk, ∀q ≤ n.

Moveover, (3.14), (4.10) and m ≥ 4 imply that

(4.13) δt

n∑
q=1

(‖∇μq
N‖2 + ‖∇v̄q

N‖2) ≤ 4r0, with C0 ≥ 1, CΠ ≥ 1,

and

(4.14) δt

n∑
q=1

(‖∇μq
N‖2 + ‖∇vq

N‖2) ≤ 16r0, with C0 ≥ 1, CΠ ≥ 1.

Consider (3.12) at step q and taking ψN = Δ2φ̄q
N − τkΔ

2φ̄q−1
N in (3.12a),

combining with (3.12b), it follows from Lemma 4 that there exist 0 ≤ τk < 1,
a positive definite symmetric matrix G = (gij) ∈ Rk,k and δ0, ..., δk such that

1

δt

( k∑
i,j=1

gij(Δφ̄q+i−k
N ,Δφ̄q+j−k

N )−
k∑

i,j=1

gij(Δφ̄q−1+i−k
N ,Δφ̄q−1+j−k

N )
)

(4.15)

+
1

δt

∥∥∥ k∑
i=0

δiΔφ̄q+i−k
N

∥∥∥2 + 1

2
‖Δ2φ̄q

N‖2

≤
(
Δf [Bk(φ

q−1
N )],Δ2φ̄q

N − τkΔ
2φ̄q−1

N

)



IMEX schemes and error analysis for NSCH system 201

+
(
Bk(v

q−1
N ) · ∇Bk(φ

q−1
N ),Δ2φ̄q

N − τkΔ
2φ̄q−1

N

)
+

τk
2
‖Δ2φ̄q−1

N ‖2.

In the following, we bound the right hand side of (4.15) as follows:
Firstly, thanks to Lemma 6, we have

‖Δf [Bk(φ
q−1
N )]‖2 ≤ C(Mk)(‖Δ2Bk(φ

q−1
N )‖2σ + 1)

≤ γ̄k‖Δ2Bk(φ
q−1
N )‖2 + C(Mk, γ̄k)

≤ 40γ̄k

k∑
i=1

‖Δ2φ̄q−i
N ‖2 + C(Mk, γ̄k)

≤ γk

k∑
i=1

‖Δ2φ̄q−i
N ‖2 + C(Mk, γk),

(4.16)

where γ̄k can be any positive constant and the constant 40 comes from the
coefficients in Bk and ηqk < 2. To simplify the notation, we let γk = 40γ̄k.
Then (4.16) implies

∣∣ηqk(Δf [Bk(φ
q−1
N )],Δ2φ̄q

N − τkΔ
2φ̄q−1

N

)∣∣
≤C(εk)‖Δf [Bk(φ

q−1
N )]‖2 + εk

(
‖Δ2φ̄q

N‖2 + ‖Δ2φ̄q−1
N ‖2

)
≤C(Mk, εk, γk) +

(
C(εk)γk + εk

) k∑
i=0

‖Δ2φ̄q−i
N ‖2.

(4.17)

Next, it follows from the Cauchy-Schwarz inequality and the Sobolev in-
equality that:

(4.18) (ab, c) ≤ ‖a‖L4‖b‖L4‖c‖ ≤ C‖a‖1‖b‖1‖c‖,

combining with (4.11) and (4.12), we can bound the second term in (4.15)
as

∣∣(Bk(v
q−1
N ) · ∇Bk(φ

q−1
N ),Δ2φ̄q

N − τkΔ
2φ̄q−1

N

)∣∣(4.19)

≤C‖Bk(v
q−1
N )‖L4‖∇Bk(φ

q−1
N )‖L4‖Δ2φq

N − τkΔ
2φq−1

N ‖
≤C‖Bk(v

q−1
N )‖1‖∇Bk(φ

q−1
N )‖1‖Δ2φ̄q

N − τkΔ
2φ̄q−1

N ‖
≤C(εk)‖Bk(v̄

q−1
N )‖21‖∇Bk(φ̄

q−1
N )‖21 + εk

(
‖Δ2φ̄q

N‖2 + ‖Δ2φ̄q−1
N ‖2

)
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≤C(Mk, εk) + εk
(
‖Δ2φ̄q

N‖2 + ‖Δ2φ̄q−1
N ‖2

)
+ C(εk)

(
‖∇Bk(v̄

q−1
N )‖2‖ΔBk(φ̄

q−1
N )‖2+‖∇Bk(v̄

q−1
N )‖2 + ‖ΔBk(φ̄

q−1
N )‖2

)
.

Now, combining (4.15), (4.17) and (4.19), we obtain

k∑
i,j=1

gij(Δφ̄q+i−k
N ,Δφ̄q+j−k

N )−
k∑

i,j=1

gij(Δφ̄q−1+i−k
N ,Δφ̄q−1+j−k

N )

+
δt

2
‖Δ2φ̄q

N‖2

≤C(Mk, εk, γk)δt+
(
C(εk)γk + εk

)
δt

k∑
i=0

‖Δ2φ̄q−i
N ‖2 + δtτk

2
‖Δ2φ̄q−1

N ‖2

+ C(εk)δt‖∇Bk(v̄
q−1
N )‖2‖ΔBk(φ̄

q−1
N )‖2

+ C(εk)δt
(
‖∇Bk(v̄

q−1
N )‖2 + ‖ΔBk(φ̄

q−1
N )‖2

)
,

(4.20)

where εk above can be any positive constant. After taking the sum on (4.20),
we are supposed to choose suitable δt, εk and γk such that
(4.21)

1

2

n∑
q=1

(
‖Δ2φ̄q

N‖2−τk‖Δ2φ̄q−1
N ‖2)+CI ≥

n∑
q=1

((
C(εk)γk+εk

) k∑
i=0

‖Δ2φ̄q−i
N ‖2

)
,

with CI is a constant only depending on the initial data.
Note that 0 ≤ τk < 1, we can choose δt, εk and γk small enough such

that

(4.22) εk <
1− τk
4(k + 1)

, γk <
1− τk

4(k + 1)C(εk)
,

we have

C(εk)γk + εk ≤ 1− τk
4(k + 1)

+
1− τk
4(k + 1)

≤ 1− τk
2(k + 1)

.

Then, taking the sum on (4.20) for q from k to n, we obtain

k∑
i,j=1

gij(Δφ̄n+i−k
N ,Δφ̄n+j−k

N )

≤C(Mk, τk)T + C(φ̄0
N , ..., φ̄k−1

N ) + Cδt

n−1∑
q=0

‖∇Bk(v̄
q
N )‖2‖ΔBk(φ̄

q
N )‖2
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+Cδt

n−1∑
q=0

(
‖∇Bk(v̄

q
N )‖2 + ‖ΔBk(φ̄

q
N )‖2

)
,

where C(Mk, τk) is a constant only depends on Mk, τk, C(φ̄0
N , ..., φ̄k−1

N ) only

depends on φ̄0
N , ..., φ̄k−1

N . Since G = (gij) is a positive definite symmetric

matrix, we have

λG‖Δφn
N‖2 ≤

k∑
i,j=1

gij(Δφn+i−k
N ,Δφn+j−k

N )

≤C(Mk, τk)T + C(φ0
N , ..., φk−1

N )

+ Cδt

n−1∑
q=0

‖∇Bk(v
q
N )‖2‖ΔBk(φ

q
N )‖2

+ Cδt

n−1∑
q=0

(
‖∇Bk(v

q
N )‖2 + ‖ΔBk(φ

q
N )‖2

)
≤C(Mk, τk)T + C(φ0

N , ..., φk−1
N )

+ Cδt

n−1∑
q=0

(
‖∇Bk(v̄

q
N )‖2 + 1

)
‖Δφq

N‖2

+ Cδt

n−1∑
q=0

‖∇Bk(v̄
q
N )‖2,

(4.23)

where λG > 0 is the minimum eigenvalue of G = (gij). It follows from (4.13)

that

δt

n−1∑
q=0

‖∇Bk(v̄
q
N )‖2 < CH2 ,

where the constant CH2 is independent of C0, CΠ, δt and N . As a result, we

can apply discrete Gronwall Lemma 3 to (4.23) and obtain:

‖Δφ̄n
N‖2 ≤ C.

Together with (4.12), the above implies

(4.24) ‖φ̄q
N‖2 ≤ C1, ∀q ≤ n.
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for a constant C1 independent of δt and N . Noting that

‖φ̄q
N‖2 = |ηqk|‖φ

q
N‖2,

then (4.11) implies

(4.25) ‖φq
N‖2 ≤ 2C1, ∀q ≤ n.

Step 2: Estimates for ‖ēn+1
v ‖ and ‖ēn+1

φ ‖2. By the assumptions on

the exact solution φ, v and (4.25), we can choose C large enough such that

(4.26) ‖v(t)‖22, ‖φ(j)(t)‖22 ≤ C, ∀t ≤ T, j = 0, 1, 2; ‖φ̄q
N‖22 ≤ C, ∀q ≤ n.

Since H2 ⊂ L∞, without loss of generality, we can adjust C such that for

i = 0, 1, 2, 3 and j = 0, 1, 2,

(4.27) |v(t)|, |φ(j)(t)|, |f (i)[φ(t)]| ≤ C, ∀t ≤ T ; |f (i)(φ̄q
N )| ≤ C, ∀q ≤ n.

From (3.12a) and (3.12b), we can write down the error equation for φ̄q+1
N as

(
αkē

q+1
φ −Ak(ē

q
φ), ψN

)
+ δt

(
Δ2ēq+1

φ , ψN

)
=
(
Rq

φ,k, ψN

)
+ δt

(
P q
φ,k, ψN

)
+ δt

(
ΔQq

φ,k, ψN

)
, ∀ψN ∈ SN ,

(4.28)

where P q
φ,k, Q

q
φ,k and Rq

φ,k are given by

(4.29) P q
φ,k = −Bk(v

q
N ) · ∇Bk(φ

q
N ) + v(tq+1) · ∇φ(tq+1),

(4.30) Qq
φ,k = f(Bk(φ

q
N ))− f [φ(tq+1)],

and

Rq
φ,k = −αkφ(t

q+1) +Ak(φ(t
q)) + δtφt(t

q+1)

=

k∑
i=1

ai

∫ tq+1

tq+1−i

(tq+1−i − s)k
∂k+1φ

∂tk+1
(s)ds,

(4.31)

with ai being some fixed and bounded constants determined by the trunca-

tion errors. Let ψN = Δ2ēq+1
φ,N − τkΔ

2ēqφ,N in (4.28), it follows from Lemma 4
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and (3.10) that

k∑
i,j=1

gij(Δēq+1+i−k
φ,N ,Δēq+1+j−k

φ,N )−
k∑

i,j=1

gij(Δēq+i−k
φ,N ,Δēq+j−k

φ,N )

+
∥∥∥ k∑

i=0

δiΔēq+1+i−k
φ,N

∥∥∥2 + δt‖Δ2ēq+1
φ,N‖2

=δt(Δ2ēq+1
φ,N , τkΔ

2ēqφ,N ) + (Rq
φ,k,Δ

2ēq+1
φ,N − τkΔ

2ēqφ,N )

+ δt(P q
φ,k,Δ

2ēq+1
φ,N − τkΔ

2ēqφ,N ) + δt(ΔQq
φ,k,Δ

2ēq+1
φ,N − τkΔ

2ēqφ,N ).

(4.32)

In the following, we bound the righthand side of (4.32). Firstly, by the
Cauchy-Schwarz inequality,

|δt(Δ2ēq+1
φ,N , τkΔ

2ēqφ,N )| ≤ δt‖Δ2ēq+1
φ,N‖‖τkΔ2ēqφ,N‖

≤ δt

2
‖Δ2ēq+1

φ,N‖2 + δtτ2k
2

‖Δ2ēqφ,N‖2.
(4.33)

It follows from (4.31) and the assumption on the exact solution φ that

(4.34) ‖Rq
φ,k‖

2 ≤ Cδt2k+1

∫ tq+1

tq+1−k

∥∥∥∂k+1φ

∂tk+1
(s)

∥∥∥2ds ≤ Cδt2k+2.

Therefore, ∣∣∣(Rq
φ,k,Δ

2ēq+1
φ,N − τkΔ

2ēqφ,N
)∣∣∣

≤ C(ε)

δt
‖Rq

φ,k‖
2 + δtε‖Δ2ēq+1

φ,N − τkΔ
2ēqφ,N‖2

≤ C(ε)

δt
‖Rq

φ,k‖
2 + 2δtε‖Δ2ēq+1

φ,N‖2 + 2δtε‖Δ2ēqφ,N‖2

≤ 2δtε‖Δ2ēq+1
φ,N‖2 + 2δtε‖Δ2ēqφ,N‖2 + C(ε)δt2k+1.

(4.35)

For the term with P q
φ,k, we first split P q

φ,k as

P q
φ,k = Bk(v

q
N ) ·

(
−∇Bk(φ

q
N ) +∇Bk(φ(t

q))
)
−
(
Bk(v

q
N )

−Bk(v(t
q))

)
· ∇Bk(φ(t

q))

−
(
Bk(v(t

q))− v(tq+1)
)
· ∇Bk(φ(t

q))− v(tq+1) ·
(
∇Bk(φ(t

q))

−∇φ(tq+1)
)
.

(4.36)
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Since we have

(4.37) ‖ab‖2 ≤ ‖a‖2L4‖b‖2L4 ≤ C‖a‖21‖b‖21,

then it follows from (4.12) and (4.27) that

‖P q
φ,k‖

2 ≤C‖Bk(v
q
N )‖21‖∇Bk(e

q
φ)‖

2
1 + ‖∇Bk(φ(t

q))‖2L∞‖Bk(e
q
v)‖2

+ ‖∇Bk(φ(t
q))‖2L∞

∥∥∥ k∑
i=1

bi

∫ tq+1

tq+1−i

(tq+1−i − s)k−1∂
kv

∂tk
(s)ds

∥∥∥2

+ ‖v(tq+1)‖2L∞

∥∥∥ k∑
i=1

bi

∫ tq+1

tq+1−i

(tq+1−i − s)k−1∇∂kφ

∂tk
(s)ds

∥∥∥2
≤C‖Bk(v

q
N )‖21‖∇Bk(e

q
φ)‖

2
1 + C‖Bk(e

q
v)‖2

+ Cδt2k−1

∫ tq+1

tq+1−k

∥∥∥∂kφ

∂tk
(s)

∥∥∥2
1
ds

+ Cδt2k−1

∫ tq+1

tq+1−k

∥∥∥∂kv

∂tk
(s)

∥∥∥2ds
≤C‖Bk(v

q
N )‖21‖Bk(e

q
φ)‖

2
2 + C‖Bk(e

q
v)‖2 + Cδt2k,

(4.38)

where bi above are some fixed and bounded constants determined by the
truncation error. For example, in the case k = 3, we have

B3(v(t
q))− v(tq+1) = −3

2

∫ tq+1

tq
(tq − s)2

∂3v

∂t3
(s)ds

+
3

2

∫ tq+1

tq−1

(tq−1 − s)2
∂3v

∂t3
(s)ds

− 1

2

∫ tq+1

tq−2

(tq−2 − s)2
∂3v

∂t3
(s)ds.

Therefore, we have∣∣∣δt(P q
φ,k,Δ

2ēq+1
φ − τkΔ

2ēqφ
)∣∣∣(4.39)

≤C(ε)δt‖P q
φ,k‖

2 + δtε‖Δ2ēq+1
φ − τkΔ

2ēqφ‖
2

≤C(ε)δt‖P q
φ,k‖

2 + 2δtε‖Δ2ēq+1
φ ‖2 + 2δtε‖Δ2ēqφ‖

2

≤C(ε)δt
(
‖Bk(v

q
N )‖21‖Bk(e

q
φ)‖

2
2 + ‖Bk(e

q
v)‖2

)
+ C(ε)δt2k+1
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+ 2δtε‖Δ2ēq+1
φ ‖2 + 2δtε‖Δ2ēqφ‖

2.

Similarly, for the term with ΔQq
φ,k, we first split ΔQq

φ,k as

ΔQq
φ,k =

(
Δf(Bk(φ

q
N ))−Δf [Bk(φ(t

q))]
)
+
(
Δf [Bk(φ(t

q))]

−Δf [Bk(φ(t
q+1))]

)
=: ΔQq

φ,k1 +ΔQq
φ,k2,

(4.40)

and note that

Δf(φ) = f ′′(φ)|∇φ|2 + f ′(φ)Δφ,

then, by using (4.12), (4.26) and (4.27), we have

|ΔQq
φ,k1| ≤

∣∣f ′′(Bk(φ
q
N ))(|∇Bk(φ

q
N )|2 − |∇Bk(φ(t

q))|2)
∣∣

+
∣∣|∇Bk(φ(t

q))|2(f ′′(Bk(φ
q
N ))− f ′′[Bk(φ(t

q))])
∣∣

+ |f ′(Bk(φ
q
N ))(ΔBk(φ

q
N )−ΔBk(φ(t

q)))|
+ |ΔBk(φ(t

q))(f ′(Bk(φ
q
N ))− f ′[Bk(φ(t

q))])|
≤C

(
|∇Bk(e

q
φ)|+ |Bk(e

q
φ)|+ |ΔBk(e

q
φ)|),

(4.41)

and hence,

(4.42) ‖ΔQq
φ,k1‖

2 ≤ C‖Bk(e
q
φ)‖

2
2.

For Qq
k,2, we have

|ΔQq
φ,k2| ≤C

∣∣∣ k∑
i=1

bi

∫ tq+1

tq+1−i

(tq+1−i − s)k−1∂
kφ

∂tk
(s)ds

∣∣∣
+ C

∣∣∣ k∑
i=1

bi

∫ tq+1

tq+1−i

(tq+1−i − s)k−1∇∂kφ

∂tk
(s)ds

∣∣∣
+ C

∣∣∣ k∑
i=1

bi

∫ tq+1

tq+1−i

(tq+1−i − s)k−1Δ
∂kφ

∂tk
(s)ds

∣∣∣,
and hence,

(4.43) ‖ΔQq
φ,k2‖

2 ≤ Cδt2k−1

∫ tq+1

tq+1−k

∥∥∥∂kφ

∂tk
(s)

∥∥∥2
2
ds ≤ Cδt2k.
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Therefore,

∣∣∣δt(ΔQq
φ,k,Δ

2ēq+1
φ,N − τkΔ

2ēqφ,N
)∣∣∣

≤C(ε)δt‖ΔQq
φ,k‖

2 + δtε‖Δ2ēq+1
φ,N − τkΔ

2ēqφ,N‖2

≤C(ε)δt‖ΔQq
φ,k‖

2 + 2δtε‖Δ2ēq+1
φ,N‖2 + 2δtε‖Δ2ēqφ,N‖2

≤C(ε)δt
(
‖ΔQq

φ,k1‖
2 + ‖ΔQq

φ,k2‖
2
)
+ 2δtε‖Δ2ēq+1

φ,N‖2 + 2δtε‖Δ2ēqφ,N‖2

≤C(ε)δt‖Bk(e
q
φ)‖

2
2 + C(ε)δt2k+1 + 2δtε‖Δ2ēq+1

φ,N‖2 + 2δtε‖Δ2ēqφ,N‖2.

(4.44)

Now, we choose ε small enough such that

(4.45)
1− τ2k

4
≥ 12ε,

which is possible as τk < 1. Combining (4.32), (4.33), (4.35), (4.39), (4.44)

and dropping some unnecessary terms, we can obtain:

k∑
i,j=1

gij(Δēq+1+i−k
φ,N ,Δēq+1+j−k

φ,N )−
k∑

i,j=1

gij(Δēq+i−k
φ,N ,Δēq+j−k

φ,N )

+
1− τ2k

4
δt‖Δ2ēq+1

φ,N‖2

≤Cδt
(
(‖Bk(v

q
N )‖21 + 1)‖Bk(e

q
φ)‖

2
2 + ‖Bk(e

q
v)‖2

)
+ Cδt2k+1.

(4.46)

Taking the sum of (4.46) on q from k − 1 to n, noting that G = (gij) is a

symmetric positive definite matrix with minimum eigenvalue λG, we obtain:

λG‖Δēn+1
φ,N ‖2 + δt(1− τ2k )

4

n+1∑
q=0

‖Δ2ēqφ,N‖2(4.47)

≤
k∑

i,j=1

gij(Δēn+1+i−k
φ,N ,Δēn+1+j−k

φ,N ) +
1− τ2k

4
δt

n+1∑
k=0

‖Δ2ēqφ,N‖2

≤Cδt
( n∑
q=0

(‖Bk(v
q
N )‖21 + 1)‖Bk(e

q
φ)‖

2
2 +

n∑
q=0

‖Bk(e
q
v)‖2

)
+ Cδt2k,

On the other hand, if we take ψN = −Δēq+1
φ,N + τkΔēqφ,N in (4.28), we can
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obtain the following by the same procedure as above:

λG‖∇ēn+1
φ,N ‖2 + δt(1− τ2k )

4

n+1∑
q=0

‖∇Δēqφ,N‖2

≤Cδt
( n∑
q=0

(‖Bk(v
q
N )‖21 + 1)‖Bk(e

q
φ)‖

2
2 +

n∑
q=0

‖Bk(e
q
v)‖2

)
+ Cδt2k,

(4.48)

and if we take ψN = ēq+1
φ,N − τkē

q
φ,N in (4.28), we can obtain:

(4.49)

λG‖ēn+1
φ,N ‖2 ≤ Cδt

( n∑
q=0

(‖Bk(v
q
N )‖21 +1)‖Bk(e

q
φ)‖

2
2 +

n∑
q=0

‖Bk(e
q
v)‖2

)
+Cδt2k.

From (3.12c), we can write down the error equation for v̄q+1
N as

(
αkē

q+1
v −Ak(ē

q
v),ψN

)
+ δt

(
∇ēq+1

v ,∇ψN

)
=
(
Rq

v,k,ψN

)
+ δt

(
Qq

v,k,ψN

)
+ δt

(
P q
v,k,ψN

)
, ∀ψN ∈ SN ,

(4.50)

where P q
φ,k, Q

q
φ,k and Rq

φ,k are given by

(4.51) P q
v,k = A

(
Bk(v

q
N ) · ∇Bk(v

q
N )

)
−A

(
v(tq+1) · ∇v(tq+1)

)
,

(4.52) Qq
v,k = −A

(
Bk(μ

q
N )∇Bk(φ

q
N )

)
+A

(
μ(tq+1)∇φ(tq+1)

)
,

and

Rq
v,k = −αkv(t

q+1) +Ak(v(t
q)) + δtvt(t

q+1)

=

k∑
i=1

ai

∫ tq+1

tq+1−i

(tq+1−i − s)k
∂k+1v

∂tk+1
(s)ds,

(4.53)

with ai being some fixed and bounded constants determined by the trun-
cation errors as before. Let ψN = ēq+1

v,N − τkē
q
v,N in (4.50), it follows from

Lemma 4 and (3.10) that

k∑
i,j=1

gij(ē
q+1+i−k
v,N , ēq+1+j−k

v,N )−
k∑

i,j=1

gij(ē
q+i−k
v,N , ēq+j−k

v,N )+
∥∥∥ k∑

i=0

δiē
q+1+i−k
v,N

∥∥∥2
(4.54)
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+ δt‖∇ēq+1
v,N‖2

=δt(∇ēq+1
v,N , τk∇ēqv,N ) + (Rq

v,k, ē
q+1
v,N − τkē

q
v,N ) + δt(P q

v,k, ē
q+1
v,N − τkē

q
v,N )

+ δt(Qq
v,k, ē

q+1
v,N − τkē

q
v,N ).

In the following, we bound the righthand side of (4.54). Firstly, by the
Cauchy-Schwarz inequality,

|δt(∇ēq+1
v,N , τk∇ēqv,N )| ≤ δt‖∇ēq+1

v,N‖‖τk∇ēqv,N‖

≤ δt

2
‖∇ēq+1

v,N‖2 + δtτ2k
2

‖∇ēqv,N‖2.
(4.55)

For the term with Rq
v,k, we can obtain the following estimate by the same

way as in (4.34) and (4.35):

(4.56)
∣∣(Rq

v,k, ē
q+1
v,N − τkē

q
v,N )

∣∣ ≤ 2δtε‖ēq+1
v,N‖2 + 2δtε‖ēqv,N‖2 + C(ε)δt2k+1.

For the term with Qq
v,k, we split Qq

v,k as

Qq
v,k =−A

(
Bk(μ

q
N )∇Bk(e

q
φ)
)
−A

(
Bk(e

q
μ)∇Bk(φ(t

q))
)

−A
(
(Bk(μ(t

q))− μ(tq+1))∇Bk(φ(t
q))

)
−A

(
μ(tq+1))(∇Bk(φ(t

q))−∇φ(tq+1))
)
.

(4.57)

Then, by the similar ways as in (4.38), (4.39), and making use of (2.2), (4.26),
we have ∣∣δt(Qq

v,k, ē
q+1
v,N − τkē

q
v,N )

∣∣
≤C(ε)δt‖Qq

v,k‖
2 + δtε‖ēq+1

v,N − τkē
q
v,N‖2

≤2δtε‖ēq+1
v,N‖2 + 2δtε‖ēqv,N‖2 + C(ε)δt‖Bk(μ

q
N )‖21‖Bk(e

q
φ)‖

2
2

+ C(ε)δt‖Bk(e
q
μ)‖2 + C(ε)δt2k+1.

(4.58)

For the term with P q
v,k, we split it as

(P q
v,k, ē

q+1
v,N − τkē

q
v,N )(4.59)

=
(
A
(
[Bk(v

q
N )− v(tq+1)] · ∇v(tq+1)

)
, ēq+1

v,N − τkē
q
v,N

)
+
(
A
(
Bk(v

q
N ) · ∇[Bk(v(t

q))− v(tq+1)]
)
, ēq+1

v,N − τkē
q
v,N

)
+
(
A
(
Bk(e

q
v) · ∇Bk(e

q
v)
)
, ēq+1

v,N − τkē
q
v,N

)
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+
(
A
(
Bk(v(t

q)) · ∇Bk(e
q
v)
)
, ēq+1

v,N − τkē
q
v,N

)
.

We bound the terms on the right hand side of (4.59) with the help
of (2.4a), (2.5) and (4.26):

∣∣∣(A(
[Bk(v

q
N )− v(tq+1)] · ∇v(tq+1)

)
, ēq+1

v,N − τkē
q
v,N

)∣∣∣
≤C‖Bk(v

q
N )− v(tq+1)‖‖v(tq+1)‖2‖ēq+1

v,N − τkē
q
v,N‖1

≤C(ε)‖Bk(v
q
N )− v(tq+1)‖2‖v(tq+1)‖22 + ε‖ēq+1

v,N − τkē
q
v,N‖21

≤C(ε)‖Bk(v(t
q))− v(tq+1)‖2‖v(tq+1)‖22 + C(ε)‖Bk(e

q
v)‖2‖v(tq+1)‖22

+ ε‖ēq+1
v,N − τkē

q
v,N‖21

≤C(ε)
∥∥∥ k∑

i=1

bi

∫ tq+1

tq+1−i

(tq+1−i − s)k−1∂
kv

∂tk
(s)ds

∥∥∥2 + C(ε)‖Bk(e
q
v)‖2

+ 2ε‖ēqv,N‖21 + 2ε‖ēq+1
v,N‖21

≤C(ε)δt2k + C(ε)‖Bk(e
q
v)‖2 + 2ε‖ēqv,N‖21 + 2ε‖ēq+1

v,N‖21,

(4.60)

where bi are some fixed and bounded constants determined by the truncation
error as before. For the other terms in the righthand side of (4.59), we have∣∣∣(A(

Bk(v
q
N ) · ∇[Bk(v(t

q))− v(tq+1)]
)
, ēq+1

v,N − τkē
q
v,N

)∣∣∣
≤C‖Bk(v

q
N )‖‖Bk(v(t

q))− v(tq+1)‖2‖ēq+1
v,N − τkē

q
v,N‖1

≤C(ε)‖Bk(v
q
N )‖2‖Bk(v(t

q))− v(tq+1)‖22 + ε‖ēq+1
v,N − τkē

q
v,N‖21

≤C(ε)δt2k−1

∫ tq+1

tq+1−k

∥∥∥∂kv

∂tk
(s)

∥∥∥2
2
ds+ 2ε‖ēq+1

v,N‖21 + 2ε‖ēqv,N‖21

≤C(ε)δt2k + 2ε‖ēq+1
v,N‖21 + 2ε‖ēqv,N‖21.

(4.61)

Since d = 2, we can use (2.4a) to obtain

∣∣∣(A(
Bk(e

q
v) · ∇Bk(e

q
v)
)
, ēq+1

v,N − τkē
q
v,N

)∣∣∣
≤C‖Bk(e

q
v)‖

1/2
1 ‖Bk(e

q
v)‖1/2‖Bk(e

q
v)‖

1/2
1 ‖Bk(e

q
v)‖1/2‖ē

q+1
v,N − τkē

q
v,N‖1

≤C(ε)‖Bk(e
q
v)‖2‖Bk(e

q
v)‖21 + ε‖ēq+1

v,N − τkē
q
v,N‖21

≤C(ε)‖Bk(e
q
v)‖2‖Bk(e

q
v)‖21 + 2ε‖ēq+1

v,N‖21 + 2ε‖ēqv,N‖21;

(4.62)
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Note that the above inequality is the only place restricted to the two-
dimensional case.

Thanks to (2.5), we have∣∣∣(A(
Bk(v(t

q)) · ∇Bk(e
q
v)
)
, ēq+1

v,N − τkē
q
v,N

)∣∣∣
≤C‖Bk(v(t

q))‖2‖Bk(e
q
v)‖‖ē

q+1
v,N − τkē

q
v,N‖1

≤C(ε)‖Bk(v(t
q))‖22‖Bk(e

q
v)‖2 + ε‖ēq+1

v,N − τkē
q
v,N‖21

≤C(ε)‖Bk(e
q
v)‖2 + 2ε‖ēq+1

v,N‖21 + 2ε‖ēqv,N‖21.

(4.63)

We combine (4.54), (4.55), (4.56), (4.58), (4.60)-(4.63) and choose ε small
enough, we can obtain:

k∑
i,j=1

gij(ē
q+1+i−k
v,N , ēq+1+j−k

v,N )−
k∑

i,j=1

gij(ē
q+i−k
v,N , ēq+j−k

v,N )+
1− τ2k

4
δt‖∇ēq+1

v,N‖2

≤Cδt
(
(‖Bk(e

q
v)‖21 + 1)‖Bk(e

q
v)‖2 + ‖Bk(μ

q
N )‖21‖Bk(e

q
φ)‖

2
2 + ‖Bk(e

q
μ)‖2

)
+ Cδt2k+1.

(4.64)

Taking the sum of (4.64) on q from k − 1 to n, noting that G = (gij) is a
symmetric positive definite matrix with minimum eigenvalue λG, we obtain:

λG‖ēn+1
v,N ‖2 + δt(1− τ2k )

4

n+1∑
q=0

‖∇ēqv,N‖2

≤
k∑

i,j=1

gij(ē
q+1+i−k
v,N , ēq+1+j−k

v,N ) +
δt(1− τ2k )

4

n+1∑
q=0

‖∇ēqv,N‖2

≤Cδt
( n∑
q=0

(‖Bk(e
q
v)‖21 + 1)‖Bk(e

q
v)‖2

+

n∑
q=0

‖Bk(μ
q
N )‖21‖Bk(e

q
φ)‖

2
2 +

n∑
q=0

‖Bk(e
q
μ)‖2

)
+ Cδt2k.

(4.65)

Since μ = −Δφ+ f(φ), we have

(4.66) ‖Bk(e
q
μ)‖2 ≤ C(‖ΔBk(e

q
φ)‖

2 + ‖Bk(e
q
φ)‖

2), ∀q ≤ n.
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On the other hand, we derive from (4.8) and (4.6) that

|ηqk − 1| ≤ 2kCk
0 δt

k + 2kCk
ΠN

k(3−m), ∀q ≤ n.

Note that φq
N = ηqkφ̄

q
N and vq

N = ηqkv̄
q
N , we can estimate ‖Bk(e

q
φ)‖22 and

‖Bk(e
q
v)‖2 as

‖Bk(e
q
φ)‖

2
2

=‖Bk(φ
q
N − φ̄q

N ) +Bk(ē
q
φ,N ) +Bk(e

q
φ,Π)‖

2
2

≤CC2k
0 δt2k + CC2k

Π N2k(3−m) + C‖Bk(ē
q
φ,N )‖22 + C‖φ(tq)‖2mN4−2m.

(4.67)

and

‖Bk(e
q
v)‖2

=‖Bk(v
q
N − v̄q

N ) +Bk(ē
q
v,N ) +Bk(e

q
v,Π)‖

2

≤CC2k
0 δt2k + CC2k

Π N2k(3−m) + C‖Bk(ē
q
v,N )‖2 + C‖v(tq)‖2mN−2m.

(4.68)

It follows from (4.12) and (4.14) that there exists a constant C2 independent

of C0, CΠ, δt and N such that

(4.69) δt

n∑
q=0

‖Bk(μ
q
N )‖21, δt

n∑
q=0

‖Bk(v
q
N )‖21, δt

n∑
q=0

‖Bk(e
q
v)‖21 ≤ C2.

Now, we put (4.47)-(4.49), (4.65)-(4.69) together:

λG(‖ēn+1
φ,N ‖22 + ‖ēn+1

v,N ‖2) + δt(1− τ2k )

4
(

n+1∑
q=0

‖∇Δēqφ,N‖2 +
n+1∑
q=0

‖∇ēqv,N‖2)

(4.70)

≤ Cδt
( n∑
q=0

(‖Bk(v
q
N )‖21 + ‖Bk(μ

q
N )‖21 + 1)‖Bk(e

q
φ)‖

2
2

+

n∑
q=0

(‖Bk(e
q
v)‖21 + 1)‖Bk(e

q
v)‖2

)
+ Cδt2k

≤ Cδt
( n∑
q=0

(‖Bk(v
q
N )‖21 + ‖Bk(μ

q
N )‖21 + 1)‖Bk(ē

q
φ,N )‖22



214 Fukeng Huang and Jie Shen

+

n∑
q=0

(‖Bk(e
q
v)‖21 + 1)‖Bk(ē

q
v,N )‖2

)
+ CC2k

0 δt2k + CC2k
Π N2k(3−m)

+ CN4−2m.

With the upper bound in (4.69), we can apply discrete Gronwall Lemma 3

on (4.70), we obtain

‖ēn+1
φ,N ‖22 + ‖ēn+1

v,N ‖2 + δt
( n+1∑
q=0

‖∇Δēqφ,N‖2 +
n+1∑
q=0

‖∇ēqv,N‖2
)

≤ C exp(3C2 + T )(C2k
0 δt2k + C2k

Π N2k(3−m) +N4−2m)

= C(C2k
0 δt2k + C2k

Π N2k(3−m) +N4−2m),

(4.71)

where we still use C := C exp(3C2 + T ) to denote a general constant inde-

pendent of C0, CΠ, δt and N .

Since ēqφ = ēqφ,N + eqφ,Π and ēqv = ēqv,N + eqv,Π, ∀q, it follows from the

triangle inequality that

(4.72) ‖ēn+1
φ ‖22 ≤ C(C2k

0 δt2k + C2k
Π N2k(3−m) +N4−2m) + CN2(2−m),

(4.73) δt

n+1∑
q=0

‖∇Δēqφ‖
2 ≤ C(C2k

0 δt2k+C2k
Π N2k(3−m)+N4−2m)+CN2(3−m),

(4.74) ‖ēn+1
v ‖2 ≤ C(C2k

0 δt2k + C2k
Π N2k(3−m) +N4−2m) + CN−2m,

and

(4.75) δt

n+1∑
q=0

‖ēqv‖21 ≤ C(C2k
0 δt2k + C2k

Π N2k(3−m) +N4−2m) + CN2(1−m).

Under the condition (4.9) and m ≥ 4, the above also imply there exists a

constant C3 independent of δt,N,C0, CΠ such that

(4.76) ‖φ̄n+1
N ‖22, δt

n+1∑
q=0

‖Δ2φ̄q
N‖2, ‖v̄n+1

N ‖2, δt
n+1∑
q=0

‖v̄q
N‖21 ≤ C3.
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Note that H2 ⊂ L∞, without loss of generality, we assume C3 above also

satisfies

(4.77) |f(φ̄n+1
N )|, |f ′(φ̄n+1

N )| ≤ C3.

Step 3: Estimate for |1− ξn+1|. It follows from (3.12d) that the equa-

tion for {sj} can be written as

sq+1 − sq =δt
(
‖∇μ(tq+1)‖2 − rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1
‖∇μq+1

N ‖2
)

+ δt
(
‖∇v(tq+1)‖2 − rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1
‖∇v̄q+1

N ‖2
)
+ Tq, ∀q ≤ n,

(4.78)

where Tq is the truncation error

(4.79) Tq = r(tq)− r(tq+1) + δtrt(t
q+1) =

∫ tq+1

tq
(s− tq)rtt(s)ds.

Taking the sum of (4.78) for q from 0 to n, and noting that s0 = 0, we have

sn+1 =δt

n∑
q=0

(
‖∇μ(tq+1)‖2 − rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1
‖∇μq+1

N ‖2
)

+ δt

n∑
q=0

(
‖∇v(tq+1)‖2 − rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1
‖∇v̄q+1

N ‖2
)
+

n∑
q=0

Tq.

(4.80)

We bound the righthand side of (4.80) as follows. By direct calculation, we

have

(4.81) rtt =

∫
Ω

(
|∇φt|2 +∇φ · ∇φtt + f ′(φ)φ2

t + f(φ)φtt + v2
t + vvtt

)
dx,

then from (4.79), we have

|Tq| ≤ Cδt

∫ tq+1

tq
|rtt|ds ≤ Cδt2, ∀q ≤ n.
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By triangular inequality,

∣∣∣‖∇v(tq+1)‖2 − rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1
‖∇v̄q+1

N ‖2
∣∣∣

≤‖∇v(tq+1)‖2
∣∣∣1− rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1

∣∣∣
+

rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1

∣∣‖∇v(tq+1)‖2 − ‖∇v̄q+1
N ‖2

∣∣ =: Kq
1 +Kq

2 .

(4.82)

It follows from (4.26) and Theorem 1 that

Kq
1 ≤C

∣∣∣1− rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1

∣∣∣
=C

∣∣∣ r(tq+1)

E(φ(tq+1),v(tq+1)) + 1
− rq+1

E(φ(tq+1),v(tq+1)) + 1

∣∣∣
+ C

∣∣∣ rq+1

E(φ(tq+1),v(tq+1)) + 1
− rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1

∣∣∣
≤C

(
|E(φ(tq+1),v(tq+1))− E(φ̄q+1

N , v̄q+1
N )|+ |sq+1|

)
, ∀q ≤ n,

(4.83)

and

Kq
2 ≤ C

∣∣‖∇v̄q+1
N ‖2 − ‖∇v(tq+1)‖2

∣∣
≤ C‖∇v̄q+1

N −∇v(tq+1)‖(‖∇v̄q+1
N ‖+ ‖∇v(tq+1)‖)

≤ C‖∇v̄q+1
N ‖‖∇ēq+1

v ‖+ C‖∇ēq+1
v ‖, ∀q ≤ n.

(4.84)

We can bound the term with ∇μ by the similar ways:

∣∣‖∇μ(tq+1)‖2 − rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1
‖∇μq+1

N ‖2
∣∣

≤‖∇μ(tq+1)‖2
∣∣∣1− rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1

∣∣∣
+

rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1

∣∣‖∇μ(tq+1)‖2 − ‖∇μq+1
N ‖2

∣∣ =: Kq
3 +Kq

4 .

(4.85)

Same as (4.83), we have

(4.86) Kq
3 ≤ C

(
|E(φ(tq+1),v(tq+1))− E(φ̄q+1

N , v̄q+1
N )|+ |sq+1|

)
, ∀q ≤ n.
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For Kq
4 , we can derive the following same as (4.84)

(4.87) Kq
4 ≤ C‖∇μq+1

N ‖‖∇eq+1
μ ‖+ C‖∇eq+1

μ ‖, ∀q ≤ n.

On the other hand, we can bound ‖∇ēq+1
μ ‖ by the definition of μ and (4.77)

as

(4.88) ‖∇ēq+1
μ ‖ ≤ CC3(‖∇Δēq+1

φ ‖+ ‖∇ēq+1
φ ‖), ∀q ≤ n.

For the term with E(φ,v), we have

|E(φ(tq+1),v(tq+1))− E(φ̄q+1
N , v̄q+1

N )|

≤1

2
(‖∇φ(tq+1)‖+ ‖∇φ̄q+1

N ‖)‖∇φ(tq+1)−∇φ̄q+1
N ‖

+

∫ (
F [φ(tq+1)]− F (φ̄q+1

N )
)
dx+

1

2
(‖v(tq+1)‖+ ‖v̄q+1

N ‖)‖v(tq+1)− v̄q+1
N ‖

≤CC3(‖ēq+1
φ ‖1 + ‖ēq+1

v ‖).

(4.89)

It follows from (4.13), (4.72), (4.73), (4.88) and the Cauchy-Schwarz inequal-

ity that

δt

n∑
q=0

‖∇μq+1
N ‖‖∇eq+1

μ ‖ ≤
(
δt

n∑
q=0

‖∇μq+1
N ‖2δt

n∑
q=0

‖∇eq+1
μ ‖2

)1/2
≤C

√
C2k
0 δt2k + C2k

Π N2k(3−m) +N4−2m +N2(3−m),

(4.90)

and it follows from (4.13), (4.75) and the Cauchy-Schwarz inequality that

δt

n∑
q=0

‖∇v̄q+1
N ‖‖∇ēq+1

v ‖ ≤
(
δt

n∑
q=0

‖∇v̄q+1‖2δt
n∑

q=0

‖∇ēq+1
v ‖2

)1/2
≤C

√
C2k
0 δt2k + C2k

Π N2k(3−m) +N4−2m +N2(1−m),

(4.91)

Now, we are ready to estimate sn+1. Combining the estimates obtained
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above, (4.80) leads to

|sn+1| =δt

n∑
q=0

∣∣∣‖∇μ(tq+1)‖2 − rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1
‖∇μq+1

N ‖2
∣∣∣

+ δt

n∑
q=0

∣∣‖∇v(tq+1)‖2 − rq+1

E(φ̄q+1
N , v̄q+1

N ) + 1
‖∇v̄q+1

N ‖2
∣∣+ n∑

q=0

|Tq|

≤Cδt

n∑
q=0

|sq+1|+ CC3δt

n∑
q=0

(‖ēq+1
φ ‖1 + ‖ēq+1

v ‖1 + ‖∇Δēq+1
φ ‖)

+ Cδt

n∑
q=0

(‖∇μq+1
N ‖‖∇eq+1

μ ‖+ ‖∇v̄q+1
N ‖‖∇ēq+1

v ‖) + Cδt

≤Cδt

n∑
q=0

|sq+1|+ C
√

C2k
0 δt2k + C2k

Π N2k(3−m) +N2(3−m) + Cδt.

(4.92)

Finally, applying Lemma 2 on (4.92) with δt < 1
2C , we obtain the following

estimate for sn+1:

|sn+1| ≤ C exp((1− δtC)−1T )
(√

C2k
0 δt2k + C2k

Π N2k(3−m) +N2(3−m) + δt
)

≤ C4

(√
C2k
0 δt2k + C2k

Π N2k(3−m) +N2(3−m) + δt
)

≤ C4C
k
0 δt

k + C4C
k
ΠN

k(3−m) + C4N
3−m + C4δt,

(4.93)

where C4 is independent of δt,N,C0, CΠ and can be defined as

C4 := Cmax{exp(2T ), 2},

then δt < 1
2C can be guaranteed by

(4.94) δt <
1

C4
.

Thanks to (4.72), (4.74), (4.83), (4.89) and (4.93), we have

|1− ξn+1| ≤C
(
|E(φ(tq+1),v(tq+1))− E(φ̄q+1

N , v̄q+1
N )|+ |sq+1|

)
(4.95)

≤C(C3(‖ēq+1
φ ‖1 + ‖ēq+1

v ‖) + |sn+1|)
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≤CC3

√
C2k
0 δt2k + C2k

Π N2k(3−m) +N4−2m

+ C4C
k
0 δt

k + C4C
k
ΠN

k(3−m) + C4N
3−m + C4δt

≤(CC3 + C4)C
k
0 δt

k + (CC3 + C4)C
k
ΠN

k(3−m)

+ (CC3 + C4)N
3−m + C4δt

≤C5δt(C
k
0 δt

k−1 + 1) + C5N
3−m

(
Ck
ΠN

(3−m)(k−1) + 1
)
,

where the constant C5 := CC3 + C4 is independent of C0, CΠ, δt and N .
For the cases k = 2, 3, 4, 5, we can choose C0 = 2C5 and δt ≤ 1

Ck
0
to

obtain

(4.96) C5(C
k
0 δt

k−1 + 1) ≤ C5[C
k
0 δt+ 1] ≤ 2C5 = C0,

and since m ≥ 4, we can choose CΠ = 2C5 and N ≥ Ck
Π to obtain

(4.97) C5

(
Ck
ΠN

(3−m)(k−1) + 1
)
≤ C5

(
Ck
ΠN

3−m + 1
)
≤ 2C5 = CΠ.

For the case k = 1, since ηn+1
1 = 1 − (1 − ξn+1)2, we can estimate

|1− ξn+1| by exactly the same way as above and (4.95) becomes

(4.98) |1− ξn+1| ≤ C5δt(C
2
0δt+ 1) + C5N

3−m
(
C2
ΠN

3−m + 1
)
.

Then we can choose C0 = 2C5, δt ≤ 1
C2

0
and CΠ = 2C5 and N ≥ C2

Π to
obtain

|1− ξn+1| ≤ C0δt+ CΠN
3−m.

To summarize, combining the above with (4.95), we derive from (4.95) that

(4.99) |1− ξn+1| ≤ C0δt+ CΠN
3−m,

under the conditions

(4.100) δt ≤ 1

2k+2Ck+1
0 + 1

, N ≥ 2k+2Ck+1
Π + 1, 1 ≤ k ≤ 5.

Note that the above implies (4.9), and with C5 > C4, it also implies (4.94).
The induction process for (4.5) is complete.

We derive from (3.12f) and (4.76) that

(4.101) ‖φn+1
N − φ̄n+1

N ‖22 ≤ |ηn+1
k − 1|2‖φ̄n+1

N ‖22 ≤ |ηn+1
k − 1|2C,
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(4.102) ‖vn+1
N − v̄n+1

N ‖2 ≤ |ηn+1
k − 1|2‖v̄n+1

N ‖2 ≤ |ηn+1
k − 1|2C,

and

δt

n∑
q=0

‖vq+1
N − v̄q+1

N ‖21 ≤ δt

n∑
q=0

|ηq+1
k − 1|2‖v̄q+1

N ‖21

≤ max
q

|ηq+1
k − 1|2δt

n∑
q=0

‖v̄q+1
N ‖21

≤ max
q

|ηq+1
k − 1|2C.

(4.103)

On the other hand, we derive from (4.5) that

|ηq+1
1 − 1| ≤ 22C2

0δt
2 + 22C2

ΠN
2(3−m), ∀q ≤ n k = 1,(4.104a)

|ηq+1
k − 1| ≤ 2kCk

0 δt
k + 2kCk

ΠN
k(3−m), ∀q ≤ n k = 2, 3, 4, 5.(4.104b)

Therefore, we derive from (4.72), (4.73), (4.75), (4.101)-(4.104) and the tri-
angle inequality that

‖en+1
φ ‖22 ≤ ‖ēn+1

φ ‖22 + ‖φn+1
N − φ̄n+1

N ‖22,

‖en+1
v ‖2 ≤ ‖ēn+1

v ‖2 + ‖vn+1
N − v̄n+1

N ‖2,

and

‖eq+1
v ‖21 ≤ ‖ēq+1

v ‖21 + ‖vq+1
N − v̄q+1

N ‖21, ∀q ≤ n,

under the condition (4.100) on δt and N . The proof is now complete since
we already proved (4.72), (4.73) and (4.75).

Using exactly the same procedure above without the spatial discretiza-
tion, we can prove the following result for the semi-discrete schemes (3.5).

Corollary 1. Let d = 2, T > 0, v0 ∈ V ∩ H2
p and φ, v be the solution

of (1.1). We assume that φ̄i
N , φi

N , v̄i
N and vi

N (i = 1, · · · , k−1) are computed
with a proper initialization procedure such that

‖v̄i − v(·, ti)‖, ‖vi − v(ti)‖ = O(δtk),

‖v̄i − v(·, ti)‖1, ‖vi − v(ti)‖1, ‖φ̄i − φ(·, ti)‖1, ‖φi − φ(ti)‖1 = O(δtk),

‖φ̄i − φ(·, ti)‖2, ‖φi − φ(ti)‖2 = O(δtk),

(4.105)
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for i = 1, 2, 3, 4, 5. Let φ̄n+1, φn+1, v̄n+1 and vn+1 be computed with the
kth-order scheme (3.5) (1 ≤ k ≤ 5), and

ηn+1
1 = 1− (1− ξn+1)2, ηn+1

k = 1− (1− ξn+1)k (k = 2, 3, 4, 5).

We assume (4.1), (4.2) and (4.3). Then for n + 1 ≤ T/δt with δt ≤
1

1+2k+2Ck+1
0

, we have

(4.106) ‖φ̄n − φ(·, tn)‖22, ‖φn − φ(·, tn)‖22 ≤ Cδt2k,

(4.107) ‖v̄n − v(·, tn)‖2, ‖vn − v(·, tn)‖2 ≤ Cδt2k,

and

(4.108) δt

n∑
q=0

‖v̄q+1 − v(·, tq+1)‖21, δt
n∑

q=0

‖vq+1 − v(·, tq+1)‖21 ≤ Cδt2k,

where the constants C0 and C are dependent on T, Ω, the k × k matrix
G = (gij) in Lemma 4 and the exact solution φ, v, but are independent of
δt.

4.3. Error analysis for the phase function and the velocity in 3D

In the three-dimensional case, (4.62) no longer holds true. Instead, we shall
derive local estimates with a stronger norm for the velocity in analogy to
the local existence of strong solution for the 3-D Cahn-Hilliard Navier-Stokes
equations [5].

Theorem 3. Let d = 3, T > 0, v0 ∈ V ∩Hm
p , φ0 ∈ Hm

p , m ≥ 4. We assume
that (1.1) admits a unique strong solution v in C([0, T ];H1

p )∩L2(0, T ;H2
p ).

We assume (4.4), (4.2) and (4.3) as in Theorem 2, and Let φ̄n+1
N , φn+1

N ,
v̄n+1
N and vn+1

N be computed with the kth-order scheme (3.12) (1 ≤ k ≤ 5),
and

ηn+1
1 = 1− (1− ξn+1)2, ηn+1

k = 1− (1− ξn+1)k (k = 2, 3, 4, 5).

Then, there exits T∗ > 0 such that for 0 < T < T∗, n + 1 ≤ T/δt and
δt ≤ 1

1+2k+2Ck+1
0

, N ≥ 2k+2Ck+1
Π + 1, we have

(4.109) ‖φ̄n
N − φ(·, tn)‖22, ‖φn

N − φ(·, tn)‖22 ≤ Cδt2k + CN2(2−m),
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(4.110) ‖v̄n
N − v(·, tn)‖2, ‖vn

N − v(·, tn)‖2 ≤ Cδt2k + CN−2m,

and

(4.111)

δt

n∑
q=0

‖v̄q+1
N − v(·, tq+1)‖21, δt

n∑
q=0

‖vq+1
N − v(·, tq+1)‖21 ≤ Cδt2k + CN2(1−m),

where the constants C0, CΠ and C are dependent on T, Ω, the k× k matrix

G = (gij) in Lemma 4 and the exact solution φ, v, but are independent of

δt and N .

Proof. The proof follows essentially the same procedure as the proof for

Theorem 2. However, since (2.4a) is not valid when d = 3, we have to derive

an alternative for (4.62). To simplify the presentation, we shall only point

out below how to derive an alternative for (4.62) in step 2 of Theorem 2.

In Step 1, we still assume (4.6) holds and choose δt and N satisfies (4.9).

Let vN = −Δv̄n+1
N + τkΔv̄n

N in (3.12c), it follows from Lemma 4 that

k∑
i,j=1

gij(∇v̄q+1+i−k
N ,∇v̄q+1+j−k

N )−
k∑

i,j=1

gij(∇v̄q+i−k
N ,∇v̄q+j−k

N )

+
∥∥∥ k∑

i=0

δi∇v̄q+1+i−k
N

∥∥∥2 + δt‖Δv̄q+1
N ‖2

=δt(Δv̄q+1
N , τkΔv̄q

N ) + δt
(
A
(
(Bk(v

q
N ) · ∇)Bk(v

q
N )

)
,−Δv̄q+1

N + τkΔv̄q
N

)
− δt

(
A
(
(Bk(μ

q
N ) · ∇Bk(φ

q
N )

)
,−Δv̄q+1

N + τkΔv̄q
N )

)
.

(4.112)

We now bound the right hand side of (4.112). Note that (4.9) implies

(4.113)

1

2
< 1− (

δtk−1

4
+

Nk(3−m)+1

4
) ≤ |ηqk| ≤ 1+

δtk−1

4
+

Nk(3−m)+1

4
< 2, ∀q ≤ n.

First, we have

(4.114) |δt(Δv̄q+1
N , τkΔv̄q

N )| ≤ δt

2
‖Δv̄q+1

N ‖2 + δtτk
2

‖Δv̄q
N‖2.
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Next, it follows from (2.4b) that

|(A
(
(Bk(v

q
N ) · ∇)Bk(v

q
N )

)
,−Δv̄q+1

N + τkΔv̄q
N )|

≤C‖Bk(v
q
N )‖1‖Bk(∇vq

N )‖1/2‖ −Δv̄q+1
N + τkΔv̄q

N‖

≤C‖Bk(v
q
N )‖1‖Bk(v

q
N )‖1/21 ‖Bk(v

q
N )‖1/22 ‖ −Δv̄q+1

N + τkΔv̄q
N‖

≤C(ε)‖Bk(v
q
N )‖31‖Bk(v

q
N )‖2 + ε‖ −Δv̄q+1

N + τkΔv̄q
N‖2

≤C(ε)‖Bk(v
q
N )‖61 + ε‖Bk(v

q
N )‖22 + 2ε‖Δv̄q+1

N ‖2 + 2ε‖Δv̄q
N‖2,

(4.115)

and with the help of (4.13), (4.18) and (4.24), we have

|A
(
(Bk(μ

q
N ) · ∇Bk(φ

q
N )

)
,−Δv̄q+1

N + τkΔv̄q
N )|

≤C‖Bk(μ
q
N )‖L4‖∇Bk(φ

q
N )‖L4‖ −Δv̄q+1

N + τkΔv̄q
N‖

≤C‖Bk(μ
q
N )‖1‖∇Bk(φ

q
N )‖1‖ −Δv̄q+1

N + τkΔv̄q
N‖

≤C(ε)‖Bk(μ
q
N )‖21 + ε‖ −Δv̄q+1

N + τkΔv̄q
N‖2

≤C(ε)‖Bk(μ
q
N )‖21 + 2ε‖Δv̄q+1

N ‖2 + 2ε‖Δv̄q
N‖2.

(4.116)

Now, combining (4.112)-(4.116) and noting that vq
N = ηqkv̄

q
N , we find

after dropping some unnecessary terms that

k∑
i,j=1

gij(∇v̄q+1+i−k
N ,∇v̄q+1+j−k

N )−
k∑

i,j=1

gij(∇v̄q+i−k
N ,∇v̄q+j−k

N )

+ δt(
1

2
− 4ε)‖Δv̄q+1

N ‖2

≤δt(
τk
2

+ 4ε)‖Δv̄q
N‖2 + εδt‖Bk(v

q
N )‖22 + C(ε)δt‖Bk(v

q
N )‖61

+ C(ε)δt‖Bk(μ
q
N )‖21

≤δt(
τk
2

+ 4ε)‖Δv̄q
N‖2 + 22εδt‖Bk(v̄

q
N )‖22 + 26C(ε)δt‖Bk(v̄

q
N )‖61

+ C(ε)δt‖Bk(μ
q
N )‖21.

(4.117)

It follows from (4.13) and (4.24) that

δt

n−1∑
q=0

‖Bk(μ
q
N )‖21 ≤ C.

Now, taking the sum of (4.117) for q from k−1 to n−1, noting that G =
(gij) is a symmetric positive definite matrix with the minimum eigenvalue
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λG and τk < 1, we can choose ε small enough such that:

λG‖v̄n
N‖21 +

δt(1− τk)

4

n∑
q=0

‖Δv̄q
N‖2

≤
k∑

i,j=1

gij(∇v̄n+i−k,∇v̄n+j−k) +
δt(1− τk)

4

n∑
q=0

‖Δv̄q
N‖2

≤Cδt

n−1∑
q=0

‖v̄q
N‖61 +M0,

where M0 > 0 is a constant independent of δt, N , C0 and CΠ. If we define

Φ as Φ(x) = x3 and let

(4.118) 0 < T∗ <

∫ ∞

M0

dz/Φ(z),

then Lemma 5 implies that there exists C∗ > 0 independent of δt, N , C0

and CΠ such that

(4.119) ‖v̄n
N‖21 + δt

n∑
q=0

‖Δv̄q
N‖2 ≤ C∗.

Noting that vq
N = ηqkv̄

q
N and 1

2 < |ηqk| < 2, we also have

(4.120) ‖vn
N‖21 + δt

n∑
q=0

‖Δvq
N‖2 ≤ 2C∗.

In the three-dimensional case, we can bound (4.62) by using (2.5) as

∣∣∣(A(
Bk(e

q
v) · ∇Bk(e

q
v)
)
, ēq+1

v,N − τkē
q
v,N

)∣∣∣
≤C‖Bk(e

q
v)‖‖Bk(e

q
v)‖2‖ē

q+1
v,N − τkē

q
v,N‖1

≤C(ε)‖Bk(e
q
v)‖2‖Bk(e

q
v)‖22 + ε‖ēq+1

v,N − τkē
q
v,N‖21

≤C(ε)‖Bk(e
q
v)‖2‖Bk(e

q
v)‖22 + 2ε‖ēq+1

v,N‖21 + 2ε‖ēqv,N‖21.

(4.121)

It follows from (4.120) that there exists a constant C independent of δt, N ,
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C0 and CΠ such that

(4.122) δt

n∑
q=0

‖Bk(e
q
v)‖22 ≤ C.

Now, with (4.122) holding true, we can then prove (4.109), (4.110)
and (4.111) by following the same procedures in Step 2 and Step 3 in
the proof of Theorem 2.

Similarly, we can prove the following result for the semi-discrete
scheme (3.5).

Corollary 2. Let d = 3, T > 0, v0 ∈ V ∩Hm
p , φ ∈ Hm

p , m ≥ 4. We assume
that (1.1) admits a unique strong solution v in C([0, T ];H1

p )∩L2(0, T ;H2
p ).

We assume (4.4), (4.2) and (4.3) as in Theorem 2, and Let φ̄n+1, φn+1,
v̄n+1 and vn+1 be computed with the kth-order scheme (3.5) (1 ≤ k ≤ 5),
and

ηn+1
1 = 1− (1− ξn+1)2, ηn+1

k = 1− (1− ξn+1)k (k = 2, 3, 4, 5).

Then, there exits T∗ > 0 such that for 0 < T < T∗, n + 1 ≤ T/δt and
δt ≤ 1

1+2k+2Ck+1
0

, we have

(4.123) ‖φ̄n − φ(·, tn)‖22, ‖φn − φ(·, tn)‖22 ≤ Cδt2k,

(4.124) ‖v̄n − v(·, tn)‖2, ‖vn − v(·, tn)‖2 ≤ Cδt2k,

and

δt

n∑
q=0

‖v̄q+1 − v(·, tq+1)‖21, δt
n∑

q=0

‖vq+1 − v(·, tq+1)‖21 ≤ Cδt2k,

where the constants C0 and C are dependent on T, Ω, the k × k matrix
G = (gij) in Lemma 4 and the exact solution φ, v, but are independent of
δt.

4.4. Error analysis for the pressure

With the established error estimates for the velocity v and φ, the error
estimate for the pressure p can be derived directly from (3.6) or (3.13).
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We denote

enpN := pnN −ΠNp(·, tn), enpΠ := ΠNp(·, tn)− p(·, tn), and enp = enpN + enpΠ.

Theorem 4. Under the same assumptions as in Theorem 2 and Theo-
rem 3, we have
(4.125)

δt

n−1∑
q=0

‖pq+1
N − p(·, tq+1)‖2 ≤

{
Cδt2k + CN2(2−m), ∀n ≤ T/δt, d = 2,

Cδt2k + CN2(2−m), ∀n ≤ T∗/δt, d = 3,

where pn+1
N is computed from (3.13), T∗ is defined in (4.118) and C is a

constant independent of δt and N .

Proof. From (3.13), we can write down the error equation for pq+1
N with

q ≤ n− 1 as

(
∇eq+1

p ,∇ψN

)
=
(
vq+1
N · ∇vq+1

N − v(tq+1) · ∇v(tq+1),∇ψN

)
−
(
μq+1
N ∇φq+1

N − μ(tq+1)∇φ(tq+1),∇ψN

)
, ∀ψN ∈ SN .

(4.126)

To prove (4.125), we set ψN = Δ−1eq+1
pN in (4.126) to obtain

‖eq+1
pN ‖2 =

(
eq+1
v · ∇eq+1

v ,Δ− 1

2 eq+1
pN

)
+
(
eq+1
v · ∇v(tq+1),Δ− 1

2 eq+1
pN

)
+
(
v(tq+1) · ∇eq+1

v ,Δ− 1

2 eq+1
pN

)
+
(
eq+1
μ · ∇φq+1

N ,Δ− 1

2 eq+1
pN

)
+
(
μ(tq+1) · ∇eq+1

φ ,Δ− 1

2 eq+1
pN

)
.

(4.127)

We can bound the righthand side of (4.127) by using the stability result in
Theorem 1 and error estimate for the phase function and velocity. We need
to deal with the first term on the right hand side of (4.127) by different ways
in 2D case and 3D case separately.

In the case d=2, we can make use of (2.4a) and obtain∣∣∣(eq+1
v · ∇eq+1

v ,Δ− 1

2 eq+1
pN

)∣∣∣(4.128)

≤C‖eq+1
v ‖1/2‖eq+1

v ‖1/21 ‖eq+1
v ‖1/2‖eq+1

v ‖1/21 ‖Δ− 1

2 eq+1
pN ‖1

≤C(ε)‖eq+1
v ‖2‖eq+1

v ‖21 + ε‖Δ− 1

2 eq+1
pN ‖21
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≤C(ε)‖eq+1
v ‖2‖eq+1

v ‖21 + ε‖eq+1
pN ‖2

≤C(ε)‖eq+1
v ‖21 + ε‖eq+1

pN ‖2.

In the case d=3, it follows from (4.120) and the regularity of the exact

solution that there exists a constant C independent of δt and N ,

‖eq+1
v ‖21 ≤ C, ∀q + 1 ≤ n ≤ T∗/δt,

then we can make use of (2.5) and obtain

∣∣∣(eq+1
v · ∇eq+1

v ,Δ− 1

2 eq+1
pN

)∣∣∣
≤C‖eq+1

v ‖1‖eq+1
v ‖1‖Δ− 1

2 eq+1
pN ‖1

≤C(ε)‖eq+1
v ‖21‖eq+1

v ‖21 + ε‖Δ− 1

2 eq+1
pN ‖21

≤C(ε)‖eq+1
v ‖21‖eq+1

v ‖21 + ε‖eq+1
pN ‖2

≤C(ε)‖eq+1
v ‖21 + ε‖eq+1

pN ‖2, ∀q + 1 ≤ n ≤ T∗/δt, for d=3.

(4.129)

For the other terms on the right hand side of (4.127), we have

∣∣∣(eq+1
v · ∇v(tq+1),Δ− 1

2 eq+1
pN

)∣∣∣ ≤ C‖eq+1
v ‖‖v(tq+1)‖2‖Δ− 1

2 eq+1
pN ‖1

≤ C(ε)‖eq+1
v ‖2‖v(tq+1)‖22 + ε‖Δ− 1

2 eq+1
pN ‖21

≤ C(ε)‖eq+1
v ‖2 + ε‖eq+1

pN ‖2,

(4.130)

and similarly,

(4.131)
∣∣∣(v(tq+1) · ∇eq+1

v ,Δ− 1

2 eq+1
pN

)∣∣∣ ≤ C(ε)‖eq+1
v ‖2 + ε‖eq+1

pN ‖2.

On the other hand, by using (4.37), we have

∣∣∣(eq+1
μ · ∇φq+1

N ,Δ− 1

2 eq+1
pN

)∣∣∣ ≤ C‖eq+1
μ ‖‖∇φq+1

N ‖L4‖Δ− 1

2 eq+1
pN ‖L4

≤ C‖eq+1
μ ‖‖∇φq+1

N ‖1‖Δ− 1

2 eq+1
pN ‖1

≤ C(ε)‖eq+1
μ ‖2‖∇φq+1

N ‖21 + ε‖Δ− 1

2 eq+1
pN ‖21

≤ C(ε)‖eq+1
μ ‖2 + ε‖eq+1

pN ‖2,

(4.132)
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and similarly,

(4.133)
∣∣∣(μ(tq+1) · ∇eq+1

φ ,Δ− 1

2 eq+1
pN

)∣∣∣ ≤ C(ε)‖∇eq+1
φ ‖21 + ε‖eq+1

pN ‖2.

Combining (4.127)-(4.133) with ε = 1
6 and using the estimate in Theo-

rem 2, we obtain

δt

n−1∑
q=0

‖eq+1
pN ‖2 ≤ Cδt

n−1∑
q=0

‖ēq+1
v ‖21 + Cδt

n−1∑
q=0

‖eq+1
μ ‖2 + Cδt

n−1∑
q=0

‖∇eq+1
φ ‖21

≤
{

Cδt2k + CN2(2−m), ∀n ≤ T/δt, d = 2,

Cδt2k + CN2(2−m), ∀n ≤ T∗/δt, d = 3.
.

(4.134)

Finally, we can obtain (4.125) from (4.134) and

‖eqpΠ‖
2 ≤ CN−2m, ∀q ≤ n.

Similarly, we can derive the following results for the semi-discrete
scheme (3.5).

Corollary 3. Under the same assumptions as in Corollary 1 and Corol-
lary 2, we have

δt

n−1∑
q=0

‖pq+1 − p(·, tq+1)‖2 ≤
{

Cδt2k, ∀n ≤ T/δt, d = 2,
Cδt2k, ∀n ≤ T∗/δt, d = 3,

where pn+1 is computed from (3.6), T∗ is defined in (4.118) and C is a
constant independent of δt.

5. Numerical examples

Example 1: Convergence test. Consider the Cahn-Hilliard Navier-Stokes sys-
tem (1.1) in Ω = (−1, 1)× (−1, 1) with periodic boundary condition and the
initial conditions are given as

φ(x, y, 0) = sin(πx) cos(πy),

v1(x, y, 0) = sin(πx) sin(πy),

v2(x, y, 0) = cos(πx) cos(πy).
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Figure 1: Convergence test for the Navier-Stokes Cahn-Hilliard systems us-
ing SAV/BDF k (k = 1, 2, 3, 4).

We set M = 10−4, ν = 1, λ = 0.02, ε = 0.02, γ = 1 in (1.1), and use the
Fourier spectral method with 128 × 128 modes for space discretization so
that the spatial discretization error is negligible with respect to the time
discretization error. The reference solution is generated by the fourth-order
scheme with δt = 0.0002. In Figures 1, we plot the convergence rate of the
L2 error for the phase function φ, velocity v and the pressure p at T = 1 by
using first- to fourth-order schemes. We observe the expected convergence
rates for all the cases.

Example 2: Surface tension effects. In this example, we start with a
square fluid bubble in the domain (−1, 1) × (−1, 1) and fix M = 10−4, ν =
0.1, ε = λ = 0.02, δt = 0.002. We adopt the second order version of the
scheme (3.12) and use the Fourier spectral method with 128 × 128 modes
for space discretization. The initial condition for the phase function is given
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Figure 2: Example 2: phase evolution at t=0, 0.2, 0.5, 2 with γ = 0.1.

Figure 3: Example 2: phase evolution at t=0, 2, 5, 10 with γ = 0.

as

φ(x, y, 0) =

{
− 1, |x| > 0.4 or |y| > 0.4,

1, otherwise,

and the initial velocity and pressure are set to be zero. In Figure 2, we choose
γ = 0.1 and the square bubble quickly deforms into a circular bubble due
to the surface tension. On the other hand, we choose γ = 0 (i.e. no fluid in
the system) in Figure 3, the bubble will deform into a circular bubble.

Example 3: Boussinesq approximation. In this example, we use the
Boussinesq approximation to model the case where the two fluids have dif-
ferent densities [31]. We rewrite (1.1c) as

(5.1)
∂v

∂t
+v ·∇v = −∇p+ νΔv+ γμ∇φ− g(ρ1+ ρ2− 2ρ0)−φg(ρ1− ρ2),

where the constant ρ0 is treated as the “background” density, ρ1, ρ2 are the
corresponding density for two fluids and g is the gravitational acceleration.
In the following, we set ρ1 − ρ2 = −1 and the term g(ρ1 + ρ2 − 2ρ0) is a
constant vector which can be absorbed into the pressure. We start with a
circular bubble near the bottom of the domain (−1, 1)×(−2, 2) and fix M =
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Figure 4: Example 3: Case A, g = (0, 0.1)T , ν = 0.1 with δt = 0.005.

Figure 5: Example 3: Case B, g = (0, 4)T , ν = 0.1 with δt = 0.001.

10−4, ν = 0.1, ε = λ = 0.02, γ = 0.1. We adopt the third order version of the

scheme (3.12) and use the Fourier spectral method with 128×256 modes for

space discretization. In Case A, we choose the gravitational constant vector

g = (0, 0.1)T and δt = 0.005, we can see the bubble rises due to the gravity

differential but without noticeable shape deformation in Figure 4. In Case

B, we choose g = (0, 4)T and δt = 0.001, we can see the bubble rises with

noticeable shape deformation in Figure 5.
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