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Multiple shooting methods have been studied and applied to pa-
rameter estimation and optimal control problems, governed by
ODEs during the past decades, and also to problems governed
by PDEs less frequently. In this work we explore numerically a
multiple shooting method via augmented Lagrangian and penal-
ized models, to estimate parameter values of systems modelled
by ODEs. Unlike most authors, who prefer algorithms like Gauss-
Newton or SQP to solve the associated optimization problems, we
apply the BFGS algorithm with inexact line-search, and a variant
of a dual ascent method, along with the adjoint equation method
to compute derivatives or gradients. The proposed method, with
the mentioned ingredients, is simple and efficient. It estimates ac-
curately parameters of the Lorentz equations in chaotic regime.
The same multiple shooting approach can also be applied to op-
timal control problems, particularly to simultaneously control the
transition between equilibrium states and the stabilization around
an unstable equilibria of a model that describes the dynamics of a
Josephson Junction Array, a quantum interference device used in
superconductivity.
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1. Introduction

Systems of ordinary and partial differential equations are an important tool
to model the physical state of a real phenomenon that arise in many areas of
engineering and applied sciences. Predicting the future behaviour or allowing
control of those processes, the design of optimal controls and its practical
realization, requires accurate or acceptable solutions and also finding or
improving parameter values of the physical model.

Nowadays, multiple shooting, introduced decades ago, is a well-known
method. For instance, some early references are [31, 37, 42, 18]. In particu-
lar, for parameter estimation it was improved and mathematically analysed
in [4, 5]. Since then it has been extensively studied and applied, usually by
means of fitting observed noisy data, or experimental measurements, to sys-
tems modelled by ODEs [38, 6, 12, 2], and also for solving optimal control
problems, [16, 17, 27, 43], and more recently to problems modelled by PDEs,
[13, 29, 30, 40]. Two of the most attractive features of multiple shooting
methods are its improved stability and convergence, which are obtained in
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part from the partition of the objective function along with the subdivision
of the time–interval, allowing an efficient minimization of the cost function
without getting lost too easily in local minima [4, 5, 38], and also its poten-
tial for parallel-in-time implementation [21]. Of course, these advantages can
be used for the design of faster and more robust optimization procedures.
In fact, the multiple shooting approach has shown to be very effective for
parameter estimation and optimal control problems, when gradient based
nonlinear programming solvers (NLP) are employed to solve the associated
constrained optimization models. For instance, generalized Gauss–Newton
methods (perhaps the most used) [4, 6, 2], sequential quadratic programming
(SQP) [19, 40, 30] among the Newton or quasi–Newton methods. These NLP
solvers need the sensitivity equations (derivatives of the state variables with
respect to the parameters), which are useful in finding the gradient of the
objective and/or constraint functions. So, the computational cost of these
shooting methods depends not only on the efficiency of ODE and sensitivity
solvers [4, 2] but also on the solution of middle or large scale linear algebraic
problems arising at each iteration that appear with these methods, mainly
in real applications.

Here, we want to explore a multiple shooting strategy via an augmented
Lagrangian (AL) formulation where the penalized terms are those associ-
ated to the equality constraints of the shooting parameters. The gradients
of the Lagrangian and of objective functions are computed with the adjoint
equation method, allowing the possibility of using gradient descent quasi–
Newton methods, like the BFGS algorithm, which do not require the solu-
tion of linear systems at each iteration. This methodology is implemented in
an unified manner to solve both parameter estimation and optimal control
problems. Our first numerical studies about optimal control for an ODE
system [24, 32], and about parameter identification for systems of ODE [26],
occurred recently, after previous experience with the numerical solution of
inverse and optimal control problems modelled by PDE [28, 14], where we
applied well known methods and algorithms extensively documented in the
celebrated Glowinski’s ‘red book’ [23] and elsewhere. Although all these tech-
niques are well known in the PDE context, for instance [45], we feel that
their combination with shooting methods has not been explored exhaustively
for ODE systems, perhaps because there are already well established opti-
mization methods, like the generalized Gauss–Newton and SQP, and special
techniques to compute derivatives. Recently we were surprised to know that
the adjoint equation method together with multiple shooting is seldom used
to estimate parameters of ODE systems, according to the authors in [2].
Another motivation is the resurgence of augmented Lagrangian methods in
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fields such as total variation denoising and compressed sensing, as well as
their somewhat strong connection to ADMM (alternating direction methods
of multipliers) [7, 22]. On the other hand, the adjoint equation method has
certainly been used successfully to solve optimal control PDE problems, see
[25] and some references already mentioned above. Lately, we have found
the application of the AL approach to PDE-optimal control problems, [29],
showing that this methodology has good properties and it is attractive for
potential applications to PDE-based optimization, not only for optimal con-
trol, but also for the solution of problems that arise into the context of data
driven physical phenomena, like data assimilation, among others.

The proposed methodology in this article is tested with two problems:
parameter estimation of the Lorentz equations (fitting an ODE to chaotic
data, see [3]) and control and stabilization of a Josephson junction array
(JJA). In this last problem, previously studied in recent collaborations with
Roland Glowinski [24, 32], we will show that, with multiple shooting, it
is possible (and much easier) to control the transition between equilibrium
states and stabilize the system around an unstable equilibrium, both actions
in a simultaneous way. The organization of the article is the following. In Sec-
tion 2 we start with some basic notions and continue with the introduction
of the multiple shooting and augmented Lagrangian approach for parameter
estimation of ODEs. In Section 3 we apply the numerical methodology to
parameter estimation of the Lorenz equation, fitting the ODE to chaotic
synthetic data. In Section 4 we adapt the proposed methodology to control
the transition between equilibria and simultaneous stabilization around an
unstable equilibria of a JJA. In Section 5 we present numerical results with
piecewise constant or piecewise linear controls, more amenable for practical
applications. Finally we give some conclusions and perspectives in Section 6.

2. Multiple shooting for parameter estimation from noisy
data

Let x(t) ∈ R
d be a state variable at time t ∈ I := [t0, tf ] of a continuous

time ordinary differential equation (ODE) satisfying the following initial
value problem:

(2.1)
dx(t)

dt
= f(t,x(t),θ), x(t0) = s0, t0 < t ≤ tf ,

where f : R×R
d ×R

np �→ R
d may not depend on t, but for sure it depends

on the state x(t) and on the parameter vector θ ∈ R
np. When convenient

we use the short notation x(t) = x(t; s0,θ) for simplicity.



Parameter estimation and control by penalized multiple shooting 241

In many practical problems not all components of the state x(t) are
observable, and it may be decomposed into observable variables, x, and non–
observable variables, x, which can be regarded as orthogonal projections of
x over the coordinates of these observable and non-observable variables.
We assume that we are given experimental noisy measurements at times
t0 ≤ t1 < . . . < tm ≤ tf :

(2.2) xi = x(ti; s0,θ) + εi, εi ∼ N (0,Σi), Σi = diag(σ2
i ).

A common model to estimate the unknown parameter θ and initial con-
ditions s0, from the given measurements, relays on the minimization of a
least squares objective function. Before introducing the multiple shooting
approach, in the next subsection we first introduce the objective function
and basic notions to compute its gradient with the adjoint equation method.

2.1. A basic non linear optimization model

The parameter estimation of (2.1) consists of identifying s0 and θ by solving
the optimization problem:

(2.3) min J(s0,θ) =
1

2

m∑
i=1

∥∥∥∥x(ti; s0,θ)− xi

σi

∥∥∥∥2
Rno

,

subject to the constraint that the state variable x(t) = x(t, s0,θ) satisfies
the ODE (2.1).

Remark 2.1. Observe that the quotients in (2.3) are computed component-
wise. Formally

||(x(ti; s0,θ)− xi)/(σi)||2Rno = (x(ti; s0,θ)− xi)
T W i (x(ti; s0,θ)− xi),

where W i = Σ
−1
i is the precision matrix.

Variational approach. We want to employ gradient descent methods or
quasi-Newton algorithms, where a critical task is the efficient calculation of
the gradient of the objective function. Some options are available to compute
these quantities as shown in [10, 11, 41], and references therein. Here, we
are interested on an approach based on variational calculus, so we apply the
following formal perturbation analysis.

Let U = R
d+np and p = (s0,θ)

T ∈ U . Differentiating J at p with respect
to a perturbation δp = (δs0, δθ)

T yields

(2.4) δJ(p) = J(p+ δp)− J(p) = 〈DJ(p), δp〉U = ∇J(p) · δp,
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where 〈·, ·〉U denotes the inner product in U and the dot denotes the usual
scalar product, and
(2.5)

∇J(p) · δp =

m∑
i=1

x(ti;p)−xi

σ2
i

· ∂x(ti;p)
∂p

δp =

m∑
i=1

(
∂x(ti;p)

∂p

)Tx(ti;p)−xi

σ2
i

· δp.

Then, DJ(p) and ∇J(p) are related to the Jacobian matrix ∂x(ti;p)/∂p.
This matrix contains the partial derivatives associated to the sub–Jacobians
∂x(ti)/∂s0 and ∂x(ti)/∂θ. These partial derivatives are known in the engi-
neering community as the sensitivities, and they may be computed directly.
Computing these sensitivities is the most delicate task, and it may be ex-
pensive. The most basic method to compute these derivatives is the finite
difference method, see [41]. Other choice is the forward variational approach
where, besides the solution of the state equation, we must solve two forward
matricial dynamical systems. Here, we concentrate on the adjoint equation
method, which consists in solving only the state equation and the so called
adjoint equation, without computing explicitly the sensitivities. To do this,
we rewrite (2.5) by lumping together the sensitivities,

δx(t) =
∂x(t)

∂p
δp =

∂x(t)

∂s0
δs0 +

∂x(t)

∂θ
δθ,

obtaining
(2.6)

∇J(p) ·δp =

m∑
i=1

x(ti;p)−xi

σ2
i

·δx(ti) =
∫ tf

t0

m∑
i=1

x(t;p)−xi

σ2
i

δD(t− ti) ·δx(t) dt,

where δD is the Dirac measure centered at zero.

Lagrangian, adjoint equation and the gradient. The Lagrangian for
the constrained optimization problem (2.3) is

(2.7) L(p,y) = J(p) +

∫ tf

t0

y(t) · { f(x(t),θ)− ẋ(t) } dt,

where ẋ = dx/dt, and y ∈ (L2(I))d is the Lagrange multiplier. If x ∈
(H1(I))d solves the state equation (2.1) then ∇pL(p,y) = ∇J(p) for all y.
So, if we perturb θ, the state x and its deviation δx satisfy∫ tf

t0

y(t) · δẋ(t) dt =
∫ tf

t0

y(t) · { fx(x(t),θ) δx(t) + fθ(x(t),θ) δθ } dt.
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Doing integration by parts, and after some algebraic operations, we get

(2.8) y(t) · δx(t)|tft0 −
∫ tf

t0

{
ẏ + fTx y

}
(t) · δx(t) dt =

∫ tf

t0

{
fTθ y

}
(t) dt · δθ.

Now, we choose y(t) as the solution of the following, backward in time,
adjoint differential equation:

(2.9)

⎧⎪⎨⎪⎩−ẏ(t) = fx(x(t),θ)
T y(t) +

m∑
i=1

x(ti;p)− xi

σ2
i

δ
D
(t− ti),

y(tf ) = 0.

Then (2.8) becomes

(2.10)

m∑
i=1

x(ti;p)− xi

σ2
i

· δx(ti) = y(t0) · δs0 +
∫ tf

t0

{
fTθ y

}
(t) dt · δθ,

where we have used that δx(t0) = δs0. The gradient is obtained from equa-
tions (2.6) and (2.10):

(2.11) ∇pL(p,y) = ∇J(p) =

[
∇s0J(p)
∇θJ(p)

]
=

⎡⎣ y(t0)∫ tf

t0

fθ(x(t),θ)
T y(t) dt

⎤⎦ ,

where x(t) solves the state equation (2.1) and y(t) solves the adjoint equation
(2.9).

Having this efficient way to compute the gradient, we may use descent
gradient methods to solve the optimization problem. In [26] a detailed com-
parison between the conjugate gradient (CG) and BFGS algorithms is pre-
sented, for parameter identification of the SEIRD epidemiological model
[39], using the secant method for line search. There, it is shown that similar
numerical results are obtained with both methods, under the same toler-
ance to achieve a given accuracy, but the BFGS algorithm is more efficient
and robust. The main drawback of the proposed methodology is that it is
sensitive to time location of the data and noise level, and also to the ini-
tial guesses for the initial conditions, so the CG and BFGS algorithms not
always converge, or converge to a local optimum. The first problem (sensi-
tivity to data and their location) is because the adjoint equation may have
discontinuous (or high gradient) solutions, since data arises as instantaneous
pulses in (2.9). The lack of stability on the estimation of initial conditions
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is related to the sensitivity ||x(t; s0)−x(t; s0+ δs0)|| ≤ eL(t−t0)||δs0||, where
L is a Lipschitz constant of the flow f in (2.1) with respect to x. Of course,
the convergence properties of the optimization algorithms improve when the
initial conditions are known.

2.2. Multiple shooting and augmented Lagrangian

The inherent instability and difficulty to find the initial conditions, as well
as the effect of data in long time intervals, may be relaxed incorporating the
technique of multiple shooting, e.g. [2, 12]. The idea about multiple shooting
is dividing the time interval [t0, tf ] into ns smaller subintervals Ij = [τj , τj+1],
j = 1, . . . , ns, and splitting the cost function over each subinterval. We guess
an unknown ‘initial condition’ sj and a ‘target’ sj+1 in each subinterval (see
Figure 1).

Figure 1: Shooting times and nodes for two typical subintervals of [t0, tf ].

With this approach, we introduce the shooting times τ1, τ2, . . . , τns+1,
and the associated shooting vector parameters s1, s2, . . . , sns+1, obtaining a
new parameter vector p = (s1, s2, . . . , sns+1,θ)

T in R
d×(ns+1)+np. For sim-

plicity, we assume that each shooting subinterval Ij contains at least one
experimental measurement ti, and those ti not necessarily match the shoot-
ing times τj . The new optimization model is:

(2.12) min
p

J(p) :=

ns∑
j=1

Lj(pj) with Lj(pj) =
1

2

∑
ti∈Ij

∥∥∥∥xj(ti)− xi

σi

∥∥∥∥2
Rno

,

subject to the following shooting constraints for each xj(t), j = 1, . . . , ns:{
ẋj(t) = f(xj(t),θ), τj < t ≤ τj+1,

xj(τj) = sj ,
(2.13)

xj(τj+1) = sj+1.(2.14)
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The first constraint ensures that xj satisfies the state equation in the lo-
cal time-interval Ij , while the second one ensures continuity (or matching)
conditions between solutions at consecutive intervals (or interfaces).

For the above constrained optimization problems let yj ∈ (H1(Ij))
d and

λj ∈ R
d, the Lagrange multipliers associated to the constraints (2.13) and

(2.14), respectively, for j = 1, . . . , ns. With the notation y = (y1, . . . ,yns)
T ,

λ = (λ1, . . . ,λns)
T , k = (k1, . . . ,kns)

T , the associated augmented La-
grangian is

Lk(p,y,λ) =

ns∑
j=1

Lj(pj) +

ns∑
j=1

∫
Ij

yj · {f(xj(t),θ)− ẋj(t)} dt(2.15)

+

ns∑
j=1

{
λj · [x(τj+1)− sj+1] +

kj
2
‖x(τj+1)− sj+1‖2Rd

}
.

The penalization parameters kj are positive scalars. Doing a perturbation
analysis, like in the previous section, yields

∇pLk · δp =

ns∑
j=1

∇Lj(pj) · δpj +

ns∑
j=1

∫
Ij

yj · [δf(xj ,θ)− δẋj ] dt(2.16)

+

ns∑
j=1

{λj + kj [xj(τj+1)−sj+1 ]} · (δxj(τj+1)− δsj+1),

where

∇Lj(pj) · δpj =
∑
ti∈Ij

xj(ti)− xi

σ2
i

· δxj(ti),

with δxj(ti) =
∂xj(ti)
∂sj

δsj +
∂x(ti)
∂sj+1

δsj+1 +
∂xj(ti
∂θ δθ.

2.3. Adjoint equations and gradient of the objective function

Those terms in (2.16) associated to δxj(τj+1) are incorporated as final con-
ditions of the adjoint equations. Therefore, after doing the appropriate al-
gebraic manipulation, for j = 1, . . . , ns we get the following set of adjoint
equations in each subinterval Ij :
(2.17)⎧⎪⎨⎪⎩

−ẏj(t) = fx(xj(t),θ)
Tyj(t) +

∑
ti∈Ij

xj(ti)− xi)

σ2
i

δ
D
(t−ti), τj+1 > t ≥ τj ,

yj(τj+1) = λj + kj [xj(τj+1)− sj+1 ].
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Likewise, the last terms in (2.16), but now associated to δsj+1, are included
directly into the gradient. Therefore, assuming that xj(t) satisfies the state
equation (2.13) in Ij , and yj(t) satisfies the corresponding adjoint equation
(2.17), we obtain the gradient:

(2.18) ∇pLk = ∇J(p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(τ1)
y2(τ2) − r1

...
yj+1(τj+1)− rj

...
yns(τns)− rns−1

−rns

ns∑
j=1

∫ τj+1

τj

fθ(xj(t),θ)
T yj(t) dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where rj = λj + kj [xj(τj+1)− sj+1 ] for j = 1, . . . , ns.

2.4. Optimization algorithms

The state and adjoint variables, used in the gradient calculation, are com-
puted independently in each time window Ij , allowing for an easy parallel
implementation. Setting λj = 0 for j = 1, . . . , ns, the BFGS algorithm (Al-
gorithm 1) may be applied directly to the resultant pure penalized model
with constant penalization parameters. The most critical step in Algorithm 1
is the solution of the one dimensional optimization problem at step 2, which
is not a trivial step and requires careful treatment. There are several options,
the most common are line search methods and trust region methods. Some
classic references are [15, 35], or the more recent one [44], while some publica-
tions, e,g, [1, 36], show that this topic is still under development. Given that
we have an efficient way to compute the derivative ϕ′(ρ) = ∇J(p�+ρd�)·d�,
we chose the secant method for line search, whose iteration formula is
(2.19)

ρk+1 = ρk −
ϕ ′(ρk)(ρk − ρk−1)

ϕ ′(ρk)− ϕ ′(ρk−1)
=

ρk−1ϕ
′(ρk)− ρkϕ

′(ρk−1)

ϕ ′(ρk)− ϕ ′(ρk−1)
, k = 1, 2, . . .

requiring two initial values ρ0 and ρ1. For � ≥ 1, we set ρ0 = 0 and ρ1 = g� ·
(p�−p�−1)/g�·d�. For � = 0, we also choose ρ0 = 0, but this time ρ1 = −εg0·
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Algorithm 1 BFGS algorithm

INPUT: p0 = (s01, . . . , s
0
ns+1,θ

0)T and 0 < ε < 1 (tolerance to stop iterations).
OUTPUT: optimal value p∗ = (s∗1, . . . , s

∗
ns+1,θ

∗)T ).
Initialization

1. Hessian H0 = I, gradient g0 = ∇J(p0), direction d0 = −g0.
Descent
For � ≥ 0, given p�, g�, d�, H� find p�+1, g�+1, d�+1, H�+1, doing the following:

2. Find ρ� = argmin
ρ≥0

ϕ(ρ) = J(p� + ρd�).

3. Update p�+1 = p� + ρ� d
� and g�+1 = ∇J(p�+1).

Convergence test and new direction
if ‖g�+1‖ ≤ ε‖g0‖ then

4. Set p∗ = p�+1, stop and exit.
else

5. Update H�+1 =

(
I − vuT

uTv

)
H�

(
I − uvT

uTv

)
+

vvT

uTv
with

u = p�+1 − p�

v = g�+1 − g� .

6. Update d�+1 = −H�+1g�+1.
7. Do � = �+ 1 and go back to 2.

end if

p0/g0 · d0, with ε < 1, has shown appropriate in practice. These elections
take into account a proper scaling (see step 3). We want to emphasize that
in practice inexact line search is applied and, in our numerical experiments,
we found that it is enough to do at most three secant iterations.

Remark 2.2. We have not employed limited memory quasi-Newton imple-
mentations, like L-BFGS [33, 34], and their variants, mainly because the
number of variables of the objective functions for the examples in this paper
is small. The most expensive numerical experiment in terms of CPU time,
from the examples presented bellow, takes very few seconds, and it is enough
to consider the above basic BFGS algorithm. However, for large scale prob-
lems, like those arising in parameter estimation and/or control of problems
modelled by PDEs, it is necessary, actually mandatory, to implement mem-
ory saving techniques. Some advantages of limited memory quasi-Newton
methods are that: the amount of storage required by the algorithms, and
thus the cost of the iteration, can be controlled by the user, these methods
are simple to program, they require substantially fewer function evaluations,
and they do not require additional information than the one required by the
basic quasi-Newton methods, see [34, 9] and references therein.

If we want to estimate the Lagrange multipliers λj , and update the
penalization parameters kj , we can apply Algorithm 2 (bellow) which is a
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variant of the dual ascent and method of multipliers adapted from [7], see
also [35], [29] and references therein. In this algorithm we use the notation
g� = ∇pLk(p

�,y�,λ�,k�), and p�,λ�,k� � y� to indicate that given
p� = (s�1, . . . , s

�
ns+1,θ

�), we obtain x�
j solving (2.13), and then we obtain y�

j

solving (2.17) for each j = 1, . . . , ns. Since the parameters kj penalize the
term associated to the continuity constraints (2.14), we propose the following
updating formula for each j = 1, . . . , ns:

(2.20) k�j = max

{
k�−1
j ,

‖g�
j+1‖

‖x�
j(τj+1)− s�j+1‖

}
with 0 < k0j ≤ 1,

where g�
j+1 is the (j + 1)–th vector component of the gradient (2.18) eval-

uated at iteration �. With this updating formula it is easy to see that kj is
incremented only when g�

j+1 does not decrease proportionally to the term

k�−1
j [x�

j(τj+1)− s�j+1].
Concerning the convergence tolerances ε� at step 5 of Algorithm 2, we

employ the following variant of the one employed in [29], and justified in
[20]:

(2.21) ε� = max

{
ε,

a�
‖k�‖b

}
with a� =

‖g�‖
‖g0‖ and 1 ≤ b < 2.

Observe that 0 < a� < 1 and a� → 0 at convergence, so that ε�‖k�‖ →
0 as well, i.e. ε� = o(1/‖k�‖), as recommended in [20, 29]. In numerical
calculations we fix b = 1.05.

From now on we will call Algorithm 2 simply as AL. Likewise, we will
call BFGS to Algorithm 1 when it is applied to the pure penalized model
with penalty parameters kj fixed (equivalently when step 2 in Algorithm 2
is solved once with λ0 = 0 and k0 fixed).

Remark 2.3. A complete study include a theoretical or formal argumen-
tation about convergence to feasible points of these algorithms. This is an
open pending issue, which we will consider later. We may look at local in
time properties by linearisation around sj and θ on each shooting interval
Ij, hoping to get some convexity information, in these coordinate directions,
of the quadratic-linear optimization model. Since the role of kj is enforc-
ing continuity conditions on the shooting parameters sj, and these penalty
parameters represent the relative importance between the cost function and
the difference ||xj(τj+1 − sj+1)|| at the end of Ij in a penalized model (i.e.
with λj = 0), then reducing the gradient in the direction of θ may be more
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Algorithm 2 AUGMENTED LAGRANGIAN (AL) algorithm

INPUT: p̂ = (ŝ1, ŝ2, . . . , ŝns+1, θ̂)
T and 0 < ε < 1 (tolerance to stop iterations).

OUTPUT: Optimal parameter value p∗ = (s∗1, s
∗
2, . . . , s

∗
ns+1,θ

∗)T .
Initialization

1. p0 = p̂, λ0 = 0 � y0, g0 := ∇pLk(p
0,y0,λ0) with 0 < ‖k0‖ ≤ O(1).

Descent
For � ≥ 1, given p�−1, λ�−1, k�−1 � y�−1, find p�, λ�, k� � y�, doing the
following:

2. Obtain p� = argmin
p

Lk�−1(p,y�−1,λ�−1). (BFGS algorithm)

3. Update λ�
j = λ�−1

j + k�−1
j [x�

j(τj+1)− s�j+1] � y�
j , j = 1, . . . , ns.

4. Update k�j ≥ k�−1
j , j = 1, . . . , ns. (see eq. 2.20)

5. Update convergence tolerance ε� ≤ ε�−1. (see eq. 2.21)
Convergence test
if ε� < ε then

6. Set p∗ = p�, stop and exit.
else

7. Update for next iteration: � = �+ 1, and go back to step 2.
end if

significant overall, and setting kj with constant values give meaning results,
according to the numerical experiments. But, we must understand more the
role of θ and its relation with the penalized terms.

Finally, we want to emphasize that whereas solutions remain time-continu-
ous in the single shooting approach, in multiple shooting, they are allowed to
be discontinuous during the optimization process, and matching conditions
between windows only need to be satisfied upon convergence.

3. Numerical examples for parameter estimation

To validate the fitting model and the proposed optimization algorithms we
consider the problems of estimating the parameters of the Lorenz equations
in the chaotic regime. In our opinion, this problem is a good benchmark
to test the multiple shooting approach for parameter estimation in chaotic
ODEs in general, assuming that we have enough information (data) to re-
flect all relevant frequencies occurring, see [3]. The Lorenz equations are a
simplified model of thermal convection in a box, given by

dx

dt
= σ (y − x),(3.1)

dy

dt
= x (ρ− z)− y,(3.2)
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dz

dt
= x y − β z,(3.3)

where the state variables are the rate of convective overturning x(t), the
horizontal temperature difference y(t), and departure from vertical temper-
ature gradient z(t). The parameters are: the Prandtl number σ, the Rayleigh
number ρ and an aspect ratio β. For σ = 10, ρ = 28, β = 8/3, Lorenz (1963)
suggested that trajectories in a bounded region converge to an attractor
that is a fractal, with dimension about 2.06, as estimated by Liapunov ex-
ponents. Figure (2) shows the numerical solution obtained with the standard
fourth-order Runge-Kutta method (RK4) in the interval [t0, tf ] = [0, 30] with
time step h = 0.01, and initial conditions x(t0) = (x(t0), y(t0), z(t0))

T =
(14, 45, 11)T .

Figure 2: Phase portrait of the solution and time-evolution of x, y, z.

We take this solution as our reference true solution. Synthetic data
is generated adding white noise to this solution, using the Matlab ran-
dom Gaussian generator with zero mean and standard deviations σi =
noise level × x(ti)), where x(ti) = (x(ti), y(ti), z(ti))

T , at a series of in-
stant times ti in the short interval [t0, tf ] = [0, 3]. The proposed model
and the numerical algorithm are tested for several noise levels, for instance
0.1, 0.2, 0.3, 0.5 (i.e. adding 10%, 20%, 30% and 50% noise to the true solu-
tion). Then, we hope to recover the initial conditions and an approximation
to the exact parameter vector θ = (σ, ρ, β)T = (10, 28, 10/3)T . All numerical
calculation were done using the Matlab environment with our own computa-
tional programs, using a MacBook Pro (2019) with an Intel core i5 processor,
five kernels and 16 GB of RAM. Standard fourth order Runge Kutta (RK4)
solvers are employed for the solution of the state and adjoint equations at
each iteration.
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Example 3.1. We begin considering perturbed data at 20% in the time
interval [0, 3] with Gaussian noise (noise level = 0.2), generated with Matlab
from the ‘exact solution’ with the given initial conditions (see Figure 2).
So, we obtain the time-set ti = i h, i = 0, 1, . . . , 300 with h = 0.01 and
synthetic data {xi}mi=1 = {(xi, yi, zi)T }mi=1 with m = 301. We divide the time
interval into ns = 150 subintervals for best results. The initial guesses to
start iterations, in either Algorithm 1 or 2, are θ0 = (5, 15, 5)T and s0j equal

to the values of the synthetic perturbed data for all j. We choose k0j = 1 for
1 ≤ j ≤ ns.

Table 1 summarizes the numerical results obtained with BFGS and AL
algorithms for different combinations of the observable state variables. The
following notation is used: Obs∗ indicate which variables are observable in
each experiment, ALG∗ = AL or BFGS, ε = tolerance to stop AL or BFGS,
Iters∗ = number of iterations to achieve convergence to the given tolerance,
one number for the BFGS and two for AL (the first one being the number of
AL iterations �, and the second one is the total cumulative number of BFGS
iterations). Last two columns show the computed value of the parameters
and their relative difference with respect to the exact value, respectively.

Table 1: Numerical results obtained with BFGS and AL algorithms for differ-
ent observable state variables. Initial guess is θ0 = (5, 15, 5)T , noise level =
0.2, and ns = 150

Obs∗ ALG∗ ε Iters∗ Computed σ∗, ρ∗, β∗ Relative difference: σ, ρ, β

x BFGS 10−3 57 10.0636, 27.5455, 2.6777 0.0064, 0.0162, 0.0041
x AL 10−5 2,58 10.0876, 27.6121, 2.6775 0.0088, 0.0139, 0.0041
y BFGS 1.4×10−3 70 10.1831, 27.8341, 2.7648 0.0183, 0.0059, 0.0368
y AL 10−4 3,78 10.0312, 27.9439, 2.7536 0.0031, 0.0020, 0.0326
z BFGS 10−3 51 10.0384, 27.5645, 2.6796 0.0038, 0.0156, 0.0048
z AL 10−4 3,57 10.0301, 27.5405, 2.6464 0.0030, 0.0164, 0.0076

x, y BFGS 10−3 63 10.0986, 27.7424, 2.7462 0.0099, 0.0092, 0.0298
x, y BFGS 10−4 199 9.8304, 27.5918, 2.7434 0.0170, 0.0146, 0.0288
x, y AL 10−5 4, 88 10.1105, 27.8548, 2.7420 0.0110, 0.0052, 0.0282
x, z BFGS 10−3 57 10.0715, 27.5560, 2.6739 0.0072, 0.0159, 0.0027
x, z BFGS 10−4 157 10.2219, 27.6649, 2.6759 0.0222, 0.0120, 0.0035
x, z BFGS 10−5 416 10.2102, 27.7936, 2.6579 0.0210, 0.0074, 0.0033
x, z AL 10−6 4,336 10.0075, 27.8580, 2.6664 0.0008, 0.0051, 0.0001
y, z BFGS 1.4×10−3 70 10.1951, 27.8560, 2.7588 0.0195, 0.0051, 0.0346
y, z AL 10−4 4,80 9.9428, 27.9816, 2.7494 0.0057, 0.0007, 0.0310

x, y, z BFGS 10−3 63 10.1043, 27.7523, 2.7427 0.0104, 0.0088, 0.0285
x, y, z BFGS 10−4 185 10.0166, 28.0205, 2.7022 0.0017, 0.0007, 0.0133
x, y, z BFGS 10−5 229 10.0023, 28.0336, 2.7011 0.0002, 0.0012, 0.0129
x, y, z BFGS 10−6 445 9.9972, 28.0433, 2.6996 0.0003, 0.0015, 0.0123
x, y, z AL 10−6 5,280 9.9638, 27.9544, 2.6776 0.0036, 0.0016, 0.0041
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This table shows good results when one, two or three state variables are
observable, however when only one state variable is observable the BFGS
algorithm admits tolerances down to ε = 10−3 to get convergent results.
When two state variables are observable, each combination gives good re-
sults, but the combinations x, y and y, z are less flexible to smaller tolerances
ε for BFGS. Overall, the best results are obtained when two or three vari-
ables are observable. AL yields better parameter estimation in most of the
cases, however the penalty-BFGS algorithm is very competitive. Figure 3
shows the log of the relative gradient ||g�||/||g0|| against iterations number
when z, (x, z) and (x, y, z) are observable, respectively. The norm of the gra-
dient decreases slower with AL (blue lines) than with BFGS (green lines) as
iterations progress, but AL converges faster (to the given tolerance) to the
optimal parameters θ = (σ, ρ, θ) with two and three state observable vari-
ables, showing that updating the penalty parameters and Lagrange multipli-
ers helps to improve convergence in the direction of the vector coordinate θ.

Figure 3: Gradient reduction for BFGS and AL iterations: z is observable
(left), x, z are observables (middle), and x, y, z are observables (right). Red
dots represent AL iterations.

Figure 4 shows how (σ�, ρ�, β�) converge to the optimal (σ∗, ρ∗, β∗). The
true parameter value (σ, ρ, β) is included in each plot, represented with a
circular black dot at the right end of each curve. Convergence improve when
two or three variables are observable, although the difference between each
case is not very significant, except for the number of iterations. To better
illustrate convergence, we also include plots of log |σ− σ∗| versus iterations.
This is done only for this parameter in each case to save space. Figure 5 shows
the time-history of the state variables, obtained with the computed shooting
parameters s∗j and the computed parameters θ∗ = (σ∗, ρ∗, β∗)T when x, z
are observable (solid-colored segments), along with the noisy data in the
experimental time-window [0, 3] (dots), and the exact solution (continuous
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Figure 4: Parameters convergence when z is observable (left), x, z are ob-
servables (middle), and x, y, z are observables (right). The convergent curves
are shorter for AL when x, z and x, y, z are observables. The bottom plots
show the convergence of parameter σ in log scale for each case in the top.

Figure 5: Time history of (x, y, z) obtained with the computed parameters.
Case with AL, (x, z) observable variables, noise level = 0.2 and ns = 150.

line). For best illustration, we show the forecast in the interval [3, 6] (dashed
line), with initial condition x|t=3 = s∗ns+1, and the corresponding computed
parameters θ∗. The relative component-wise difference between the exact
value x(t = 3) and s∗ns+1 is (0.0083, 0.0054, 0.0013). Good agreement with
the ‘exact solution’ (continuous line) is observed. Similar plots are obtained
with the other cases.



254 L. Héctor Juárez et al.

Example 3.2. In this example we investigate the performance of the method-
ology with respect to noise level. Table 2 summarizes the numerical results
obtained for the following perturbations: 10%, 20%, 30%, 50%.

Table 2: Numerical results for different values of noise level. We set θ0 =
(5, 15, 5)T and ns = 150 in the same experimental window, for all cases

Noise Obs∗ ALG∗ ε Iters∗ σ∗, ρ∗, β∗ Relative diff: σ, ρ, β

10% z BFGS 10−3 63 9.7883, 27.8798, 2.6969 0.0212, 0.0043, 0.0113
10% z AL 10−4 4,124 10.0318, 28.0167, 2.6655 0.0032, 0.0006, 0.0004
20% z BFGS 10−3 51 10.0384, 27.5645, 2.6796 0.0038, 0.0156, 0.0048
30% z BFGS 2×10−3 60 10.5232, 28.1838, 2.6024 0.0523, 0.0066, 0.0241
30% z AL 2×10−3 4,62 9.9495, 27.8286, 2.6905 0.0051, 0.0061, 0.0089
50% z BFGS 12×10−3 91 9.0340, 30.5445, 6.0347 0.0966, 0.0909, 1.2630
50% z AL 10−3 5,90 9.9714, 28.2055, 2.9063 0.0029, 0.0073, 0.0899
10% x, z BFGS 10−4 100 10.0941, 28.2135, 2.6882 0.0094, 0.0076, 0.0081
10% x, z AL 10−5 3,99 10.0442, 28.0458, 2.6941 0.0044, 0.0016, 0.0103
20% x, z BFGS 10−5 416 10.2102, 27.7936, 2.6579 0.0210, 0.0074, 0.0033
30% x, z BFGS 10−3 431 10.0689, 28.0454, 2.6333 0.0069, 0.0016, 0.0125
30% x, z AL 10−5 5,295 9.9971, 27.9732, 2.6419 0.0003, 0.0010, 0.0093
50% x, z BFGS 10−3 160 9.3661, 27.8869, 2.8947 0.0634, 0.0040, 0.0855
50% x, z AL 10−5 5,130 9.7488, 27.2330, 2.8287 0.0251, 0.0274, 0.0608
10% x, y, z BFGS 10−5 164 10.0270, 28.1979, 2.6586 0.0027, 0.0071, 0.0030
10% x, y, z AL 10−6 5,160 10.0129, 28.0234, 2.6733 0.0013, 0.0008, 0.0025
20% x, y, z BFGS 10−5 229 10.0023, 28.0336, 2.7011 0.0002, 0.0012, 0.0129
30% x, y, z BFGS 10−4 298 10.0713, 27.9585, 2.6790 0.0071, 0.0015, 0.0046
30% x, y, z AL 10−5 5,271 9.9894, 28.2285, 2.6547 0.0011, 0.0082, 0.0045
50% x, y, z BFGS 10−4 384 10.4567, 27.9382, 2.7624 0.0457, 0.0022, 0.0359
50% x, y, z AL 10−4 8,278 10.0458, 27.0393, 2.6548 0.0046, 0.0343, 0.0045

For 10% perturbation, a visible improvement (with respect to the 20%
case) is obtained when two or three state variables are observable, and a
good parameter estimation is still obtained for 30% perturbation. But, for
a perturbation of 50%, precision is lost, although an acceptable estimate
of the parameters is still obtained. However, in this case convergence slows
down and larger values of ε are necessary to stop the iterations. Figure 6
shows the reduction of the gradient as the iterations progress, when the
observable variables are x, z. Figure 7 illustrates the convergence curves of
the parameters with respect to iterations for the same case. Like in Figure 4
we include plots of log |σ − σ∗| versus iterations.

In this case, unlike Example 1, we must choose smaller initial values in
(2.20) for high noisy cases. This is because a high noise can imply a greater
deviation ||x�

j(τj+1)−s�j+1|| and, consequently, a uncontrolled increase in k�j ,

if the initial estimate k0 = {k0j }nsj=1 is not chosen carefully. In particular, the
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Figure 6: Gradient descent with respect to iterations for different levels of
noise in the perturbed data. From left to right, 10%, 20%, 30%, 50%. Case
when x, z are observable.

Figure 7: Parameters convergence for 10%, 20%, 30%, 50% noise in the
perturbed data (left to right), when x, z are observable. The bottom plots
show convergence of parameter σ in log scale for each case in the top. AL
convergent curves are shorter than those for BFGS, except for the first case.

following values were chosen for 30% and 50% perturbations, respectively:

k0j =

⎧⎪⎨⎪⎩
1.0 for z observable,

0.3 for (x, z) observable,

0.025 for (x, y, z) observable,

k0j =

⎧⎪⎨⎪⎩
10−5 for z observable,

0.1 for (x, z) observable,

0.05 for (x, y, z) observable.
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The influence of high noisy data is observed in Figure 7, especially the
oscillations that arise on the convergence curves with AL for 30% and 50%
cases, as well as the higher picks at the beginning of iterations for 30% and
50% perturbations.

4. Application to control transition between equilibria, and
stabilization around an unstable equilibrium

We discuss the application of multiple shooting and optimization models,
based on augmented Lagrangian and quasi-Newton methods, to the numeri-
cal simulation of control processes and stabilization of a Josephson Junction
Array (JJA). This problem was studied previously in [24, 32], where a time
partitioned method and a conjugate gradient algorithm are applied to a lin-
earised model of the problem. We show that the multiple shooting approach
address this difficult problem in a much easier and effective way.

A Josephson junction is a quantum interference device that consists of
two superconductors coupled by a weak link that may be, for example, an
insulator or a ferromagnetic material. For more details about the description,
properties, applications and importance of these devices, we refer the reader
to [8, 24] and references therein. Here, we are interested in the following
dimensionless first order non-linear equations, modelling the dynamics of an
array (circuit) of three Josephson junctions inductively coupled:

Γ
dφ(t)

dt
+Kφ(t) + sin(φ(t)) = ic + v(t) in (t0, tf ],(4.1)

φ(t0) = φ0.(4.2)

where φ(t) and v(t) are 3D vector functions of t ∈ [t0, tf ], and

Γ =

⎡⎣ γ1 0 0
0 γ2 0
0 0 γ3

⎤⎦ , K =

⎡⎣ κ1 −κ1 0
−κ1 κ1 + κ2 −κ2
0 −κ2 κ2

⎤⎦ ,

sin(φ(t)) = (sin(φ1(t)), sin(φ2(t)), sin(φ3(t)))
T . In (4.1), ic = (1, 0.8,−1)T

is a critical direct current vector and v(t) is a vector current pulse (our
control function), φi(t) and γi dφi/dt are the phase difference and the voltage
across each junction, respectively. We will consider the parameter values
employed in [24, 32]: γ1 = 0.7, γ2 = 1.1, γ3 = 0.7, κ1 = κ2 = 0.1. For these
parameters the uncontrolled system, i.e. v(t) = 0, has several steady state
solutions, which may be stable or unstable, consisting of constant phase
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triplets φ(t) = θ := (θ1, θ2, θ3)
T . Some approximations to the stable and

unstable steady states are given in Table 3.

Table 3: Some stable and unstable equilibria of system (4.1)

Stable equilibria Unstable equilibria
1.2517, 0.7458, −0.9752 6.8539, 2.2566, −2.6015
7.4205, 6.4954, −0.3237 13.2016, 9.1355, −0.0786
12.9821, 7.0148, −0.2746 13.5568, 11.9196, −3.7436
13.6159, 12.2878, 0.2094

In this part of the work, we continue with the investigation of numerical
methods for the control of transitions between steady states, particularly
transitions form an stable steady state to an unstable steady state [24],
and also about the stabilization around the unstable one [32]. Here, we go
beyond the methodology applied in those publications, where a standard
approach, closely related to the methodology discussed in [23] for systems
modelled by partial differential equations, is applied. The main ingredient
to control transitions in [24] is the application of the conjugate gradient
algorithm to a quadratic cost function model. Concerning the stabilization
of phase junctions around an unstable equilibrium studied in [32], the idea
was to compute the control of a linear perturbed system of the state equation
in short-time intervals with conjugate gradient algorithms. We have found
that such a time-partitioning method is quite cumbersome to implement
computationally. Also, the method is designed to obtain general optimal
controls in Hilbert L2 spaces, and they may not be appropriate for practical
applications.

Here, we will introduce an optimization model based on the multiple
shooting strategy and augmented Lagrangian, which allow a more robust
and efficient algorithm for the numerical solution of both problems, control
of transitions and stabilization, simultaneously. Also, we will show that it is
possible to apply the methodology to get controls of particular shape, like
piecewise constant, piecewise linear or any other of finite dimensional type,
which are more appropriate for practical applications. We found that the
augmented Lagrangian, with the adjoint equation approach, allows the ap-
plication of the standard BFGS algorithm in a simple manner. We consider
that this approach is an alternative to more elaborated quasi-Newton algo-
rithms, like Gauss-Newton and SQP algorithms, which are popular in engi-
neering applications for non-linear programming when the multiple shooting
approach is employed. Furthermore, we will show that this methodology al-
lows to control and stabilize with any combination of three or two controls,
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and even with only one control, which is the best option for practical appli-
cations.

4.1. Control of transitions and stabilization based on multiple
shooting

We first consider the time-shooting nodes τ1, τ2, . . . , τns+1, and their asso-
ciated shooting vector parameters s1, s2, . . ., sns+1 ∈ R

3. As before, we
take τ1 = t0 and τns+1 = tf . We define control functions vj(t) on each
time-subinterval Ij = [τj , τj+1], j = 1, . . . , ns. These control functions are
approximated by a linear combination of a given finite set of base functions,
i.e. vj(t) =

∑n
k=1 q

k
j (t) c

k
j . The simplest control functions are discontinuous

piecewise constant functions and continuous piecewise linear functions. More
precisely, for each j = 1, . . . , ns, and t ∈ Ij , we may define either

vj(t) = cj , or(4.3)

vj(t) =
τj+1 − t

τj+1 − τj
cj +

t− τj
τj+1 − τj

cj+1.(4.4)

Therefore, this approach allows to generate a finite dimensional control space
U containing vector functions of the given particular type. This control
space is a closed subspace of the Hilbert space (L2([t0, tf ])

3. We want to
find the unknown constant vectors c1, . . . , cns for piecewise constant func-
tions, or the unknown vectors c1, . . . , cns+1 for continuous piecewise linear
functions. Employing multiple shooting for the solutions of the differen-
tial equations, increments the number of unknown parameters. Now, we
have p = (s1, s2, . . . , sns+1, c1, . . . , cns)

T for piecewise constant functions, or
p = (s1, s2, . . . , sns+1, c1, . . . , cns+1)

T for continuous piecewise linear func-
tions, with sj , cj ∈ R

3. For each shooting time subinterval Ij , we define
pj = (sj , sj+1, cj)

T for piecewise constants, or pj = (sj , sj+1, cj , cj+1)
T for

piecewise linear.

Optimization problem. We want to find an optimal control v(t) ∈ U to
drive the transition between two admissible phase states in the given time
interval I = [t0, tf ] and stabilize the system simultaneously around the ini-
tial and final phase states. Let us denote by φ0 the initial state, and by φf

the final one. They are any two admissible states, including stable steady
phase states or unstable steady phase states. We first divide the whole time-
interval I in three time-subregions, taking two intermediate shooting-times
τn1

and τn2
, where the indexes n1 and n2 satisfy 1 < n1 < n2 < ns. The
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idea is to stabilize the system around φ0 in the first time-subregion [τ1, τn1
]

and, simultaneously allow the transition from φ0 to φf in the second time-

subregion [τn1
, τn2

] as well as stabilize the system around φf in the third

time-subregion [τn2
, τns+1]. Then, in order to obtain this desired behaviour

we propose the following optimization model, hoping to get an optimal con-

trol in a finite dimensional space defined by piecewise (constant or linear)

vector functions:

(4.5) min
p

J(p) :=

ns∑
j=1

Lj(pj),

where we define Lj(pj), depending on the time-subregion:

(4.6)

Lj(pj) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2

∫
Ij

‖vj(t)‖2dt+
k1j
2

∫
Ij

‖φj(t)− φ0‖2dt, if 1 ≤ j ≤ n1,

1

2

∫
Ij

‖vj(t)‖2dt+
k1j
2

∫
Ij

‖φj(t)− sj+1‖2dt, if n1 < j < n2,

1

2

∫
Ij

‖vj(t)‖2dt+
k1j
2

∫
Ij

‖φj(t)− φf‖2dt, if n2 ≤ j ≤ ns,

where the parameters sj , sj+1, vj and the function φj are constrained by

the following two conditions:⎧⎨⎩ Γ
dφj(t)

dt
+Kφj(t) + sin(φj(t)) = ic + vj(t) in Ij ,

φj(τj) = sj ,
(4.7)

φj(τj+1) = sj+1.(4.8)

The penalization parameters k1j above are positive scalars to be determined.

Remark 4.1. We may fix s1 = φ1(t0) ≡ φ0, but we prefer to let the parame-

ter s1 to be unknown for more freedom and to measure how the methodology

stabilizes the system around φ0. So, we must add to L1(p1) in (4.6) the

penalized term

(4.9)
k0
2
‖s1 − φ0‖2,

with k0 > 0.
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4.2. The augmented Lagrangian

The augmented Lagrangian for the constrained optimization problem, asso-

ciated to each shooting-time subinterval Ij , is

Lj,k(pj ,yj ,λj) = Lj(pj)(4.10)

+

∫
Ij

yj ·
{
ic + vj(t)− Γ φ̇j(t)−Kφj(t)− sin(φj(t))

}
dt

+

{
λj · [φj(τj+1)− sj+1] +

k2j
2

∥∥φj(τj+1)− sj+1

∥∥2
R3

}
,

where again, yj and λj are the corresponding Lagrange multipliers associ-

ated to the (4.7) and (4.8), respectivley. The penalization parameters k2j
are positive constants. We apply the perturbation analysis, as in the previ-

ous section. For instance, for the case 1 ≤ j ≤ n1 (first time-subregion), we

obtain

∇pj
Lj,k · δpj =

∫
Ij

(vj + yj) · δvj dt+ k1j

∫
Ij

(φj − φ0) · δφj dt

(4.11)

+ Γyj(τj) · δsj − Γyj(τj+1) · δsj+1 −
∫
Ij

{−Γ ẏj + (K + Cj)yj} · δφj dt

+
{
λj + k2j(φj(τj+1)− sj+1)

}
· (δφj(τj+1)− δsj+1),

where Cj is the diagonal matrix with diagonal coefficients,

cos(φ1j(t)), cos(φ2j(t)), cos(φ3j(t)).

Remark 4.2. For j = 1, according to (4.9), we must add to the right hand

side of (4.11) the penalized perturbed term

(4.12) k0 (s1 − φ0) · δs1.

For the other two time-subregions, the similar perturbed expression can

be constructed from (4.11), doing the following:

1. For n1 < j < n2, replace k1j
∫
Ij
(φj − φ0) · δφj dt by k1j

∫
Ij
(φj − sj+1) ·(

δφj − δsj+1

)
dt.

2. For n2 ≤ j ≤ ns, replace k1j
∫
Ij
(φj−φ0)·δφj dt by k1j

∫
Ij
(φj−φf )·δφj dt.
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4.3. The adjoint equation and the gradient

We introduce the following set of adjoint equations:

For j = 1, . . . , n1

−Γ ẏj + (K + Cj)yj = k1j (φj − φ0) in Ij ,(4.13)

Γyj(τj+1) = λj + k2j(φj(τj+1)− sj+1).(4.14)

For j = n1 + 1, . . . , n2 − 1

−Γ ẏj + (K + Cj)yj = k1j (φj − sj+1) in Ij ,(4.15)

Γyj(τj+1) = λj + k2j(φj(τj+1)− sj+1).(4.16)

For j = n2, . . . , ns

−Γ ẏj + (K + Cj)yj = k1j (φj − φf ) in Ij ,(4.17)

Γyj(τj+1) = λj + k2j(φj(τj+1)− sj+1).(4.18)

From these equations and (4.11), we obtain the perturbation of the La-
grangian, which implicitly contains the gradient with respect to sj , sj+1 and
vj :

∇pj
Lj,k · δpj = Γyj(τj) · δsj −

{
λj + k2j(φj(τj+1)− sj+1)

}
· δsj+1(4.19)

+

∫
Ij

(vj + yj) · δvj dt,

where φj solves the state equation (4.7), and yj solves the corresponding
adjoint equation.

Remark 4.3. For j = 1, we must add to (4.19) the term (4.12), and for
j = n1 + 1, . . . , n2 − 1 we subtract from (4.19) the term k1j

∫
Ij

(
φj − sj+1

)
·

δsj+1 dt.

We complete the calculation of the finite-dimensional gradient replacing
vj(t) by its finite-dimensional approximation. For instance, when the control
functions are continuous piecewise linear functions (4.4), the last integral in
(4.19) becomes∫

Ij

(vj + yj) · δvj dt =

{∫
Ij

q1j (t)
[
q1j (t) cj + q2j (t) cj+1 + yj(t)

]
dt

}
· δcj
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+

{∫
Ij

q2j (t)
[
q1j (t) cj + q2j (t) cj+1 + yj(t)

]
dt

}
· δcj+1.(4.20)

Therefore, expression (4.19) contains the contribution to the gradient asso-
ciated to the parameters pj = (sj , sj+1, cj , cj+1)

T defined for the shooting-
subinterval Ij . The case for piecewise constant functions is even simpler,
since pj = (sj , sj+1, cj)

T and

(4.21)

∫
Ij

(vj + yj) · δvj dt =

{∫
Ij

[cj + yj(t)] dt

}
· δcj .

For both cases, the complete gradient defined on the time interval I = [t0, tf ]
is constructed adding together the contribution of each shooting-subinterval
Ij , j = 1, . . . , ns. For instance, for piecewise constant controls the gradient
is:

(4.22) ∇pLk = ∇J(p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γy1(τ1) − k0 (φ0 − s1)
Γy2(τ2) − r1

...
Γyj+1(τj+1)− rj

...
Γyns(τns) − rns−1

−rns∫ τ2

τ1

[c1 + y1(t)] dt

...∫ τns+1

τns

[cns + yns(t)]dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where, for j = 1, . . . , ns,

(4.23) rj = λj + k2j [φj(τj+1)− sj+1 ] + k1j

∫
Ij

(
φj(t)− sj+1

)
dt.

The gradient with piecewise linear controls is similarly obtained, replac-
ing the integral terms with the corresponding expressions given by (4.20)
for each j = 1, . . . , ns.
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Remark 4.4. The BFGS Algoritm 1 is applied in the same way that in
Section 2 for parameter estimation. One just takes care of how p is defined
and the way the gradient is computed. We also apply the AL Algorithm 2
in the same fashion and with the same rule for updating the penalization
parameters k2j starting with k02j = 1, but we must add to this algorithm an
updating rule for the penalization parameters k1j. We propose the following
simple formula.

(4.24) k�1j =

{
αk�2j for j = 1, . . . , n1 and j = n2, . . . , ns,

k�2j for j = n1 + 1, . . . , n2 − 1,

with α ≥ 1. That is, we may give more weight to the penalization parameters
that enforce stabilization on the first and third time subregion, see (4.6),
than the penalization parameters that enforce continuity shooting conditions
(4.8). Both parameters come together in the source term and on the final
conditions of the adjoint equations (4.13)–(4.18), respectively.

Remark 4.5. We have not justified formally that the proposed method
converge to a feasible point. However, the following informal argument is
pertinent regarding this issue. Since multiple shooting is a time partition-
ing method, and the length of each time-subintervals Ij is small, then a
linear model in the neighbour of the shooting parameter sj is a valid ap-
proximation of the state equation in Ij. Moreover, if v∗

j is an optimum of
the local cost function Lj(pj) with sj and sj+1 fixed, then from convexity
arguments, it may be characterized by the solution of the linear equation
Dvj

Lj(sj , sj+1,v
∗
j ) = 0 in the local control subspace, where this derivative is

an affine function of the coordinate vj. Therefore this linear equation could
be solved by a (quadratic case)-conjugate gradient (or BFGS) algorithm op-
erating in such control subspace. See [32] for more details.

We will show in the next section that both AL as well as BFGS (for
the pure penalized model), yield excellent numerical results for control and
stabilization of the JJA system, and that BFGS is cheaper computationally.

5. Numerical examples for control and stabilization

We choose the stable equilibrium φ0 = (1.2517, 0.7458,−0.9752)T as initial
state at t0, and the unstable equilibrium φf = (13.2016, 9.1355,−0.0786)T

as target state. We want to drive the system from φ0 to φf in a given fi-
nite time, and then, after the transition, stabilize the system around this
unstable equilibrium over a long time interval. Before obtaining numerical
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results, we show the evolution of the uncontrolled system (v(t) = 0) from
both equilibria: φ0 or φf . Figure 8 shows the evolution of the system (4.1)
in the time interval 0 = t0 ≤ t ≤ tf = 40, when the initial conditions
is φ0 (continuous lines), together with the evolution of the system when
the initial condition is φf (dashed lines). Clearly, starting from the stable
equilibrium φ0, the state variables keep constant in the given time inter-
val, while the unstable equilibrium φf evolves in time to other stable equi-

librium: θ = (12.9821, 7.0148,−0.2746)T , which apparently is the nearest
stable equilibrium to the unstable one.

Figure 8: Time evolution of the uncontrolled stable solution (continuous line)
and the uncontrolled unstable solution (dashed line) in the time interval
[0, 40].

Example 5.1. We apply the multiple shooting methodology, the optimiza-
tion model (4.5)–(4.9), to control the system with time subintervals [τ1, τn1

] =
[0, 5], [τn2

, τn2
] = [5, 10], and [τn2

, τns+1] = [10, 40], for stabilization around
φ0 (if necessary), transition, and stabilization around φf , respectively. These
intervals are somewhat arbitrary, and we emphasize that the algorithm yields
good similar results with other tested intervals and lengths. Our goal in this
example is:

• Show that the system can be controlled with only one junction, for
instance junction 1, using continuous PWL and discontinuous PWC
control functions.

• Compare the performance of the AL algorithm with the plain BFGS
algorithm.

• Show the role of the parameter α, (4.24), in the numerical results,
where we choose k0 = k02j = 1 for all j.
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The time step for the RK4 solver is h = 0.01 (uniform time-mesh). The
initial guess for the shooting parameters, to start the iterations, for both AL
and BFGS, is obtained with the linear-in-time combination

s0j =
tf − τj
tf − t0

φ0 +
τj − t0
tf − t0

φf , j = 1, . . . , ns+ 1,

while the initial guess for the control function parameters in (4.3) and (4.4)
is set to zero: c0j = 0 ∈ R

3, j = 1, . . . , end (end = ns for piecewise constant
controls and end = ns+ 1 for piecewise linear controls).

Table 4 shows different numerical results, controlling via junction 1
and ns = 100 shooting subintervals. The following notation is used: ALG∗

= algorithm (AL or BFGS), CT∗ = control type (PWL or PWC), ε =
tolerance iterations, Iters∗ = number of iterations to achieve convergence
to the given tolerance, one number for the BFGS and two for AL (the number
of AL iterations �, and the total cumulative number of BFGS iterations).
Last two columns show the component-wise relative difference between s1
and the initial state φ0, as well as between sns+1 and the final state φf

(target), multiplied by 103. Thus, to recover the true relative differences, the
numerical values in last two columns must be multiplied by 10−3. This table
shows accurate numerical solutions with any combination. Both PWL and
PWC control functions yield very similar numerical results, but PWC are
cheaper computationally. AL gives excellent results, however BFGS achieves

Table 4: Numerical results for Example 5.1 with junction 1 , AL and BFGS
algorithms, h = 0.01, ns = 100, and different values of α

α ALG∗ CT∗ ε Iters∗ Rel diff. (φ0, s1)× 103 Rel diff. (φf , sns+1)× 103

1 AL PWC 10−9 2,126 0.4727, 2.0350, 0.2700 0.0016, 0.0050, 0.7415
1 AL PWL 10−9 2,138 0.4980, 2.0436, 0.2702 0.0016, 0.0050, 0.7411
1 BFGS PWC 10−9 91 0.1187, 0.4224, 0.0679 0.0013, 0.0036, 0.6084
1 BFGS PWL 10−9 99 0.1251, 0.4246, 0.0680 0.0013, 0.0036, 0.6084
1 BFGS PWC 10−6 71 0.1188, 0.4223, 0.0680 0.0013, 0.0036, 0.6080
1 BFGS PWL 10−6 71 0.1253, 0.4252, 0.0676 0.0013, 0.0036, 0.6086
10 AL PWC 10−9 3,207 0.0068, 0.0110, 0.0133 0.0007, 0.0025, 0.4725
10 AL PWL 10−9 4,280 0.0026, 0.0082, 0.0101 0.0008, 0.0024, 0.5216
10 BFGS PWC 10−9 111 0.0055, 0.0068, 0.0085 0.0006, 0.0017, 0.3413
10 BFGS PWL 10−9 125 0.0053, 0.0068, 0.0085 0.0006, 0.0017, 0.3413
10 BFGS PWC 10−6 76 0.0050, 0.0065, 0.0087 0.0006, 0.0017, 0.3413
10 BFGS PWL 10−6 83 0.0054, 0.0069, 0.0085 0.0006, 0.0017, 0.3413
100 BFGS PWC 10−6 140 0.0013, 0.0042, 0.0060 0.0002, 0.0012, 0.2615
100 BFGS PWL 10−6 155 0.0010, 0.0045, 0.0060 0.0003, 0.0012, 0.2615
1000 BFGS PWC 10−6 303 0.0002, 0.0041, 0.0056 0.0000, 0.0012, 0.2513
1000 BFGS PWL 10−6 343 0.0008, 0.0040, 0.0055 0.0001, 0.0012, 0.2514
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the same accuracy with less computational work. Also, this table shows that
it is enough to set ε = 10−6 with BFGS. Increasing α in (4.24) to update the
penalty parameters k1j in the optimization model (4.6) results in a numerical
control which fits tighter to the transition time-interval [tn1, tn2] = [5, 10]
and, more important, allows a more accurate stabilization in the first and
last time-subregions [t1, tn1] = [0, 5] and [tn2, tns] = [10, 40].

The next figures provide further insight. Figure 9 shows a comparison
of the reduction of the relative gradient obtained with AL and BFGS algo-
rithms with ε = 10−9 when α = 1, and α = 10, respectively. We also include
a third subfigure that shows how the relative norms ‖φ0 − s1‖/‖φ0‖ and
‖φf − sns+1‖/‖φf‖ decrease as α increases.

Figure 9: Gradient descent obtained with AL and BFGS algorithms, ε =
10−9, α = 1 (left) and α = 10 (middle). Reduction of relative differences as
α increases for BFGS, PWC and ε = 10−6 (right).

Figures 10 and 11 show results that contrast cases with α = 1 and
α = 10, respectively. The transition and stabilization, shown in the top-left
of both figures, is represented by dots for PWC and continuous lines with
PWL, showing an excellent agreement. These figures show how the control
changes with respect to α, mainly around the transition time region [5, 10].
Finally, Figure 12 shows that the control away form the transition zone is
very small, but it is not null. Summing up, the numerical results show that
multiple shooting, along with the AL and BFGS optimization algorithms,
is a very effective methodology to control the transition between admissible
states and stabilize the system around an unstable state over a long time
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Figure 10: Transition from φ0 to φf (top left) controlling via junction 1
(bottom left). Reduction of the gradient with respect to iterations (right).
Results obtained with the BFGS algorithm, ε = 10−6 and α = 1.

Figure 11: Transition from φ0 to φf (top left) controlling via junction 1
(bottom left). Reduction of the gradient with respect to iterations (right).
Results obtained with the BFGS algorithm, ε = 10−6 and α = 10.

interval. This is possible with junction 1, but also with any combination
of junctions (as we will show in the following examples). Both PWC and
PWL control functions yield very similar numerical results under the same
conditions, with PWC slightly cheaper computationally. The AL algorithm
gives excellent results, at the expense of more iterations than BFGS (for
the simple penalized model). Higher values of α for updating the penaliza-
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Figure 12: Controls associated to junction 1 in the time interval [15, 40] for
α = 1 and BFGS algorithm with stopping parameter ε = 10−6.

tion parameters k1j increase the accuracy of the numerical results and yield
control functions that fits the transition time interval [5, 10] more tightly,
requiring few more iterations. We found in this example that it is enough to
solve the pure penalized optimization model with stopping value ε = 10−6

for the BFGS algorithm, and α = 10, which is an intermediate reasonable
value for updating the penalization parameters to enforce stabilization. So,
in most of the next examples and cases we will use the penalized model with
these parameters fixed.

Example 5.2. In this example we investigate the behaviour of the numerical
algorithm with respect to the number of shooting subintervals ns. Here we
employ the BFGS algorithm with stopping tolerance ε = 10−6 and parameter
α = 10. We control only via junction 1 and compute the PWC and PWL
control functions with ns = 50, 25 and 10 subintervals.

These numerical values and results are shown in Table 5. Figures 13, 14
and 15 illustrate the numerical results with ns = 50, ns = 25 and ns = 10
respectively.

These results show that the numerical methodology is able to compute
the transition and stabilization with both, PWC and PWL control func-

Table 5: Numerical results of Example 5.2. Control via junction 1 , h =
0.01, α = 10 and different number of shooting subintervals ns

ns ALG∗ CT∗ ε Iters∗ Rel diff. (φ0, s1)× 103 Rel diff. (φf , sns+1)× 103

50 BFGS PWC 10−6 90 0.0103, 0.0174, 0.0186 0.0007, 0.0028, 0.5309
50 BFGS PWL 10−6 95 0.0070, 0.0183, 0.0188 0.0008, 0.0028, 0.5309
25 BFGS PWC 10−6 72 0.0896, 0.1513, 0.0558 0.0006, 0.0047, 0.7357
25 BFGS PWL 10−6 96 4.0795, 0.2650, 0.0584 0.0007, 0.0050, 0.7331
10 BFGS PWC 10−6 226 122.8312, 15.1424, 2.5375 0.0002, 0.0075, 0.8424
10 BFGS PWL 10−6 305 83.3319, 22.5437, 3.1771 0.0013, 0.0077, 0.8464
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Figure 13: Transition and stabilization via junction 1, obtained with ns = 50
subintervals (left). Reduction of the gradient (right).

Figure 14: Transition and stabilization via junction 1, obtained with ns = 25
subintervals (left). Reduction of the gradient (right).

tions, for each case. Table 5 and figures show that the computed control
has more difficulty to fit the time subintervals [0, 5], [5, 10] when ns = 10,
requiring a substantial increment of BFGS iterations for convergence, and
obtaining a higher relative difference of (s1,φ). However, the accuracy is
maintained in the stabilization time interval [10, 40] and the relative differ-
ence of (sns+1,φf ) is much less sensitive to ns. Actually, the lowest value of
ns admitted to get convergent results is ns = 10 for the given lengths of the
first two time-subintervals, [0, 5] and [5, 10].
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Figure 15: Transition and stabilization via junction 1, obtained with ns = 10
subintervals (left). Reduction of the gradient (right).

Example 5.3. In this example we show that the proposed methodology al-
lows controlling with any single junctions available or with combinations of
two or three junctions. Again, we consider the BFGS algorithm, ε = 10−6,
and ns = 100. This time we control with PWC functions, via one junction,
junction 1 or junction 2 or junction 3, two junctions [2,3], and three
junctions [1,2,3] acting simultaneously.

The numerical results for these five cases are shown in Table 6. Figure 16
shows the computed controls in the time subinterval [0, 15] only. The first
three cases are plotted together in the left subfigure, while the other two
cases are shown separately in each remaining subfigures (center and right).
Figure 17 show the corresponding gradient reduction for each case.

Table 6: Numerical results for Example 5.3. Controlling via different combi-
nations of junctions

ALG∗ CT∗ CJ∗ ε Iters∗ Rel diff. (φ0, s1)× 103 Rel diff. (φf , sns+1)× 103

BFGS PWC [1] 10−6 76 0.0050, 0.0065, 0.0087 0.0006, 0.0017, 0.3413
BFGS PWC [2] 10−6 74 0.0100, 0.0058, 0.0083 0.0008, 0.0015, 0.3412
BFGS PWC [3] 10−6 77 0.0103, 0.0074, 0.0051 0.0008, 0.0017, 0.2632
BFGS PWC [2,3] 10−6 78 0.0097, 0.0057, 0.0050 0.0008, 0.0015, 0.2630
BFGS PWC [1,2,3] 10−6 81 0.0052, 0.0050, 0.0050 0.0006, 0.0015, 0.2630

The agreement between the different cases show that, from the compu-
tational point of view, there is no significant difference when controlling via
any junction or combination of junctions. Of course, the most convenient
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Figure 16: Computed PWC control in the time interval [0, 15]: via junction
1 or 2 or 3 separately (left), via junctions [1, 2] acting together (center),
and via junctions [1, 2, 3] acting simultaneously (right).

Figure 17: Gradient descent with only one junction (left), when junctions
[1,2] act together (middle), and when junctions [1,2,3] act simultane-
ously (right).

in practical applications would be controlling with one junction only. We
obtain similar results with piecewise linear functions, but those results are
not included here.

Example 5.4. In this example we show the dependence of the numerical
results with respect to the time step size h. Again, the numerical results are
obtained with the plain penalized model and BFGS iterations with stopping
parameter ε = 10−6, PWC function controls and α = 10. In this case we
consider ns = 50 shooting subintervals and only junction 2 for the control
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process. The following five different time steps, to solve the state and adjoint

equations, are used: h = 0.01, 0.04, 0.1, 0.4, 0.8.

The numerical results are shown in Table 7. Figure 18 shows the control

for each case (left), and the reduction of the gradient as iterations progress

(right). These results are very consistent to each other, showing numerical

convergence with respect to h. The most significant difference between each

case is the computational time, as shown in Figure 19 (left). The transition

between phase states and the stabilization around φf is also very similar

for each case (right). Again, multiple shooting, in combination with the pe-

nalized optimization model and the BFGS algorithm, yield excellent results,

even for coarse time–meshes.

Table 7: Numerical results for Example 5.4 different values of step-size h.
The BFGS algorithm is employed with ε = 10−6 and α = 10

CT∗ CJ∗ h ns Iters∗ Rel diff. (φ0, s1)× 103 Rel diff. (φf , sns+1)× 103

PWC [2] 0.01 50 90 0.0223, 0.0105, 0.0175 0.0013, 0.0021, 0.5299
PWC [2] 0.04 50 90 0.0217, 0.0111, 0.0179 0.0013, 0.0020, 0.5301
PWC [2] 0.1 50 90 0.0218, 0.0103, 0.0178 0.0013, 0.0020, 0.5302
PWC [2] 0.4 50 92 0.0214, 0.0100, 0.0173 0.0013, 0.0020, 0.5365
PWC [2] 0.8 50 94 0.0201, 0.0089, 0.0153 0.0014, 0.0019, 0.5445

Figure 18: PWC control functions via junction 2 obtained for the time step
sizes h = 0.8, 0.4 and 0.1 (top left), and for h = 0.1, h = 0.04 and 0.01
(bottom left). Reduction of the gradient for each case (right).
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Figure 19: Computed time versus time step size h (left). The right subfigure
shows the transition and stabilization with respect time step size obtained
with h = 0.8 (dots), h = 0.1 (circles) and h = 0.01 (continuous line).

Summarizing, the proposed methodology has shown to be very effective
for simultaneous control transitions between admissible states and stabiliza-
tion around unstable states. It admits different types of finite dimensional
controls, piecewise constant or linear, and we believe that it can be eas-
ily extended to other types, like Gaussian pulses, among others. We have
shown that the multiple shooting is flexible also to: the number of subin-
tervals, combinations of junctions for control, and different discretization
parameters.

6. Conclusions

We have explored a multiple shooting strategy, which is applied to param-
eter estimation and also to optimal control and stabilization of problems
modelled by ODEs. The arising equality constrained optimization problems
are solved via an augmented Lagrangian approach. We have presented a
detailed perturbation analysis to compute the gradient of the Lagrangian
and of objective function, showing that the adjoint equation method in-
corporates the continuity (equality) constraints as final conditions of the
corresponding backward in time adjoint equation, for each shooting subin-
terval. With this approach, the gradient of the objective function is com-
puted efficiently, and the additional computational cost is related only to
the additional memory required to storage the components associated to
the shooting parameters s1, . . . , sns+1. This strategy allows the direct ap-
plication of either standard augmented Lagrangian or BFGS algorithms. A
further computational study, mainly comparing with other NLP solvers, like
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Gauss-Newton methods and SQP, is an issue of a future work, which may
help to motivate and give support to the idea of adopting the proposed
BFGS algorithm for the penalized optimization model. Also, the incorpora-
tion of limited memory quasi-Newton optimization methods to large scale
problems, like those associated to parameter estimation and optimal control
of PDE based models, is a pending issue.

Apparently, the adjoint method for computing the gradient of the ob-
jective function has not been preferred for parameter estimation from noisy
experimental data, as stated in [2]. Perhaps, the adjoint equation method
is not used very much for parameter estimation, because the discrepancy
of the data with the true state values arise as source pulses at instanta-
neous experimental times in the adjoint equations (2.17), requiring careful
treatment, since it may lead to discontinuous solutions. However, our nu-
merical results show that, at least for the Lorenz equations, the proposed
methodology is able to estimate accurately the parameters in the regime
where chaotic solutions arise, with either one, two or three observable state
variables.

The same shooting approach via augmented Lagrangian, adapted to the
control problem for the JJA dynamical system (4.1)–(4.2), turns out to be
a very robust numerical method, which yields accurate solutions under dif-
ferent conditions, with either PWC or PWL controls. The numerical results
show that this method can be applied to control the transition between
phase states and, at the same time, stabilize the system around unstable
equilibria over arbitrary long time-intervals, with any combination of two
and three controls and also with only one. A key issue in this problem is
the correct formulation of the optimization model. Finally, we want to point
out that the methodology presented here can be well adapted for large scale
control problems modelled by PDEs, as shown in a recent research work,
[29].
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