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Pluripotential theory and convex bodies: large
deviation principle

Turgay Bayraktar, Thomas Bloom, Norman Levenberg and Chinh H. Lu

Abstract. We continue the study in [2] in the setting of weighted pluripotential theory
arising from polynomials associated to a convex body P in (R+)d. Our goal is to establish a
large deviation principle in this setting specifying the rate function in terms of P−pluripotential-
theoretic notions. As an important preliminary step, we first give an existence proof for the
solution of a Monge-Ampère equation in an appropriate finite energy class. This is achieved using
a variational approach.

1. Introduction

As in [2], we fix a convex body P⊂(R+)d and we define the logarithmic indi-
cator function

(1.1) HP (z) := sup
J∈P

log |zJ | := sup
(j1,...,jd)∈P

log[|z1|j1 ...|zd|jd ].

We assume throughout that

(1.2) Σ⊂ kP for some k∈Z
+

where

Σ := {(x1, ..., xd)∈R
d : 0≤xi ≤ 1,

d∑
j=1

xi ≤ 1}.

Then
HP (z)≥ 1

k
max

j=1,...,d
log+ |zj |
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where log+ |zj |=max[0, log |zj |]. We define

LP =LP (Cd) := {u∈PSH(Cd) :u(z)−HP (z)=O(1), |z| −→∞},

and
LP,+ =LP,+(Cd)= {u∈LP (Cd) :u(z)≥HP (z)+Cu}.

These are generalizations of the classical Lelong classes when P=Σ. We define the
finite-dimensional polynomial spaces

Poly(nP ) := {p(z)=
∑

J∈nP∩(Z+)d
cJz

J : cJ ∈C}

for n=1, 2,... where zJ =zj11 ...zjdd for J=(j1, ..., jd). For p∈Poly(nP ), n≥1 we have
1
n log |p|∈LP ; also each u∈LP,+(Cd) is locally bounded in C

d. For P=Σ, we write
Poly(nP )=Pn.

Given a compact set K⊂C
d, one can define various pluripotential-theoretic

notions associated to K related to LP and the polynomial spaces Poly(nP ). Our
goal in this paper is to prove some probabilistic properties of random point pro-
cesses on K utilizing these notions and their weighted counterparts. We require
an existence proof for the solution of a Monge-Ampère equation in an appropri-
ate finite energy class; this is done in Theorem 2.8 using a variational approach
and is of interest on its own. The third section recalls appropriate definitions and
properties in P−pluripotential theory, mostly following [2]. As in [2], our spaces
Poly(nP ) do not necessarily arise as holomorphic sections of tensor powers of a
line bundle. Subsection 3.3 includes a standard elementary probabilistic result on
almost sure convergence of probability measures associated to random arrays on K

to a P−pluripotential-theoretic equilibrium measure. Section 4 sets up the machin-
ery for the more subtle large deviation principle (LDP), Theorem 5.1, for which we
provide two proofs (analogous to those in [9]). As in [9], the first proof was inspired
by [6] and the second proof was utilized by Berman in [5]. The reader will find
far-reaching applications and interpretations of LDP’s in the appropriate settings
of holomorphic line bundles over a compact, complex manifold in [5]. In particular,
the case where P is a convex integral polytope (vertices in Zd) which is the moment
polytope for a toric manifold (P is Delzant) is covered in [5].

2. Monge-Ampère and P−pluripotential theory

2.1. Monge-Ampère equations with prescribed singularity

In this section, (X,ω) is a compact Kähler manifold of dimension d.
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2.1.1. Quasi-plurisubharmonic functions

A function u:X→R∪{−∞} is called quasi-plurisubharmonic (quasi-psh) if lo-
cally u=ρ+ϕ, where ϕ is plurisubharmonic and ρ is smooth.

We let PSH(X,ω) denote the set of ω-psh functions, i.e. quasi-psh functions
u such that ωu :=ω+ddcu≥0 in the sense of currents on X.

Given u, v∈PSH(X,ω) we say that u is more singular than v (and we write
u≺v) if u≤v+C on X, for some constant C. We say that u has the same singularity
as v (and we write u	v) if u≺v and v≺u.

Given φ∈PSH(X,ω), we let PSH(X,ω, φ) denote the set of ω-psh functions
u which are more singular than φ.

2.1.2. Nonpluripolar Monge-Ampère measure

For bounded ω-psh functions u1, ..., ud, the Monge-Ampère product (ω+
ddcu1)∧...∧(ω+ddcud) is well-defined as a positive Radon measure on X (see [14],
[3]). For general ω-psh functions u1, ..., ud, the sequence of positive measures

1∩{uj>−k}(ω+ddc max(u1,−k))∧...∧(ω+ddc max(ud,−k))

is non-decreasing in k and the limiting measure, which is called the nonpluripolar
product of ωu1 , ..., ωud

, is denoted by

ωu1∧...∧ωud
.

When u1=...=ud=u we write ωd
u :=ωu∧...∧ωu. Note that by definition

∫
X
ωu1∧

...∧ωud
≤
∫
X
ωd.

It was proved in [20, Theorem 1.2] and [11, Theorem 1.1] that the total mass
of nonpluripolar Monge-Ampère products is decreasing with respect to singularity
type. More precisely,

Theorem 2.1. Let ω1, ..., ωd be Kähler forms on X. If uj≺vj , j=1, ..., d, are
ωj-psh functions then∫

X

(ω1+ddcu1)∧...∧(ωd+ddcud)≤
∫
X

(ω1+ddcv1)∧...∧(ωd+ddcvd).

As noted above, for a general ω-psh function u we have the estimate
∫
X
ωd
u≤∫

X
ωd. Following [15] we let E(X,ω) denote the set of all ω-psh functions with

maximal total mass, i.e.

E(X,ω) :=
{
u∈PSH(X,ω) :

∫
X

ωd
u =

∫
X

ωd

}
.
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Given φ∈PSH(X,ω), we define

E(X,ω, φ) :=
{
u∈PSH(X,ω, φ) :

∫
X

ωd
u =

∫
X

ωd
φ

}
.

Proposition 2.2. Let φ∈PSH(X,ω). The following are equivalent:

(1) E(X,ω, φ)∩E(X,ω) �=∅;

(2) φ∈E(X,ω);
(3) E(X,ω, φ)⊂E(X,ω).

Proof. We first prove (1)=⇒(2). If u∈E(X,ω, φ)∩E(X,ω) then
∫
X
ωd
u=

∫
X
ωd.

On the other hand, since u is more singular than φ, Theorem 2.1 ensures that∫
X

ωd =
∫
X

ωd
u ≤

∫
X

ωd
φ ≤

∫
X

ωd,

hence equality holds, proving that φ∈E(X,ω).
Now we prove (2)=⇒(3). If φ∈E(X,ω) and u∈E(X,ω, φ) then∫

X

ωd
u =

∫
X

ωd
φ =

∫
X

ωd,

hence u∈E(X,ω).
Finally (3)=⇒(1) is obvious. �

Proposition 2.3. Assume that φj∈PSH(X,ωj), j=1, ..., d with
∫
X

(ωj+
ddcφj)d>0. If uj∈E(X,ωj , φj), j=1, ..., d, then∫

X

(ω1+ddcu1)∧...∧(ωd+ddcud)=
∫
X

(ω1+ddcφ1)∧...∧(ωd+ddcφd).

Proof. Theorem 2.1 gives one inequality. The other one follows from [11,
Proposition 3.1 and Theorem 3.14]. �

2.1.3. Model potentials

For a function f :X→R∪{−∞}, we let f∗ denote its uppersemicontinuous (usc)
regularization, i.e.

f∗(x) := lim sup
X�y→x

f(y).

Given φ∈PSH(X,ω), following J. Ross and D. Witt Nyström [18], we define

Pω[φ] :=
(

lim
t→+∞

Pω(min(φ+t, 0))
)∗

.
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Here, for a function f , Pω(f) is defined as

Pω(f) := (x �−→ sup{u(x) :u∈PSH(X,ω), u≤ f})∗ .

It was shown in [11, Theorem 3.8] that the nonpluripolar Monge-Ampère measure
of Pω[φ] is dominated by Lebesgue measure:

(2.1) (ω+ddcPω[φ])d ≤1{Pω [φ]=0}ω
d ≤ωd.

This fact plays a crucial role in solving the complex Monge-Ampère equation. For
the reader’s convenience, we note that in the notation of [11] (on the left)

P[ω,φ](0)=Pω[φ].

Definition 2.4. A function φ∈PSH(X,ω) is called a model potential if
∫
X
ωd
φ>

0 and Pω[φ]=φ. A function u∈PSH(X,ω) has model type singularity if u has the
same singularity as Pω[u]; i.e., u−Pω[u] is bounded on X.

There are plenty of model potentials. If ϕ∈PSH(X,ω) with
∫
X
ωd
ϕ>0 then,

by [11, Theorem 3.12], Pω[ϕ] is a model potential. In particular, if
∫
X
ωd
ϕ=

∫
X
ωd

(i.e. ϕ∈E(X,ω)) then Pω[ϕ]=0.
We will use the following property of model potentials proved in [11, Theorem

3.12]: if φ is a model potential then

(2.2) u∈PSH(X,ω, φ)==⇒u−sup
X

u≤φ.

In the sequel we always assume that φ has model type singularity and small
unbounded locus; i.e., φ is locally bounded outside a closed complete pluripolar set,
allowing us to use the variational approach of [7] as explained in [11].

2.1.4. The variational approach

We call a measure which puts no mass on pluripolar sets a nonpluripolar mea-
sure. For a positive nonpluripolar measure μ on X we let Lμ denote the following
linear functional on PSH(X,ω, φ):

Lμ(u) :=
∫
X

(u−φ) dμ.

For u∈PSH(X,ω) with u	φ, we define the Monge-Ampère energy

(2.3) Eφ(u) := 1
(d+1)

d∑
k=0

∫
X

(u−φ)ωk
u∧ωd−k

φ .
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It was shown in [11, Theorem 4.10] (by adapting the arguments of [7]) that Eφ is
non-decreasing and concave along affine curves, giving rise to its trivial extension
to PSH(X,ω, φ).

We define

(2.4) E1(X,ω, φ) := {u∈PSH(X,ω, φ) :Eφ(u)>−∞}.

The following criterion was proved in [11, Theorem 4.13]:

Proposition 2.5. Let u∈PSH(X,ω, φ). Then u∈E1(X,ω, φ) iff u∈E(X,ω, φ)
and

∫
X

(u−φ)ωd
u>−∞.

Lemma 2.6. If E is pluripolar then there exists u∈E1(X,ω, φ) such that E⊂
{u=−∞}.

Proof. Without loss of generality we can assume that φ is a model potential.
Then (2.1) gives

∫
X
|φ|ωd

φ=0. It follows from [7, Corollary 2.11] that there exists
v∈E1(X,ω, 0), v≤0, such that E⊂{v=−∞}. Set u:=Pω(min(v, φ)). Then E⊂{u=
−∞} and we claim that u∈E1(X,ω, φ). For each j∈N we set vj :=max(v,−j) and
uj :=Pω(min(vj , φ)). Then uj decreases to u and uj	φ. Using [11, Theorem 4.10
and Lemma 4.15] it suffices to check that {

∫
X
|uj−φ|ωd

uj
} is uniformly bounded. It

follows from [11, Lemma 3.7] that∫
X

|uj−φ|ωd
uj

≤
∫
X

|uj |ωd
uj

≤
∫
X

|vj |ωd
vj +

∫
X

|φ|ωd
φ

=
∫
X

|vj |ωd
vj .

The fact that
∫
X
|vj |ωd

vj is uniformly bounded follows from [15, Corollary 2.4] since
v∈E1(X,ω, 0). This concludes the proof. �

Lemma 2.7. Assume that E1(X,ω, φ)⊂L1(X,μ). Then, for each C>0, Lμ is

bounded on

EC := {u∈PSH(X,ω, φ) : sup
X

u≤ 0 and Eφ(u)≥−C}.

Proof. By concavity of Eφ the set EC is convex. We now show that EC is
compact in the L1(X,ωd) topology. Let {uj} be a sequence in EC . We claim that
{supX uj} is bounded. Indeed, by [11, Theorem 4.10]

Eφ(uj)≤
∫
X

(uj−φ)ωd
φ

≤ (sup
X

uj)
∫
X

ωd
φ+

∫
X

(uj−sup
X

uj−φ)ωd
φ.
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It follows from (2.2) that uj−supX uj≤Pω[φ]≤φ+C0, where C0 is a constant. The
boundedness of {supX uj} then follows from that of {Eφ(uj)} and the above esti-
mate. This proves the claim.

A subsequence of {uj}, still denoted by {uj}, converges in L1(X,ωd) to u∈
PSH(X,ω) with supX u≤0. Since uj−supX uj≤φ+C0, we have u−supX u≤φ+
C0. This proves that u∈PSH(X,ω, φ). The upper semicontinuity of Eφ (see [11,
Proposition 4.19]) ensures that Eφ(u)≥−C, hence u∈EC . This proves that EC is
compact in the L1(X,ωd) topology.

The result then follows from [7, Proposition 3.4]. �

The goal of this section is to prove the following result:

Theorem 2.8. Assume that μ is a nonpluripolar positive measure on X such

that μ(X)=
∫
X
ωd
φ. The following are equivalent

(1) μ has finite energy, i.e., Lμ is finite on E1(X,ω, φ);
(2) there exists u∈E1(X,ω, φ) such that ωd

u=μ;

(3) there exists a unique u∈E1(X,ω, φ) such that

Fμ(u)= max
v∈E1(X,ω,φ)

Fμ(v)<+∞

where Fμ=Eφ−Lμ.

Remark 2.9. It was shown in [11, Theorem 4.28] that a unique (normalized)
solution u in E(X,ω, φ) always exists (without the finite energy assumption on μ).
But that proof does not give a solution in E1(X,ω, φ). Below, we will follow the proof
of [11, Theorem 4.28] and use the finite energy condition, E1(X,ω, φ)⊂L1(X,μ), to
prove that u belongs to E1(X,ω, φ).

Lemma 2.10. Assume that E1(X,ω, φ)⊂L1(X,μ). Then there exists a posi-

tive constant C such that, for all u∈E1(X,ω, φ) with supX u=0,

(2.5) Lμ(u)≥−C(1+|Eφ(u)|1/2).

The proof below uses ideas in [7], [15].

Proof. Since φ has model type singularity, it follows from [11, Theorem 4.10]
that Eφ−EPω [φ] is bounded. Without loss of generality we can assume in this proof
that φ=Pω[φ]. Fix u∈E1(X,ω, φ) such that supX u=0 and |Eφ(u)|>1. Then,
by [11, Theorem 3.12], u≤φ. Set a=|Eφ(u)|−1/2∈(0, 1), and v :=au+(1−a)φ∈
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E1(X,ω, φ). We estimate Eφ(v) as follows

(d+1)Eφ(v) = a

d∑
k=0

∫
X

(u−φ)ωk
v∧ωd−k

φ

= a

d∑
k=0

∫
X

(u−φ)(aωu+(1−a)ωφ)k∧ωd−k
φ

≥C(d)a
∫
X

(u−φ)ωd
φ+C(d)a2

d∑
k=0

∫
X

(u−φ)ωk
u∧ωd

φ,

where C(d) is a positive constant which only depends on d. It follows from φ=Pω[φ]
and [11, Theorem 3.8] that ωd

φ≤ωd (recall (2.1)). This together with [14, Proposition
2.7] give ∫

X

(u−φ)ωd
φ ≥−C1,

for a uniform constant C1. Therefore,

(d+1)Eφ(v)≥−C1C(d)a+C2a
2Eφ(u)≥−C3.

It thus follows from Lemma 2.7 that Lμ(v)≥−C4 for a uniform constant C4>0.
Thus ∫

X

(u−φ) dμ≥−C4/a,

which gives (2.5). �

We are now ready to prove Theorem 2.8.

Proof of Theorem 2.8. Without loss of generality we can assume that φ is a
model potential. We first prove (1)=⇒(2). We write μ=fν, where ν is a non-
pluripolar positive measure satisfying, for all Borel subsets B⊂X,

ν(B)≤ACapφ(B),

for some positive constant A, and 0≤f∈L1(X, ν) (cf., [11, Lemma 4.26]). Here
Capφ is defined as

Capφ(B) := sup
{∫

B

ωd
u :u∈PSH(X,ω), φ−1≤u≤φ

}
.

Set, for k∈N, μk :=ck min(f, k)ν where ck>0 is chosen so that μk(X)=
∫
X
ωd
φ; this

is needed in order to solve the Monge-Ampère equation in the class E1(X,ω, φ).



Pluripotential theory and convex bodies: large deviation principle 255

For k large enough, 1≤ck≤2 and ck→1 as k→+∞. It follows from [11, Theo-
rem 4.25] that there exists uj∈E1(X,ω, φ), supX uj=0, such that ωd

uj
=μj ; by [11,

Theorem 3.12], uj≤φ. A subsequence of {uj} which, by abuse of notation, will
be denoted by {uj}, converges in L1(X,ωd) to u∈PSH(X,ω) with u≤φ. Define
vk :=(supj≥k uj)∗. Then vk↘u and supX vk=0. It follows from (2.5) and [11, The-
orem 4.10] that

|Eφ(uj)| ≤
∫
X

|uj−φ|ωd
uj

≤ 2
∫
X

|uj−φ| dμ

≤ 2C(1+|Eφ(uj)|1/2).

Therefore {|Eφ(uj)|} is bounded, hence so is {|Eφ(vj)|} since Eφ is non-decreasing.
It then follows from [11, Lemma 4.15] that u∈E1(X,ω, φ).

Now, repeating the arguments of [11, Theorem 4.28] we can show that ωd
u=μ,

finishing the proof of (1)=⇒(2).
We next prove (2)=⇒(3). Assume that μ=ωd

u for some u∈E1(X,ω, φ). For all
v∈E1(X,ω, φ), by [11, Theorem 4.10] and Proposition 2.5 we have

Lμ(v) =
∫
X

(v−φ)ωd
u

=
∫
X

(v−u)ωd
u+

∫
X

(u−φ)ωd
u

≥Eφ(v)−Eφ(u)+
∫
X

(u−φ)ωd
u >−∞.

Hence Lμ is finite on E1(X,ω, φ). Now, for all v∈E1(X,ω, φ), by [11, Theorem 4.10]
we have

Fμ(v)−Fμ(u)=Eφ(v)−Eφ(u)−
∫
X

(v−u)ωd
u ≤ 0.

This gives (3). Finally, (3)=⇒(1) is obvious. �

2.2. Monge-Ampère equations on Cd with prescribed growth

As in the introduction we let P be a convex body contained in (R+)d and
fix r>0 such that P⊂rΣ. We assume (1.2); i.e., Σ⊂kP for some k∈Z+. This
ensures that HP in (1.1) is locally bounded on C

d (and of course HP ∈L+
P (Cd)).

Let u∈LP (Cd) and define

(2.6) ũ(z) :=u(z)− r

2 log(1+|z|2), z ∈C
d.
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Consider the projective space P
d equipped with the Kähler metric ω :=rωFS , where

ωFS = ddc
1
2 log(1+|z|2)

on C
d. Then ũ is bounded from above on C

d. It thus can be extended to P
d as a

function in PSH(Pd, ω).
For a plurisubharmonic function u on C

d, we let (ddcu)d denote its nonpluripo-
lar Monge-Ampère measure; i.e., (ddcu)d is the increasing limit of the sequence of
measures 1{u>−k}(ddc max(u,−k))d. Then

ωd
ũ =(ω+ddcũ)d =(ddcu)d on C

d.

If u∈LP (Cd) then∫
Cd

(ddcu)d ≤
∫
Cd

(ddcHP )d = d!V ol(P )=: γd = γd(P )

(cf., equation (2.4) in [2]). We define

EP (Cd) :=
{
u∈LP (Cd) :

∫
Cd

(ddcu)d = γd

}
.

By the construction in (2.6) we have that H̃P ∈PSH(Pd, ω). We define

Φ̃P :=Pω[H̃P ].

The key point here, which follows from [12, Theorem 7.2], is that H̃P has model type
singularity (recall Definition 2.4) and hence the same singularity as Φ̃P . Defining
ΦP on C

d using (2.6); i.e., for z∈Cd,

ΦP (z)= Φ̃P (z)+ r

2 log(1+|z|2),

we thus have ΦP ∈LP,+(Cd). The advantage of using ΦP is that, by (2.1),
(ddcΦP )d≤ωd on C

d. Note that LP,+(Cd)⊂EP (Cd). For u, v∈L+
P (Cd) we define

(2.7) Ev(u) := 1
(d+1)

d∑
j=0

∫
Cd

(u−v)(ddcu)j∧(ddcv)d−j .

The corresponding global energy (see (2.3)) is defined as

Eṽ(ũ) := 1
(d+1)

d∑
j=0

∫
Pd

(ũ−ṽ)(ω+ddcũ)j∧(ω+ddcṽ)d−j .
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Then Ev is non-decreasing and concave along affine curves in LP,+(Cd). We extend
Ev to LP (Cd) in an obvious way. Note that Ev may take the value −∞. We define

E1
P (Cd) := {u∈LP (Cd) :EHP

(u)>−∞}.

We observe that in the above definition we can replace EHP
by EΦP

, since for
u∈LP,+(Cd), by the cocycle property (cf. Proposition 3.3 [2]),

EHP
(u)−EHP

(ΦP )=EΦP
(u).

We thus have the following important identification (see (2.4)):

(2.8) u∈E1
P (Cd) ⇐==⇒ ũ∈E1(Pd, ω, Φ̃P ).

We then have the following local version of Proposition 2.5:

Proposition 2.11. Let u∈LP (Cd). Then u∈E1
P (Cd) iff u∈EP (Cd) and∫

Cd(u−HP )(ddcu)d>−∞. In particular, if supp(ddcu)d is compact, u∈E1
P (Cd) iff∫

Cd(ddcu)d=γd and
∫
Cd u(ddcu)d>−∞.

Proof. Since H̃P 	Φ̃P ,∫
Pd

(ũ−H̃P )ωd
ũ >−∞ iff

∫
Pd

(ũ−Φ̃P )ωd
ũ >−∞

where ũ∈PSH(Pd, ω) and u are related by (2.6). Moreover, ΦP ∈LP,+(Cd) implies
u≤ΦP +C so that ũ∈PSH(Pd, ω, Φ̃P ). But∫

Pd

(ũ−H̃P )ωd
ũ =

∫
Cd

(u−HP )(ddcu)d

and the result follows from (2.8) by applying Proposition 2.5 to ũ. For the last
statement, note that for general u∈LP (Cd) we may have

∫
Cd HP (ddcu)d=+∞, but

if (ddcu)d has compact support then
∫
Cd HP (ddcu)d is finite. �

Note that Theorem 2.1 and Proposition 2.3 give the following result:

Theorem 2.12. Let u1, ..., ud be functions in EP (Cd). Then∫
Cd

ddcu1∧...∧ddcud = γd.

For u1, ..., un∈LP,+(Cd) Theorem 2.12 was proved in [1, Proposition 2.7].
Having the correspondence (2.8) we can state a local version of Theorem 2.8;

this will be used in the sequel. Let MP (Cd) denote the set of all positive Borel
measures μ on C

d with μ(Cd)=d!V ol(P )=γd.
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Theorem 2.13. Assume that μ∈MP (Cd) is a positive nonpluripolar Borel

measure. The following are equivalent

(1) E1
P (Cd)⊂L1(Cd, μ);

(2) there exists u∈E1
P (Cd) such that (ddcu)d=μ;

(3) there exists u∈E1
P (Cd) such that

Fμ(u)= max
v∈E1

P (Cd)
Fμ(v)<+∞.

A priori the functional Fμ is defined for u∈E1
P (Cd) by

Fμ,ΦP
(u) :=EΦP

(u)−
∫
Cd

(u−ΦP ) dμ.

However, using this notation, since

Fμ,ΦP
(u)−Fμ,HP

(u)=Fμ,ΦP
(HP ),

in statement (3) of Theorem 2.13 we can take either of the two definitions Fμ,ΦP
or

Fμ,HP
for Fμ.

Remark 2.14. If μ has compact support in C
d then

∫
Cd ΦP dμ and

∫
Cd HP dμ

are finite. Therefore, the functional Fμ can be replaced by

u �−→EHP
(u)−

∫
Cd

u dμ.

Using the remark, for μ∈MP (Cd) with compact support, it is natural to define
the Legendre-type transform of EHP

:

(2.9) E∗(μ) := sup
u∈E1

P (Cd)
[EHP

(u)−
∫
Cd

u dμ].

This functional, which will appear in the rate function for our LDP, will be given a
more concrete interpretation using P−pluripotential theory in section 4; cf., equa-
tion (4.18).

Finally, for future use, we record the following consequence of Lemma 2.6 and
the correspondence (2.8).

Lemma 2.15. If E⊂C
d is pluripolar then there exists u∈E1

P (Cd) such that

E⊂{u=−∞}.
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3. P−pluripotential theory notions

Given E⊂C
d, the P−extremal function of E is

V ∗
P,E(z) := lim sup

ζ→z
VP,E(ζ)

where
VP,E(z) := sup{u(z) :u∈LP (Cd), u≤ 0 on E}.

For K⊂Cd compact, w:K→R+ is an admissible weight function on K if w≥0
is an uppersemicontinuous function with {z∈K :w(z)>0} nonpluripolar. Setting
Q:=− logw, we write Q∈A(K) and define the weighted P−extremal function

V ∗
P,K,Q(z) := lim sup

ζ→z
VP,K,Q(ζ)

where
VP,K,Q(z) := sup{u(z) :u∈LP (Cd), u≤Q on K}.

If Q=0 we write VP,K,Q=VP,K , consistent with the previous notation. For P=Σ,

VΣ,K,Q(z)=VK,Q(z) := sup{u(z) :u∈L(Cd), u≤Q on K}

is the usual weighed extremal function as in Appendix B of [19].
We write (omitting the dependence on P )

μK,Q := (ddcV ∗
P,K,Q)d and μK := (ddcV ∗

P,K)d

for the Monge-Ampère measures of V ∗
P,K,Q and V ∗

P,K (the latter if K is not pluripo-
lar). Proposition 2.5 of [2] states that

supp(μK,Q)⊂{z ∈K :V ∗
P,K,Q(z)≥Q(z)}

and V ∗
P,K,Q=Q q.e. on supp(μK,Q), i.e., off of a pluripolar set.

3.1. Energy

We recall some results and definitions from [2]. For u, v∈LP,+(Cd), we define
the mutual energy

E(u, v) :=
∫
Cd

(u−v)
d∑

j=0
(ddcu)j∧(ddcv)d−j .
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For simplicity, when v=HP , we denote the associated (normalized) energy func-
tional by E:

E(u) :=EHP
(u)= 1

d+1

d∑
j=0

∫
Cd

(u−HP )ddcuj∧(ddcHP )d−j

(recall (2.7)).
For u, u′, v∈LP,+(Cd), and for 0≤t≤1, we define

f(t) := E(u+t(u′−u), v),

From Proposition 3.1 in [2], f ′(t) exists for 0≤t≤1 and

f ′(t)= (d+1)
∫
Cd

(u′−u)(ddc(u+t(u′−u)))d

Hence, taking v=HP , we have, for F (t):=E(u+t(u′−u)), that

F ′(t)=
∫
Cd

(u′−u)(ddc(u+t(u′−u)))d.

Thus F ′(0)=
∫
Cd(u′−u)(ddcu)d and we write

(3.1) <E′(u), u′−u>:=
∫

(u′−u)(ddcu)d.

We need some applications of a global domination principle. The following ver-
sion, sufficient for our purposes, follows from [11], Corollary 3.10 (see also Corollary
A.2 of [8]).

Proposition 3.1. Let u∈LP (Cd) and v∈EP (Cd) with u≤v a.e. (ddcv)d. Then
u≤v in C

d.

This will be used to prove an approximation result, Proposition 3.3, which
itself will be essential in the sequel. First we need a lemma.

Lemma 3.2. Assume that ϕ≤u, v≤HP are functions in E1
P (Cd). Then for all

t>0, ∫
{u≤HP−2t}

(HP −u)(ddcv)d ≤ 2d+1
∫
{ϕ≤HP−t}

(HP −ϕ)(ddcϕ)d.

In particular, the left hand side converges to 0 as t→+∞ uniformly in u, v.
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Proof. For s>0, we have the following inclusions of sets:

(u≤HP −2s)⊂
(
ϕ≤ v+HP

2 −s

)
⊂ (ϕ≤HP −s).

We first note that the left hand side in the lemma is equal to∫
{u≤HP−2t}

(HP −u)(ddcv)d

=2t
∫
{u≤HP−2t}

(ddcv)d+
∫ ∞

2t

(∫
{u≤HP−s}

(ddcv)d
)

ds.(3.2)

We claim that, for all s>0,

(3.3)
∫
{u≤HP−2s}

(ddcv)d ≤ 2d
∫
{ϕ≤HP−s}

(ddcϕ)d.

Indeed, the comparison principle ([11, Corollary 3.6]) and the inclusions of sets
above give∫

{u≤HP−2s}
(ddcv)d ≤

∫
{ϕ≤ v+HP

2 −s}
(ddcv)d ≤ 2d

∫
{ϕ≤ v+HP

2 −s}

(
ddc

v+HP

2

)d

≤ 2d
∫
{ϕ≤ v+HP

2 −s}
(ddcϕ)d ≤ 2d

∫
{ϕ≤HP−s}

(ddcϕ)d.

The claim is proved. Using (3.3) and (3.2) we obtain∫
{u≤HP−2t}

(HP −u)(ddcv)d

≤ 2d+1t

∫
{ϕ≤HP−t}

(ddcϕ)d+2d+1
∫ +∞

t

(∫
{ϕ≤HP−s}

(ddcϕ)d
)

ds

=2d+1
∫
{ϕ≤HP−t}

(HP −ϕ)(ddcϕ)d. �

Proposition 3.3. Let u∈E1
P (Cd) with (ddcu)d=μ having support in a non-

pluripolar compact set K so that
∫
K
u dμ>−∞ from Proposition 2.11. Let {Qj} be a

sequence of continuous functions on K decreasing to u on K. Then uj :=V ∗
P,K,Qj

↓u
on C

d and μj :=(ddcuj)d is supported in K. In particular, μj→μ=(ddcu)d weak-*.

Moreover,

(3.4) lim
j→∞

∫
K

Qj dμj = lim
j→∞

∫
K

Qj dμ=
∫
K

u dμ>−∞.



262 Turgay Bayraktar, Thomas Bloom, Norman Levenberg and Chinh H. Lu

Proof. We can assume {Qj} are defined and decreasing to u on the closure of a
bounded open neighborhood Ω of K. By adding a negative constant we can assume
that Q1≤0 on Ω. Since {Qj} is decreasing, so is the sequence {uj}. Moreover, by
[4, Proposition 5.1] uj≤Qj on K\Ej where Ej is pluripolar. But u is a competitor
in the definition of VP,K,Qj so that u≤uj on C

d. Thus ũ:=limj→∞ uj≥u everywhere
and ũ≤u on K\E, where E :=∪jEj is a pluripolar set. Since (ddcu)d puts no mass
on pluripolar sets, ∫

{u<ũ}
(ddcu)d ≤

∫
E∪(Cd\K)

(ddcu)d =0.

It thus follows from Proposition 3.1 that ũ≤u, hence ũ=u on C
d.

The second equality in (3.4) follows from the monotone convergence theorem.
It remains to prove that

lim
j→∞

∫
K

(−Qj) dμj =
∫
K

(−u) dμ.

For each k fixed and j≥k we have∫
K

(−Qj) dμj ≥
∫
K

(−Qk) dμj =
∫

Ω
(−Qk) dμj ,

hence lim infj→∞
∫
K

(−Qj) dμj≥
∫
K

(−Qk) dμ since Ω is open and μj , μ are sup-
ported on K. Letting k→+∞ we arrive at

lim inf
j→∞

∫
K

(−Qj) dμj ≥
∫
K

(−u) dμ.

It remains to prove that

lim sup
j→∞

∫
K

(−Qj) dμj ≤
∫
K

(−u) dμ.

The sequence {uj} is not necessarily uniformly bounded below on K. However,
using the facts that Qj≥u and HP is continuous in C

d, it suffices to prove that

(3.5) lim sup
j→∞

∫
K

(HP −u)(ddcuj)d ≤
∫
K

(HP −u)(ddcu)d.

To verify (3.5), we use Lemma 3.2.
By adding a negative constant we can assume that uj≤HP . For a function v

and for t>0 we define vt :=max(v,HP −t). Note that for each t the sequence {ut
j}

is locally uniformly bounded below. Define

a(t) := 2d+1
∫
{u≤HP−t/2}

(HP −u)(ddcu)d.
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Since u∈E1
P (Cd), from Proposition 2.11 we have a(t)→0 as t→+∞. By Lemma 3.2

we have

(3.6) sup
j≥1

∫
{u≤HP−t}

(HP −u)(ddcuj)d ≤ a(t).

By the plurifine property of non-pluripolar Monge-Ampère measures [10, Proposi-
tion 1.4] and (3.6) we have∫

K

(HP −u)(ddcuj)d ≤
∫
K∩{u>HP−t}

(HP −u)(ddcuj)d+a(t)

=
∫
K∩{u>HP−t}

(HP −ut)(ddcut
j)d+a(t)

≤
∫
K

(HP −ut)(ddcut
j)d+a(t).

Since HP is bounded in Ω, it follows from [16, Theorem 4.26] that the sequence
of positive Radon measures (HP −ut)(ddcut

j)d converges weakly on Ω to (HP −
ut)(ddcut)d. Since K is compact it then follows that

lim sup
j

∫
K

(HP −u)(ddcuj)d ≤
∫
K

(HP −ut)(ddcut)d+a(t).

We finally let t→+∞ to conclude the proof in the following manner:∫
K

(HP −ut)(ddcut)d ≤
∫
K∩{u>HP−t}

(HP −ut)(ddcut)d+a(t)

≤
∫
K

(HP −u)(ddcu)d+a(t),

where in the first estimate we have used {u≤HP −t}={ut≤HP −t} and Lemma 3.2
and in the last estimate we use again the plurifine property. �

We now give an alternate description of the Legendre-type transform E∗ from
(2.9) which will be related to the rate function in a large deviation principle. Given
K⊂C

d compact, we let MP (K) denote the space of positive measures on K of total
mass γd and we let C(K) denote the set of continuous, real-valued functions on K.

Proposition 3.4. Let K be a nonpluripolar compact set and μ∈MP (K).
Then

E∗(μ)= sup
v∈C(K)

[E(V ∗
P,K,v)−

∫
K

v dμ].
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Proof. We first treat the case when E∗(μ)=+∞. By Theorem 2.13 there exists
u∈E1

P (Cd) such that
∫
K
u dμ=−∞. We take a decreasing sequence Qj∈C(K) such

that Qj↓u on K and set uj :=V ∗
P,K,Qj

. Then {uj} are decreasing; since u∈E1
P (Cd)

and E is non-decreasing, {E(uj)} is uniformly bounded and we obtain

E(V ∗
P,K,Qj

)−
∫
K

Qj dμ−→+∞,

proving the proposition in this case.
Assume now that E∗(μ)<+∞. Theorem 2.13 ensures that

∫
Cd u dμ>−∞ for all

u∈E1
P (Cd). By Lemma 2.15, μ puts no mass on pluripolar sets. From monotonicity

of E and the definition of E∗ in (2.9) we have

E∗(μ)≥ sup
v∈C(K)

[E(V ∗
P,K,v)−

∫
K

v dμ].

Here we have used that

V ∗
P,K,v ≤ v q.e. on K for v ∈C(K).

For the reverse inequality, fix u∈E1
P (Cd). Let {Qj} be a sequence of continuous

functions on K decreasing to u on K and set uj :=V ∗
P,K,Qj

. Given ε>0, we can
choose j sufficiently large so that, by monotone convergence,∫

K

Qj dμ≤
∫
K

u dμ+ε;

and, by monotonicity of E,

E(V ∗
P,K,Qj

)≥E(u).

Hence

E(V ∗
P,K,Qj

)−
∫
K

Qj dμ≥E(u)−
∫
K

u dμ−ε

so that

sup
v∈C(K)

[E(V ∗
P,K,v)−

∫
K

v dμ]≥E∗(μ)

and equality holds. �
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3.2. Transfinite diameter

Let dn=dn(P ) denote the dimension of the vector space Poly(nP ). We write

Poly(nP )= span{e1, ..., edn}

where {ej(z):=zα(j)}j=1,...,dn are the standard basis monomials. Given ζ1, ..., ζdn∈
C

d, let

V DM(ζ1, ..., ζdn) :=det[ei(ζj)]i,j=1,...,dn

=det

⎡⎢⎣ e1(ζ1) e1(ζ2) ... e1(ζdn)
... ... ... ...

edn(ζ1) edn(ζ2) ... edn(ζdn)

⎤⎥⎦(3.7)

and for K⊂C
d compact let

Vn =Vn(K) := max
ζ1,...,ζdn∈K

|V DM(ζ1, ..., ζdn)|.

It was shown in [2] that

(3.8) δ(K) := δ(K,P ) := lim
n→∞

V 1/ln
n

exists where

ln :=
dn∑
j=1

deg(ej)=
dn∑
j=1

|α(j)|

is the sum of the degrees of the basis monomials for Poly(nP ). We call δ(K) the
P−transfinite diameter of K. More generally, for w an admissible weight function
on K and ζ1, ..., ζdn∈K, let

V DMQ
n (ζ1, ..., ζdn) :=V DM(ζ1, ..., ζdn)w(ζ1)n...w(ζdn)n

=det

⎡⎢⎣ e1(ζ1) e1(ζ2) ... e1(ζdn)
... ... ... ...

edn(ζ1) edn(ζ2) ... edn(ζdn)

⎤⎥⎦·w(ζ1)n...w(ζdn)n(3.9)

be a weighted Vandermonde determinant. Let

Wn(K) := max
ζ1,...,ζdn∈K

|V DMQ
n (ζ1, ..., ζdn)|.

An n−th weighted P−Fekete set for K and w is a set of dn points ζ1, ..., ζdn∈K
with the property that

|V DMQ
n (ζ1, ..., ζdn)|=Wn(K).
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The limit

δQ(K) := δQ(K,P ) := lim
n→∞

Wn(K)1/ln

exists and is called the weighted P−transfinite diameter. The following was proved
in [2].

Theorem 3.5. (Asymptotic Weighted P−Fekete Measures) Let K⊂C
d be

compact with admissible weight w. For each n, take points z
(n)
1 , z

(n)
2 , ..., z

(n)
dn

∈K
for which

(3.10) lim
n→∞

[
|V DMQ

n (z(n)
1 , ..., z

(n)
dn

)|
] 1
ln = δQ(K)

(asymptotically weighted P−Fekete arrays) and let μn := 1
dn

∑dn

j=1 δz(n)
j

. Then

μn −→
1
γd

μK,Q weak−∗.

Another ingredient we will use is a Rumely-type relation between transfinite
diameter and energy of V ∗

P,K,Q from [2].

Theorem 3.6. Let K⊂Cd be compact and w=e−Q with Q∈C(K). Then

(3.11) log δQ(K)= −1
γddA

E(V ∗
P,K,Q, HP )= −(d+1)

γddA
E(V ∗

P,K,Q).

Here A=A(P, d) was defined in [2]; we recall the definition. For P=Σ so that
Poly(nΣ)=Pn, we have

dn(Σ)=
(
d+n

d

)
=0(nd/d!) and ln(Σ)= d

d+1ndn(Σ).

For a convex body P⊂(R+)d, define fn(d) by writing

ln = fn(d) nd

d+1dn = fn(d) ln(Σ)
dn(Σ)dn.

Then the ratio ln/dn divided by ln(Σ)/dn(Σ) has a limit; i.e.,

(3.12) lim
n→∞

fn(d)=:A=A(P, d).
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3.3. Bernstein-Markov

For K⊂C
d compact, w=e−Q an admissible weight function on K, and ν a

finite measure on K, we say that the triple (K, ν,Q) satisfies a weighted Bernstein-
Markov property if for all pn∈Pn,

(3.13) ‖wnpn‖K ≤Mn‖wnpn‖L2(ν) with lim sup
n→∞

M1/n
n =1.

Here, ‖wnpn‖K :=supz∈K |w(z)npn(z)| and

‖wnpn‖2
L2(ν) :=

∫
K

|pn(z)|2w(z)2n dν(z).

Following [1], given P⊂(R+)d a convex body, we say that a finite measure ν with
support in a compact set K is a Bernstein-Markov measure for the triple (P,K,Q)
if (3.13) holds for all pn∈Poly(nP ).

For any P there exists A=A(P )>0 with Poly(nP )⊂PAn for all n. Thus if
(K, ν,Q) satisfies a weighted Bernstein-Markov property, then ν is a Bernstein-
Markov measure for (P,K, Q̃) where Q̃=AQ. In particular, if ν is a strong Bern-
stein-Markov measure for K; i.e., if ν is a weighted Bernstein-Markov measure for
any Q∈C(K), then for any such Q, ν is a Bernstein-Markov measure for the triple
(P,K,Q). Strong Bernstein-Markov measures exist for any nonpluripolar compact
set; cf., Corollary 3.8 of [9]. The paragraph following this corollary gives a sufficient
mass-density type condition for a measure to be a strong Bernstein-Markov measure.

Given P , for ν a finite measure on K and Q∈A(K), define

(3.14) Zn :=Zn(P,K,Q, ν) :=
∫
K

...

∫
K

|V DMQ
n (z1, ..., zdn)|2 dν(z1)...dν(zdn).

The main consequence of using a Bernstein-Markov measure for (P,K,Q) is the
following:

Proposition 3.7. Let K⊂Cd be a compact set and let Q∈A(K). If ν is a

Bernstein-Markov measure for (P,K,Q) then

(3.15) lim
n→∞

Z
1

2ln
n = δQ(K).

Proof. That lim supn→∞ Z
1

2ln
n ≤δQ(K) is clear. Observing from (3.7) and (3.9)

that, fixing all variables but zj ,

zj −→V DMQ
n (z1, ..., zj , ..., zdn)=w(zj)npn(zj)

for some pn∈Poly(nP ), to show lim infn→∞ Z
1

2ln
n ≥δQ(K) one starts with an n−th

weighted P−Fekete set for K and w and repeatedly applies the weighted Bernstein-
Markov property. �
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Recall MP (K) is the space of positive measures on K with total mass γd. With
the weak-* topology, this is a separable, complete metrizable space. A neighborhood
basis of μ∈MP (K) can be given by sets

G(μ, k, ε) := {σ ∈MP (K) : |
∫
K

(Rez)α(Imz)β( dμ−dσ)|<ε

for 0≤ |α|+|β| ≤ k}(3.16)

where Rez=(Rez1, ...,Rezn) and Imz=(Imz1, ..., Imzn).
Given ν as in Proposition 3.7, we define a probability measure Probn on Kdn

via, for a Borel set A⊂Kdn ,

(3.17) Probn(A) := 1
Zn

·
∫
A

|V DMQ
n (z1, ..., zdn)|2 ·dν(z1)...dν(zdn).

We immediately obtain the following:

Corollary 3.8. Let ν be a Bernstein-Markov measure for (P,K,Q). Given

η>0, define

(3.18) An,η := {(z1, ..., zdn)∈Kdn : |V DMQ
n (z1, ..., zdn)|2 ≥ (δQ(K)−η)2ln}.

Then there exists n∗=n∗(η) such that for all n>n∗,

Probn(Kdn \An,η)≤
(

1− η

2δQ(K)

)2ln
.

Remark 3.9. Corollary 3.8 was proved in [9], Corollary 3.2, for ν a probability
measure but an obvious modification works for ν(K)<∞.

Using (3.17), we get an induced probability measure P on the infinite product
space of arrays χ:={X={x(n)

j }n=1,2,...; j=1,...,dn :x(n)
j ∈K}:

(χ,P) :=
∞∏

n=1
(Kdn , P robn).

Corollary 3.10. Let ν be a Bernstein-Markov measure for (P,K,Q). For

P-a.e. array X={x(n)
j }∈χ,

νn := 1
dn

dn∑
j=1

δ
x
(n)
j

−→ 1
γd

μK,Q weak-*.
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Proof. From Theorem 3.5 it suffices to verify for P-a.e. array X={x(n)
j }

(3.19) lim inf
n→∞

(
|V DMQ

n (x(n)
1 , ..., x

(n)
dn

)|
) 1
ln = δQ(K).

Given η>0, the condition that for a given array X={x(n)
j } we have

lim inf
n→∞

(
|V DMQ

n (x(n)
1 , ..., x

(n)
dn

)|
) 1
ln ≤ δQ(K)−η

means that (x(n)
1 , ..., x

(n)
dn

)∈Kdn \An,η for infinitely many n. Setting

En := {X ∈χ : (x(n)
1 , ..., x

(n)
dn

)∈Kdn \An,η},

we have
P(En)≤Probn(Kdn \An,η)≤ (1− η

2δQ(K) )2ln

and
∑∞

n=1 P(En)<+∞. By the Borel-Cantelli lemma,

P(lim sup
n→∞

En)=P(
∞⋂

n=1

∞⋃
k≥n

Ek)= 0.

Thus, with probability one, only finitely many En occur, and (3.19) follows. �

The main goal in the rest of the paper is to verify a stronger probabilistic
result – a large deviation principle – and to explain this result in P−pluripotential-
theoretic terms.

4. Relation between E∗ and J, JQ functionals

We define some functionals on MP (K) using L2−type notions which act as a
replacement for an energy functional on measures. Then we show these functionals
J(μ) and J(μ) defined using a “lim sup” and a “lim inf” coincide (see Definitions
4.1 and 4.2); this is the essence of our first proof of the large deviation princi-
ple, Theorem 5.1. Using Proposition 3.4, we relate this functional with E∗ from
(2.9).

Fix a nonpluripolar compact set K and a strong Bernstein-Markov measure ν

on K. For simplicity, we normalize so that ν is a probability measure. Recall then
for any Q∈C(K), ν is a Bernstein-Markov measure for the triple (P,K,Q). Given
G⊂MP (K) open, for each s=1, 2,... we set

(4.1) G̃s := {a =(a1, ..., as)∈Ks : γd
s

s∑
j=1

δaj ∈G}.
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Define, for n=1, 2,...,

Jn(G) := [
∫
G̃dn

|V DMn(a)|2 dν(a)]1/2ln .

Definition 4.1. For μ∈MP (K) we define

J(μ) := inf
G�μ

J(G) where J(G) := lim sup
n→∞

Jn(G);

J(μ) := inf
G�μ

J(G) where J(G) := lim inf
n→∞

Jn(G).

The infima are taken over all neighborhoods G of the measure μ in MP (K).
A priori, J, J depend on ν. These functionals are nonnegative but can take the
value zero. Intuitively, we are taking a “limit” of L2(ν) averages of discrete, equally
weighted approximants γd

s

∑s
j=1 δaj of μ. An “L∞” version of J, J was introduced

in [8] where Jn(G) is replaced by

(4.2) Wn(G) := sup
a∈G̃dn

|V DMn(a)|1/ln ≥Jn(G).

The weighted versions of these functionals are defined for Q∈A(K) using

(4.3) JQ
n (G) := [

∫
G̃dn

|V DMQ
n (a)|2 dν(a)]1/2ln .

Definition 4.2. For μ∈MP (K) we define

J
Q(μ) := inf

G�μ
J
Q(G) where J

Q(G) := lim sup
n→∞

JQ
n (G);

JQ(μ) := inf
G�μ

JQ(G) where JQ(G) := lim inf
n→∞

JQ
n (G).

The uppersemicontinuity of J, J
Q
, J and JQ on MP (K) (with the weak-*

topology) follows as in Lemma 3.1 of [8]. Set

bd = bd(P ) := d+1
Adγd

.

Proposition 4.3. Fix Q∈C(K). Then
(1) JQ(μ)≤δQ(K);
(2) J(μ)=J

Q(μ)·(e
∫
K

Qdμ)bd ;
(3) log J(μ)≤infv∈C(K)[log δv(K)+bd

∫
K
v dμ];

(4) log JQ(μ)≤infv∈C(K)[log δv(K)+bd
∫
K
v dμ]−bd

∫
K
Qdμ.

Properties (1)-(4) also hold for the functionals J, JQ.
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Proof. Property (1) follows from

JQ
n (G)≤ sup

a∈G̃dn

|V DMQ
n (a)|1/ln ≤ sup

a∈Kdn

|V DMQ
n (a)|1/ln .

The proofs of Corollary 3.4, Proposition 3.5 and Proposition 3.6 of [8] work mu-
tatis mutandis to verify (2), (3) and (4). The relevant estimation, replacing the
corresponding one which is two lines above equation (3.2) in [8], is, given ε>0, for
a∈G̃dn ,

|V DMQ
n (a)|e

ndn
γd

(−ε−
∫
K

Qdμ) ≤ |V DMn(a)|(4.4)

≤ |V DMQ
n (a)|e

ndn
γd

(ε+
∫
K

Qdμ)
.

To see this, we first recall that

|V DMn(a)|= |V DMQ
n (a)|en

∑dn
j=1 Q(aj).

For μ∈MP (K), Q∈C(K), ε>0, there exists a neighborhood G of μ in MP (K)
with

−ε<

∫
K

Qdμ− γd
dn

dn∑
j=1

Q(aj)<ε

for a∈G̃dn . Plugging this double inequality into the previous equality we get (4.4).
Moreover, from (3.12),

(4.5) lim
n→∞

ndn
ln

= d+1
Ad

= bdγd

so that ndn

γd
�lnbd as n→∞. Taking ln−th roots in (4.4) accounts for the factor of

bd in (2), (3) and (4). �

Remark 4.4. The corresponding W,WQ,W ,W
Q functionals, defined using

(4.2), clearly dominate their “J” counterparts; e.g., WQ≥J
Q.

Note that formula (3.11) can be rewritten:

(4.6) log δQ(K)=−bdE(V ∗
P,K,Q).

Thus the upper bound in Proposition 4.3 (3) becomes

(4.7) log J(μ)≤−bd sup
v∈C(K)

[E(V ∗
P,K,v)−

∫
K

v dμ] =−bdE
∗(μ).

For the rest of section 4 and section 5, we will always assume Q∈C(K). Theo-
rem 4.5 shows that the inequalities in (3) and (4) are equalities, and that the J, J

Q

functionals coincide with their J, JQ counterparts. The key step in the proof of
Theorem 4.5 is to verify this for J

v(μK,v) and Jv(μK,v).
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Theorem 4.5. Let K⊂C
d be a nonpluripolar compact set and let ν satisfy a

strong Bernstein-Markov property. Fix Q∈C(K). Then for any μ∈MP (K),

(4.8) log J(μ)= log J(μ)= inf
v∈C(K)

[log δv(K)+bd

∫
K

v dμ]

and

(4.9) log JQ(μ)= log JQ(μ)= inf
v∈C(K)

[log δv(K)+bd

∫
K

v dμ]−bd

∫
K

Qdμ.

Proof. It suffices to prove (4.8) since (4.9) follows from (2) of Proposition 4.3.
We have the upper bound

log J(μ)≤ inf
v∈C(K)

[log δv(K)+bd

∫
K

v dμ]

from (3); for the lower bound, we consider different cases.
Case I: μ=μK,v for some v∈C(K).

We verify that

(4.10) log J(μK,v)= log J(μK,v)= log δv(K)+bd

∫
K

v dμK,v

which proves (4.8) in this case.

To prove (4.10), we use the definition of J(μK,v) and Corollary 3.8. Fix a
neighborhood G of μK,v. For η>0, define An,η as in (3.18) with Q=v. Set

(4.11) ηn :=max
(
δv(K)−nZ

1/2ln
n

n+1 ,
Z

1/2ln
n

n+1

)
.

By Proposition 3.7, ηn→0. We claim that we have the inclusion

(4.12) An,ηn ⊂ G̃dn for all n large enough.

We prove (4.12) by contradiction: if false, there is a sequence {nj} with nj↑∞ and
xj=(xj

1, ..., x
j
dnj

)∈Anj ,ηnj
\G̃dnj

. However μj := γd

dnj

∑dnj

i=1 δxj
i
�∈G for j sufficiently

large contradicts Theorem 3.5 since xj∈Anj ,ηj and ηj↓0 imply μj→μK,v weak-*.
Next, a direct computation using (4.11) shows that, for all n large enough,

(4.13) Probn(Kdn \An,ηn)≤ (δv(K)−ηn)2ln
Zn

≤ ( n

n+1)2ln ≤ n

n+1
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(recall ν is a probability measure). Hence

1
Zn

∫
G̃dn

|V DMv
n(z1, ..., zdn)|2 ·dν(z1)...dν(zdn)

≥ 1
Zn

∫
An,ηn

|V DMv
n(z1, ..., zdn)|2 ·dν(z1)...dν(zdn)

≥ 1
n+1 .

Since P⊂rΣ and Σ⊂kP for some k∈Z+, ln=0(nd+1) and we have 1
2ln log(n+1)→0.

Since ν satisfies a strong Bernstein-Markov property and v∈C(K), using Proposi-
tion 3.7 and the above estimate we conclude that

lim inf
n→∞

1
2ln

log
∫
G̃dn

|V DMv
n(z1, ..., zdn)|2 dν(z1)...dν(zdn)

≥ log δv(K).

Taking the infimum over all neighborhoods G of μK,v we obtain

log Jv(μK,v)≥ log δv(K).

From (1) Proposition 4.3, log Jv(μK,v)≤log δv(K); thus we have

(4.14) log Jv(μK,v)= log Jv(μK,v)= log δv(K).

Using (2) of Proposition 4.3 with μ=μK,v we obtain (4.10).
Case II: μ∈MP (K) with the property that E∗(μ)<∞.

From Theorem 2.13 and Proposition 2.11 there exists u∈LP (Cd) – indeed,
u∈E1

P (Cd) – with μ=(ddcu)d and
∫
K
u dμ>−∞. However, since u is only usc on

K, μ is not necessarily of the form μK,v for some v∈C(K). Taking a sequence of
continuous functions {Qj}⊂C(K) with Qj↓u on K, by Proposition 3.3 the weighted
extremal functions V ∗

P,K,Qj
decrease to u on C

d;

μj := (ddcV ∗
P,K,Qj

)d −→μ=(ddcu)d weak-∗;

and

(4.15) lim
j→∞

∫
K

Qj dμj = lim
j→∞

∫
K

Qj dμ=
∫
K

u dμ.

From the previous case we have

log J(μj)= log J(μj)= log δQj (K)+bd

∫
K

Qj dμj .
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Using uppersemicontinuity of the functional μ→J(μ),

lim sup
j→∞

J(μj)= lim sup
j→∞

J(μj)≤J(μ).

Since Qj↓u on K,

(4.16) lim sup
j→∞

log δQj (K)= lim
j→∞

log δQj (K).

Therefore
M := lim

j→∞
log J(μj)= lim

j→∞

(
log δQj (K)+bd

∫
K

Qj dμj

)
exists and is less than or equal to log J(μ). We want to show that

(4.17) inf
v

[log δv(K)+bd

∫
K

v dμ]≤M.

Given ε>0, by (4.15) for j≥j0(ε),∫
K

Qj dμj ≥
∫
K

Qj dμ−ε and log J(μj)<M+ε.

Hence for such j,

inf
v

[log δv(K)+bd

∫
K

v dμ]≤ log δQj (K)+bd

∫
K

Qj dμ

≤ log δQj (K)+bd

∫
K

Qj dμj+bdε

= log J(μj)+bdε<M+(bd+1)ε,

yielding (4.17). This finishes the proof in Case II.
Case III: μ∈M(K) with the property that E∗(μ)=+∞.

It follows from Proposition 3.4 and Theorem 3.6 that the right-hand side of
(4.8) is −∞, finishing the proof. �

Remark 4.6. From now on, we simply use the notation J, JQ without the over-
line or underline. Using Proposition 3.4 and Theorem 3.6, we have

log J(μ) = inf
Q∈C(K)

[log δQ(K)+bd

∫
K

Qdμ]

=− sup
Q∈C(K)

[− log δQ(K)−bd

∫
K

Qdμ]

=− sup
Q∈C(K)

[bdE(V ∗
P,K,Q)−bd

∫
K

Qdμ] =−bd sup
Q∈C(K)

[E(V ∗
P,K,Q)−

∫
K

Qdμ]
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(recall (4.6)) which one can compare with

E∗(μ)= sup
Q∈C(K)

[E(V ∗
P,K,Q)−

∫
K

Qdμ]

from Proposition 3.4 to conclude

(4.18) log J(μ)=−bdE
∗(μ).

In particular, J, JQ are independent of the choice of strong Bernstein-Markov
measure for K.

Following the idea in Proposition 4.3 of [9], we observe the following:

Proposition 4.7. Let K⊂C
d be a nonpluripolar compact set and let ν satisfy

a strong Bernstein-Markov property. Fix Q∈C(K). The measure μK,Q is the unique

maximizer of the functional μ→JQ(μ) over μ∈MP (K); i.e.,

(4.19) JQ(μK,Q)= δQ(K) (and J(μK)= δ(K)).

Proof. The fact that μK,Q maximizes JQ (and μK maximizes J) follows from
(4.10), (4.14) and Proposition 4.3.

Assume now that μ∈MP (K) maximizes JQ. From Remark 4.4 and the defi-
nitions of the functionals, for any neighborhood G⊂MP (K) of μ,

J
Q(μ)≤W

Q(μ)≤ sup{lim sup
n→∞

|V DMQ
n (a(n))|1/ln}≤ δQ(K)

where the supremum is taken over all arrays {a(n)}n=1,2,... of dn−tuples a(n) in K

whose normalized counting measures μn := 1
dn

∑dn

j=1 δa(n)
j

lie in G. Since J
Q(μ)=

δQ(K) there is an asymptotic weighted Fekete array {a(n)} as in (3.10). Theorem
3.5 yields that μn := 1

dn

∑dn

j=1 δa(n)
j

converges weak-* to μK,Q, hence μK,Q∈¸G. Since
this is true for each neighborhood G⊂MP (K) of μ, we must have μ=μK,Q. �

5. Large deviation

As in the previous section, we fix K⊂C
d a nonpluripolar compact set; Q∈

C(K); and a measure ν on K satisfying a strong Bernstein-Markov property. For
x1, ..., xdn∈K, we get a discrete measure γd

dn

∑dn

j=1 δxj∈MP (K). Define jn :Kdn→
MP (K) via

jn(x1, ..., xdn) := γd
dn

dn∑
j=1

δxj .
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From (3.17), σn :=(jn)∗(Probn) is a probability measure on MP (K): for a Borel
set B⊂MP (K),

(5.1) σn(B)= 1
Zn

∫
B̃dn

|V DMQ
n (x1, ..., xdn)|2 dν(x1)...dν(xdn)

where B̃dn :={a=(a1, ..., adn)∈Kdn : γd

dn

∑dn

j=1 δaj∈B}(recall (4.1)). Here, Zn :=
Zn(P,K,Q, ν). Note that

(5.2) σn(B)1/2ln = 1
Z

1/2ln
n

·JQ
n (B).

For future use, suppose we have a function F :R→R and a function v∈C(K). We
write, for μ∈MP (K),

<v, μ>:=
∫
K

v dμ

and then
(5.3)∫

MP (K)
F (<v, μ>)dσn(μ)

:= 1
Zn

∫
K

...

∫
K

|V DMQ
n (x1, ..., xdn)|2F

⎛⎝ γd
dn

dn∑
j=1

v(xj)

⎞⎠ dν(x1)...dν(xdn).

With this notation, we offer two proofs of our LDP, Theorem 5.1. We state the
result; define LDP in Definition 5.2; and then proceed with the proofs. This closely
follows the exposition in section 5 of [9].

Theorem 5.1. The sequence {σn=(jn)∗(Probn)} of probability measures on

MP (K) satisfies a large deviation principle with speed 2ln and good rate function

I :=IK,Q where, for μ∈MP (K),

I(μ) := log JQ(μK,Q)−log JQ(μ).

This means that I :MP (K)→[0,∞] is a lowersemicontinuous mapping such
that the sublevel sets {μ∈MP (K):I(μ)≤α} are compact in the weak-* topology
on MP (K) for all α≥0 (I is “good”) satisfying (5.4) and (5.5):

Definition 5.2. The sequence {μn} of probability measures on MP (K) satisfies
a large deviation principle (LDP) with good rate function I and speed 2ln if for
all measurable sets Γ⊂MP (K),

− inf
μ∈Γ0

I(μ)≤ lim inf
n→∞

1
2ln

logμn(Γ) and(5.4)
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lim sup
n→∞

1
2ln

logμn(Γ)≤− inf
μ∈¯Γ

I(μ).(5.5)

In the setting of MP (K), to prove a LDP it suffices to work with a base for the
weak-* topology. The following is a special case of a basic general existence result
for a LDP given in Theorem 4.1.11 in [13].

Proposition 5.3. Let {σε} be a family of probability measures on MP (K).
Let B be a base for the topology of MP (K). For μ∈MP (K) let

I(μ) :=− inf
{G∈B:μ∈G}

(
lim inf
ε→0

ε log σε(G)
)
.

Suppose for all μ∈MP (K),

I(μ)=− inf
{G∈B:μ∈G}

(
lim sup

ε→0
ε log σε(G)

)
.

Then {σε} satisfies a LDP with rate function I(μ) and speed 1/ε.

There is a converse to Proposition 5.3, Theorem 4.1.18 in [13]. For MP (K), it
reads as follows:

Proposition 5.4. Let {σε} be a family of probability measures on MP (K).
Suppose that {σε} satisfies a LDP with rate function I(μ) and speed 1/ε. Then for

any base B for the topology of MP (K) and any μ∈MP (K)

I(μ) :=− inf
{G∈B:μ∈G}

(
lim inf
ε→0

ε log σε(G)
)

=− inf
{G∈B:μ∈G}

(
lim sup

ε→0
ε log σε(G)

)
.

Remark 5.5. Assuming Theorem 5.1, this shows that, starting with a strong
Bernstein-Markov measure ν and the corresponding sequence of probability mea-
sures {σn} on MP (K) in (5.1), the existence of an LDP with rate function I(μ)
and speed 2ln implies that necessarily

(5.6) I(μ)= log JQ(μK,Q)−log JQ(μ).

Uniqueness of the rate function is basic (cf., Lemma 4.1.4 of [13]).

We turn to the first proof of Theorem 5.1, using Theorem 4.5, which gives a
pluripotential theoretic description of the rate functional.
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Proof. As a base B for the topology of MP (K), we can take the sets from (3.16)
or simply all open sets. For {σε}, we take the sequence of probability measures {σn}
on MP (K) and we take ε= 1

2ln . For G∈B, from (5.2),

1
2ln

log σn(G)= log JQ
n (G)− 1

2ln
logZn.

From Proposition 3.7, and (4.14) with v=Q,

lim
n→∞

1
2ln

logZn = log δQ(K)= log JQ(μK,Q);

and by Theorem 4.5,

inf
G�μ

lim sup
n→∞

log JQ
n (G)= inf

G�μ
lim inf
n→∞

log JQ
n (G)= log JQ(μ).

Thus by Proposition 5.3 {σn} satisfies an LDP with rate function

I(μ) := log JQ(μK,Q)−log JQ(μ)

and speed 2ln. This rate function is good since MP (K) is compact. �

Remark 5.6. From Proposition 4.7, μK,Q is the unique maximizer of the func-
tional

μ−→ log JQ(μ)
over all μ∈MP (K). Thus

IK,Q(μ)≥ 0 with IK,Q(μ)= 0 ⇐==⇒ μ=μK,Q.

To summarize, IK,Q is a good rate function with unique minimizer μK,Q. Using
the relations

log J(μ) =−bd sup
Q∈C(K)

[E(V ∗
P,K,Q)−

∫
K

Qdμ]

J(μ) =JQ(μ)·(e
∫
K

Qdμ)bd , and JQ(μK,Q)= δQ(K)

(the latter from (4.19)), we have

I(μ) := log δQ(K)−log JQ(μ)

= log δQ(K)−log J(μ)+bd

∫
K

Qdμ

= bd sup
Q∈C(K)

[E(V ∗
P,K,Q)−

∫
K

Qdμ]+log δQ(K)+bd

∫
K

Qdμ

= bd sup
v∈C(K)

[E(V ∗
P,K,v)−

∫
K

v dμ]−bd[E(V ∗
P,K,Q)−

∫
K

Qdμ]

from (4.6).
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The second proof of our LDP follows from Corollary 4.6.14 in [13], which is a
general version of the Gärtner-Ellis theorem. This approach was originally brought
to our attention by S. Boucksom and was also utilized by R. Berman in [5]. We
state the version of the [13] result for an appropriate family of probability measures.

Proposition 5.7. Let C(K)∗ be the topological dual of C(K), and let {σε}
be a family of probability measures on MP (K)⊂C(K)∗ (equipped with the weak-*

topology). Suppose for each λ∈C(K), the limit

Λ(λ) := lim
ε→0

ε log
∫
C(K)∗

eλ(x)/εdσε(x)

exists as a finite real number and assume Λ is Gâteaux differentiable; i.e., for each

λ, θ∈C(K), the function f(t):=Λ(λ+tθ) is differentiable at t=0. Then {σε} satis-

fies an LDP in C(K)∗ with the convex, good rate function Λ∗.

Here
Λ∗(x) := sup

λ∈C(K)

(
<λ, x>−Λ(λ)

)
,

is the Legendre transform of Λ. The upper bound (5.5) in the LDP holds with
rate function Λ∗ under the assumption that the limit Λ(λ) exists and is finite; the
Gâteaux differentiability of Λ is needed for the lower bound (5.4). To verify this
property in our setting, we must recall a result from [2].

Proposition 5.8. For Q∈A(K) and u∈C(K), let

F (t) :=E(V ∗
P,K,Q+tu)

for t∈R. Then F is differentiable and

F ′(t)=
∫
Cd

u(ddcV ∗
P,K,Q+tu)d.

In [2] it was assumed that u∈C2(K) but the result is true with the weaker
assumption u∈C(K) (cf., Theorem 11.11 in [16] due to Lu and Nguyen [17], see
also [11, Proposition 4.20]).

We proceed with the second proof of Theorem 5.1. For simplicity, we normalize
so that γd=1 to fit the setting of Proposition 5.7 (so members of MP (K) are
probability measures).

Proof. We show that for each v∈C(K),

Λ(v) := lim
n→∞

1
2ln

log
∫
C(K)∗

e2ln<v,μ>dσn(μ)



280 Turgay Bayraktar, Thomas Bloom, Norman Levenberg and Chinh H. Lu

exists as a finite real number. First, since σn is a measure on MP (K), the integral
can be taken over MP (K). Consider

1
2ln

log
∫
MP (K)

e2ln<v,μ>dσn(μ).

By (5.3), this is equal to

1
2ln

log 1
Zn

·
∫
Kdn

|V DM
Q− ln

ndn
v

n (x1, ..., xdn)|2 dν(x1)...dν(xdn).

From (4.5), with γd=1, ln
ndn

→ 1
bd

; hence for any ε>0,

1
bd+ε

v≤ ln
ndn

v≤ 1
bd−ε

v on K

for n sufficiently large. Recall that

Zn =
∫
Kdn

|V DMQ
n (x1, ..., xdn))|2 dν(x1)...dν(xdn).

Define
Z̃n :=

∫
Kdn

|V DMQ−v/bd
n (x1, ..., xdn)|2 dν(x1)...dν(xdn).

Then we have

lim
n→∞

Z̃
1

2ln
n = δQ−v/bd(K) and lim

n→∞
Z

1
2ln
n = δQ(K)

from (3.15) in Proposition 3.7 and the assumption that (K, ν, Q̃) satisfies the weight-
ed Bernstein-Markov property for all Q̃∈C(K). Thus

(5.7) Λ(v)= lim
n→∞

1
2ln

log Z̃n

Zn
= log δQ−v/bd(K)

δQ(K) .

Define now, for v, v′∈C(K),

f(t) :=E(V ∗
P,K,Q−(v+tv′)).

Proposition 5.8 shows that Λ is Gâteaux differentiable and Proposition 5.7 gives
that Λ∗ is a rate function on C(K)∗.

Since each σn has support in MP (K), it follows from (5.4) and (5.5) in Defi-
nition 5.2 of an LDP with Γ⊂C(K)∗ that for μ∈C(K)∗\MP (K), Λ∗(μ)=+∞. By
Lemma 4.1.5 (b) of [13], the restriction of Λ∗ to MP (K) is a rate function. Since
MP (K) is compact, it is a good rate function. Being a Legendre transform, Λ∗ is
convex.
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To compute Λ∗, we have, using (5.7) and (3.11),

Λ∗(μ) = sup
v∈C(K)

(∫
K

v dμ−log δQ−v/bd(K)
δQ(K)

)
= sup

v∈C(K)

(∫
K

v dμ−bd[E(V ∗
P,K,Q)−E(V ∗

P,K,Q−v/bd
])
)
.

Thus

Λ∗(μ)+bdE(V ∗
P,K,Q) = sup

v∈C(K)

(∫
K

v dμ+bdE(V ∗
P,K,Q−v/bd

)
)

= sup
u∈C(K)

(
bdE(V ∗

P,K,Q+u)−bd

∫
K

u dμ
)

(taking u=−v/bd).

Rearranging and replacing u in the supremum by v=u+Q,

Λ∗(μ) = sup
u∈C(K)

(
bdE(V ∗

P,K,Q+u)−bd

∫
K

u dμ
)
−bdE(V ∗

P,K,Q)

= bd
[

sup
v∈C(K)

E(V ∗
P,K,v)−

∫
K

v dμ
]
−bd

[
E(V ∗

P,K,Q)−
∫
K

Qdμ
]

which agrees with the formula in Remark 5.6 (since μ is a probability measure). �

Remark 5.9. Thus the rate function can be expressed in several equivalent
ways:

I(μ) = Λ∗(μ)= log JQ(μK,Q)−log JQ(μ)

= bd
[

sup
v∈C(K)

E(V ∗
P,K,v)−

∫
K

v dμ
]
−bd

[
E(V ∗

P,K,Q)−
∫
K

Qdμ
]

= bdE
∗(μ)−bd

[
E(V ∗

P,K,Q)−
∫
K

Qdμ
]

which generalizes the result equating (5.3), (5.10) and (5.11) in [9] for the case P=Σ
and bd=1. Note in the last equality we are using the slightly different notion of E∗

in (2.9) and Proposition 3.4 than that used in [9].
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