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Weakly trapped submanifolds in standard
static spacetimes

Allan G. Freitas, Henrique F. de Lima, Eraldo A. Lima Jr. and Marcio S. Santos

Abstract. We study weakly trapped submanifolds of codimension two in a standard static
spacetime. In this setting, we apply some generalized maximum principles in order to investigate
the geometry of these trapped submanifolds. For instance, we establish sufficient conditions to
guarantee that such a spacelike submanifold must be a hypersurface of the Riemannian base
of the ambient spacetime. As a consequence, we prove that there do not exist n-dimensional
compact (without boundary) trapped submanifolds immersed in an (n+2)-dimensional standard
static spacetime. Such a nonexistence result was originally obtained for stationary spacetimes by
Mars and Senovilla [20]. Furthermore, we also investigate parabolic weakly trapped submanifolds
immersed in a standard static spacetime.

1. Introduction

Standard static spacetimes are examples of stationary spacetimes. Let us recall
here that a stationary spacetime is a time-orientable Lorentzian manifold (Mn+2

, g )
where there exists an infinitesimal symmetry given by a timelike Killing vector field
K (cf. [26]). The existence of this vector field K enables us to define around each
point a coordinate system (x1, ..., xn+1, t) such that K coincides with the coordi-
nate vector field ∂/∂t on its domain of definition and such that the components
of the metric tensor in these coordinates are independent of t. By normalizing K,
we obtain an observers vector field Z=K/

√
−g(K,K). These observers measure a

metric tensor that does not change with time. Furthermore, if this timelike Killing
vector field is also irrotational (that is, the distribution K⊥ of all smooth vector
fields on M

n+2 that are orthogonal to K is involutive), then a local warped prod-
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uct structure appears and the spacetime is called static (for more details see, for
instance, [2]). When this structure is global this spacetime is known as a standard
static spacetime. More precisely, a standard static spacetime (M n+2

, g ) endowed
with a globally defined timelike Killing vector field K is isometric to the following
warped product (

Mn+1×ρR1 , π
∗
M (g̃)+(ρ ¨πM )2π∗

R
(−dt2)

)
,

where πM and πR denote the canonical projections from Mn+1×R1 onto each fac-
tor, g̃ is the Riemannian metric on the Riemannian base Mn+1, R1 is the manifold
R endowed with the metric −dt2 and ρ=

√
−g(K,K) is the warping function. In

this context, it is known that any static spacetime is locally isometric to a standard
static one (cf. Proposition 12.38 of [23]). Conversely, Sánchez in [28] and more
recently Aledo, Romero and Rubio in [2] obtained some sufficient conditions for
a static spacetime to be standard. Other properties on the geometry of standard
static spacetimes were studied by Sánchez in [27]–[29]. The importance of stan-
dard static spacetimes also comes from the fact that they include some classical
spacetimes, such as the (n+2)-dimensional Lorentz-Minkowski space L

n+2, Ein-
stein static universe as well as models that describe an universe where there is only
a spherically symmetric non-rotating mass, as a star or a black hole, like exterior
Schwarzschild spacetime and some regions of Reissner-Nordström spacetime (see,
for example, [8], [17]).

On the other hand, in recent decades there has been much interest in the study
of spacelike submanifolds immersed in a Lorentzian manifold. Into this branch, the
trapped submanifolds appear as an important particular case. We recall that a
spacelike submanifold of a spacetime is said to be trapped if its mean curvature
vector is timelike. The concept of trapped submanifold was first introduced by
Penrose [24] in order to study singularities of a spacetime, giving rise to some of the
famous singularity theorems (see [17], [18], [30]). In General Relativity, a trapped
surface is a two-dimensional imbedded spatial surface such that the product of the
traces of their two future-directed null second fundamental forms is everywhere
positive (see [19], [31]).

The limiting case of the trapped submanifolds are the marginally trapped sub-
manifolds, which are defined as being spacelike submanifolds whose mean curvature
vector field is lightlike. We note that marginally trapped submanifolds can also
be regarded as the Lorentzian dual of minimal submanifolds, when compared with
the Riemannian context. For a thorough discussion concerning marginally trapped
submanifolds, we refer the readers to the works [4]–[6], [10], [11].

In [16], Flores, Haesen and Ortega obtained some existence and non-existence
results on trapped and marginally trapped surfaces in 4-dimensional Friedmann-
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Lemaître-Robertson-Walker (FLRW) spacetimes by using a relation between these
surfaces and constant mean curvature surfaces in 3-manifolds. In particular, they
showed the existence of closed marginally trapped surfaces with any genus in closed
FLRW spacetimes. More recently, Alías, Cánovas and Colares [3] obtained rigid-
ity results for codimension two marginally trapped submanifolds in a generalized
Robertson-Walker (GRW) spacetime. They also derived some interesting non-
existence results for weakly trapped submanifolds (that is, the mean curvature vector
field is supposed to be causal) in GRW spacetimes. Afterwards, Chruściel, Gal-
loway and Ling [12] established a set of natural conditions which guarantee the
non-existence of weakly trapped surfaces in asymptotically de Sitter spacetimes.

Here, our purpose is study the geometry of a weakly trapped submanifold Σn

of codimension two in a standard static spacetime Mn+1×ρR1. In this setting, we
establish sufficient conditions to guarantee that Σn must be a hypersurface of the
Riemannian base Mn+1. As a direct consequence, we conclude that there do not ex-
ist compact (without boundary) codimension 2 trapped submanifolds immersed in
a standard static spacetime. Such a nonexistence result was originally obtained for
stationary spacetimes by Mars and Senovilla [20] (see also [32]). Furthermore, we
also investigate parabolic weakly trapped submanifolds immersed in such a space-
time (see Section 4). In order to obtain our results, we apply a suitable formula
for the Laplacian of the height function naturally attached to Σn and a sufficient
criterion to apply the generalized maximum principle of Omori [22] and Yau [35]
(see Section 3). Before, in Section 2 we recall some basic facts concerning weakly
trapped submanifolds immersed in a standard static spacetime.

2. Preliminaries

Let M
n+2 be a (n+2)-dimensional Lorentzian manifold endowed with a time-

like Killing vector field K. Suppose that the distribution D orthogonal to K is of
constant rank and integrable. We denote by Ψ:Mn+1×I→M

n+2 the flow generated
by K, where Mn+1 is an arbitrarily fixed spacelike integral leaf of D labeled as t=0,
which will be assumed connected, and I is the maximal interval of definition. In
what follows, we will consider I=R.

In this setting, Mn+2 can be regard as a standard static spacetime Mn+1×ρR1,
that is, the product manifold Mn+1×R endowed with the warping metric

(2.1) 〈 , 〉=π∗
M (〈 , 〉M )−(ρ ¨πM )2π∗

R

(
dt2

)
,

where πM and πR denote the canonical projections from M×R onto each factor,
〈 , 〉M is the induced Riemannian metric on the base Mn+1, R1 is the manifold R
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endowed with the metric −dt2 and the warping function

ρ∈C∞ is ρ= |K|=
√

−〈K,K〉,

where | | denotes the norm of a timelike vector field on M
n+2.

Along this paper, we will consider a connected and oriented spacelike subman-
ifold ψ :Σn→M

n+2 immersed in a standard static spacetime M
n+2=Mn+1×ρR1,

that is, the metric induced on Σn via ψ is a Riemannian metric. As usual, we also
denote by 〈 , 〉 the metric on Σn induced via ψ. Since K is a globally defined
timelike vector field on M

n+2, it follows that there exists a unitary timelike nor-
mal vector field N globally defined on Σn which is in the same time-orientation of
K (one can define N as been the unitary direction of K minus its projection on
Σn) and, as we are assuming that Σn is oriented, a spacelike normal vector field ν

globally defined on Σn, such that {N, ν} constitutes an orthonormal frame for the
normal bundle of Σn. By using the inverse Cauchy-Schwarz inequality, we get

(2.2) 〈N,K〉≤−ρ< 0 on Σn.

We call this normal vector field N as been the future-pointing Gauss map of Σn.
Throughout this work, N will always denote the future-pointing Gauss map of a
spacelike submanifold ψ :Σn→M

n+2.
It is well known that the curvature tensor R of the submanifold Σn can be

described in terms of the second fundamental form II and of the curvature tensor
R of the ambient spacetime M

n+2=Mn+1×ρR1 by the Gauss equation as follows
(see, for instance, [23]):

(2.3)
〈R(X,Y )Z,W 〉= 〈R(X,Y )Z,W 〉+〈II(X,Z), II(Y,W )〉−〈II(X,W ), II(Y,Z)〉,

for every tangent vector fields X,Y, Z,W∈X(Σ).
In this previous setting, we will consider some particular smooth functions

on a connected spacelike submanifold ψ :Σn→M
n+2 immersed in a standard static

spacetime M
n+2=Mn+1×ρR1, namely, the (vertical) height function h=πR¨ψ, the

angle function Θ1=〈N,K〉, where we recall that N denotes the future-pointing
Gauss map of Σn, and the angle function Θ2=〈ν,K〉.

From the decomposition K=K�−Θ1N+Θ2ν, where ( )� denotes the tangen-
tial component of a vector field in X(M) along Σn, we obtain:

(2.4) ∇h=− 1
ρ2K

� and 〈∇h,∇h〉= Θ2
1−Θ2

2−ρ2

ρ4 .
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We also point out that the mean curvature vector field $H along Σ is defined
by

$H =−HNN+Hνν,

where HN and Hν denote the mean curvature functions in relation to the future-
pointing Gauss map N and the spacelike vector field ν, respectively.

Remark 1. Since the slices are totally geodesic spacelike hypersurfaces, we have
that the second fundamental form of a submanifold ψ :Σn→{t0}×Mn+1 ↪→M

n+2

is the lifting, via πM , of the second fundamental form of the hypersurface ψ̃=πM ¨

ψ :Σn→Mn+1. Moreover, N= K
|K| and ν give an orthonormal frame of the normal

fiber bundle of ψ.

3. Key lemmas

In order to prove our main results in the next section, we will need some key
lemmas. The first one gives a suitable formula for the Laplacian of the height
function of a spacelike submanifold immersed in a standard static spacetime.

Lemma 1. Let Σn be a spacelike submanifold immersed in a standard static

spacetime Mn+1×ρR1. Then,

Δh=−2〈∇ ln ρ,∇h〉−ρ−2〈$H, ∂t〉.

Proof. Indeed, we have that

Δh=−div
(
ρ−2K�)

=−〈∇ρ−2,K�〉−ρ−2divK�

=−〈∇ρ−2,K�〉−ρ−2div(K+Θ1N−Θ2ν)

= 〈ρ2∇ρ−2,∇h〉−nρ−2(−Θ1HN +Θ2Hν)

=−〈2∇ ln ρ,∇h〉−nρ−2〈$H, ∂t〉. �

The next key lemma gives sufficient conditions to guarantee that the Ricci
curvature of a spacelike submanifold Σn immersed in a standard static spacetime
Mn+1×ρR1 is bounded from below. For this, we will denote by A and S the compo-
nents of the second fundamental form of Σn with respect to N and ν, respectively,
that is,

(3.1) II(X,Y )= 〈SX, Y 〉ν+〈AX,Y 〉N.
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Lemma 2. Let M
n+2=Mn+1×ρR1 be a standard static spacetime whose Rie-

mannian base Mn+1 has nonnegative sectional curvature KM and convex warping

function ρ. Let ψ :Σn→M
n+2

be a spacelike submanifold. Then,

Ric(X,X)≥
∣∣∣∣AX+nHN

2 X

∣∣∣∣2−
∣∣∣∣SX−nHν

2 X

∣∣∣∣2+ε
n2|$H|2

4 |X|2,

where ε stands for the sign of 〈$H,$H〉.

Proof. For vector fields U, V,W tangent to M
n+2, we can write

U =U∗+U⊥,

where U∗ and U⊥ are the orthogonal projections of U onto TM and TR1, respec-
tively. Thus,

U⊥ = 〈U,K〉
〈K,K〉K =−〈U,K〉

ρ2 K.

On the other hand, with a straightforward computation it is not difficult to
verify that

R(U, V )W = RM (U∗, V ∗)W ∗+ 〈V,K〉
ρ2 R(K,U∗)W ∗+ 〈V,K〉〈W,K〉

ρ4 R(U∗,K)K

− 〈U,K〉
ρ2 R(K,V ∗)W ∗−〈U,K〉〈W,K〉

ρ4 R(V ∗,K)K.

Then, from Lemma 7.34 and Proposition 7.42 of [23] we get

R(U, V )W = RM (U∗, V ∗)W ∗+ 〈V,K〉HessMρ(U∗,W ∗)
ρ3 K

+ 〈V,K〉〈W,K〉〈K,K〉
ρ5 ∇U∗∇(ρ ¨πM )

− 〈U,K〉HessMρ(V ∗,W ∗)
ρ3 K− 〈U,K〉〈W,K〉〈K,K〉

ρ5 ∇V ∗∇(ρ ¨πM )

= RM (U∗, V ∗)W ∗+ 〈V,K〉HessMρ(U∗,W ∗)
ρ3 K− 〈V,K〉〈W,K〉

ρ3 DU∗Dρ

− 〈U,K〉HessMρ(V ∗,W ∗)
ρ3 K+ 〈U,K〉〈W,K〉

ρ3 DV ∗Dρ,

where HessM is the Hessian on Mn. In particular, taking a local orthonormal
frame {E1, ..., En} tangent to Σn and X a vector field tangent to Σn, we can take
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U=W=X and V =Ei in the last equation to obtain

R(X,Ei)X = RM (X∗, E∗
i )X∗+ 〈Ei,K〉HessMρ(X∗, X∗)

ρ3 K

−〈Ei,K〉〈X,K〉
ρ3 DX∗Dρ

−〈X,K〉HessMρ(E∗
i , X

∗)
ρ3 K+ 〈X,K〉2

ρ3 DE∗
i
Dρ.

Hence, from the last equation we conclude that

〈R(X,Ei)X,Ei〉 = 〈RM (X∗, E∗
i )X∗, Ei〉+

〈Ei,K〉2
ρ3 HessMρ(X∗, X∗)

−〈Ei,K〉〈X,K〉
ρ3 〈DX∗Dρ,Ei〉−

〈Ei,K〉〈X,K〉
ρ3 HessMρ(E∗

i , X
∗)

+ 〈X,K〉2
ρ3 〈DE∗

i
Dρ,Ei〉

= 〈RM (X∗, E∗
i )X∗, E∗

i 〉+
〈Ei,K〉2

ρ3 HessMρ(X∗, X∗)

−〈Ei,K〉〈X,K〉
ρ3 HessMρ(X∗, E∗

i )

−〈Ei,K〉〈X,K〉
ρ3 HessMρ(X∗, E∗

i )+ 〈X,K〉2
ρ3 HessMρ(E∗

i , E
∗
i ).

Consequently,

〈R(X,Ei)X,Ei〉 = KM (X∗, E∗
i )

(
〈X∗, X∗〉〈E∗

i , E
∗
i 〉−〈X∗, E∗

i 〉2
)

+ 〈Ei,K〉2
ρ3 HessMρ(X∗, X∗)

−2 〈Ei,K〉〈X,K〉
ρ3 HessMρ(X∗, E∗

i )+ 〈X,K〉2
ρ3 HessMρ(E∗

i , E
∗
i )

= KM (X∗, E∗
i )

(
〈X∗, X∗〉〈E∗

i , E
∗
i 〉−〈X∗, E∗

i 〉2
)

+ 1
ρ
HessMρ(X̃∗

i , X̃
∗
i )− 2

ρ
HessMρ(X̃∗

i , Ẽ
∗
i )+ 1

ρ
HessMρ(Ẽ∗

i , Ẽ
∗
i ),

where X̃∗
i = 〈Ei,K〉

ρ X∗ and Ẽ∗
i = 〈X,K〉

ρ E∗
i . Hence,

〈R(X,Ei)X,Ei〉 = KM (X∗, E∗
i )

(
〈X∗, X∗〉〈E∗

i , E
∗
i 〉−〈X∗, E∗

i 〉2
)

+ 1
ρ
HessMρ(X̃∗

i −Ẽ∗
i , X̃

∗
i −Ẽ∗

i ).(3.2)
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Hence, we obtain that

n∑
i=1

〈R(X,Ei)X,Ei〉 =
n∑

i=1
KM (X∗, E∗

i )
(
〈X∗, X∗〉〈E∗

i , E
∗
i 〉−〈X∗, E∗

i 〉2
)

+
n∑

i=1

1
ρ
HessMρ(X̃∗

i −Ẽ∗
i , X̃

∗
i −Ẽ∗

i ).(3.3)

On the other hand, taking a local orthonormal frame {E1, ..., En} tangent to Σn

and using Gauss equation (2.3) jointly with (3.1), we have that the Ricci curvature
Ric of Σn is given by

Ric(X,X) =
n∑

i=1
〈R(X,Ei)X,Ei〉+

∣∣∣∣AX+nHN

2 X

∣∣∣∣2−
∣∣∣∣SX−nHν

2 X

∣∣∣∣2

+ε
n2|$H|2

4 |X|2.(3.4)

Therefore, since KM is nonnegative and ρ is convex, it follows from (3.3) and
(3.4) that

(3.5) Ric(X,X)≥
∣∣∣∣AX+nHN

2 X

∣∣∣∣2−
∣∣∣∣SX−nHν

2 X

∣∣∣∣2+ε
n2|$H|2

4 |X|2,

for all tangent vector fields X∈X(Σ). �

4. Main results

This section is devoted to present our main results concerning the geometry of
weakly trapped submanifolds immersed with codimension two in a standard static
spacetime. For this reason, we will recall in the next paragraph the concept of
weakly trapped submanifold (with a slight change from the one given in [3]).

A future (past) trapped submanifold is a submanifold such that the mean cur-
vature vector $H is timelike and it is future (past) pointing. A marginally future
(past) trapped submanifold is a submanifold with $H null, such that it is future (past)
pointing. A weakly future (past) trapped submanifold is a submanifold with $H causal
or zero, such that it is future (past) pointing when it is causal. Finally, we recall
that a minimal submanifold is a submanifold such that the mean curvature vector
$H is identically zero.
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In what follows, according to the nomenclature of [1], we say that a spacelike
submanifold Σn immersed in a standard static spacetime M

n+2=Mn+1×ρR1 is
bounded away from the future infinity of Mn+2 if there exists t∈R such that

Σn ⊂{(x, t)∈M
n+2; t≤ t}.

Analogously, we say that Σn is bounded away from the past infinity of Mn+2 if there
exists t∈R such that

Σn ⊂{(x, t)∈M
n+2; t≥ t}.

Finally, Σn is said bounded away from the infinity of Mn+2 if it is both bounded
away from the past and the future infinity of Mn+2. In other words, Σn is bounded
away from the infinity if there exist t<t such that Σn is contained in the slab
bounded by the slices Mn+1×{t} and Mn+1×{t}.

In this setting, we obtain the following result:

Theorem 1. Let Σn be a complete weakly future (past) trapped submanifold

immersed with bounded second fundamental form in a standard static spacetime

M
n+2=Mn+1×ρR1, whose Riemannian base Mn+1 has nonnegative sectional cur-

vature and such that the warping function ρ is convex on Mn+1 outside a compact

set. If Σn is bounded away from the future (past) infinity of M
n+2

and ∇ log ρ is

bounded then either the inverse support function 〈$H, ∂t〉−1 or the warping function

ρ is unbounded.

Proof. Let Σn be the weakly future trapped submanifold. Suppose by con-
tradiction that ρ and 〈$H, ∂t〉−1 are bounded on Σ. Since the second fundamental
form is bounded, from Lemma 2 we have that the Ricci curvature is bounded from
below. Thus, taking into account that Σn is bounded away from the future infinity
of Mn+1×ρR1, from Lemma 1 jointly with the generalized maximum principle of
Omori [22] and Yau [35] we obtain a sequence of points {pk} in Σn such that:

(4.1) 0≥ lim sup
k

Δh(pk)= lim sup
k

(
−ρ−2〈$H, ∂t〉

)
(pk)≥ 0.

Hence,

lim sup
k

(
〈$H, ∂t〉

)
(pk)= 0.

Therefore 〈$H, ∂t〉−1 is unbounded, but it is a contradiction. �

From Theorem 1 we obtain the following consequence



326 Allan G. Freitas, Henrique F. de Lima, Eraldo A. Lima Jr. and Marcio S. Santos

Corollary 1. Let Σn be a complete future (past) trapped submanifold immersed

with bounded second fundamental form and with mean curvature bounded away from

zero, that is, |$H|≥α>0 for some positive constant α, in a standard static spacetime

M
n+2=Mn+1×ρR1, whose Riemannian base Mn+1 has nonnegative sectional cur-

vature and such that the warping function ρ is convex on Mn+1 outside a compact

set. If Σn is bounded away from the future (past) infinity of M
n+2

and ∇ log ρ is

bounded, then the warping function ρ is unbounded.

Proof. The result follows from the proof of Theorem 1, just observing that our
constraints on Σn allow us to conclude that

−ρ−2〈$H, ∂t〉≥ ρ−1|$H| ≥ ρ−1α. �

Another direct consequence of Theorem 1 is the nonexistence of compact (with-
out boundary) codimension 2 trapped submanifolds immersed in a standard static
spacetime. Such a nonexistence result was originally obtained for stationary space-
times by Mars and Senovilla [20] (see also [32]).

Corollary 2. There do not exist n-dimensional compact (without boundary)

trapped submanifolds immersed in a standard static spacetime M
n+2=Mn+1×ρR1.

Proof. Since the submanifold is compact, the strong maximum principle is
already granted. Therefore, we can use Lemma 1 and proceed as in the proof of
Theorem 1. �

Now we investigate a particular case where the above mentioned standard
static spacetime Mn+1×ρR1 is an Einstein manifold. An (n+2)-dimensional vac-
uum spacetime with cosmological constant Λ is a Lorentzian manifold (L, h) sat-
isfying the Einstein equation Ric=Λh. The vacuum is said to be static when
L=Mn+1×ρR1 and h=−ρ2dt2+g, where (Mn+1, g) is an (n+1)-dimensional con-
nected Riemannian manifold, that we will take to be orientable. Furthermore, a
complete and connected Riemannian manifold (Mn+1, g) with boundary ∂M (pos-
sibly empty) is said to be static if it admits a non-trivial solution ρ∈C∞(M) to the
equation

(4.2) −(Δgρ)g+∇2
gρ−ρRicg =0 in int(M).

The left hand side of equation (4.2) is the formal L2-adjoint of the linearization
of the scalar curvature operator (see [21]). We call the function ρ a static potential
of Mn+1. On the other hand, a solution of (4.2) in a manifold allows us to construct
a spacetime satisfying the vacuum Einstein equations (with cosmological constant),
whose properties, physically interpreted, justify the name static (see [13]–[15]).
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In our case, an operational advantage in dealing with these types of manifolds
lies in the fact that the warping function ρ satisfies an equation that relates its
Laplacian with its Hessian. Taking into account (4.2), it is not difficult to verify
that we can improve the last results with a weaker hypothesis of subharmonicity of
the warping function ρ, obtaining the following:

Theorem 2. Let Σn be a complete weakly future (past) trapped submanifold

immersed with bounded second fundamental form in an Einstein standard static

spacetime M
n+2=Mn+1×ρR1, with nonnegative Ricci curvature, whose Rieman-

nian base Mn+1 has nonnegative sectional curvature and such that the warping

function ρ is subharmonic in Mn+1. If Σn is bounded away from the future (past)

infinity of M
n+2

and ∇ log ρ is bounded, then either the inverse support function

〈$H, ∂t〉−1 or the warping function ρ is unbounded.

In order to prove the next results, we denote by ψ=log ρ2 the density func-
tion on M

n+2=Mn+1×ρR1. Taking into account this background, we define the
weighted Laplacian by

Δψu= e−ψdiv(eψ∇u),

where u is a smooth function in M
n+2. Let us also consider

Lp
ψ(Σ) := {u : Σn −→R :

∫
Σ
|u|p(x) dμ<+∞},

where dμ=eψ(x)dΣ stands for the weighted measure defined on Σn. Working with
this setting, we obtain the following:

Theorem 3. Let Σn be a complete weakly trapped submanifold immersed in

a standard static spacetime M
n+2=Mn+1×ρR1 and such that |∇h|∈L1

ψ(Σ). Then,
Σn is a minimal spacelike submanifold. If in addition Σn is bounded away from the

infinity of M
n+2

, then Σ is contained in a slice Mn+1×{t0}.

Proof. We will follow a similar structure of the proof of Proposition 2.1 of [9].
Since Σn is complete, there exists a sequence φj such that φj=1 in compact sets
Kj⊂suppφj⊂Ωj which are both exhaustion of Σn. Thus, φj↗1 and |∇φj |∞→0
(see Proposition 4.1 of [33] for p=1). Thus,∫

Σ
divψ(φj∇h) dμ=

∫
Σ
∇φj ·∇h dμ+

∫
Σ
φjΔψh dμ,

where dμ=eψdΣ. Consequently, using the divergence theorem for the left hand side,
it is equal to zero. By Holder’s inequality in the first term of the right hand side,
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we obtain that it goes to 0 as j→∞. Using the monotone convergence theorem for
the last term, we get

0 =
∫

Σ
Δψh dμ.

Hence, since Δψh≥0, we obtain that Δψh=0. Therefore, since $H is casual or zero,
we must have $H≡0.

For the second part, we observe that

Δψh
2 =2hΔψh+2|∇h|2 ≥ 0.

Since h is bounded, we obtain |∇h2|∈L1
ψ(Σ). Thus, we can apply once more the

previous argument to guarantee that Δψh
2=0 and, hence, |∇h|2=0 on Σn, which

implies that h is constant. �

In the spirit of Theorem 3, we get the following result:

Corollary 3. The only compact weakly trapped submanifolds Σn immersed in

a standard static spacetime Mn+1×ρR1 are the minimal hypersurfaces of the slices

Mn+1×{t0}. If in addition RicM is nonnegative on Mn+1 and there is a Killing

vector field Y on Mn+1 such that the angle between ν and Y is nonnegative, then

Σn is a totally geodesic hypersurface of a slice Mn+1×{t0}.

Proof. The first part follows directly from Theorem 3. For the second one, we
recall the following well known formula (see, for instance, equation (24) of [9])

Δ〈ν, Y 〉=−(|Aν |2+RicM (ν, ν))〈ν, Y 〉.

Therefore, applying the divergence theorem on the above equation we get that
Aν=0 and, hence, Σ must be totally geodesic. �

Reasoning as in the proof of Theorem 3, we also obtain the following conse-
quence:

Corollary 4. The only ψ-parabolic weakly future (past) trapped submanifold

Σn immersed in a standard static spacetime M
n+2=Mn+1×ρR1, bounded away

from the future (past) infinity of M
n+2

, are the minimal hypersurfaces of the slices

Mn+1×{t0}.

Proof. As in the proof of Theorem 3, we get that the height function h is
ψ-subharmonic and bounded from above and, therefore, it is constant. Using again
the previous argument, we obtain the desired result. �
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The following concept comes from the notion of probability on a manifold with
a certain metric and a density not necessarily of finite integral, and it will be an
important tool for the statements and proofs of the next results.

Let us consider a real function f :Σn→R and 1≤p<∞. We define the ψ-weight-
ed p-capacity of a compact subset K⊂Σn as the following:

Capψ,p(K)= inf
{∫

Σ
|∇φ|p dμ ; φ≡ 1 in K and φ∈C1

0 (Σ)
}
,

where dμ=eψdΣ. It is natural to use the following notion of ψ-weighted p-par-
abolicity: a Riemannian manifold Σn is said to be ψ-weighted p-parabolic if the
ψ-weighted p-capacity of all compact subsets of Σn is zero. With this notion in
mind, it is possible to enunciate the following result as a key to prove a p-parabolic
version for uniqueness (see Proposition 4.1 of [33]).

Proposition 1. A Riemannian manifold Σn is ψ-weighted p-parabolic if, and

only if, there exists a sequence of functions φj∈C1
0 (Σ) such that 0≤φj≤1, φj↗1

uniformly on every compact subset of Σn and∫
Σ
|∇φj |p dμ−→ 0.

Taking into account Proposition 1 and proceeding in a similar way as in the
proof of Theorem 3, we obtain the following result:

Theorem 4. The only n-dimensional weakly trapped ψ-weighted p-parabolic

submanifolds immersed in a standard static spacetime M
n+2=Mn+1×ρR1 such that

|∇h|∈Lq
ψ(Σ), with 1

p
+ 1
q

=1, are the minimal spacelike submanifolds.

To close our paper, we recall that the Bakry-Émery Ricci tensor (see [7]) is
defined by

Ricψ =Ric+Hessψ.

In this setting, we obtain the following:

Theorem 5. Let Σn be a complete weakly future (past) trapped submanifold

immersed in the standard static spacetime Mn+1×ρR1, such that h≥0 (h≤0). If

h∈Lp
ψ(Σ) with p>1, then Σn is a hypersurface contained in a slice Mn+1×{t0}.

Moreover, if the Bakry-Émery Ricci tensor of Σn is nonnegative, ρ is bounded along

Σn and h>0 (h<0) then Σn is compact.

Proof. Under our constraints and taking into account that Δψh=−e−ψ〈$H, ∂t〉,
we obtain that h (or −h) is a nonnegative subharmonic function on Σn. Thus, since
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we are assuming that h∈Lp
ψ(Σ) with p>1, we can apply Theorem 1.1 of [25] to

conclude that h is constant on Σn, that is, Σn is a hypersurface contained in a
slice Mn+1×{t0}. Moreover, supposing that h has strict sign, we get that Vol(Σ)
is finite. Hence, if in addition the Bakry-Émery Ricci tensor of Σn is nonnegative
and ρ is bounded along Σn, we can apply Theorem 1.3 of [34] to conclude that Σn

must be compact. �
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