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A reverse quasiconformal composition problem
for Qα(Rn)

Jie Xiao and Yuan Zhou

Abstract. We give a partial converse to [8, Theorem 1.3] (as a resolution of [2, Problem
8.4] for the quasiconformal Q-composition) for Q0<α<2−1(Rn≥2), and yet demonstrate that if
f :R2→R

2 is a homeomorphism then the boundedness of u �→u¨f on Q2−1<α<1(R2)⊂BMO(R2)
yields the quasiconformality of f .

1. Introduction

Recall that Q−∞<α<∞(Rn) is the quite-well-known Essén-Janson-Peng-Xiao’s
space of all measurable functions u on R

n≥1 with

‖u‖Qα(Rn) = sup
(x0,r)∈Rn×(0,∞)

(
r2α−n

∫
|y−x0|<r

∫
|x−x0|<r

|u(x)−u(y)|2
|x−y|n+2α dx dy

) 1
2

<∞.

In particular (cf. [2], [5]),

Q0≤α<∞(Rn)⊂Q−∞<α<0(Rn)=Q−n
2
(Rn)=BMO(Rn).

As a resolution of [2, Problem 8.4] – Let f be a quasiconformal self-map of Rn.
Prove or disprove that u �→Cfu=u¨f is bounded on Q0<α<1(Rn≥2) (which however
has an affirmative solution for BMO(Rn) as proved in [9, Theorem 2] – namely –
Cf is bounded on BMO(Rn) whenever f is a quasiconformal self-map of Rn), we
have

JX is supported by NSERC of Canada (# 202979463102000); YZ is supported by AvH-
foundation and National Natural Science Foundation of China (# 11522102 & 11871088) respec-
tively.

YZ is corresponding author.

Key words and phrases: quasiconformality, composition, Essén-Janson-Peng-Xiao’s space,
reverse.

2010 Mathematics Subject Classification: 42B35, 46E30, 47B38, 30H25.



452 Jie Xiao and Yuan Zhou

Theorem 1.1. [8, Theorem 1.3] For n−1∈N let f :Rn→R
n be quasiconformal.

If there exists a closed set E⊆R
n such that

� Jf , the Jacobian determinant of f , belongs to the E-based Muckenhoupt class

A1(Rn; E);
� dimL E (under E being bounded) or dimLG E (under E being unbounded),

the local or global self-similar Minkowski dimension of E (bounded or unbounded),

lies in [0, n−2], i.e.,

[0, n−2]�
{

dimL E as E is bounded;
dimLG E as E is unbounded,

then Cf is bounded on Q0<α<1(Rn).

As a partial converse to Theorem 1.1, we here show

Theorem 1.2. For n−1∈N let f :Rn→R
n be a homeomorphism. If

� Cf and Cf−1 are bijective and bounded on Q0<α<2−1(Rn) respectively;

� f is not only ACL (absolutely continuous on almost all lines parallel to co-

ordinates of Rn) but also differentiable almost everywhere on R
n,

then f is quasiconformal.

Remark 1.3. Below are two comments on Theorem 1.2.
(i) Under the above assumptions on f , we have that f−1 is absolutely contin-

uous with respect to the n-dimensional Lebesgue measure. Indeed, let f−1 map a
set N of the n-dimensional Lebesgue measure 0 to a set O=f−1(N). If χN and χO

stand for the indicators of N and O respectively, then kχO, kχN∈Q0<α<2−1(Rn)
for any k∈N, but kχN =0 in Q0<α<2−1(Rn), and hence from the first �-hypothesis
in Theorem 1.2 it follows that kχO=0 in Q0<α<2−1(Rn) and so O=f−1(N) is of
the n-dimensional Lebesgue measure 0.

(ii) In accordance with [9, Theorem 3] (cf. [1, Theorem] & [3, Theorem 3.1] for
some generalizations), we have that if the first requirement on Cf & Cf−1 in Theo-
rem 1.2 is replaced by the condition that f−1 is absolutely continuous and the second
requirement on f is kept the same then the boundedness of Cf on BMO(Rn) derives
that f is a quasiconformal self-map of Rn. Accordingly, this BMO(Rn)-result can
be naturally strengthened via Theorem 1.2 thanks to Q0<α<2−1(Rn)⊂BMO(Rn).

In addition, while focusing on the planar situation of Theorem 1.1 and observ-
ing that the Jacobian determinant of any quasiconformal self-map of R

n≥2 is an
A∞-weight (cf. [4, Theorem 15.32]) we readily discover

Theorem 1.4. [8, Theorem 1.3: n=2 &E=∅] Let f :R2→R
2 be quasiconfor-

mal. If Jf is an A1-weight on R
2, i.e., Jf∈A1(R2;∅), then Cf is bounded on

Q0<α<1(R2).
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On the basis of the planar cases of Theorem 1.2 and Remark 1.3(ii), a partial
converse to Theorem 1.4 (under 2−1<α<1) is naturally given by

Theorem 1.5. Let f :R2→R
2 be a homeomorphism. If Cf is bounded on

Q2−1<α<1(R2), then f is quasiconformal.

Remark 1.6. Let n≥2. Recall that if a homeomorphism of R
n preserves ei-

ther the Sobolev space W 1,n(Rn) or the Triebel-Lizorkin space Ḟ s
n/s,q(Rn) with s∈

(0, 1) & q∈[1,∞), it must be quasiconformal. But any homeomorphism preserving
the Besov space Ḃs

n/s,q(Rn) with s∈(0, 1) & q∈[1,∞)\{n/s} or s∈(0, 1) & q=n/s

must be bi-Lipschitz or quasiconformal; see also [6], [7] and the references therein.
By Reimann’s paper [9], a homeomorphism of R

n preserving the John-Nirenberg
space BMO(Rn) and satisfying the assumptions of Theorem 1.2 must be quasicon-
formal.

The rest of this paper is organized as follows: §2 is employed to prove Theorem
1.2 in terms of Lemmas 2.1–2.2 & 2.4 & 2.6 as well as Corollaries 2.3 & 2.5 producing
a suitable Qα(Rn)-function. More precisely, we borrow some of Reimann’s ideas
from [9] to prove Theorem 1.2, namely, prove that

sup
y∈Rn & |y|=1

∣∣(Df−1(x)
)
y
∣∣n �Jf−1(x)

holds for almost all x∈Rn, where Df−1 and Jf−1 are the formal derivative and Ja-
cobian determinant of f−1 (cf. [4, Chapters 14-15]) – equivalently – we show that
the maximal eigenvalue λ1 of Df−1(x) is bounded by the minimal eigenvalue λn

of Df−1(x) – in fact – by comparing the norms of suitable scalings of some special
Qα(Rn)-functions u� (cf. Corollary 2.5 & Lemma 2.6) and their compositions with
f , we can obtain the desired inequality λ1�λn. §3 is designed to demonstrate The-
orem 1.5 through a Qα(Rn)-capacity estimate given in Lemma 3.1 and a technique
for reducing the space dimension shown in Lemma 2.1.

Notation In the above and below, X�Y stands for X≤ˇY with a constant
ˇ>0.

2. Validation of Theorem 1.2

In order to prove the validity of Theorem 1.2, we need four lemmas and two
corollaries.

Lemma 2.1. Let (α, n,m)∈R×N×N and u:Rn→R. Then u∈Qα(Rn) if and

only if Rn×R
m�(x, y) �→U(x, y)=u(x) belongs to Qα(Rn+m).
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Proof. This follows immediately from [2, Theorem 2.6] and its demonstra-
tion. �

Lemma 2.2. Let (α, n)∈
[
0,min{1, 2−1n}

)
×N. Then x �→ln |x| is in Qα(Rn).

Proof. For any Euclidean ball B=B(x0, r) with centre x0∈Rn and radius r∈
(0,∞) and a measurable function u on R

n let

Φα(u,B)= r2α−n

∫
B

∫
B

|u(x)−u(y)|2
|x−y|n+2α dx dy.

So, it suffices to verify that if uln(x)=ln |x| then Φα(uln, B)�1.
• Case |x0|>2r. Note that there is θ∈(0, 1) obeying

x, y ∈B ==⇒ r < |x|, |y| ≤ 3r

==⇒
∣∣ ln |x|−ln |y|

∣∣= ∣∣|x|−|y|
∣∣

(1−θ)|x|+θ|y| ≤
|x−y|

r
.

So

Φα(uln, B)= r2α−n−2
∫
B

∫
B

|x−y|2−n−2α dx dy

≤ r2α−n−2
∫
B

∫
B(x,2r)

|x−y|2−n−2α dy dx

� r2α−2
∫ r

0
t1−2α dt

� 1,

as desired.
• Case |x0|≤2r. Since B(x0, r)⊆B(0, 3r) – the origin-centered ball with radius

3r, we only need to estimate Φα(uln, B) for B=B(0, r).
Firstly, write⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Φα(uln, B)=I1+I2+I3;
I1=r2α−n

∫
B

∫
B(x,2−1|x|)

| ln |x|−ln |y||2
|x−y|n+2α dy dx

I2=r2α−n
∫
B

∫
B\B(x,4|x|)

| ln |x|−ln |y||2
|x−y|n+2α dy dx;

I3=r2α−n
∫
B

∫
B(x,4|x|)\B(x,2−1|x|)

| ln |x|−ln |y||2
|x−y|n+2α dy dx.

Since
|x−y| ≤ 2−1|x|==⇒| ln |x|−ln |y|| ≤ 2|x−y||x|−1,

one has
I1 � r2α−n

∫
B

|x|−2
∫
B(x,2−1|x|)

|x−y|2−n−2α dy dx� 1.
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Secondly, write∫
B\B(x,4|x|)

| ln |x|−ln |y||2
|x−y|n+2α dy≤

∑
j≥3

∫
B(x,2j |x|)\B(x,2j−1|x|)

| ln |x|−ln |y||2
|x−y|n+2α dy.

Observe that if j−2∈N then

2j−1|x| ≤ |x−y| ≤ 2j |x|==⇒ 2j−2|x| ≤ |y| ≤ 2j+1|x|

==⇒
∫
B(x, 2j |x|)\B(x, 2j−1|x|)

| ln |x|−ln |y||2
|x−y|n+2α dy� 2j(2−2α)

|x|2α .

Thus

I2 � r2α−n

∫
B

|x|−2α
∞∑
j=3

(...) dy� r2α−n

∫
B

|x|−2α dx� 1.

Thirdly, note that

y ∈B(x, 4|x|)\B(x, 2−1|x|)==⇒|y| ≤ 5|x|.

So

I3 � r2α−n

∫
B

∫
B(x, 4|x|)\B(x, 2−1|x|)

| ln |x|−ln |y||2
|x−y|n+2α dy dx

� r2α−n

∫
B

|x|−(n+2α)
∫
B(0, 5|x|)

(
ln |x|

|y|

)2

dy dx

� r2α−n

∫
B

|x|−(n+2α)
∞∑
i=1

(2−i5|x|)ni2 dx

� r2α−n

∫
B

|x|−2α dx

� 1. �

Corollary 2.3. Let (n−1, c)∈N×R. Then

(i)
x=(x1, x2, ..., xn) �−→max

{
c, ln(x−2

1 )
}

is in Q0≤α<2−1(Rn).
(ii)

x=(x1, x2, ..., xn) �−→max
{
c, ln(x2

1+x2
2)−1}

is in Q0≤α<1(Rn).
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Proof. This follows from

max{u, v}=2−1(u+v+|u−v|
)
=u+max{v−u, 0},

the basic fact that Qα(Rn) is a linear space with

w∈Qα(Rn)==⇒|w| ∈Qα(Rn),

and Lemmas 2.1–2.2. �

Lemma 2.4. Let (α, n−1)∈(0, 1)×N. If⎧⎨⎩|‖u|‖Qα =‖u‖Qα(Rn)+sup(x0,r)∈Rn×[1,∞)

(
r2α−n

∫
B(x0,r) |u(x)|2 dx

)2−1

<∞;

‖g‖∞,Lip=‖g‖L∞(R)+supz1,z2∈R, z1 �=z2 |g(z1)−g(z2)||z1−z2|−1<∞,

then R
n×R�(x, z) �→u(x)g(z) belongs to Qα(Rn×R).

Proof. For any

(x0, z0, ρ, r, k+2)∈R
n×R×(0,∞)×(0,∞)×N,

set ⎧⎪⎨⎪⎩
C(x0, z0, ρ)=

{
(x, z)∈Rn×R: |(x−x0, z−z0)|≤ρ

}
;

A(k, x0, z0, r)=C(x0, z0, 2−kr)\C(x0, z0, 2−k−1r);
ak,r(x0, z0)=uA(k,x0,z0,r)g(z0).

Here and henceforth, for a given set E⊂R
m≥1 with the m-dimensional Lebesgue

measure |E|>0, the symbol

uE =−
∫
E

u(x) dx= |E|−1
∫
E

u(x) dx

stands for the average of u over E. We make the following claim

Ψα

(
ug,C(x0, z0, r)

)
:=

∑
k≥−1

22kα−
∫
C(x0,z0,r)

−
∫
A(k,x,z,r)

|u(x̃)g(z̃)−ak,r(x, z)|2 dz̃ dx̃ dz dx

�
(
‖g‖∞,Lip|‖u|‖Qα

)2
.

Assume that the last estimation holds for the moment. Then an application of
the basic fact that⎧⎪⎨⎪⎩

C(x, z, 2r)=
⋃

k≥−1 A(k, x, z, r);
A(k, x, z, r)∩A(l, x, z, r)=∅ ∀ k �=l;(
(x, z), (y, w)

)
∈C(x0, z0, r)×C(x0, z0, r)=⇒(y, w)∈C(x, z, 2r)⊂C(x0, z0, 3r),
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the Hölder inequality and Lemma 2.1 gives

r2α−n−1
∫
C(x0,z0,r)

∫
C(x0,z0,r)

|u(x)g(z)−u(y)g(w)|2
|(x, z)−(y, w)|n+1+2α dx dz dy dw

� r2α−
∫
C(x0,z0,r)

∫
C(x,z,2r)

|u(x)g(z)−u(y)g(w)|2
|(x, z)−(y, w)|n+1+2α dy dw dx dz

�−
∫
C(x0,z0,r)

∑
k≥−1

22kα

(2−kr)n+1

∫
A(k,x,z,r)

dy dw dx dz

|u(x)g(z)−u(y)g(w)|−2

�−
∫
C(x0,z0,r)

∑
k≥−1

−
∫
A(k,x,z,r)

22kαdy dw dx dz∣∣(ak,r(x, z)−u(y)g(w))+(u(x)g(z)−ak,r(x, z))
∣∣−2

�Ψα

(
ug,C(x0, z0, r)

)
+‖g‖2

∞,Lip

∑
k≥−1

22kα−
∫
C(x0,z0,r)

|u(x)−uA(k,x,z,r)|2 dx dz

�Ψα

(
ug,C(x0, z0, r)

)
+‖g‖2

∞,Lip

∑
k≥−1

22kα−
∫
C(x0,z0,r)

−
∫
A(k,x,z,r)

|u(x)−u(y)|2 dy dw dx dz

�Ψα

(
ug,C(x0, z0, r)

)
+‖g‖2

∞,Lip

∑
k≥−1

∫
C(x0,z0,r)

∫
A(k,x,z,r)

|u(x)−u(y)|2 dy dw dx dz

rn+1−2α|(x−y, z−w)|1+n+2α

�Ψα

(
ug,C(x0, z0, r)

)
+‖g‖2

∞,Lip

∫
C(x0,z0,3r)

∫
C(x,z,2r)⊂C(x0,z0,3r)

|u(x)−u(y)|2 dy dw dx dz

rn+1−2α|(x−y, z−w)|1+n+2α

�Ψα

(
ug,C(x0, z0, r)

)
+
(
‖g‖∞,Lip|‖u|‖Qα

)2
.

This, plus the foregoing claim, yields

‖ug‖2
Qα(Rn+1)

= sup
(x0,z0,r)∈Rn×R×(0,∞)

∫
C(x0,z0,r)

∫
C(x0,z0,r)

|u(x)g(z)−u(y)g(w)|2
|(x, z)−(y, w)|n+1+2α

dx dz dy dw

rn+1−2α

� sup
(x0,z0,r)∈Rn×R×(0,∞)

Ψα

(
ug,C(x0, z0, r)

)
+
(
‖g‖∞,Lip|‖u|‖Qα

)2
�
(
‖g‖∞,Lip|‖u|‖Qα

)2
,

Now, it remains to verify the above claim.
First of all, we have

−
∫
A(k,x,x,r)

|u(x̃)g(z̃)−ak,r(x, z)|2 dx̃ dz̃



458 Jie Xiao and Yuan Zhou

�−
∫
A(k,x,z,r)

|u(x̃)−uA(k,x,z,r)|2|g(z̃)|2 dx̃ dz̃+−
∫
A(k,x,z,r)

|g(z̃)−g(z)|2
|uA(k,x,z,r)|−2 dx̃ dz̃

� ‖g‖2
∞,Lip

(
−
∫
A(k,x,z,r)

|u(x̃)−uA(k,x,z,r)|2 dx̃ dz̃+min{2−kr, 1}2|uA(k,x,z,r)|2
)
,

thereby finding that if

I(u, α)=
∑
k≥−1

22kα min{2−kr, 1}2−
∫
C(x0,z0,r)

|uA(k,x,z,r)|2 dx dz

then an application of the triangle inequality, the Hölder inequality and Lemma 2.1
derives

Ψα

(
ug,C(x0, z0, r)

)
� ‖g‖2

∞,Lip

( ∑
k≥−1

22kα−
∫
C(x0,z0,r)

−
∫
A(k,x,z,r)

|u(x̃)−uA(k,x,z,r)|2 dx̃ dz̃ dx dz

+I(u, α)
)

� ‖g‖2
∞,Lip

( ∑
k≥−1

22kα−
∫
C(x0,z0,r)

−
∫
A(k,x,z,r)

dx̃ dz̃ dx dz(
|u(x)−uA(k,x,z,r)|2+|u(x̃)−u(x)|2

)−1

+I(u, α)
)

� ‖g‖2
∞,Lip

(
|‖u|‖2

Qα

+−
∫
C(x0,z0,r)

∑
k≥−1

−
∫
A(k,x,z,r)

22kα|u(x̃)−u(x)|2 dx̃ dz̃ dx dz
|(x̃, z̃)−(x, z)|1+n+2α(2−kr)−n−1−2α

+I(u, α)
)

� ‖g‖2
∞,Lip

(
|‖u|‖2

Qα

+
∫
C(x0,z0,r)

∑
k≥−1

∫
A(k,x,z,r)

|u(x̃)−u(x)|2 dx̃ dz̃ dx dz
|(x̃, z̃)−(x, z)|1+n+2αr1+n−2α +I(u, α)

)

� ‖g‖2
∞,Lip

(
|‖u|‖2

Qα
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+
∫
C(x0,z0,3r)

∫
C(x,z,2r)⊂C(x0,z0,3r)

|u(x̃)−u(x)|2 dx̃ dz̃ dx dz
|(x̃, z̃)−(x, z)|1+n+2αr1+n−2α +I(u, α)

)
� ‖g‖2

∞,Lip

(
|‖u|‖2

Qα
+I(u, α)

)
.

Next, we handle I(u, α) according to the following two cases.
• Case r<2. By the hypothesis on u and the inclusion

Qα(Rn)⊆BMO(Rn)

we obtain that if k+2∈N then Lemma 2.1 yields

|uA(k,x,z,r)|� (2−kr)−n−1

∣∣∣∣∣
∫
C(x,z,2−kr)

u(y) dy dw−
∫
C(x,z,2−k−1r)

u(y) dy dw

∣∣∣∣∣
� |uC(x,z,2−kr)|+|uC(x,z,2−k−1r)|
� |uC(x,z,2)|+|uC(x,z,2)−uC(x,z,2−kr)|+|uC(x,z,1)|

+|uC(x,z,1)−uC(x,z,2−k−1r)|

�
(
(|u|2)B(x,2)

)2−1

+
(
(|u|2)B(x,1)

)2−1

+
(
k+1+ln 4

r

)
‖u‖Qα(Rn)

�
(
k+2+ln 4

r

)
|‖u|‖Qα

and hence

I(u, α)� |‖u|‖2
Qα

∑
k≥−1

22kα−2kr2
(
k+2+ln 4

r

)2
� |‖u|‖2

Qα
.

• Case r≥2. An application of the hypothesis on u, the Hölder inequality and
the Fubini theorem gives that if k+2∈N then

−
∫
C(x0,z0,r)

|uA(k,x,z,r)|2 dx dz

�−
∫
C(x0,z0,r)

(
|u|C(x,z,2−kr)

)2
dx dz

�−
∫
C(x0,z0,r)

−
∫
C(x,z,2−kr)

|u(y)|2 dy dw dx dz

�−
∫
C(x0,z0,r)

−
∫
C(0,0,2−kr)

|u(x+z)|2 dx dz dy dw

� r−2α|‖u|‖2
Qα
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and hence

I(u, α)� |‖u|‖2
Qα

⎛⎝ ∑
k≥ln r

22kα−2kr2−2α+
∑

−1≤k≤ln r

22kαr−2α

⎞⎠� |‖u|‖2
Qα

.

Finally, upon putting the previous two cases together, we achieve the desired
estimation

Ψα

(
ug,C(x0, z0, r)

)
� ‖g‖2

∞,Lip

(
|‖u|‖2

Qα
+I(u, α)

)
�
(
‖g‖∞,Lip|‖u|‖Qα

)2
. �

Corollary 2.5. For n−1∈N let

φ(t)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 as t∈(−∞,−2];
1−|1+t| as t∈[−2, 0];
1−|1−t| as t∈[0, 2];
0 as t∈[2,∞),

and

ψ(t)=

⎧⎪⎨⎪⎩
1 as |t|≤1;
2−|t| as 1≤|t|≤2;
0 as |t|≥2.

If

u�(x1, ..., xn)=

⎧⎨⎩max
{
0, ln(x−2

1 )
}
φ(x2) for n=2;(

max
{
0, ln(x−2

1 )
})

ψ(x2)...ψ(xn−1)φ(xn) for n≥3,

then u�∈Q0<α<2−1(Rn).

Proof. Note that

‖φ‖∞,Lip+‖ψ‖∞,Lip <∞

holds and (via Corollary 2.3(i))

u(x1, ..., xn)=max
{
0, ln(x−2

1 )} enjoys |‖u|‖Q0<α<2−1 <∞.

So, the assertion u�∈Q0<α<2−1(Rn) follows from Lemma 2.4. �



A reverse quasiconformal composition problem for Qα(Rn) 461

Lemma 2.6. For n−1∈N let a=(a1, ..., an) be with 0<a1≤a2≤...≤an=1.
Given r>0 set⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(u�)r(x)=u�(r−1x);

Pa,r={x=(x1, ..., xn)∈Rn : |x1|≤a1r, ..., |xn|≤anr};
(u�)a,r=

(u�)rχPa,r

|Pa,r| = (u�)rχPa,r

(2r)na1...an
;

ca=
∫
Rn |(u�)a,r(x)| dx=−

∫
Pa,r

|(u�)r(x)| dx=−
∫
Pa,1

|u�(x)| dx.

If h∈L1(Rn), then there exists a subsequence {rj} converging to 0 such that for any

rational point a∈Rn one has that{
(u�)a,rj ∗h(y)=

∫
Rn(u�)a,rj (z)h(y−z) dz→0;

|(u�)a,rj |∗h(y)=
∫
Rn |(u�)a,rj (z)|h(y−z) dz→cah(y),

holds for almost all y∈Rn.

Proof. The argument is similar to the proof of [9, Lemma 8]. �

Proof of Theorem 1.2. We are about to use Reimann’s procedure in [9]. Rather
than showing that f is quasiconformal, we prove that f−1 (the inverse of f) is
quasiconformal. It suffices to verify that

sup
y∈∂B(0,1)

∣∣(Df−1(x)
)
y
∣∣n �Jf−1(x)

holds for almost all x∈Rn where Df−1 and Jf−1 are the formal derivative and
Jacobian determinant of f−1 (cf. [4, p.250]). Since f−1 is absolutely continuous
with respect to the n-dimensional Lebesgue measure, one has

Jf−1(x)= lim
r→0

|f−1(B(x, r))|
|B(x, r)|

almost everywhere and Jf−1∈L1
loc(Rn) where the absolute values right after limr→0

stand for the n-dimensional Lebesgue measures of the sets f−1(B(x, r)
)

and B(x, r)
respectively. Also our hypothesis implies that f−1 is (totally) differentiable almost
everywhere, and Jf−1>0 holds almost everywhere. We may assume Jf−1(0)>0 and
h=χB(0,1) Jf−1 in Lemma 2.6. Up to some rotation, translation and scaling which
preserve the Qα(Rn)-norm, we may also assume⎧⎪⎨⎪⎩

f−1(0)=0;
Df−1(0)=diag{λ1, ..., λn};
λ1≥...≥λn=1.
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and so are required to verify

(	) λn
1 �λ1...λn.

Given any sufficiently small ε>0, we choose

am =(am1, ..., amn)

rationally such that

0<am1 ≤ am2 ≤ ...≤ amn =1 &
n∑

k=1

|amkλk−1|<ε.

Let {
Pr=

{
z=(z1, ..., zn)∈Rn : |z1|, ..., |zn|≤r

}
;

Pam,r=
{
z=(z1, ..., zn)∈Rn : |z1|≤am1r, ..., |zn|≤amnr

}
.

Upon using Lemma 2.6 with a=am, we write

cam =−
∫
Pam,1

|u�(x)| dx.

By the definition of u� as in Corollary 2.5 with a=am we have

(†) cam �− ln am1.

Indeed, if n=2, then
0<am1 ≤ 1 = am2

derives

−
∫
Pam,1

|u�(x)| dx=
(
4am1am2

)−1
∫ am1

−am1

∫ am2

−am2

max
{
0, ln(x−2

1 )
}
|φ(x2)| dx1 dx2

�
(
am1am2

)−1
∫ am2

0

(∫ am1

0
ln(x−2

1 ) dx1

)
x2 dx2

�− ln am1.

Furthermore, if n≥3, then a similar argument, along with

ψ(t)= 1 ∀ |t| ≤ 1,

will also ensure (†).
In this way, for a sufficiently small r<δ1 we have that f−1(Pam,r) contains

R=
{
z =(z1, ..., zn)∈R

n : |z1|, ..., |zn| ≤ r(1−ε)
}
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and is contained in

S =
{
z =(z1, ..., zn)∈R

n : |z1|, ..., |zn| ≤ r(1+ε)
}
.

In fact, this can be obtained by the differentiability of f−1 & f at 0, and

Df−1(0)=diag{λ1, ..., λn} & Df(0)=diag{λ−1
1 , ..., λ−1

n }.

By virtue of the assumption on f and the function u� constructed in Corollary
2.5, we have

(‡) ‖Cfu�‖Q−n
2

(Rn) � ‖Cfu�‖Q0<α<2−1 (Rn) � ‖(u�)r‖Q0<α<2−1 (Rn)

� ‖u�‖Q0<α<2−1 (Rn) � 1.

Since
Q0<α<2−1(Rn)⊂BMO(Rn)=Q−n

2
(Rn)

we are required to control

‖Cfu�‖BMO(Rn) = ‖Cfu�‖Q−n
2

(Rn)

via

‖Cfu�‖BMO(Rn) �−
∫
f−1(Pam,r)

∣∣∣∣∣Cfu�(x)−−
∫
f−1(Pam,r)

Cfu�(y) dy

∣∣∣∣∣ dx.
Note that if

h(x)=
{
Jf (x) for x∈B(0, 1);
0 for x∈Rn\B(0, 1),

then

−
∫
f−1(Pam,r)

Cfu�(x) dx= |Pam,r|
|f−1(Pam,r)|

−
∫
Pam,r

(u�)r(z)Jf−1(z) dz

= |Pam,r|
|f−1(Pam,r)|

(u�)am,r∗h(0).

So, upon applying Lemma 2.6, we obtain a constant δ2∈(0, δ1) and a sequence
rj<δ2 such that ∣∣∣∣∣−

∫
f−1(Pam,r)

(
Cf (u�)rj

)
(x) dx

∣∣∣∣∣≤ ε ∀ am.
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Accordingly,

‖Cfu�‖BMO(Rn) ≥−
∫
f−1(Pam,r)

|Cfu�(x)| dx−ε ∀ r∈ (0,∞).

Similarly, we have

−
∫
f−1(Pam,r)

|Cfu�(x)| dx=
(

|Pam,r|
|f−1(Pam,r)|

)
−
∫
Pam,r

|(u�)r(z)|Jf−1(z) dz

=
(

|Pam,r|
|f−1(Pam,r)|

)
|(u�)am,r|∗h(0),

thereby using Lemma 2.6 to discover

lim inf
rj→0

−
∫
f−1(Pam,rj

)

∣∣∣(Cf (u�)am,rj

)
(x)

∣∣∣ dx=
(

lim inf
rj→0

|Pam,rj |
|f−1(Pam,rj )|

)
camh(0).

For rj<δ1, we utilize

1−ε≤ amkλk ≤ 1+ε ∀ k∈{1, ..., n},

to deduce( |Pam,rj |
|f−1(Pam,rj )|

)
h(0)≥ (1+ε)−n(am1...amn)(λ1...λn)≥

(
1−ε

1+ε

)n

,

whence

lim inf
rj→0

−
∫
f−1(Pa,r)

∣∣∣(Cf (u�)rj
)
(x)

∣∣∣ dx≥(
1−ε

1+ε

)n

cam ,

which in turn implies

‖Cfu�‖BMO(Rn) ≥
(

1−ε

1+ε

)n

cam−ε.

Upon combining this with (†)–(‡), we achieve a constant ˇ>0 (independent of am)
such that

− ln am1 ≤ˇ & am1 ≥ e−ˇ.

Consequently, we gain

1 =λn ≤λn−1 ≤ ...≤λ1 ≤ 2eˇ,

thereby reaching (	). �



A reverse quasiconformal composition problem for Qα(Rn) 465

3. Validation of Theorem 1.5

In order to prove Theorem 1.5, we need the concept of a Qα(Rn)-capacity. For
(α, n)∈(−∞, 1)×N and any pair of disjoint continua E,F⊂R

n, let

CapQα(Rn)(E,F )= inf
{
‖u‖2

Qα(Rn) : u∈Δα(E,F )
}

be the Qα(Rn)-capacity of the pair (E,F ), where Δα(E,F ) is the class of all con-
tinuous functions u∈Qα(Rn) enjoying⎧⎪⎨⎪⎩

0≤u≤1 on R
n;

u=0 on E;
u=1 on F.

Obviously, if Ẽ & F̃ are disjoint continua satisfying E⊆Ẽ &F⊆F̃ , then

CapQα(Rn)(E,F )≤CapQα(Rn)(Ẽ, F̃ ).

Moreover, we have

Lemma 3.1. Given a constant δ∈(0,∞) let n=1 & α∈(0, 2−1] or n=2 & α∈
(2−1, 1). If E &F are disjoint continua in R

n such that their diameters diamE &
diamF and Euclidean distance dist (E,F ) obey

min{diamE, diamF}≥ δ dist (E,F )> 0,

then

CapQα(Rn)(E,F )� 1.

Proof. Without loss of generality we may assume

diamE = diamF ≥ δ dist (E,F ).

If
x0 ∈E & r=(2+δ−1) diamE,

then
E,F ⊆B(x0, r).

Thanks to either n=1 & α∈(0, 2−1] or n=2 & α∈(2−1, 1), we may assume⎧⎪⎨⎪⎩
u∈Δα(E,F );
uB(x0,r)≥2−1;
0<ε≤1−n+2α.
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For every x∈E and ρ>0 we utilize

Φα

(
u,B(x, ρ)

)
= ρ2α−n

∫
B(x,ρ)

∫
B(x,ρ)

|u(z)−u(w)|2
|z−w|n+2α dz dw

�−
∫
B(x,ρ)

−
∫
B(x,ρ)

|u(z)−u(w)| dz dw

to estimate

2−1 ≤ |u(x)−uB(x0,r)|

≤
∞∑

i=−1
|uB(x,2−ir)−uB(x,2−i−1r)|+|uB(x,2r)−uB(x0,r)|

�
∞∑

i=−1

(
−
∫
B(x,2−ir)

−
∫
B(x,2−ir)

|u(z)−u(w)|2 dz dw
)2−1

�
∞∑

i=−1

(
Φα(u,B(x, 2−ir))

)2−1

�
∞∑

i=−1
(2−ir) ε

2 sup
t≤2r

t−
ε
2 [Φα(u,B(x, t))]2

−1

� r
ε
2 sup
t≤2r

t−
ε
2
(
Φα(u,B(x, t))

)2−1

.

Accordingly, for each x∈E there exists a tx∈(0, 2r] such that{
1�rεt−ε

x Φα(u,B(x, tx));
tn−2α+ε
x �rε

∫
B(x,tx)

∫
B(x,tx)

|u(z)−u(w)|2
|z−w|n+2α dz dw.

By the Vitali covering lemma, we can find points xi∈E and radii ri>0 as above
such that ball B(xi, ti) are mutually disjoint and E⊆

⋃
i B(xi, 5ti). Hence,

diamE �
∞∑

i=−1
ti � r

ε
n−2α+ε

∞∑
i=−1

(∫
B(xi,ti)

∫
B(xi,ti)

|u(z)−u(w)|2
|z−w|n+2α dz dw

) 1
n−2α+ε

.

Upon noticing 1/(n−2α+ε)≥1, we obtain

r

2+δ−1 � r
ε

n−2α+ε

( ∞∑
i=−1

∫
B(xi,ti)

∫
B(xi,ti)

|u(z)−u(w)|2
|z−w|n+2α dz dw

) 1
n−2α+ε

� r
ε

n−2α+ε

(∫
B(x0,4r)

∫
B(x0,4r)

|u(z)−u(w)|2
|z−w|n+2α dz dw

) 1
n−2α+ε

,
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whence
Φα(u,B(x0, 4r))� 1,

which yields

CapQα(Rn)(E,F )� 1. �

Proof of Theorem 1.5. By the metric characterization of a quasiconformal map-
ping (cf. [7]), it is enough to validate that if⎧⎪⎨⎪⎩

�(f, r)=inf
{
|f(x)−f(x0)|: |x−x0|≥r

}
;

L(f, r)=sup
{
|f(x)−f(x0)|: |x−x0|≤r

}
;

(x0, r)∈R2×(0,∞),

then
L(f, r)≤ c(f) �(f, r),

where c(f) is a positive constant depending on f .
To this end, if

v(y)=

⎧⎪⎪⎨⎪⎪⎩
1 as |y−x0|≤�(f, r);
lnL(f,r)−ln |y−x0|
lnL(f,r)−ln �(f,r) as �(f, r)≤|y−x0|≤L(f, r);
0 as |y−x0|≥L(f, r),

then

|∇v(y)|=

⎧⎪⎪⎨⎪⎪⎩
0 as |y−x0|≤�(f, r);

|y−x0|−1

lnL(f,r)−ln �(f,r) as �(f, r)≤|y−x0|≤L(f, r);
0 as |y−x0|≥L(f, r),

and hence

‖v‖2
W 1,2(R2) =

∫
R2

|∇v(y)|2dy

=
(

ln L(f, r)
�(f, r)

)−2 ∫
l≤|y−x0|≤L

dy

|y−x0|2

�
(

ln L(f, r)
�(f, r)

)−1

.

This last estimation, along with [10, Theorem 4.1] under n=2 & α<1, implies

‖v‖Q2−1<α<1(R2) � ‖v‖W 1,2(R2) �
(

ln L(f, r)
�(f, r)

)−2−1

.
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Let
E = f−1

(
B
(
f(x0), �

))
,

i.e., the preimage of B
(
f(x0), �

)
under f . Then E is connected and enjoys

E⊆B(x0, r) & diamE≥ r.

Moreover, observe that as the connected preimage of R2\B
(
f(x0), L

)
under f ,

f−1
(
R

2\B
(
f(x0), L

))
joins

B(x0, r)= {x∈R
2 : |x−x0| ≤ r} & R

2\B(x0, 2r).

So we can find a connected continum F such that it is contained in

f−1(R2\B
(
f(x0), L)

)
and joins B(x0, r) and R

2\B(x0, 2r), and consequently we may assume

F ⊆B(x0, 2r)\B(x0, r).

Obviously, we have

diamF ≥ r & 0< dist (E,F )≤ 5r≤ 10 min{diamE, diamF}.

Upon applying Lemma 3.1 under n=2 & 2−1<α<1 we discover

CapQα(R2)(E,F )� 1,

thereby arriving at the required inequality

ln L(f, r)
�(f, r) � 1. �
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