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Inequalities that sharpen the triangle inequality
for sums of N functions in Lp

Eric A. Carlen, Rupert L. Frank and Elliott H. Lieb

Abstract. We study Lp inequalities that sharpen the triangle inequality for sums of N

functions in Lp.

1. Introduction and main theorem

Since |z|p is a strictly convex function of z∈C for p>1, for any N∈N,∣∣∣ 1
N

∑N
j=1 zj

∣∣∣p ≤ 1
N

∑N
j=1 |zj |p ,

with equality if and only if zi=zj for all i, j. It follows immediately that for any set
{f1, ..., fN} of measurable functions on any measure space,

(1.1)
∫ ∣∣∣ 1

N

∑N
j=1 fj

∣∣∣p ≤ 1
N

∑N
j=1

∫
|fj |p ,

and there is equality if and only if for almost every x, fi(x)=fj(x) for all i, j.
The inequality (1.1) implies the triangle inequality for the Lp norms, ‖·‖p:

Suppose that g and h are two functions in Lp and suppose that for some m,n∈N,
‖g‖p=m and ‖h‖p=n. Let N=m+n, and define fj= 1

mg for 1≤j≤m, and fj= 1
nh

for m+1≤j≤N , and note that each fj is a unit vector. Then (1.1) says that

(1.2)
(

‖g+h‖p
‖g‖p+‖h‖p

)p

=
∫ ∣∣∣ 1

N

∑N
j=1 fj

∣∣∣p ≤ 1
N

N∑
j=1

‖fj‖pp =1 .
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That is, ‖g+h‖p≤‖g‖p+‖h‖p, which is the triangle inequality in Lp. By homogene-
ity, the condition on the norms of g and h reduces to the ratio of these norms being
rational, and then by continuity, the condition on the norms may be dropped alto-
gether. In this elementary argument, we loose information on the cases of equality
when ‖g‖p/‖h‖p is not rational. If however we can sharpen (1.1), then we can also
sharpen the triangle inequality, as we show below.

In this paper we shall prove several theorems that sharpen (1.1). First rewrite
(1.1) as

(1.3) ‖
∑N

j=1 fj‖pp ≤Np−1 ∑N
j=1 ‖fj‖pp .

One case in which (1.3) leaves much room for improvement is that in which the
functions f1, ..., fN satisfy fifj=0 for all i �=j; that is, the functions have disjoint
supports. Then |f1+...+fN |p=|f1|p+...+|fN |p, and hence in this case the factor
of Np−1 in (1.3) is superfluous, and

(1.4) ‖
∑N

j=1 fj‖pp ≤
∑N

j=1 ‖fj‖pp .

We seek inequalities that interpolate between (1.3) and (1.4) in the sense that
they sharpen (1.3) and reduce to (1.4) as ‖fifj‖p/2p/2 goes to zero for all i �=j. Towards
this end we define

(1.5) Γp(f1, ..., fN ) :=

∥∥∥(N2 )−1 ∑
i<j |fifj |

∥∥∥p/2
p/2

1
N

∑N
j=1 ‖fj‖

p
p

.

Here and in the following, we write ‖f‖p :=
(∫

|f |p
)1/p for all p �=0 despite the fact

that for p<1, ‖·‖p is not a norm, as the notation may well suggest.
Note that

(1.6) 0≤Γp(f1, ..., fN )≤ 1 ,

with equality on the left if and only if all of the functions have disjoint support,
and on the right if and only if all of the functions are equal. Thus, for any r>0, an
inequality of the form

(1.7) ‖
∑N

j=1 fj‖pp ≤
[
1+(N−1)Γr

p(f1, ..., fN )
]p−1∑N

j=1 ‖fj‖pp

would interpolate between (1.3) and (1.4), and sharpen the former.
At p=2, there is actually an identity of this form: Since for non-negative fi,

Γ2(f1, ..., fN )=
2
∑

i<j

∫
fifj

(N−1)
∑N

i=1 ‖fi‖2
2
,
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it follows that

(1.8) ‖
∑N

j=1 fj‖2
2 =

[
1+(N−1)Γ2(f1, ..., fN )

]∑N
j=1 ‖fj‖2

2 ,

which is (1.7) for p=2 and r=1, except that it holds as an identity and not only an
inequality.

In this paper, we will prove inequality (1.7) for p>2 and with r=r(N, p) spec-
ified below. This inequality stands in the same relation to the identity (1.8) that
Clarkson’s inequality [6] (see also [2]):

(1.9)
∥∥∥∥g+h

2

∥∥∥∥p
p

+
∥∥∥∥g−h

2

∥∥∥∥p
p

≤
‖g‖pp+‖h‖pp

2 ,

stands to the Parallelogram Law, the identity between the left and right sides of
(1.9) at p=2.

For 1<p<2, we prove that the reverse of (1.7) is valid for r=r(N, p) specified
below. In this case, the inequality does not sharpen the triangle inequality. Instead,
it complements it by providing a lower bound on ‖

∑N
j=1 fj‖p.

Our main theorem is the following:

Theorem 1.1. (Main Theorem) For any N≥2, and any set of N non-negative

measurable functions f1, ..., fN on any measure space, and all p∈(2,∞),

(1.10) ‖
∑N

j=1 fj‖pp ≤
[

1 + (N−1)Γp(f1, ..., fN )r(N,p)
]p−1∑N

j=1 ‖fj‖pp

where

(1.11) r(N, p)= 2N
2N+(p−2)(2N−1) .

For p∈(1, 2) the reverse inequality is valid.

Notice that r(N, 2)=1, so that the inequality (1.10) reduces to the identity (1.8)
at p=2. The case N=2 is special. This case was considered by us in [4] where (1.10)
was proved with 2/p in place of r(2, p). Note that r(2, p)= 4

4+3(p−2)<
2
p
. and

since Γp(f1, f2)≤1, the larger the exponent r in (1.7) is, the stronger the inequality
is. However, as we shall show here, N≥3 is significantly different from N=2. The
inequality (1.10) would reduce to the inequality found in [4] for N=2 were it possible
to replace r(N, p) by

(1.12) r̃(N, p)= 2N
2N+(p−2)(2N−2) = N

N+(p−2)(N−1) .

We shall see below why this is possible for N=2, but not for N>2.
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For N=2, there is only one pair of functions to consider. When there are
more pairs, there are several choices that one might make in defining the quantity
Γp(f1, ..., fN ). Another possibility that may at first seem more natural is

(1.13) Γ̃p(f1, ..., fN )=
(
N
2
)−1 ∑

i<j ‖fifj‖
p/2
p/2

1
N

∑N
j=1 ‖fj‖

p
p

.

By Jensen’s inequality, for p>2 (or p<0),

Γp(f1, ..., fN )≤ Γ̃p(f1, ..., fN ) ,

and this inequality reverses when p∈(0, 2). Hence, for p>2, where inequality
(1.10) sharpens the triangle inequality, it implies the corresponding inequality with
Γ̃p(f1, ..., fN ) replacing Γp(f1, ..., fN ). Note also that for all N ,

(1.14) r(N, p)> 1
p−1 .

By combining the last remarks, we have the following immediate corollary of The-
orem 1.1.

Corollary 1.2. (Simplified Bound) For any N≥2, and any set of N non-

negative measurable functions f1, ..., fN on any measure space, and all p∈(2,∞)

(1.15) ‖
∑N

j=1 fj‖pp ≤
[
1+(N−1)Γ̃p(f1, ..., fN )1/(p−1)

]p−1∑N
j=1 ‖fj‖pp

For p∈(1, 2) the reverse inequality is valid.

Remark 1.3. We shall show below that this inequality does not hold, uniformly
in N if the exponent 1/(p−1) is replaced by any larger value, though of course, for
each N , we may replace it by r(N, p), and the inequality is still valid.

We now show how Corollary 1.2 yields a sharpened form of the triangle in-
equality for p>2. Let g, h∈Lp, and define λ:= ‖g‖p

‖g‖p+‖h‖p
. Choose integers mN so

that limN→∞
mN

N =λ. Define

u := ‖g‖−1
p |g| , v := ‖h‖−1

p |h| and fj :=
{
u 1≤j≤mN

v mN<j≤N
.

Then, reasoning as in (1.2),

(1.16)
(

‖|g|+|h|‖p
‖g‖p+‖h‖p

)p

= lim
N→∞

∫ ∣∣∣ 1
N

∑N
j=1 fj

∣∣∣p ,
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and now we apply Corollary 1.2 to estimate the right side: We find∫ ∣∣∣ 1
N

∑N
j=1 fj

∣∣∣p ≤(
1
N

+N−1
N

(
aN +(1−aN )‖uv‖p/2p/2

)1/(1−p)
)p−1

,

where

aN =
(
N

2

)−1 ((
mN

2

)
+
(
N−mN

2

))
.

Taking N to infinity, we obtain(
‖|g|+|h|‖p
‖g‖p+‖h‖p

)p

≤ λ2+(1−λ)2+2λ(1−λ)‖uv‖p/2p/2(1.17)

= 1−2λ(1−λ)(1−‖uv‖p/2p/2)(1.18)

= 1−λ(1−λ)‖up/2−vp/2‖2
2 .(1.19)

Expressing this in terms of g and h, and using |g+h|p≤||g|+|h||p for p>0, we
have proved:

Theorem 1.4. (Improved Triangle Inequality) For all non-zero functions

g, h∈Lp, p>2,

(1.20) ‖g+h‖p ≤

⎛⎝1− ‖g‖p‖h‖p
(‖g‖p+‖h‖p)2

∥∥∥∥∥ |g|p/2

‖g‖p/2p

− |h|p/2

‖h‖p/2p

∥∥∥∥∥
2

2

⎞⎠1/p

(‖g‖p+‖h‖p) .

Somewhat different stability results for the triangle inequality have been proved
by Aldaz; see [1, Theorem 4.1]. His bound involves the L2 distance between
‖g‖−p/2

p |g|p/2 and ‖g+h‖−p/2
p |g+h|p/2 as well as between ‖h‖−p/2

p |h|p/2 and ‖g+
h‖−p/2

p |g+h|p/2. His inequality is based on a stability result for Hölder’s inequal-
ity for non-negative functions. A somewhat stronger stability theorem for Hölder’s
inequality that does not discard information about phases by passing from g and h

to |g| and |h| in the first step, was obtained in [5]. This may be applied with dual
indices p and p/(p−1) to ‖g+h‖pp=

∫
gw+

∫
hw where w=|g+h|p−1g+h to prove a

variant of Aldaz’ bound that does not discard phase information.

2. Proof of Theorem 1.1

The proof of Theorem 1.1, for all N , is actually relatively simple compared to
the proof of the slightly more incisive result for N=2 that is proved in [4].
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Proof. As in our previous paper [4], we replace the measure dμ with the prob-
ability measure

dν = 1
‖
∑N

j=1 fj‖pp
|
∑N

j=1 fj |pdμ ,

having assumed without loss of generality that ‖
∑N

j=1 fj‖p<∞. We then replace
each fi by (

∑N
j=1 fj)−1fi. Rewriting (1.10) in terms of the new measure and the new

functions, we see that it suffices to prove (1.10) under the additional assumption that
the reference measure is a probability measure and the functions satisfy

∑N
j=1 fj=1

almost everywhere.
We proceed under this assumption, first considering p>2. Then

∑
i<j fifj = 1

2

(
1−

∑N
j=1 f

2
j

)
.

Define
B :=

∑N
j=1

∫
fp
j .

Then (1.7), which is (1.10) with a non-specific value of r, becomes

(2.1) 1≤

⎛⎜⎝1+(N−1)

⎛⎜⎝N
∫ (

1
2
(
N
2
)−1 (1−

∑N
j=1 f

2
j

))p/2

B

⎞⎟⎠
r⎞⎟⎠

p−1

B .

By Jensen’s inequality (2.1) is implied, for p>2, by

(2.2) 1≤

⎛⎜⎝1+(N−1)

⎛⎜⎝N
(

1
2
(
N
2
)−1 (1−

∑N
j=1

∫
f2
j

))p/2

B

⎞⎟⎠
r⎞⎟⎠

p−1

B .

By Hölder’s inequality,∫
f2 =

∫
f (p−2)/(p−1)fp/(p−1) ≤ ‖f (p−2)/(p−1)‖(p−1)/(p−2)‖fp/(p−1)‖p−1

= ‖f‖(p−2)/(p−1)
1 (‖f‖pp)1/(p−1) .(2.3)

There is equality if and only if f is constant on its support. Using this inequality,
and Hölder’s inequality once more, again with exponents (p−1)/(p−2) and p−1,

(2.4)
∑N

j=1
∫
f2
j ≤

(∑N
j=1 ‖fj‖1

)(p−2)/(p−1) (∑N
j=1 ‖fj‖pp

)1/(p−1)
=B1/(p−1) .
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Therefore, (2.2) is implied by the inequality

(2.5) 1≤

⎛⎜⎝1+(N−1)

⎛⎜⎝N
(

1
2
(
N
2
)−1 (1−B1/(p−1)))p/2

B

⎞⎟⎠
r⎞⎟⎠

p−1

B

in the single parameter B, which can take values in the range N1−p to 1. (To
see this fact, note that since

∑N
j=1 fj=1 almost everywhere,

∑N
j=1 f

p
j ≤1 almost

everywhere, and by Hölder’s inequality, 1=
∑N

j=1 fj≤
(∑N

j=1 f
p
j

)1/p
N (p−1)/p .)

The following change of variables is useful: we write

(2.6) B =
(

1
N

+x

)p−1

=N1−p (1+Nx)p−1 for 0≤x≤ N−1
N

.

Then
1

N(N−1)

(
1−B1/(p−1)

)
= 1

N2

(
1− N

N−1x
)

,

and hence

N

(
1

N(N−1)

(
1−B1/(p−1)

))p/2

=N1−p

(
1− N

N−1x
)p/2

.

The inequality (2.5) is therefore equivalent to

(2.7) N ≤

⎛⎜⎝1+(N−1)

⎛⎜⎝
(
1− N

N−1x
)p/2

(1+Nx)p−1

⎞⎟⎠
r⎞⎟⎠ (1+Nx) .

Note that in this parameterization, we eliminate the “outside” power of p−1.
It remains to prove (2.7) with r=r(N, p) as specified in (1.11). With this value

of r,
1
r

=1+ 2N−1
2N (p−2)

and therefore

(2.8) p−1− 1
r

= 1
2N (p−2) .

Likewise, simple computations show that

(2.9) p

2−
1
r

=− (p−2)(N−1)
2N .
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Distributing the factor of (1+Nx) that is on the right in (2.7), we obtain the
equivalent inequality,

N ≤ (1+Nx)+(N−1)

⎛⎜⎝
(
1− N

N−1x
)p/2

(1+Nx)p−1−1/r

⎞⎟⎠
r

,

or, equivalently,

(
1− N

N−1x
)1/r

≤

(
1− N

N−1x
)p/2

(1+Nx)p−1−1/r

which further simplifies, using (2.8) and (2.9), to

(1+Nx)
p−2
2N ≤

(
1− N

N−1x
)− (p−2)(N−1)

2N

,

and then again to

(2.10) 1+Nx≤
(

1− N

N−1x
)1−N

.

This is trivially true for 0<x<N−1
N by convexity.

Now consider the case p∈(1, 2) so that p−2<0, However, for all p>2− 2N
2N−1 ,

r=r(N, p) is positive. In particular, this is true for all p∈(1, 2). Since now p/2∈
(0, 1), Jensen’s inequality again says that the the reverse of (2.1) is implied by the
reverse of (2.2). The exponents in the applications for Hölder’s inequality in (2.3)
and (2.3) are (p−1)/(p−2)<0 and p−1<1, and hence, integrating only over the
support of f in (2.3), the reverse Hölder inequality yields the reverse of (2.3) and
(2.4). Thus, it remains to prove the reverse of (2.5). We proceed as above, and since
r>0, each step leads to the reverse of its analog, until the very last one, in which
we raise both sides to the 2N/(p−2) power. Since this is negative, the inequality
reverse, and we have reduced the reverse of (2.5) to (2.10) as before. �

3. Sharpness of the inequalities

Theorem 3.1. The inequality (2.5) is valid with r=r(N, p) given by (1.11),
but it is false for any larger value of r.
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Proof. As shown in the previous section, under the change of variables (2.6),
the inequality (2.5) becomes the inequality (2.7). To leading order in x,(

1− N
N−1x

)p/2

(1+Nx)p−1 =1−αx+O(x2) where α= N

2N−2((p−2)(2N−1)+3N) .

Therefore, (2.7) says that 1≤[N−(N−1)rα+O(x2)][N−1+x], and this can only
hold if

r≥ N2

N−1
1
α

= 2N
2N+(p−2)(2N−1) .

We have already seen that (2.7) is valid with r=r(N, p) given by (1.11). The
expansion shows that this is not true for any larger value of r. �

Because (1.7) is a weaker inequality than (2.5), this leaves open the question
whether (1.7) could be valid for larger values of r, even though (2.5) is not. We
have seen that this is the case for N=2, and that in this case, the optimal value of
r is 2/p. However, the case N=2 is somewhat special, as we now show.

Let the measure space be [0, 1) equipped with Lebesgue measure. For j=
1, ..., N , let Aj=[(j−1)/N, j/N). Define

fj(x)=
{
a x∈Aj

1−a
N−1 x /∈Aj

, a∈ [0, 1] .

For a=1/N , each fj has the constant value 1/N . With this choice,
∑N

j=1 fj(x),∑N
j=1 f

p
j (x) and

∑
i<j fi(x)fj(x) are all identically constant on account of symmetry

in the sets Aj , and

N∑
j=1

fj =1 ,(3.1)

N∑
j=1

fp
j = ap+

(
1

N−1

)p−1
(1−a)p ,(3.2)

(
N

2

)−1 ∑
i<j

fifj = 1
N2 −

1
(N−1)2 (a−1/N)2 ,(3.3)

and therefore,

(3.4) Γp(f1, ..., fN )=
(

N
(

1
N2 − 1

(N−1)2 (a− 1
N )2

)p/2

ap+
(

1
N−1

)p−1
(1−a)p

)
.
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Then (1.7) would imply

1≤

⎛⎜⎝1+(N−1)

⎛⎜⎝N
(

1
N2 − 1

(N−1)2 (a− 1
N )2

)p/2

ap+
(

1
N−1

)p−1
(1−a)p

⎞⎟⎠
r⎞⎟⎠

p−1 (
ap+

(
1

N−1

)p−1
(1−a)p

)(3.5)

:=KN,p(a) ,

and there is equality at a=1/N , in which case all of the fj are equal, and as well
at a=1, in which case all of the fj have mutually disjoint support. For N=2, the
function K2,p(a) is symmetric in a about a=1/2, and there is also equality at a=0.
For N>2, this is not the case. We can now deduce several restrictions on the values
of r for which (1.7) could possibly be valid in general.

One such restriction comes from the fact that since there is equality in (3.4)
at a=1/N , this value of a must at least be a local minimizer of KN,p(a).

A Taylor expansion of (3.2) about a=1/N yields

(3.6)
N∑
j=1

fp
j =N1−p

(
1+ p(p−1)

2
N2

N−1 t
2+ p(p−1)(p−2)

6
N3(N−2)
(N−1)2 t3+O(t4)

)
,

where t=a−1/N . From here one easily finds that the inequality KN,p(a)≥1 implies

0≤−r
p(p−1)

2
((p−1)N−p+2)

N(N−1) t2+ p(p−1)
2(N−1) t

2+O(t3) ,

and this is true if and only if r≤ N

N+(p−2)(N−1) . Thus, we must take r no larger

than r̃(N, p) as defined in (1.12). Note that r̃(2, p)=p/2, and so this necessary
condition on r also turns out to be sufficient for N=2. However, it is not sufficient
for N>2: Note that the cubic term in (3.6) vanishes only for N=2. For all other
N , when r=r̃(N, p), a=1/N will be an inflection point of KN,p(a), and not a local
minimum.

Remark 3.2. The same considerations apply to the family of inequalities

(3.7) ‖
∑N

j=1 fj‖pp ≤
[
1+(N−1)Γ̃r

p(f1, ..., fN )
]p−1∑N

j=1 ‖fj‖pp ,

because for our trial functions, Γ̃r
p(f1, ..., fN )=Γr

p(f1, ..., fN ). Thus, (3.7) is valid
for r=r(N, p), but not for r≤r̃(N, p). Since

lim
N→∞

r(N, p)= lim
N→∞

r̃(N, p)= 1
p−1 ,

it follows that the exponent 1/(p−1) is optimal in Corollary 1.2, as claimed in
Remark 3.2.
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The simplest way to demonstrate that things do go wrong for r=r̃(N, p), N>2
is to compute KN,p(0): KN,p(0)≥1 if and only if

(3.8) r≤ ln(N−1)−ln(N−2)
(p2−1) ln(N)+ln(N−1)− p

2 ln(N−2) .

For example, with N=3 and p=4 the right side is

(3.9) ln(2)
ln(2)+ln(3) =0.386852807...

However, r̃(3, 4)= 3
7 =0.428571428..., while r(3, 4)= 3

8 =0.375: The sufficient value
r(3, 4) is quite close to the nececessary value specified in (3.9). Numerical experi-
ments show that with r given by the right side of (3.8), the inequality KN,p(a)≥1
is likely to be valid, but of course, the inequality KN,p(a)≥1 is only a case of the
inequality (1.10) for a very special choice of the functions f1, ..., fN . These trial
functions were chosen to make

∑N
j=1 f

p
j and

∑
i<j fifj constant. A convexity argu-

ment was used in [4] to reduce to this case, but the convexity on which this reduction
relied fails already for N=3 and p=4. Thus, while it is possible that the exponent
r in Theorem 1.1 could be improved slightly for N>2, it cannot be improved by
much.

4. Related results

Until recently, most of the results related to our main theorem have concerned
the case N=2. That there should be some strengthening of the elementary inequal-
ity (1.1) was first suggested in 2006 by Carbery, who proposed [3] several plausible
refinements for N=2 and p≥2, of which the strongest was

(4.1)
∫

|f+g|p ≤
(

1+
‖fg‖p/2
‖f‖p‖g‖p

)p−1 ∫
(|f |p+|g|p) .

There is equality when f=g as in (1.1) and also when f and g have disjoint
support. The first proof of (4.1) is in [4], where the following stronger result is
proved.

(4.2)
∫

|f+g|p ≤
(
1+Γ2/p

p

)p−1 ∫
(|f |p+|g|p) ,

where Γp=Γp(f, g) is defined in (1.5).
By the arithmetic-geometric mean inequality (4.2) is stronger than (4.1), and

the difference can be significant. Not only is (4.2) stronger, it is sharp, in the sense
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that Γ2/p
p cannot be replaced by Γr

p for any r<2/p. This leaves open, however, the
possibility of replacing (1+Γ2/p

p )p−1 by some other function of Γp. After this paper
was completed we received the preprint [8] in which such an inequality was proved:

(4.3)
∫

|f+g|p ≤

⎛⎜⎝
⎛⎝1+

√
1−Γ2

p

2

⎞⎠1/p

+

⎛⎝1−
√

1−Γ2
p

2

⎞⎠1/p⎞⎟⎠
p ∫

(|f |p+|g|p) .

It is not at all obvious that (4.3) is stronger than (4.2). The inequality

(4.4)

⎛⎝(
1+

√
1−γ2

2

)1/p

+
(

1−
√

1−γ2

2

)1/p
⎞⎠p

≤
(
1+γ2/p

)p−1
,

which is valid for all 0≤γ≤1, is equivalent to the inequality proved in [4, Theo-
rem 1.3], as noted in [8]. Indeed, this inequality for all p≥2 is within a few percent
of being an identity, and thus there is little numerical difference between (4.2) and
(4.3). The significant difference is that the function of Γp on the right side of (4.3)
is shown to be the best possible in [8] in that for all γ∈[0, 1], on any “nice” measure
space, there are functions f and g for which Γp(f, g)=γ, and such that equality holds
in (4.3). However, even knowing that (4.3) is a non-improvable result for N=2, one
does not have a new proof of (4.2) that does not rely on [4, Theorem 1.3].

Although Carbery proposed (4.1) only for p>2, the inequalities (4.2) and (4.3)
have been shown to hold for all p, with reversal of the inequality for p<0 and
p∈(1, 2).

Carbery’s paper suggests that an extension of (4.1) for N functions might be
possible with a right hand side that involves certain matrix norms of the N×N

matrix with entries ‖fifj‖p/2
‖fi‖p‖fj‖p

; see Section 3.5 of [3]. (There appears to be a typo
here; the proposal as written is not homogeneous.) His proposal partially motivated
this study. The paper [8] also contains a bound on the Lp norm of a sum of N

functions for N>2, but it is for the case p∈(1, 2), and is of an entirely different
character than the one we present here.
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