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On the double of the Jordan plane

Nicolás Andruskiewitsch, François Dumas and Héctor Martín Peña Pollastri

Abstract. We compute the simple finite-dimensional modules and the center of the Drinfeld
double of the Jordan plane introduced in [AP1] assuming that the characteristic is zero.

1. Introduction

Let k be a field. The well-known Jordan plane is the quadratic algebra J=
k〈x, y|xy−yx− 1

2x
2〉; it bears a structure of braided Hopf algebra where x and y are

primitive [G]. When k has characteristic zero, J is indeed a Nichols algebra (any
primitive element belongs to V =kx⊕ky) but if char k=p>0, then J covers the
Nichols algebra B(V ) which has now finite dimension [CLW]. In [AP1] B(V ) was
called the restricted Jordan plane and, assuming p>2, the Drinfeld double D(H) of
the bosonization H=B(V )#kCp was studied. It was shown that D(H) fits into an
exact sequence of Hopf algebras R � � �� D(H) �� �� u(sl2(k)) where R is local
commutative and u(sl2(k)) is the restricted enveloping algebra of sl2(k). Hence the
simple D(H)-modules coincide with those of u(sl2(k)) [AP1, 1.11].

In [AP1] a Hopf algebra D covering D(H) was defined, see Section 2; D can
be thought of as the Drinfeld double of the bosonization J#kZ. Now D fits into an
exact sequence of Hopf algebras O(G) �

�
�� D π �� �� U(sl2(k)) where O(G) is the

algebra of regular functions on G=(Ga×Ga)�Gm and U(sl2(k)) is the enveloping
algebra.

Both the definition of D and the exact sequence are still valid in characteristic
0, which we assume from now on. In this paper, we offer two results on the structure
of D. First, we classify in Section 3 the finite-dimensional irreducible representations
of D; the outcome ressembles the case of D(H), analogy supported by Lemma 3.10.
Concretely, we prove:
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Theorem 3.11. There is a bijection irrepD�irrep sl2(k) induced by the mor-
phism π :D→U(sl2(k)).

Second, we consider in Section 4 the localization D′ of D at the powers of two
elements x and q which generate an Ore subset of D. We show in Theorem 4.8 that
D′ is isomorphic to a localization of the Weyl algebra A2(S), where S :=k[z±1, z′]
with z and z′ algebraically independent. This result allows us to compute the center
of D, which turns out to be a Kleinian singularity of type A1, see Theorem 4.10.
Also, by Theorem 4.8, D satisfies the Gelfand-Kirillov property; see §4.4.

The classification of the Nichols algebras over abelian groups with finite
Gelfand-Kirillov dimension (GK-dim for short) is essential for the classification of
Hopf algebras with finite GK-dim; see [AAH] for details. Conjecturally, a Nichols
algebra of diagonal type has finite GK-dim if and only if the corresponding Weyl
groupoid is finite. Assuming the conjecture, the classification for Nichols algebras
of ‘blocks & points’ was solved in [AAH]; the Jordan and super Jordan planes are
crucial ingredients of this work.

A basic input for many questions is the Drinfeld double of a given Hopf al-
gebra. Note that the definition of the Drinfeld double of an infinite-dimensional
Hopf algebra relies on a suitable choice of a Hopf subalgebra of the Sweedler dual.
For instance, the Drinfeld doubles of (bosonizations of) Nichols algebras of diagonal
type are essentially multiparametric quantized (super) enveloping algebras, where
the duals of the bosonizations are chosen starting from suitable groups of charac-
ters. The study of the Drinfeld doubles of Nichols algebras of ‘blocks & points’
began by the smallest and crucial examples of the Jordan and super Jordan planes
[AP1], [AP2] which behave very differently from the diagonal case. As shown here,
both the representation theory and the algebra structure of the Drinfeld double of
the Jordan plane also deviate from the diagonal case. This confirms the intuition
that the Jordan world is closer to the classical one than to the quantum one. We
expect that the considerations of this article will guide us to set up a comprehensive
general picture.

Conventions If �<n∈N0, we set I�,n={�, �+1, ..., n}, In=I1,n. If Y is a sub-
object of an object X in a category C, then we write Y ≤X.

In the rest of the paper k is an algebraically closed field of characteristic 0.
The subspace of a vector space V generated by S⊂V is denoted by kS. Let A be
an algebra and a1, ..., an∈A, n∈N. Let Z(A) denote the center of A. We denote
by k〈a1, ..., an〉 the subalgebra generated by a1, ..., an. An element x∈A is normal
if Ax=xA. If A=

⊕
n∈Z

An is graded and T⊆A is a subspace, then Tn :=T∩An.
If M is an A-module and m1, ...,mn∈M , n∈N, then we denote by 〈m1, ...,mn〉 the
submodule generated by m1, ...,mn.
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Let L be a Hopf algebra. The kernel of the counit ε is denoted L+, the antipode
(always assumed bijective) by S, the space of primitive elements by P(L) and the
group of group-likes by G(L). The space of (g, h)-primitives is Pg,h(L)={x∈L:
Δ(x)=x⊗h+g⊗x} where g, h∈G(L). The category of left-left, respectively right-
right, Yetter-Drinfeld modules over L is denoted by L

LYD, respectively YDL
L. Our

reference for Hopf algebras is [R].

2. The double of the Jordan plane

Definition 2.1. ([AP1, 2.3]) The Hopf algebra D is presented by generators u,
v, ζ, g±1, x, y and relations

g±1g∓1 =1, ζg= gζ,(2.1)
gx=xg, gy= yg+xg, ζy= yζ+y, ζx=xζ+x,

ug= gu, vg= gv+gu, vζ = ζv+v, uζ = ζu+u,
(2.2)

yx=xy− 1
2x

2, vu=uv− 1
2u

2,

ux=xu, vx=xv+(1−g)+xu,

uy= yu+(1−g), vy= yv−gζ+yu.

(2.3)

The comultiplication is defined by g∈G(D), u, ζ∈P(D), x, y∈Pg,1(D),

Δ(v)= v⊗1+1⊗v+ζ⊗u.

We list some basic properties of D, cf. [AP1] for details.

˝ The following set is a PBW-basis of D:

B = {xn yr gm ζk ui vj : i, j, k, n, r∈N0, m∈Z}.

˝ D=⊕n∈ZD[n] is Z-graded by

deg x=deg y=−1, deg u=deg v=1, deg g=deg ζ =0.(2.4)

˝ Let Γ be the infinite cyclic group with generator g written multiplicatively and
let h be the one dimensional Lie algebra. The subalgebra D0=k〈g±1, ζ〉 is a Hopf
subalgebra isomorphic to kΓ⊗U(h).
˝ The subalgebra D<0=k〈x, y〉 is isomorphic to the Jordan plane J . It is a Hopf
algebra in kΓ

kΓYD and the bosonization D<0#kΓ�k〈g±1, x, y〉.
˝ The subalgebra D>0=k〈u, v〉 is isomorphic to J as algebra via u �→x and v �→y,
but with a different comultiplication; actually D>0 is the graded dual of D<0. Then
D>0 is a Hopf algebra in YDU(h)

U(h) and U(h)#D>0�k〈ζ, u, v〉.
˝ The subalgebras D>0, D0 and D<0 are graded and satisfy
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(a) D>0⊆⊕n∈N0D[n], D<0⊆⊕n∈N0D[−n].
(b) (D>0)[0]=k=(D<0)[0].
(c) D≥0 :=D0D>0 and D≤0 :=D<0D0 are Hopf subalgebras of D.

˝ The algebra D admits an exhaustive ascending filtration that satisfies grD�
k[X1, ..., X5, T

±1]. Hence D is a noetherian domain.
˝ The subalgebra O :=k〈x, u, g±1〉 is a commutative Hopf subalgebra, hence O�
O(G), where G is the algebraic group as in the Introduction.
˝ Let e, f, h be the Chevalley generators of sl2(k), i.e. [e, f ]=h, [h, e]=2e, [h, f ]=
−2f . The Hopf algebra map π : D→U(sl2(k)) determined by

π(v)= 1
4e, π(y)= 2f, π(ζ)=−1

2h, π(u)=π(y)=π(g−1)=0,(2.5)

induces an isomorphism of Hopf algebras D/DO+�U(sl2(k)).

Remark 2.2. The Hopf algebra D is pointed with coradical D0=k〈g±1〉. Indeed,
by [M, 5.3.4] it suffices to show that D admits an exhaustive coalgebra filtration
D=∪n∈N0D[n] with D[0]=k〈g±1〉. Let D[n] defined recursively by

D[0]=k〈g±1〉, D[1]=D[0]+k{x, y, ζ, u},
D[2]=D[1]+k{v}, D[n]=D[2]D[n−1], n≥3.

Using the PBW basis one can check this is an exhaustive coalgebra filtration.

3. Simple finite-dimensional modules

3.1. Overview

Let A be an algebra and B a subalgebra. Let AM (respectively IrrepA, irrepA)
denote the category of left A-modules (respectively, the set of isomorphism classes
of simple objects in AM, the finite-dimensional ones). Often we do not distinguish
a class in IrrepA and one of its representatives. Let IndA

B :BM→AM and ResBA :
AM→BM denote the induction and restriction functors, e.g. IndA

B(M)=A⊗BM .
Given S∈irrepA, there exists T∈irrepB such that T≤ResBA S. By the standard
adjunction

HomA(IndA
B M,N)�HomB(M,ResBA N), N ∈AM,M ∈BM,(3.1)

S is a quotient of IndA
B T . We apply this (classical) remark twice to compute irrepD.

First we compute irrepD≥0 by determining all simple quotients of IndD≥0

H W for
each W∈irrepH, where H :=k〈g±1, u, v〉, cf. [ABFF]. Then we compute irrepD
from irrepD≥0 in the same way.
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3.2. Determination of irrepD≥0

For each (a, b)∈k××k there is a one-dimensional H-module, denoted by ka,b,
with basis xa,b and action

g ·xa,b = axa,b, v ·xa,b = bxa,b, u·xa,b =0.(3.2)

Then irrepH={ka,b : (a, b)∈k××k} [ABFF, 3.3]. Let Wa,b :=IndD≥0

H ka,b.

Lemma 3.1. The elements x(n)
a,b :=ζn ·xa,b, n≥0, form a basis of Wa,b.

Proof. Indeed, D≥0⊗Hka,b�(U(h)⊗kH)⊗Hka,b�U(h)⊗kka,b. �

Lemma 3.2. If b �=0, then Wa,b is simple for any a∈k×.

Proof. We use that (v−b)nζ=ζ(v−b)n+nv(v−b)n−1 for all n≥0, which is
straightforward. Notice that (v−b)n ·x(n)

a,b =bnn!x(0)
a,b for all n≥0. Indeed,

(v−b)n+1 ·x(n+1)
a,b =(v−b)(v−b)nζ ·x(n)

a,b

=(v−b)
(
ζ(v−b)n+nv(v−b)n−1)·x(n)

a,b

= bnn!(v−b)ζ ·x(0)
a,b+nbnn!v ·x(0)

a,b = bn+1(n+1)!x(0)
a,b.

Let 0 �=z∈Wa,b and write z=
∑n

k=0 ckx
(k)
a,b with n≥0 and cn �=0. Then (v−b)n ·z=

bnn!cnx(0)
a,b. Thus 〈z〉=Wa,b and the claim follows. �

We next study the simple quotients of Wa,0, a∈k×. Let

Va,c = 〈x(1)
a,0+ 1

2cx
(0)
a,0〉≤Wa,0, Ta,c :=Wa,0/Va,c, c∈ k.

The choice of the coefficient 1
2 is convenient for calculations with Kc; see Re-

mark 3.12. Then Ta,c is one-dimensional with basis za,c and action

g ·za,c = aza,c, ζ ·za,c =−1
2cza,c, u·za,c =0, v ·za,c =0.(3.3)

Lemma 3.3. The set of maximal submodules of Wa,0 is {Va,c : c∈k}.

Proof. The subcategory of D≥0-modules where u, v and g−a act by 0 is equiv-
alent to the category of modules over D≥0/(u, v, g−a)�k[ζ]. Now Wa,0 belongs to
this subcategory, because the action in the basis

{
x(n)
a,b

}
is

g ·x(n)
a,b = gζn ·xa,b = ζng ·xa,b = ax(n)

a,b ,
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u·x(n)
a,b =uζn ·xa,b =

n∑
k=0

(
n

k

)
ζku·xa,b =0,

v ·x(n)
a,b = vζn ·xa,b =

n∑
k=0

(
n

k

)
ζkv ·xa,b =0.

Under this correspondence, Wa,0 goes to the regular k[ζ]-module; the claim follows.
�

Proposition 3.4. irrepD≥0�{Ta,c :(a, c)∈k××k}.

Proof. Let T∈irrepD≥0. Then there exists (a, b)∈k××k such that ka,b is iso-
morphic to a submodule of ResHD≥0 T . By (3.1) T is a quotient of Wa,b. If b �=0,
then T�Wa,b by Lemma 3.2, contradicting dimT<∞. Hence b=0 and T�Ta,c for
some c∈k. �

3.3. Calculation of irrepD

The Verma module Ma,c, (a, c)∈k××k, is

Ma,c := IndD
D≥0 Ta,c =D⊗D≥0Ta,c.

Lemma 3.5. The elements z
(i,j)
a,c :=yixj ·za,c, i, j≥0, form a basis of Ma,c.

Proof. Indeed, D⊗D≥0Ta,c�(D<0⊗kD≥0)⊗D≥0Ta,c�D<0⊗kTa,c. �

For the next proof we need the following formulas from [AP1, Lemma 2.5]:

uyn = ynu+nyn−1−
n−1∑
k=0

(
n

k+1

)
(k+1)!

2k yn−1−kxkg, n≥ 1;(3.4)

vxm =xmv+mxm−1(1−g)+mxmu, m≥ 1.(3.5)

Lemma 3.6. If a �=1 then Ma,c is simple.

Proof. From (3.4) we get the following formula for i≥1 and j≥0:

u·z(i,j)
a,c =(1−a)iz(i−1,j)

a,c −a

i−1∑
k=1

(
i

k+1

)
(k+1)!

2k z(i−1−k,j+k)
a,c ;

clearly u·z(0,j)
a,c =0 for all j≥0. Next, we prove by induction that

ui ·z(i,j)
a,c =(1−a)ii!z(0,j)

a,c , i, j≥ 0.
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Indeed, this is clear for i=0, 1; for i≥1, we argue by induction on i:

ui+1 ·z(i+1,j)
a,c =(1−a)(i+1)uiz(i,j)

a,c −a
i∑

k=1

(
i+1
k+1

)
(k+1)!

2k uiz(i−k,j+k)
a,c

=(1−a)i+1(i+1)!z(0,j)
a,c

−a

i∑
k=1

(
i+1
k+1

)
(k+1)!

2k (i−k)!(1−a)i−kukz(0,j+k)
a,c

=(1−a)i+1(i+1)!z(0,j)
a,c .

Thus un ·z(i,j)
a,c =0 if n>i. From (3.5) we get v ·z(0,j)

a,c =j(1−a)z(0,j−1)
a,c , and it becomes

evident that

vjui ·z(i,j)
a,c =(1−a)i+ji!j!z(0,0)

a,c .

Then vmui ·z(i,j)
a,c =0 for m>j and i≥0. Given z∈Ma,c, z �=0, write

z =
N∑
i=0

Mi∑
j=0

di,jz
(i,j)
a,c �=0 with dN,MN

�=0,

hence vMNuN ·z = dN,MN
(1−a)MN+NN !MN !z(0,0)

a,c .

Since a �=1 and Ma,c=〈z(0,0)
a,c 〉, the Lemma follows. �

From (3.1) with Proposition 3.4 and Lemma 3.6 we deduce:

Corollary 3.7. Every S∈irrepD is a quotient of M1,c for some c∈k. �
Thus we need to study the Verma modules M1,c. For the next lemma we use

the following commutation relation from [AP1, Lemma 2.5]:

gny� =
�∑

k=0

(
�

k

)
[2n][k]

2k y�−kxkgn, n, �∈N0.(3.6)

Here [t][k] denotes the raising factorial [t][k] :=
∏k

i=1(t+i−1) for t∈k and k∈N0.

Lemma 3.8. The action of g−1 on M1,c is locally nilpotent.

Proof. We prove recursively on i that for each i, j≥0 there exists ni,j∈N such
that (g−1)ni,j ·z(i,j)

1,c =0. If i=0, then g ·z(0,j)
1,c =z

(0,j)
1,c for j∈N, hence we take n0,j=1.

Given such nk,j for every j∈N and k<i, we have

(g−1)·z(i,j)
1,c =(g−1)yiz(0,j)

1,c =
i∑

k=1

(
i

k

)
[2][k]

2k z
(i−k,j+k)
1,c

by (3.6). Taking ni,j=max0≤k<i{nk,i+j−k}+1, the Lemma follows. �
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Proposition 3.9. Let M∈DM, dimM<∞, with associated representation

ρ : D→EndM . Then g−1, x and u act nilpotently on M .

Proof. Arguing by induction on dimM , we may assume that M∈irrepD. Then
g−1 acts nilpotently on M by Corollary 3.7 and Lemma 3.8. Recall that a linear op-
erator T on a finite-dimensional space is nilpotent if and only if Tr(Tn)=0 for every
n∈N. Since xn+1= 2

n (xny−yxn) for n∈N we get Tr(ρ(x)n+1)= 2
n Tr(ρ(x)nρ(y)−

ρ(y)ρ(x)n)=0. Since x=ζx−xζ we also have that Tr(ρ(x))=0. So ρ(x) is nilpo-
tent. The argument for u is similar using the relations un+1= 2

n (unv−vun) and
u=uζ−ζu. �

We now determine irrepD via an argument connecting with [AP1, 1.11].

Lemma 3.10. Let A be an algebra and F⊂A a family of elements satisfying

(a) the elements of F commute with each other;

(b) for any M∈AM, dimM<∞, any x∈F acts nilpotently on M ;

(c) F is normal, i.e. the vector subspace I of A generated by F satisfies

AI = IA.(3.7)

Let S∈irrepA. Then the representation ρ:A→EndS factorizes through A/IA.

Thus the projection A→A/IA induces a bijection

irrepA� irrepA/IA.

Proof. Let Ĩ=ρ(I) and I=ρ(AI)=ρ(IA). By (a) and (b) there exists r∈N such
that Ĩr=0. Then Ir=0 by (3.7). Hence the ideal I is contained in the Jacobson
radical of ρ(A). But by Burnside’s Theorem [CR, (3.3.2)] ρ(A)=EndS since S is
simple. So IA acts by 0 on S. �

Recall the map π :D→U(sl2(k)) from (2.5).

Theorem 3.11. The map π induces a bijection irrepD�irrepU(sl2(k)).

Proof. Let F={x, u, g−1}. By the defining relations of D, F satisfies (a) and
(c). By Proposition 3.9 F satisfies (b). Thus Lemma 3.10 applies. �

Remark 3.12. For n∈N0, let Ln∈irrepD correspond to the simple sl2(k)-
module of highest weight n. Then Ln has a basis t0, ..., tn where the action is
given by

y ·ti=ti+1, v ·ti=
i

2(n−i+1)ti−1, ζ ·ti=−1
2(n−2i)ti,

x·ti=0, u·ti=0, g ·ti=ti.
(3.8)
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It can be shown that Ln can be presented as quotient of the Verma module M1,n.
Indeed, let Mn be the Verma module over sl2(k) of highest weight n. Then Mn�
Kn :=M1,n/M̃n where M̃n :=xM1,n=〈z(0,1)

1,n 〉≤M1,n.

Recall from [BaW] that a spherical Hopf algebra is a pair (H,ω), where H is
a Hopf algebra and ω∈G(H) (called the pivot) such that

S2(x) =ωxω−1, x∈H,(3.9)
TrV (θω)=TrV (θω−1), θ∈EndH(V ), V ∈HM.(3.10)

Corollary 3.13. The Hopf algebra D is spherical with pivot g−1.

Proof. By direct calculation in the generators we see that S2(h)=g−1hg for
every h∈D. It remains to show that for every V ∈DM with dimV <∞, TrV (fg)=
TrV (fg−1) for every f∈EndD(V ). By [AAGTV, Prop. 2.1] we only need to consider
V ∈irrepD. Since EndD(V )�k, and TrV (g)=TrV (g−1)=dimV by 3.8, the claim
follows. �

4. A localization of the double of the Jordan plane

4.1. Weyl algebras and iterated Ore extensions

We refer to [MCR] for the notations and basic notions used here. Let R be a
commutative ring. Recall that the Weyl algebra A1(R) is the R-algebra generated
by p and q satisfying pq−qp=1. Alternatively, it can be described as the Ore
extension A1(R)�R[q][p ; ∂q], where, here and below, ∂q denotes ∂

∂q .
We shall also consider the algebra A′

1(R)=R[q±1][p ; ∂q], which is the localiza-
tion of A1(R) with respect of the multiplicative set generated by q. Observing that
(qp)q−q(qp)=q, we have an alternative description of A′

1(R) as a Laurent extension:

(4.1) A′
1(R)=R[q±1][p ; ∂q] =R[qp][q±1 ; σ±1]

with σ the R-automorphism of R[qp] defined by σ(qp)=qp−1.
The Weyl algebras An(R) and their localizations are defined similarly for n∈N;

then An(R)=R[q1, ..., qn][p1 ; ∂q1 ]...[p1 ; ∂q1 ] and

A′
n(R) =R[q±1

1 , ..., q±1
n ][p1 ; ∂q1 ]...[pn ; ∂qn ]

=R[q1p1, ..., qnpn][q±1
1 ; σ±1

1 ]...[q±1
n ; σ±1

n ].
(4.2)

The proof of the following Lemma is straightforward.
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Lemma 4.1. The algebra D can be described as an iterated Ore extension:

(4.3) D� k[g±1, x, u]︸ ︷︷ ︸
O commutative

[y ; d][ζ ; δ][v ; σ, d]

where d is the derivation of O :=k[g±1, x, u], δ is the derivation of O[y ; d], σ is the

automorphism and d is the σ-derivation of O[y ; d][ζ ; δ] defined by:

(4.4)

d(x)=−1
2x

2, δ(x)=x, σ(x)=x, d(x)=1−g+xu,

d(u)=g−1, δ(u)=−u, σ(u)=u, d(u)=−1
2u

2,

d(g)=−xg, δ(g)=0, σ(g)=g, d(g)=gu,

δ(y)=y, σ(y)=y, d(y)=−gζ+yu,

σ(ζ)=ζ+1, d(ζ)=0.

Corollary 4.2. The algebra D is strongly noetherian, AS-regular and Cohen-

Macaulay.

Proof. D is strongly noetherian by [ASZ, Proposition 4.10]; AS-regular by
[AST, Proposition 2] and Cohen-Macaulay by [ZZ, Lemma 5.3]. �

4.2. Localizing

We consider the following elements of the subalgebra O:

(4.5) q :=ux+2(1+g) and z := q2g−1.

Lemma 4.3.
(i) x is ad-locally nilpotent in D;

(ii) q is normal in D,

(iii) z is central in D.

Proof. (i): We have that adx(x)=adx(u)=adx(g±1)=ad2
x(ζ)=0; then ad2

x(y)=
adx(−1

2x
2)=0 and ad2

x(v)=adx(−xu+g−1)=0. By the Leibniz rule, the claim
follows.

(ii): Clearly q commmutes with u, x, g±1 and we have

(4.6) qy=(y+ 1
2x)q, qv=(v− 1

2u)q, qζ = ζq

by straightforward calculations. Thus Dq=qD, i.e. q is normal.
(iii): The generator g commutes with x, u and ζ, and satisfies: gy=(y+x)g,

gv=(v−u)g. Hence z=q2g−1 is central in D. �
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By Lemma 4.3 (ii) the multiplicative set generated by q is an Ore subset of
D. Now by Lemma 4.3 (i) this is also the case for x by [KL, Lemma 4.7] which is
a particular case of [BR]. This allows us to consider the localization D′ of D with
respect to the multiplicative set generated by x and q. Let us introduce the element

(4.7) t := qx−1 =u+2(1+g)x−1 ∈O′ :=D′∩O.

Observe that the preceding proof implies at once that

tq= qt, tz = zt.(4.8)

Then k[g±1, x±1, u]=k[g±1, x±1, t]. In O′, the element t is invertible with t−1=
q−1x and the element z is invertible with z−1=gq−2. Then:

(4.9) O′ = k[g±1, x±1, t±1] = k[g±1, q±1, t±1] = k[z±1, q±1, t±1].

We deduce the following description of D′ as an iterated Ore extension:

(4.10) D′ = k[z±1, q±1, t±1]︸ ︷︷ ︸
O′ commutative

[y ; d][ζ ; δ][v ; σ, d];

here d, δ, σ, d denote the canonical extensions to D′ of d, δ, σ, d as in (4.3).
Let R:=k[z±1, t±1]. We introduce

(4.11) p :=−2q−2ty.

Lemma 4.4. The subalgebra k[z±1, q±1, t±1][y ; d]=k[z±1, q±1, t±1][p ; ∂q] of

D′ is isomorphic to A′
1(R).

Proof. We have d(z)=0 by Lemma 4.3(iii). We compute using (4.4):

d(q) = d(u)x+ud(x)+2d(g)=−gx−x− 1
2ux

2 =−1
2xq=−1

2q
2t−1,

d(t) = d(q)x−1−qx−2d(x)= 0.

Then the change of variable p:=−2q−2ty leads to the commutation relations

pz = zp, pt= tp and pq−qp=1.(4.12)

This proves that k[z±1, q±1, t±1][y ; d]=k[z±1, q±1, t±1][p ; ∂q] since the powers of p
form a basis of the left-hand side as R[q±1]-module. Now the right-hand side is
isomorphic to A′

1(R) by definition; see (4.1). �

Lemma 4.5. The following subalgebras of D′ are equal:

k[z±1, q±1, t±1][y ; d][ζ ; δ] = k[z±1, q±1, t±1][p ; ∂q][ζ ; −t∂t].
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Proof. We have δ(z)=0 by Lemma 4.3(iii). We compute using (4.4):

δ(t)= δ(u)+2(1+g)δ(x−1)=−u+2(1+g)(−x−1)=−t,

δ(q)= δ(t)x+tδ(x)=−tx+tx=0,
δ(p) =−2δ(q−2)ty−2q−2δ(t)y−2q−2tδ(y)= 2q−2ty−2q−2ty=0.

To sum up,

δ(z) = δ(q)= δ(p)= 0 and δ(t)=−t,(4.13)

which gives the desired result. �

Remark 4.6. The change of variable s:=−t−1ζ leads to the commutation rela-
tions sz−zs=sq−qs=sp−ps=0 and st−ts=1. Then denoting T :=k[z±1], we have
in D′ the equality of subalgebras:

k[z±1, q±1, t±1][y ; d][ζ ; δ] = k[z±1][q±1][p ; ∂q][t±1][s ; ∂t]�A′
2(T ).

Lemma 4.7. With the change of variable w:=t−1v, we have:

D′ = k[z±1, q±1, ζ][p ; ∂q][w ; D][t±1; τ±1],

where D is the derivation of k[z±1, q±1, ζ][p ; ∂q] such that:

D(z) =D(ζ)= 0,(4.14)

D(q) =−1+ 1
2q−z−1q2,(4.15)

D(p) =−1
2p+2qz−1p+2z−1ζ+2q−2−2z−1,(4.16)

and τ is the automorphism of k[z±1, q±1, ζ][p ; ∂q][w ; D] such that:

τ(z) = z, τ(q)= q, τ(p)= p,(4.17)

τ(ζ)= ζ+1, τ(w)=w+ 1
2−2qz−1.(4.18)

Proof. We start with the description (4.10) of D′ and recall Lemma 4.5. By
direct calculations using (4.4), we show that:

vz = zv, vζ =(ζ+1)v, vt= tv− 1
2 t

2+2qz−1t2,

vq= qv−t+ 1
2 tq−tz−1q2,

vp= pv− 1
2 tp+2tz−1qp+2tz−1ζ+2tq−2−2tz−1.
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We replace in D′=O′[p ; ∂q][ζ ; −t∂t][v ; σ, d] the generator v by:

(4.19) w := t−1v.

The last two of the above relations become:

wq= qw−1+ 1
2q−z−1q2,

wp= pw− 1
2p+2qz−1p+2z−1ζ+2q−2−2z−1.

We still have wz=zw. By (4.13), we have ζt=tζ−t, thus ζt−1=t−1ζ+t−1. We
deduce from this and the relation ζv=vζ−v that wζ=ζw. Finally, the relation
wt=tw− 1

2 t+2qz−1t can be rewritten as tw=(w+ 1
2−2qz−1)t, which gives rise to

the desired description of D′. �

Next, we introduce the element

z′ := q−1
[
xv+uy+(−1

2ux+g−1)ζ−2(1+g)
]

(4.20)

=
[
xv+uy+(−1

2ux+g−1)ζ−2(1+g)
]
q−1(4.21)

Theorem 4.8. The algebra D′ is isomorphic to the localized Weyl algebra

A′
2(S), with center S :=k[z±1, z′]. In particular, z′ is central in D′.

Proof. The subalgebra k[z±1, q±1, ζ][p ; ∂q] is isomorphic to the localized Weyl
algebra A′

1(S) for S=k[z±1, ζ] by (4.12) and (4.13). Thus it is natural by [D,
Lemma 4.6.8] to look for an element f∈k[z±1, q±1, ζ][p ; ∂q] such that D is the
inner derivation adf . By (4.15) and (4.16), such an element satisfies:

fq−qf =−1+ 1
2q−z−1q2,

fp−pf =(−1
2 +2z−1q)p+2q−2+2z−1(ζ−1).

Using (4.13), a solution is clearly:

(4.22) f :=−(1− 1
2q+z−1q2)p+2q−1−2z−1(ζ−1)q.

Then we have by construction for any h∈k[z±1, q±1, ζ][p ; ∂q]:

(w−f)h=wh−fh=hw+D(h)−fh=hw+fh−hf−fh=h(w−f).
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Moreover, we deduce from τ(ζ)=ζ+1 that τ(f)=f−2z−1q. Then the second iden-
tity of (4.18) implies that τ(w−f)=w−f+ 1

2 . A first consequence is that the ele-
ment:

(4.23) z′ :=w−f− 1
2ζ

is central in D′. We can replace the generator w by z′ to obtain:

(4.24) D′ = k[z±1, q±1, ζ][p ; ∂q][z′][t±1; τ±1],

where all generators pairwise commute except:

(4.25) pq−qp=1 and tζ−ζt= t.

We can replace the generator ζ by:

(4.26) ξ :=−t−1ζ

to obtain the following differential description:

(4.27) D′ = k[z±1, z′][q±1][p ; ∂q][t±1][ξ ; ∂t],

with

(4.28) pq−qp=1 and ξt−tξ =1.

We can alternatively replace the generator p by:

(4.29) r :=−qp

to obtain the following automorphic description:

(4.30) D′ = k[z±1, z′][r][q±1 ; σ±1][ζ][t±1; τ±1]

with

(4.31) qr=(r+1)q and tζ =(ζ+1)t.

We conclude from (4.27) or (4.30) that D′ is isomorphic to the localized Weyl algebra
A′

2(S) as in (4.2) for S=k[z±1, z′]. Since char k=0, S=Z (A′
2(S)).

The last step is to express the central element z′ according to the initial gen-
erators of D. Let us recall from (4.5) and (4.11) that

q=ux+2(1+g), z = q2g−1 and p=−2q−1x−1y.

It follows that the expression (1− 1
2q+z−1q2)p in formula (4.22) is equal to q−1uy.

Then: f=q−1[−uy+2(1+g)−2gζ]. Moreover w=q−1xv by (4.7) and (4.19), and we
obtain obviously the relation (4.20) from (4.23). The alternative expression (4.21)
follows then from (4.6). �

Remark 4.9. Observe in (4.20) that z′ does not depend on negative powers of
x; i.e. z′ lies in the localization of D by inverting only the powers of q.
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4.3. The center of D

Because of Theorem 4.8 and (4.20), it is natural to introduce the following
element of D:

s := qz′ =xv+uy+(−1
2ux+g−1)ζ−2(1+g)∈Ov⊕Oy⊕Oζ⊕O,

which is normal in D by Lemma 4.3 (ii) and Theorem 4.8.
Since z=q2g−1 is central in D, we are lead to introduce:

θ := s2g−1 ∈Z(D).(4.32)

Now z′=q−1s=sq−1 is central in D′ by Theorem 4.8, hence

ω := zz′ = qg−1s∈Z(D).(4.33)

Moreover ω∈Ov⊕Oy⊕Oζ⊕O. The three elements z, θ, ω are not algebraically
independent, since

(4.34) zθ=ω2.

Theorem 4.10. The center of D is the commutative subalgebra generated by

z, ω and θ, which is isomorphic to the quotient k[X,Y, Z]/(XZ−Y 2).

Proof. Clearly, Z(D)=Z(D′)∩D. Since Z(D′)=k[z±1, z′]=k[z±1, ω], we need
to determine k[z±1, ω]∩D. Since k[z, ω]⊂Z(D), we have to consider the k-linear
combinations of monomials z−iωj for positive i. For any integer j≥0, it follows
from the relations in the iterated Ore extension (4.3) that ωj is of the form ωj=
(g−jqjxj)vj+... where the rest if of degree ≤j−1 in D. We deduce that a power zi
with i≥1 divides ωj in D if and only if zi divides g−jqjxj in O, that is if and only
if j≥2i. Then a monomial m=z−iωj with i≥1, j≥0 is in D if and only if j≥2i and
we have in this case m=θiωj−2i. This is sufficient to complete the proof. �

The (spectrum of) k[X,Y, Z]/(XZ−Y 2) is the well-known Kleinian surface of
type A1, i.e. the algebra of invariants of the polynomial ring k[x1, x2] under the
action of the involution x1 �→−x1, x2 �→−x2.

4.4. The skew field of fractions of D

Let R be a commutative k-algebra which is a domain. With the notations of
§4.1, the algebra An(R) admits a skew field of fractions Frac(An(R))=:Dn(K) where
K is the field of fractions of R. In particular, let Dn,s(k)=Dn(K) when K is a purely
transcendental extension k(z1, ..., zs) of degree s. Following the seminal paper [GK],



228 Nicolás Andruskiewitsch, François Dumas and Héctor Martín Peña Pollastri

we say that a noncommutative k-algebra A which is a noetherian domain satisfies
the Gelfand-Kirillov property when its skew field of fractions FracA is k-isomorphic
to a Weyl skew field Dn,s(k) for some integers n≥1, s≥0.

The Jordan plane J satisfies the Gelfand-Kirillov property since FracJ�
D1,0(k)=D1(k). This is also the case for the bosonizations D<0#kΓ and U(h)#D>0

because we can prove by easy technical calculations that Frac(D<0#kΓ)�
Frac(U(h)#D>0)�D1,1(k). Finally, we conclude that the algebra D itself satisfies
the Gelfand-Kirillov property.

Corollary 4.11. The skew field of fractions of D is k-isomorphic to the Weyl

skew field D2,2(k).

Proof. By Theorem 4.8, we have FracD=FracA′
2(S)=FracA2(S)=D2(K) of

center K=k(z, z′). �
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