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Faces of polyhedra associated with relation
modules

Germán Benitez and Luis Enrique Ramirez

Abstract. Relation Gelfand-Tsetlin gln-modules were introduced in [FRZ19], and are
determined by some special directed graphs and Gelfand-Tsetlin characters. In this work, we
constructed polyhedra associated with the class of relation modules, which includes as a particular
case, any classical Gelfand-Tsetlin polytope. Following the ideas presented in [LM04], we give
a characterization of d-faces of the associated polyhedra in terms of certain tilings and matrices
related to the corresponding graph.

1. Introduction

The Gelfand-Tsetlin construction [GT50], is one of the most remarkable re-
sults in representation theory and gives an explicit realization of each simple finite-
dimensional gln-module. This construction includes an explicit basis formed by
tableaux with entries satisfying certain betweenness conditions. Using Gelfand-
Tsetlin basis and their defining betweenness conditions, Gelfand and Zelevinsky
[GZ85] introduced classes of convex polytopes as a tool for a geometric interpre-
tation of the multiplicities of simple modules in the tensor product of two simple
finite-dimensional gln-modules, and weight spaces of simple finite-dimensional gln-
modules. That was the first construction to provide an effective way to relate
representation theory of the general Lie algebra gln and polyhedra. The poly-
topes whose number of integral points measure the weight multiplicities are called
Gelfand-Tsetlin polytopes. In 2004, De Loera and McAllister in [LM04] get to char-
acterize the points of a d-face (points in a face of dimension d) of the Gelfand-Tsetlin
polytopes.
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In [FRZ19], Futorny, Ramirez and Zhang introduced sets of relations as an
attempt to generalize the betweenness conditions that characterize basis elements
in the Gelfand-Tsetlin construction [GT50]. Associated with sets of relations the
authors constructed explicit modules called relation Gelfand-Tsetlin gln-modules,
relation gln-modules, or relation modules. Previously, several classes of relation
modules were constructed by Gelfand and Graev [GG65], Lemire and Patera [LP79],
and Mazorchuk [Maz03]. Using as a motivation the results in [LM04], and [FRZ19],
the concept of Gelfand-Tsetlin polyhedra associated with relation modules was in-
troduced in [Car19], and some well behave cases were studied.

Construction of polyhedra associated to a directed graph is well known, how-
ever, in this paper we focus on special graphs such that the associated polyhedra
preserves the relationship between the number of “integral points” and the dimen-
sions of the weight spaces of the corresponding relation module. Our approach
includes a combinatorial characterization for the dimension of the minimal face
associated to a point of the polyhedron.

In the literature, Gelfand-Tsetlin patterns appear in connection with polyhedra
in [GZ85], [BZ89], [KB95], [LM04], [Pos09], [ABS11], and probability in [WW09].
In [BZ89], [KB95], [LM04], Gelfand-Tsetlin patterns are defined to be triangular
arrangements of non-negative integers subject to some order restrictions, namely
C1 (see Example 3.1). There are many different ways to define Gelfand-Tsetlin
polytopes and polyhedra. In [KB95, p. 92], and [LM04, Definition 1.2., p. 460] are
certain subsets of Rn(n+1)/2

≥0 . In [ABS11], [GKT13] the authors fixed the nth row and
do not require the entries to be non-negative. In contrast, Danilov, Karzanov and
Koshevoy, in [DKK05], study certain polyhedra related to an extension of Gelfand-
Tsetlin patterns, in the sense that it is not necessary a triangular configuration. In
this paper we fix gln and we will define C-pattern to be a triangular arrangement of
complex numbers subject to some order restrictions C. Our definition of C-pattern
is also an extension of Gelfand-Tsetlin patterns associated with gln.

This paper is organized as follows. In Section 2, we discuss some preliminaries
on highest weight modules and Gelfand-Tsetlin modules. Section 3 is dedicated
to relation modules, to this goal we recall the notions of set of relations C, its
associated graph, and Gelfand-Tsetlin tableaux. Associated with a set of relations
C, in Section 4, we introduce the concept of C-pattern and three kind of polyhedra
associated with C, we exhibit the relation of these polyhedra with gln-modules.
Also, we define a tiling and tiling matrix associated with a C-pattern, and study
some of their properties. In Section 5, we use the results of the previous section to
obtain a combinatorial characterization for the dimension of a minimal face with
respect to a point in the polyhedron.
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2. Preliminaries on modules

Unless otherwise specified, the ground field will be C, g will denote a finite-
dimensional Lie algebra with a Cartan subalgebra h, and a triangular decomposition
g=n−⊕h⊕n+. By U(g) we denote the universal enveloping algebra of g and by V ∗

the dual space HomC(V,C) of a vector space V .

2.1. Highest weight modules

We begin this section recalling some definitions and basic results on weight
modules. For more details we refer the reader to [Hum08].

Definition 2.1. Let M be an U(g)-module. For each λ∈h∗, the λ-weight space
is defined by Mλ :={v∈M |h·v=λ(h)v, for all h∈h}. If Mλ �=0, we say that λ is
a weight of M , and dim(Mλ) will be called multiplicity of λ. M is called weight
module if it is equal to the direct sum of its weight spaces.

A g-module M is a highest weight module if there exist λ∈h∗, and a nonzero
vector v+∈Mλ such that M=U(g)·v+ and U(n+)·v+=0. The vector v+ is called
a highest weight vector of M and λ a highest weight of M .

It is a well known result in representation theory that simple finite-dimensional
gln-modules are highest weight modules, and there is a correspondence between
simple finite-dimensional modules and integral dominant gln-weights (i.e. n-tuples
λ∈Zn satisfying λi−λi+1∈Z≥0, for all i=1, 2, ..., n−1).

2.2. Gelfand-Tsetlin modules

From now on we fix n≥2, g:=gln to be linear Lie algebra of n×n matrices over
C, the Cartan subalgebra h of diagonal matrices, and the triangular decomposition
g=n−⊕h⊕n+, where n+ is the subalgebra of upper triangular matrices and n− the
subalgebra of lower triangular matrices.

A large and important class of weight modules that have been extensively stud-
ied in the last 30 years is the so-called Gelfand-Tsetlin modules. This modules are
characterized by a well-behaved action of a fixed maximal commutative subalgebra
of U(gln), known as Gelfand-Tsetlin subalgebra. In what follows, we give a formal
definition of Gelfand-Tsetlin subalgebra and Gelfand-Tsetlin modules.

For m≤n, glm naturally identifies with the subalgebra of gln spanned by
{Eij |i, j=1, ...,m}, where Eij is the (i, j)th elementary matrix. We have the chain
gl1⊂gl2⊂...⊂gln, which indices the chain U(gl1)⊂U(gl2)⊂...⊂U(gln) for the uni-
versal enveloping algebras. The Gelfand-Tsetlin subalgebra Γ of U(gln) ([DFO94])
is generated by {Zm |m=1, ..., n}, where Zm stands for the center of U(glm).
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Definition 2.2. A finitely generated U(gln)-module M is called a Gelfand-
Tsetlin module (with respect to Γ) if M |Γ=

⊕
χ∈Γ∗ Mχ, where

Mχ =
{
v ∈M | for each γ ∈Γ, ∃k∈Z≥0 such that (γ−χ(γ))kv=0

}
.

Remark 2.3. Any weight module with finite-dimensional weight spaces (in par-
ticular any module in category O) is a Gelfand-Tsetlin module. Moreover, as h⊆Γ,
any simple Gelfand-Tsetlin module is a weight module.

3. Relation modules

The class of relation Gelfand-Tsetlin modules was introduced in [FRZ19]. These
modules generalize the construction of simple finite-dimensional modules [GT50]
and generic Gelfand-Tsetlin modules [DFO94]. We recall the construction and main
properties.

Set V:={(i, j)∈Z×Z|1≤j≤i≤n}, and R:=R−∪R0∪R+⊆V×V, where

R+ := {((i, j); (i−1, t)) | 2≤ j≤ i≤n, 1≤ t≤ i−1},
R− := {((i, j); (i+1, s)) | 1≤ j≤ i≤n−1, 1≤ s≤ i+1},
R0 := {((n, i); (n, j)) | 1≤ i �= j≤n}.

Any subset C⊆R will be called a set of relations. By G(C) we denote the directed
graph with set of vertices V, and an arrow from vertex (i, j) to (r, s) if and only if
((i, j); (r, s))∈C. For convenience, we will picture the set of vertices V as a triangular
arrangement with n rows, where the kth row is {(k, 1), ..., (k, k)}.

Example 3.1. For any 1≤k≤n, we consider the relations Ck :=C+
k ∪C−

k , where
C+
k :={((i+1, j); (i, j))|k≤j≤i≤n−1}, C−

k :={((i, j); (i+1, j+1))|k≤j≤i≤n−1}.
We will refer to C1 as the standard set of relations, and to Cn=∅ as the generic

set of relations. For n=4, the graphs associated with C+
1 , C1, C−

2 , and C2 are:
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�����
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�����
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�����

(1, 1)
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���
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�����
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�����

(1, 1)

Definition 3.2. Let C be a set of relations.
(i) By V(C) we will denote the subset of V of all vertices that are source or

target of an arrow in G(C).
(ii) Given (i, j), (r, s)∈V we write (i, j)�C (r, s) if there exists a directed path

in G(C) from (i, j) to (r, s).

Entries of vectors L∈Cn(n+1)/2 will be indexed by elements of V, ordered
as (ln1, ..., lnn|ln−1,1, ..., ln−1,n−1|...|l21, l22|l11), and T (L) will denote the triangular
configuration of height n, with kth row (lk1, ..., lkk) for k=1, ..., n. We will refer to
T (L) as Gelfand-Tsetlin tableau. For any A⊆C

n(n+1)/2, we denote by T(A) the set
of all Gelfand-Tsetlin tableaux T (L), with L∈A. By Z

n(n+1)/2
0 we will denote the

set of vectors L in Z
n(n+1)/2 such that lni=0 for i=1, ..., n. Given a Gelfand-Tsetlin

tableau T (L), elements of the set T(L+Z
n(n+1)/2
0 ) will be called L-integral tableaux.

Whenever we refer to connected components of a directed graph G, we are
referring to the connected components of the graph G obtained from G forgetting
the orientation of the arrows. A walk in G is by definition a path in G.

Definition 3.3. ([FRZ19, Definition 4.2]) Let C be a set of relations and T (L)
any Gelfand-Tsetlin tableau.

(i) We say that T (L) satisfies C, if lij−lrs∈Z≥0 for any ((i, j); (r, s))∈C.
(ii) T (L) is a C-realization, if T (L) satisfies C and for any 1≤k≤n−1 we have,

lki−lkj∈Z if and only if (k, i) and (k, j) belong to the same connected component
of G(C).

(iii) We call C noncritical if for any C-realization T (L) one has lki−lkj+j−
i �=0, 1≤k≤n−1, i �=j, whenever (k, i) and (k, j) belong to the same connected
component of G(C).

(iv) Suppose that T (L) satisfies C. By BC(T (L)) we denote the set of L-integral
tableaux satisfying C, and by VC(T (L)) the vector space over C with basis BC(T (L)).

Remark 3.4. Whenever we use a Gelfand-Tsetlin tableau T (M), we are con-
sidering it as an element of a vector space of the form VC(T (L)) for some set of
relations C. In particular, we should be careful when comparing M with T (M). For
instance, T (M+N) �=T (M)+T (N).
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Example 3.5. Let D be the set of relations with associated graph G(D), and
Gelfand-Tsetlin tableaux T (X) and T (Y ) defined as follows:

G(D)=

(4, 1) (4, 2) (4, 3) (4, 4)

(3, 1) (3, 2)
���

��
(3, 3)

(2, 1)
���

��

�����
(2, 2)

(1, 1)

�����

√
2 2 3 4

√
2 2 3 4

1 0 2
√

2 0
√

3

T (X)= 1 −2 T (Y )= 0 0

0 0

In this case, T (X) and T (Y ) satisfy D, T (Y ) is a D-realization, and T (X) is not
a D-realization (for instance, x31−x32∈Z). Moreover, as (2, 1)�D (2, 2), for any
D-realization T (Z) we should have z21−z22∈Z≥0, in particular D is a noncritical
set of relations.

Remark 3.6. Definitions 3.3(i), (iii) are slightly different from the original def-
initions in [FRZ19], however, they can be recovered with the shift lkj →lkj+j−1.

Definition 3.7. ([FRZ19, Definition 4.4]) Let C be a set of relations. We call
C admissible if for any C-realization T (L), VC(T (L)) has structure of a gln-module,
endowed with the following action of the generators of gln on any T (M)∈BC(T (L)),

Ek,k+1(T (M)) =−
k∑

i=1

⎛⎜⎜⎜⎜⎜⎝
k+1∏
j=1

(mki−mk+1,j+j−i)

k∏
j �=i

(mki−mkj+j−i)

⎞⎟⎟⎟⎟⎟⎠T (M+δki),(1)

Ek+1,k(T (M)) =
k∑

i=1

⎛⎜⎜⎜⎜⎜⎝
k−1∏
j=1

(mki−mk−1,j+j−i)

k∏
j �=i

(mki−mkj+j−i)

⎞⎟⎟⎟⎟⎟⎠T (M−δki),(2)
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Ekk(T (M)) =
(

k∑
i=1

mki−
k−1∑
i=1

mk−1,i

)
T (M),(3)

where δki stands for the vector in T(Zn(n+1)/2
0 ) such that (δki)rs=δkrδis. If the new

tableau T (M±δki) does not belong to BC(T (L)), then the corresponding summand
of Ek,k+1(T (M)) or Ek+1,k(T (M)) is zero by definition. If C is admissible, and
T (L) a C-realization, we will call VC(T (L)) a relation module.

Remark 3.8. By Equation (3), whenever C is an admissible set of relations,
BC(T (L)) is an eigenbasis for the action of the Cartan subalgebra {E11, ..., Enn}.
Moreover, any relation module is a Gelfand-Tsetlin module, with diagonalizable
action of the Gelfand-Tsetlin subalgebra Γ (see [FRZ19, Theorem 5.3]).

Definition 3.9. Let C be any set of relations.
(i) We call G(C) reduced, if for any (k, j)∈V the following is satisfied:

– There exist at most one arrow pointing up with target (k, j), and at most
one arrow pointing down with target (k, j).

– There exist at most one arrow pointing up with source (k, j), and at most
one arrow pointing down with source (k, j).

– There exist at most one horizontal arrow with target (k, j), and at most
one arrow horizontal arrow with source (k, j).
(ii) Set k �=n, we called ((k, i); (k, j))∈V×V an adjoining pair for G(C), if:

– i<j,
– (k, i)�C (k, j),
– (k, i)�C (k, t)�C (k, j) implies t=i or t=j.

Theorem 3.10. ([FRZ19, Theorem 4.33]) Suppose that C is a noncritical set

of relations whose associated graph G=G(C) satisfies the following conditions:

(i) G does not contain loops, and (k, i)�C (k, j) implies i≤j;

(ii) G is reduced;

(iii) If G contains an arrow connecting (k, i) and (k+1, t), then (k+1, s) and

(k, j) with i<j, s<t are not connected in G.

C is an admissible set of relations if and only if for any connected component G(E)
of G(C) and any adjoining pair ((k, i); (k, j)) in G(E), there exist p, q such that

E1⊆E or, there exist s<t such that E2⊆E , where the graphs associated to E1 and E2
are as follows

(k+1,p)

����
��

G(E1)= (k,i)

���
��

�����
(k,j);

(k−1,q)

						

(k+1,s) (k+1,t)

���
��

G(E2)= (k,i)

�����
(k,j)
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Remark 3.11. Follows from Theorem 3.10 that the sets of relations Ck, C+
k and

C−
k from Example 3.1, are admissible set of relations for any 1≤k≤n.

Gelfand-Tsetlin construction [GT50], is one of the most remarkable results in
representation theory and gives an explicit realization of any simple finite-dimen-
sional module. The following theorem describes Gelfand-Tsetlin construction in
terms of the standard set of relations.

Theorem 3.12. If λ:=(λ1, ..., λn) is an integral dominant gln-weight and

T (Λ) is the Gelfand-Tsetlin tableau of height n with entries λki :=λi, then VC1(T (Λ))
is isomorphic to the simple finite-dimensional module L(λ). Moreover,

(i) BC1(T (Λ)) is a basis of VC1(T (Λ)).
(ii) For any μ=(μ1, ..., μn)∈h∗, the weight space L(λ)μ has a basis

{
T (X)∈BC1(T (Λ))

∣∣∣ μk =
k∑

i=1
xki−

k−1∑
i=1

xk−1,i for all k=1, ..., n
}
.

Example 3.13. Let C be one of the sets of relations defined in Example 3.1, T (L)
a C-realization and λ:=(ln1, ..., lnn). As we mention before, they are admissible sets
of relations and:

(i) Set C=C+
1 , in this case VC(T (L)) is isomorphic to the generic Verma module

M(λ) (see [FRZ19, Example 5.10]).
(ii) Set C=C2, and λ̃:=(ln2, ..., lnn). In this case VC(T (L)) is an infinite-dimen-

sional module with finite-dimensional weight spaces (see [Maz03, Section 3]), all
of them of dimension dim(L(λ̃)). In fact, by Theorem 3.12, L(λ̃) has a basis B
parameterized by the set of standard tableaux in T(Zn(n−1)/2) with top row λ̃.
Given μ a weight of VC(T (L)), we consider the map ψμ :B−→T(Rn(n+1)/2) defined
by ψμ(T (S̃))=T (S), where:

sij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s̃i−1,j−1, if i, j≥2;
i∑

t=1
μt−

i∑
r=2

s̃i−1,r−1, if j=1 and 2≤i≤n;

μ1, if (i, j)=(1, 1).

It is easy to check that ψμ is injective and ψ(B) is a basis of VC(T (L))μ.
(iii) Set C=Ck with k≥3. In this case, the module VC(T (L)) has infinite-

dimensional weight spaces.
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4. Polyhedra and its faces

We begin the section with some generalities about polyhedra and faces of poly-
hedra. Then we introduce the main objects to be studied in this paper, namely,
polyhedra associated with sets of relations. We finish the section with some techni-
cal lemmas that will help us to characterize the dimension of a face associated with
a given point.

Let V be a finite-dimensional R-vector space. Given v∈V and W a vector
subspace of V , the set v+W is called affine subspace of V . The dimension of v+W

is dim(W ). For a subset X of V , we will denote by aff(X) the smallest affine
subspace of V containing X.

A subset P of an R-vector space V is called a polyhedron if it is the intersection
of finitely many closed halfspaces. The dimension of P is given by dim (aff(P )). A
polytope is a bounded polyhedron.

A hyperplane H is called a support hyperplane of the polyhedron P , if H∩P �=
∅, and P is contained in one of the two closed halfspaces bounded by H. The
intersection F=H∩P is a face of P , and H is called a support hyperplane associated
with F . Faces of dimension 0 are called vertices, and an edge is a face of dimension
1. In general, a face F of dimension k is called a k-face.

Proposition 4.1. ([BG09, Theorem 1.10(d)]) Let P be a polyhedron in R
d,

and x∈P . There exists a unique face F such that x∈int(F ), where int(F ) denotes

the relative interior of the affine subspace aff(F ) with respect to the standard topology

of Rd.

The face from Proposition 4.1 is the unique minimal element in the set of faces
of P containing x and is called minimal face for x.

Lemma 4.2. Let P be a polyhedron of an R-vector space V and let F be a

face containing x∈P with aff(F )=x+H. If there exists v such that x±v∈P , then

v∈H.

Proof. Suppose that x−v, x+v∈P . Let us consider a support hyperplane Hα=
{z∈V |α(z)=0} of P such that F=Hα∩P and α:V −→R its affine form, that is,

α(z)=β(z)+a0, a0 =α(0)

for some linear map β :V −→R. As x∈F=Hα∩P , we can easily check that α(x±v)=
±β(v). This implies that, x±v∈H−

α if and only if x∓v∈H+
α . Since Hα is a support

hyperplane of P , either

x±v ∈P ⊆H+
α := {z ∈V |α(z)≥ 0} , or x±v ∈P ⊆H−

α := {z ∈V |α(z)≤ 0} .

Hence x±v∈Hα. Furthermore x±v∈F⊆aff(F )=x+H, which implies v∈H. �
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Given a polyhedron P⊆R
n(n+1)/2 and X∈P , by DX(P )⊆R

n(n+1)/2 we will
denote the set

{
Y ∈Rn(n+1)/2 |X+Y,X−Y ∈P

}
=(X−P )∩(X+P ).

Remark 4.3. Let P be a polyhedron and X∈P . If {Y1, ..., Yk} is a maximal set
of linearly independent vectors in DX(P ), then the dimension of the minimal face
in P containing X is k.

4.1. Polyhedra associated with sets of relations

In this section, associated with any set of relations C we will define several
polyhedra in Rn(n+1)/2, which will be the main objects of study until the end of
this paper.

Definition 4.4. Let C be any set of relations, X∈Rn(n+1)/2 is called a C-pattern,
if xij≥xrs for any ((i, j); (r, s))∈C.

Remark 4.5. If C is a set of relations and T (L)∈T(Rn(n+1)/2) satisfies C (i.e.
lij−lrs∈Z≥0 if ((i, j), (r, s))∈C), then L is a C-pattern. The converse is not nec-
essarily true; in fact, let D be the set of relations of Example 3.5 and T (X) the
tableau

3 3 5 7
2

1 5
2 4

3 1

√
2

in this case X is a D-pattern, and T (X) does not satisfies D.

For 1≤k≤n we define Rk :Cn(n+1)/2−→C given by Rk(X):=
k∑

i=1
xki. The kth

weight linear map, wk :Cn(n+1)/2−→C is defined by

wk(X) :=
{
Rk(X)−Rk−1(X), if 2≤k≤n;
x11, if k=1.

Definition 4.6. Fix λ, μ∈Rn and C a set of relations. We consider the following
polyhedra in Rn(n+1)/2 associated with C

PC :=
{
X ∈R

n(n+1)/2 |X is a C-pattern
}
,

PC(λ) := {X ∈PC |xnj =λj for all 1≤ j≤n} ,
PC(λ, μ) := {X ∈PC(λ) |wi(X)=μi for all 1≤ i≤n} .
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Given y∈R, the point Y with entries yij=y is a C-pattern for any C, in particu-
lar PC is always unbounded. However, PC(λ) is a polytope if and only if the maximal
and minimal points with respect to �C , belong to the set {(n, 1), ..., (n, n)}.

Remark 4.7. If λ∈Zn is an integral dominant gln-weight with λn≥0 and μ∈Zn

a weight of L(λ), then PC1(λ, μ) is a polytope called the Gelfand-Tsetlin polytope
associated with λ and μ.

Lemma 4.8. Let X be a C-pattern in PC(λ, μ), and Y a C-pattern.
(i) X+Y ∈PC(λ) if and only if yni=0 for any 1≤i≤n.

(ii) X+Y ∈PC(λ, μ) if and only if X+Y ∈PC(λ), and Rk(Y )=0 for 1≤k≤n.

Proof. As the tableau associated with the sum of C-patterns is a C-pattern, in
order to prove (i) we just note that xni=λi=xni+yni if and only if yni=0. To prove

(ii) we note that X+Y ∈PC(λ) belongs to PC(λ, μ) if and only if
k∑

i=1
μi=Rk(X+Y ),

and Rk(X+Y )=Rk(X)+Rk(Y )=
k∑

i=1
μi+Rk(Y ) for any 1≤k≤n. �

The following results establish a direct connection between relation modules
and the polyhedra PC , PC(λ), and PC(λ, μ) from Definition 4.6. Recall that tableaux
in T(L+Z

n(n+1)/2
0 ) are called L-integral, and X in L+Z

n(n+1)/2
0 is called L-integral

point.

Theorem 4.9. Let C be any admissible set of relations, T (L) a C-realization,
and V =VC(T (L)) the corresponding relation gln-module. Set λ=(ln1, ..., lnn), and
μ=(w1(L), w2(L), ..., wn(L))∈h∗.

(i) The polyhedra PC and PC(λ) have the same number of L-integral points, and

this number is equal to dim(V ).
(ii) The number of L-integral points in PC(λ, μ) is equal to dim(Vμ).

Proof. First, we note that by definition the sets of L-integral points of PC
and PC(λ) coincide. By construction, T (PC(λ))∩T(L+Z

n(n+1)/2
0 ) is a basis of the

module VC(T (L)), which implies (i). Analogously, T (PC(λ, μ))∩T(L+Z
n(n+1)/2
0 )

is a basis of the weight space Vμ, implying (ii). �

As a consequence of Theorem 4.9, we have the following:

Corollary 4.10. Let C be an admissible set of relations, T (L) a C-realization,
λ=(ln1, ..., lnn), and μ a weight of VC(T (L)).
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(i) Set C=C1. In this case, the module VC(T (L)) is isomorphic to the simple

finite-dimensional module L(λ).
– The number of L-integral points in PC(λ) is finite and equal to the dimen-

sion of L(λ).
– The number of L-integral points in PC(λ, μ) is finite and equal to the di-

mension of the weight space L(λ)μ (cf. [GZ85, Proposition 1]).

(ii) Set C=C+
1 . In this case, the module VC(T (L)) is isomorphic to the generic

Verma module M(λ) (see [FRZ19, Example 5.10]), and

– PC(λ) contains infinitely many L-integral points.

– The number of L-integral points in PC(λ, μ) is dim(M(λ)μ)<∞.

(iii) Set C=C2. In this case, λ̃=(ln2, ..., lnn) is a dominant gln−1-weight, and

VC(T (L)) is an infinite-dimensional module with finite weight spaces of dimension

dim(L(λ̃)) (see Example 3.13).

– PC(λ) contains infinitely many L-integral points.

– If μ is a weight of VC(T (L)), the number of L-integral points in PC(λ, μ) is

equal to dim(L(λ̃)).

Definition 4.11. Let C be a set of relations, and X∈Rn(n+1)/2 be a C-pattern.
Associated with C and T (X) we have an equivalence relation in V, where (i, j) is
related with (r, s) if and only if there exists a walk in G(C) connecting (i, j) and
(r, s) with the entries of X associated with the vertices in the walk being equal. The
partition of V induced by the relation is called tiling, and is denoted by MC(X).
The equivalence classes will be called tiles. In particular, if (i, j) /∈V(C), the set
{(i, j)} is a tile.

Set Λ⊆{1, ..., n}. A tile M will be called Λ-free if M∩{(k, j) | 1≤j≤k}=∅

for any k∈Λ. Moreover, if (i, j) belongs to a Λ-free tile, it will be called Λ-free.

Remark 4.12. In this paper, we will be interested in the particular cases Λ=
{n}, and Λ={1, n}. It is worth to mention that in [LM04] the authors call free tiles
what we will call here {1, n}-free tiles.

Example 4.13. Let D be the set of relations from Example 3.5, and C+
1 , C+

2
as described in Example 3.1. The following are the tilings of a D-pattern, and a
tableau seeing as a C+

1 -pattern and as a C+
2 -pattern. For the picture to the left, the

tiles without colouring are the {n}-free tiles, and for the other two pictures, the
tiles without colouring are the {1, n}-free tiles.
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0
0

√
2

0
0

2 3 4√
2

√
3

Tiling 1

−2
3

3
8

−1
3

5 5 4
5

Tiling 2

−2
3

3
8

−1
3

5 5 4
5

Tiling 3

Lemma 4.14. Let C be a set of relations, X a C-pattern, λ=(xn1, ..., xnn),
and μ=(w1(X), w2(X), ..., wn(X)).

(i) If Y ∈DX(PC), then yij=yrs, whenever (i, j) and (r, s) belong to the same

tile of MC(X).
(ii) If Y ∈DX(PC(λ)), then yij=0, whenever (i, j) is not {n}-free.
(iii) If Y ∈DX(PC(λ, μ)), then yij=0, whenever (i, j) is not {1, n}-free.

Proof. If (i, j)=(r, s) there is nothing to prove, so we can assume (i, j) and
(r, s) are in the same tile and (i, j) �=(r, s). Consider a walk in G(C) connecting
(i, j) and (r, s) with the entries associated with the vertices in the walk being equal.
Arguing by induction on the length of the walk, it is enough to prove the lemma
for walks of length 1. Without loss of generality we can assume that such a walk is
given by the relation ((i, j); (r, s))∈C. In this case, the entries of any C-pattern Z

should satisfy zij≥zrs. Now, by the hypothesis

xij+yij ≥xrs+yrs, xij−yij ≥xrs−yrs, and xij =xrs

which implies (i).
By Lemma 4.8(i) we have yni=0 for 1≤i≤n, therefore (ii) is a consequence

of item (i) and PC(λ)⊆PC . Moreover, under the assumptions of item (iii), Lemma
4.8(ii) implies also y11=0, now (iii) follows from the definition of {1, n}-free tile and
item (i). �

Lemma 4.15. Let C be a set of relations, X a C-pattern, λ=(xn1, ..., xnn),
and μ=(w1(X), w2(X), ..., wn(X)).

(i) If MC(X) does not have {n}-free tiles, then X is a vertex of PC(λ).
(ii) If MC(X) does not have {1, n}-free tiles, then X is a vertex of PC(λ, μ).

Proof. To show that X is a vertex of a polyhedron P it is enough to prove that
DX(P )={0}. With this in mind, (i) follows from Lemma 4.14(ii), and (ii) follows
from Lemma 4.14(iii). �
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Definition 4.16. Given a C-pattern X, with tiling MC(X) and set of {n}-free
tiles M1,M2, ...,Mf, we define a tiling matrix AMC(X) to be the matrix

(aik)1≤i≤n−1
1≤k≤f

where aik = |{j | (i, j)∈Mk}| .

For C-patterns without {n}-free tiles we consider AMC(X) to be the identity matrix
of order n−1.

Remark 4.17. Note that the matrix AMC(X) depends of the chosen order of the
{n}-free tiles, but the dimension of the kernel of AMC(X) does not. In fact, given
two different orders of the {n}-free tiles, the corresponding matrices are related by
a permutation of the columns.

Example 4.18. Let us consider the tilings T1, T2 and T3 from Example 4.13,
and enumerate the {n}-free tales from left to right and from bottom to top. Under
this conditions the corresponding tiling matrices are:

AT1 =

⎛⎝ 1 0 0
2 0 0
1 1 1

⎞⎠ , AT2 =

⎛⎝ 1 0 0 0
0 1 1 0
0 1 0 1

⎞⎠ , AT3 =

⎛⎝ 1 0 0 0 0
0 1 1 0 0
0 0 0 1 1

⎞⎠ .

5. Main results

From now on and until the end of this paper we will fix a set of relations C,
a C-pattern X, λ=(xn1, ..., xnn), and μ=(w1(X), w2(X), ..., wn(X)). By t we will
denote the number of tiles, by f the number of {n}-free tiles, and k the dimension
of ker

(
AMC(X)

)
⊆R

f, so k≤f≤t. By Remark 4.17, we can assume that MC(X)=
{M1, ...,Mt}, where {M1, ...,Mf} is the set of all {n}-free tiles.

Notation 5.1. Let us fix a basis
{
v̄(1), ..., v̄(f)} of Rf such that

{
v̄(1), ..., v̄(k)}

is a basis of ker
(
AMC(X)

)
⊆R

f. Let ι:Rf−→R
t the canonical inclusion on the first

f entries, and
{
v(1), ...,v(t)} the basis of Rt given by

v(m) =
{
ι(v̄(m)), if m≤f;

ith canonical vector of Rt, if m>f.

Now, consider the linear map ψ :Rt−→R
n(n+1)/2 defined by ψ(v(m))=Y (m), where

y
(m)
ij =v(m)

k whenever (i, j)∈Mk. Finally, denote by Yr the set
{
Y (1), ..., Y (r)}, for

r=1, 2, ..., t. By convention, Y0={0}.

Lemma 5.2. Under the previous notation.
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(i) If X∈PC , then Yt⊆DX (PC).
(ii) If X∈PC(λ), then Yf⊆DX (PC (λ)).
(iii) If X∈PC(λ, μ), then Yk⊆DX (PC (λ, μ)).

Proof. To prove (i) we show that X±Y (m)∈PC for 1≤m≤t. As X±Y ∈P∅

for any Y ∈Rn(n+1)/2, we can assume without lose of generality C �=∅. Let us con-
sider a relation ((i, j); (r, s))∈C. Suppose first that xij=xrs, in this case (i, j) and
(r, s) belong to the same tile Mk, and therefore y

(m)
ij =v(m)

k =y
(m)
rs , which implies(

xij±y
(m)
ij

)
−
(
xrs±y

(m)
rs

)
=0. Suppose now that xij>xrs and assume∣∣∣v(m)

k

∣∣∣<min
{
|xrs−xpq|

2 : xrs �=xpq

}
, for 1≤m, k≤ t.

Under these conditions,

±
(
y
(m)
ij −y(m)

rs

)
≤
∣∣∣y(m)

ij −y(m)
rs

∣∣∣≤ ∣∣∣y(m)
ij

∣∣∣+∣∣∣y(m)
rs

∣∣∣
≤ 2 max

{∣∣∣v(m)
k

∣∣∣ : 1≤ k≤ t

}
<min {|xrs−xpq| : xrs �=xpq}
≤ |xij−xrs|=xij−xrs.

This implies xij−xrs±
(
y
(m)
ij −y

(m)
rs

)
≥0.

To prove (ii) we show that X±Y (m)∈PC(λ) for all 1≤m≤f, by item (i) we have
Y (m)∈DX (PC) for all m=1, 2, ..., f, and by Lemma 4.8(i), it is enough to prove that
y
(m)
nj =0 for 1≤j≤n, which follows from the fact that (n, j) does not belong to any
{n}-free tile.

Let us show that X±Y (m)∈PC(λ, μ) for all 1≤m≤k. For any 1≤i≤n−1 we
have

Ri

(
Y (m)

)
=

i∑
j=1

y
(m)
ij =

f∑
k=1

aikv(m)
k =

f∑
k=1

aikv̄(m)
k ,

where aik=|{j |(i, j)∈Mk}|. The right hand side of the previous equality is the dot
product between v̄(m)∈ker

(
AMC(X)

)
and the ith row of AMC(X), therefore equal

to zero. It follows from item (ii) and Lemma 4.8(ii) that X±Y (m)∈PC (λ, μ), which
completes the proof of (iii). �

Definition 5.3. Let C be a set of relations, and P⊆PC be any polyhedron.
Associated with P and C we will consider the following polyhedron:

P+ := {X ∈P |xij ≥ 0 whenever (i, j)∈V(C)}.

C will be called top-connected, if for each (i, j)∈V(C) with i �=n, there exists r such
that (i, j)�C (n, r).
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Remark 5.4. In the classical definition of Gelfand-Tsetlin pattern it is required
for the entries of the tableau to be non-negative (cf. [BZ89], [KB95], [LM04],
[ABS11], [LMD19]). More concretely, the term Gelfand-Tsetlin pattern is used for
elements in P+

C1
. In particular, Gelfand-Tsetlin polytopes are defined as P+

C1
(λ, μ).

It became clear the necessity of discussing which properties of a polyhedra P are
also satisfied by P+.

If λ is an integral dominant weight with non-negative entries we have PC1(λ, μ)=
P+
C1

(λ, μ). Note also that Ck and C−
k from Example 3.1 are top-connected for any

1≤k≤n, however C+
k is top-connected only if k=n.

Lemma 5.5. Let C be a top-connected set of relations.

(i) If X∈P+
C (λ), then Yf⊆DX

(
P+
C (λ)

)
.

(ii) If X∈P+
C (λ, μ), then Yk⊆DX

(
P+
C (λ, μ)

)
.

Proof. We only prove (i), the proof of item (ii) is analogue using Lemma
4.14(iii). By Lemma 5.2(ii) we have Yf⊆DX (PC(λ)), so it is enough to prove
that xij±y

(m)
ij ≥0 whenever (i, j)∈V(C) and 1≤m≤f. If (i, j) is not {n}-free, then

by Lemma 4.14(ii) we have y
(m)
ij =0 and therefore xij±y

(m)
ij =xij≥0. On the other

hand, suppose (i, j) belongs to some {n}-free tile Mk, that implies i �=n. As C is
top-connected, there exists 1≤r≤n such that (i, j)�C (n, r), so (n, r)∈V(C), and
xij≥xnr≥0. Moreover xij �=xnr because (i, j) and (n, r) do not belong to the same
tile. Rescaling Y (m) if necessary, we can assume∣∣∣v(m)

k

∣∣∣<min
{
|xrs−xpq|

2 : xrs �=xpq

}
for 1≤m, k≤t, so we have

±y
(m)
ij =±v(m)

k ≤
∣∣∣v(m)

k

∣∣∣< 1
2 min {|xrs−xpq| : xrs �=xpq}

≤ |xij−xnr|=xij−xnr ≤xij .

Hence xij±y
(m)
ij ≥0 for all (i, j)∈V(C). �

Remark 5.6. Note that in general it is not true that Yt⊆DX

(
P+
C
)
. For in-

stance, consider X to be the tableau with all entries being 0, and C any set of
relations with V(C)=V. It is trivial to show that DX

(
P+
C
)
={0}.

The following theorem generalizes [LM04, Theorem 1.5].

Theorem 5.7. Let C be any set of relations, X a C-pattern, and MC(X) its

associated tiling. Set λ=(xn1, ..., xnn), and μ=(w1(X), w2(X), ..., wn(X)). Then
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(i) The dimension of the minimal face of PC containing X is equal to the num-

ber of tiles in MC(X).
(ii) The dimension of the minimal face of PC(λ) containing X is equal to the

number of {n}-free tiles in MC(X).
(iii) The dimension of the minimal face of PC(λ, μ) containing X is equal to

the dimension of the kernel of AMC(X).

Proof. Let Hλμ, Hλ and H be the R-vector subspaces of Rn(n+1)/2 such that
Hλμ+X, Hλ+X, and H+X are the affine span of the minimal face of PC(λ, μ),
PC(λ) and PC containing X, respectively. Let us consider the bases and linear maps
as mentioned in Notation 5.1.

Since {v(1), ...,v(t)} is linearly independent, we conclude that Y (1), ..., Y (t) are
linearly independent. Due to Lemma 4.2 and Lemma 5.2 we also have Yk⊆Hλμ,
Yf⊆Hλ and Yt⊆H. We finish the proof showing that Hλμ is spanned by Yk, Hλ is
spanned by Yf, and H is spanned by Yt.

Set Y ∈H such that X±Y ∈PC , and consider w:=(w1, ...,wt)∈Rt, where wk :=
yij whenever (i, j)∈Mk (note that wk is well-defined by Lemma 4.14(i)). By con-
struction of ψ, we have ψ (w)=Y , and therefore Y ∈span Yt, because

{
v(1), ...,v(t)}

is a basis of Rt.
If MC(X) does not have {n}-free tiles, items (ii) and (iii) are consequence of

Lemma 4.15. Suppose that MC(X) has at least one {n}-free tile.
If Y ∈Hλ is such that X±Y ∈PC (λ), Lemma 4.14(ii) implies that yij=0 if

(i, j) is not {n}-free. As Hλ⊆H and PC (λ)⊆PC we have wk=0 for k>f. Finally, as
ψ (w)=Y , we have Y ∈span Yf, by the construction of ψ and the basis

{
v̄(1), ..., v̄(f)}

of Rf.
Consider now Y ∈Hλμ such that X±Y ∈PC (λ, μ). Lemma 4.14(iii) implies that

yij=0 if (i, j) is not {1, n}-free, hence wi=0 for i∈{1, f+1, f+2, ..., t}. Consider
w:=(w1, ...,wf). By the conditions on Y , we get w∈ker

(
AMC(X)

)
, in fact, from

Lemma 4.8(ii) we have
f∑

k=1
aikwk=

i∑
j=1

yij=0, where aik=|{j |(i, j)∈Mk}|. Simi-

larly, since ψ (w)=Y and
{
v̄(1), ..., v̄(k)} is a basis of ker

(
AMC(X)

)
. We conclude

that Y ∈span Yk, by the construction of ψ and the basis
{
v(1), ...,v(t)} of Rt. �

Example 5.8. Follows from Theorem 5.7 and Example 4.18 that the dimension
of minimal faces containing the tableaux from Example 4.13 are given by

λ μ PC PC(λ) PC(λ, μ)
Tiling 1 (

√
2, 2, 3, 4) (0, 0,

√
2+

√
3, 9−

√
3) 7 3 1

Tiling 2 (8, 5, 5, 4) (−2, 4, 9, 11) 8 4 1
Tiling 3 (8, 5, 5, 4) (−2, 4, 9, 11) 9 5 2
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Corollary 5.9. Let C be a top-connected set of relations, X a C-pattern, and
MC(X) its associated tiling. Set λ=(xn1, ..., xnn), and μ=(w1(X), ..., wn(X)). Sup-
pose that MC(X) has at least one {n}-free tile. Then

(i) The dimension of the minimal face of P+
C (λ) containing X is equal to the

number of {n}-free tiles in MC(X).
(ii) The dimension of the minimal face of P+

C (λ, μ) containing X is equal to

the dimension of the kernel of AMC(X).

Proof. Follows directly from Theorem 5.7 and Lemma 5.5. �

Remark 5.10. In general, it is not true that the dimension of the minimal face
of P+

C containing X is equal to the number of tiles in MC(X). In fact, under the
conditions of Remark 5.6, X is a vertex for P+

C , but MC(X) has one tile.
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