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Weil–Poincaré series and topology of collections
of valuations on rational double points

A. Campillo, F. Delgado and S.M. Gusein-Zade

Abstract. Earlier it was described to which extent the Alexander polynomial in several
variables of an algebraic link in the Poincaré sphere determines the topology of the link. It was
shown that, except some explicitly described cases, the Alexander polynomial of an algebraic link
determines the combinatorial type of the minimal resolution of the curve and therefore the topology
of the corresponding link. The Alexander polynomial of an algebraic link in the Poincaré sphere
coincides with the Poincaré series of the corresponding set of curve valuations. The latter one
can be defined as an integral over the space of divisors on the E8-singularity. Here, we consider a
similar integral for rational double point surface singularities over the space of Weil divisors called
the Weil–Poincaré series. We show that, except a few explicitly described cases, the Weil–Poincaré
series of a collection of curve valuations on a rational double point surface singularity determines
the topology of the corresponding link. We give analogous statements for collections of divisorial
valuations.

1. Introduction

An algebraic link in the three-dimensional sphere is the intersection K=C∩S3
ε

of a germ (C, 0)⊂(C2, 0) of a complex analytic plane curve with the sphere S3
ε of

radius ε centred at the origin in C2 with ε small enough. The number r of the
components of the link K is equal to the number of the irreducible components
of the curve (C, 0). It is well-known that the Alexander polynomial in r variables
determines the topological type of an algebraic link (or, equivalently, the (local)
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topological type of the triple (C2, C, 0)): [15]. This follows from the fact that the
Alexander polynomial determines the combinatorial type of the minimal embedded
resolution of the curve C. The Alexander polynomial is defined for links in three-
dimensional manifolds which are homology spheres. One of them is the Poincaré
sphere which is the intersection of the surface S={(z1, z2, z3)∈C3 :z5

1 +z3
2 +z2

3 =0}
(the E8 surface singularity) with the 5-dimensional sphere S5

ε={(z1, z2, z3)∈C3 :
|z1|2+|z2|2+|z3|2=ε2}. An algebraic link in the Poincaré sphere is the intersection
of a germ (C, 0)⊂(S, 0) of a complex analytic curve in (S, 0) with the sphere S5

ε of
radius ε small enough.

A (reducible) curve singularity (C, 0)⊂(S, 0) in a normal surface singularity
determines a collection of (discrete rang one) valuations on the ring OS,0 of germs
of functions on S (called curve valuations). To a collection {vi} of (discrete rank
one) valuations on OS,0, i=1, ..., r, one may associate, as in [11], a Poincaré series
P{vi}(t1, ..., tr)∈Z[[t1, ..., tr]] (see also Section 2). In [2] it was shown that, for
(S, 0)=(C2, 0), the Poincaré series P{vCi

}(t1, ..., tr) of a collection of (different) curve
valuations {vCi , i=1, ..., r} coincides with the Alexander polynomial ΔC(t1, ..., tr)
in r variables of the algebraic link defined by the curve C=

r⋃
i=1

Ci for r>1. (For r=1,

one has PvC (t)= ΔC(t)
1−t .) In [5] it was shown that the same holds for an algebraic link

in the Poincaré sphere. In [7] it was proved that the Poincaré series of a collection
of divisorial valuations on OC2,0 (computed in [12]) determines the combinatorial
type of the minimal resolution of the collection. (In general, this is not the case for
a collection consisisting both of curve and divisorial valuations.)

In [9], it was discussed to which extent the Alexander polynomial in several
variables of an algebraic link in the Poincaré sphere (that is the Poincaré series of
the corresponding curve) determines the topology of the link or rather the combi-
natorial type of the minimal (embedded) resolution of the curve on the E8 surface
singularity. It was shown that two curves (even irreducible ones) with combinatori-
ally different minimal resolutions may have equal Alexander polynomials. However,
under some restrictions on the curve (formulated in terms of the intersection of the
strict transform of a curve with the exceptional divisor in the minimal resolution of
the E8 surface singularity), its Poincaré series determines the combinatorial type of
the minimal resolution of the curve and therefore the topology of the corresponding
link. There were given analogues of these statements for collections of divisorial
valuations on the E8 surface singularity.

For other surface singularities (say, for rational ones, for whom one has a
formula for the Poincaré series) the (classical) Poincaré series for a collection of curve
or divisorial valuations does not determine the combinatorial type of the minimal
resolution even in the simplest case of the Ak singularities. The Poincaré series of a
collection of valuations can be interpreted as an integral with respect to the Euler
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characteristic over the space of Cartier divisors (appropriately defined: see below).
We consider an analogue of the Poincaré series which is the same integral over the
space of all (that is Weil) divisors. One has an equation for this (“Weil–Poincaré”)
series similar to the one for the smooth case or for the E8 surface singularity. (The
Weil–Poincaré series of a collection of curve or divisorial valuations is a fractional
power series.) We show that, except a few cases (somewhat similar to the exceptions
for the E8 singularity), the Weil–Poincaré series of a collection of curve valuations or
of a collection of divisorial valuations on a rational double point surface singularity
determines the combinatorial type of the minimal resolution (and thus the topology
of the corresponding link in the curve case) up to the possible symmetry of the
minimal resolution graph of the surface singularity. (It is somewhat curious that
exceptions exist for the E7 and for the E8 surface singularities, i.e. precisely for
those whose minimal resolution graphs have no non-trivial symmetries.)

2. The Weil–Poincaré series
A valuation (discrete of rank one) on the ring OV,0 of germs of functions on a

complex analytic variety (V, 0) is a function v :OV,0→Z≥0∪{+∞} such that
1) v(λg)=v(g) for λ∈C, λ �=0;
2) v(g1+g2)≥min(v(g1), v(g2));
3) v(g1g2)=v(g1)+v(g2).

We permit a valuation to have the value infinity for a non-zero element. (In this
case, some authors speak about “semivaluations”.)

An irreducible curve germ (C, 0) in a germ of a complex analytic variety (V, 0)
defines a valuation vC on the ring OV,0 of germs of functions on (V, 0) (called a
curve valuation). Let ϕ:(C, 0)→(V, 0) be a parametrization (an uniformization) of
the curve (C, 0), that is Imϕ=(C, 0) and ϕ is an isomorphism between punctured
neighbourhoods of the origin in C and in C. For a function germ f∈OV,0, the value
vC(f) is defined as the degree of the leading term in the Taylor series of the function
f ¨ϕ:(C, 0)→C:

f ¨ϕ(τ)= aτvC(f)+terms of higher degree,
where a �=0; if f ¨ϕ≡0, one defines vC(f) to be equal to +∞.

A collection {(Ci, 0)} of irreducible curves in (V, 0), i=1, ..., r, defines the col-
lection {vCi} of valuations. To a collection {vi} of discrete rank one valuations on
OV,0, i=1, ..., r, one may associate, as in [11], a Poincaré series P{vi}(t1, ..., tr)∈
Z[[t1, ..., tr]]. The collection {vi} defines a multi-index filtration on OV,0 by

(1) J(u)= {g ∈OV,0 : v(g)≥u},
where u=(u1, ..., ur)∈Zr

≥0, v(g)=(v1(g), ..., vr(g)) and u′=(u′
1, ..., u

′
r)≥u=(u1, ...,

ur) if and only if u′
i≥ui for all i=1, ..., r. Equation (1) defines the subspaces J(u)
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for all u∈Zr. The Poincaré series of the filtration {J(u)} (or of the collection {vi}
of valuations) is defined by:

(2) P{vi}(t1, ..., tr)=
L(t1, ..., tr)·

∏r
i=1(ti−1)

t1 ·...·tr−1 ,

where
L(t1, ..., tr) :=

∑
u∈Zr

dim(J(u)/J(u+1))·tu ,

1=(1, 1, ..., 1)∈Zr. This definition makes sense if and only if all the quotients
J(u)/J(u+1) are finite-dimensional.

Let (S, 0) be a normal surface singularity and let vi, i=1, ..., r, be either a
curve valuation on OS,0 defined by an irreducible curve (Ci, 0)⊂(S, 0), or a divisorial
valuation on OS,0 defined by a component of the exceptional divisor D of a resolution
π :(X ,D)→(S, 0) of the surface S. Assume that π :(X ,D)→(S, 0) is a resolution of
the surface S which is, at the same time, a resolution of the collection {vi} of
valuations, that is the total transform of the union of the curves Ci (such that vi is
the curve valuation vCi) is a normal crossing divisor on X and each divisor defining
the divisorial valuation from the collection {vi} is present in D.

Let D=
⋃
σ∈Γ

Eσ be the representation of the exceptional divisor D as the union of

its irreducible components. For σ∈Γ, let
¨

Eσ be the “smooth part” of the component
Eσ in the total transform of the curve

⋃
i Ci, i.e., the component Eσ itself minus the

intersection points with all other components of the exceptional divisor D and with
the strict transforms of the curves Ci. A curvette corresponding to a component Eσ

of the resolution is the blow-down of a germ of a smooth curve transversal to Eσ at
a point of

¨

Eσ. For i∈{1, 2, ..., r}, let τ(i) be either the index of the component Eτ(i)
which intersects the strict transform of the curve Ci (if vi is a curve valuation), or
the index of the component which defines the divisorial valuation vi. Let (Eσ ¨Eδ)
be the intersection matrix of the components Eσ. The diagonal entries of this matrix
are negative integers and a non-diagonal entry is equal to 1 if the components Eσ

and Eδ intersect and is equal to 0 otherwise. Let (mσδ):=−(Eσ ¨Eδ)−1. The entries
mσδ are positive rational numbers whose denominators divide the determinant d of
the matrix −(Eσ ¨Eδ). For σ∈Γ, let mσ :=(mστ(1),mστ(2), ...,mστ(r))∈Qr

>0.

Definition 1. The Weil–Poincaré series (W–Poincaré series for short) of the
collection of valuations {vi} is

(3) PW
{vi}(t) :=

∏
σ∈Γ

(1−tmσ )−χ(
¨

Eσ) ∈Z[[t1/d1 , t
1/d
2 , ..., t1/dr ]] ,

where t=(t1, t2, ..., tr), for m=(m1, ...,mr)∈Qr
≥0, tm=tm1

1 ·...·tmr
r .
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Remark 2. One can see that the W–Poincaré series PW
{vi}(t) is well-defined, i.e.,

does not depend on the choice of the resolution π :(X ,D)→(S, 0). This follows from
the fact that a resolution of the collection {vi} can be obtained from the minimal
one by additional blow-ups either at smooth points of the total transform of the
curve

⋃
i Ci or at intersection points of it.

If (S, 0) is smooth or if it is the E8-surface singularity, the W–Poincaré series of
the collection {vi} coincides with the usual Poincaré series of {vi} described above:
[2], [5], [9].

Remark 3. For the case when (S, 0) was a rational surface singularity and vi
were the divisorial valuations corresponding to all the components of the exceptional
divisor of a resolution of (S, 0), the series PW

{vi}(t) was defined in [4] and [5] and
used in [6]; see also [14].

3. Weil–Poincaré series and integrals with respect to the Euler
characteristic

In [3] it was (essentially) shown that the Poincaré series P{vi}(t) of a collection
{vi} of valuations (curve or divisorial ones) on the ring OX,0 of germs of functions
on a variety X can be given by the equation

P{vi}(t)=
∫
POX,0

tv dχ ,

where the right hand side is the integral with respect to the Euler characteristic
over the projectivization of OX,0 (properly defined), t∞i :=0 (see also [10, Proposition
1.1]). In [3] it was shown that the Poincaré series of a collection of curve valuations
on OC2,0 can be written as an integral with respect to the Euler characteristic over
the configuration space of effective divisors on the smooth part of the exceptional
divisors of the embedded resolution of the union of curves.

Let (S, 0) be a normal surface singularity, let {vi} be a collection of curve
or divisorial valuations on OS,0, and let π :(X ,D)→(S, 0) be a resolution of the
collection (not the minimal one, in general). Let Eσ, σ∈Γ, be the irreducible
components of the exceptional divisor D and let

¨

Eσ be the “smooth part” of Eσ in
the total transform of the union (C, 0)=

⋃
i(Ci, 0) of the irreducible curves (Ci, 0)

defining curve valuations from the collection (i.e. Eσ minus the intersection points
with other components of D and with the total transforms of the curves Ci). Let

Y π :=
∏
σ∈Γ

( ∞∐
k=0

Sk
¨

Eσ

)
=

∐
{kσ}∈ZΓ

≥0

∏
σ

Skσ
¨

Eσ
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be the configuration space of effective divisors on
¨

D=
⋃

σ

¨

Eσ.
Let v :Y π→Qr

≥0 be the function which sends the component
∏

σ S
kσ

¨

Eσ of Y π

to
∑
σ∈Γ

kσmσ. Let Oπ
S,0 be the set of non-zero function germs on (S, 0) such that

the strict transform of the zero-level curve {f=0} intersects D only at points of
¨

D.
One has a map Iπ from Oπ

S,0 to Y π which sends a function f to the intersection of
the strict transform of the curve {f=0} with

¨

D. Let Y π
C be the image of Iπ. The

set {π} of resolutions of the collection {vi} is a partially ordered set: a resolution
is bigger than another one if it can be obtained from the latter by a sequence of
blow-ups.

Let WS,0 be the set of effective divisors (that is Weil divisors) on (S, 0) and let
CS,0⊂WS,0 be the set of effective Cartier divisors on (S, 0). There is a natural map
J from POS,0 to CS,0. For a resolution π of the collection {vi}, let Wπ

S,0 be the set
of divisors in WS,0 whose strict transforms intersect the exceptional divisor D only
at points of

¨

D. One has the natural map Ǐ
π

from Wπ
S,0 onto Y π and the map Iπ

factorizes through it: Iπ=Ǐ
π
¨J .

Let v :WS,0→Qr
≥0 be the composition v¨Iπ, where v :Y π→Qr

≥0 is described
above. The map v sends CS,0 to Zr

≥0. For a rational surface singularity S the
map v :WS,0→Qr

≥0 can be defined in the following way. For any divisor C∈WS,0, a
multiple kC of it, k>0, is a Cartier divisor, i.e. the divisor of a holomorphic function
f :S→C. (It is possible to take k=det(Eσ, Eδ) for a resolution of the singularity S.)
Then v(C)=v(f)/k. For two divisors C and C ′ on S (C=

⋃
Ci, C ′=

⋃
C ′

j , where
Ci and C ′

j are irreducible curves) the (rational) number
∑

i vCi(C ′)=
∑

j vC′
j
(C)

can be regarded as the intersection number (C,C ′) of the curves C and C ′ and
will be called (and denoted) in this way. (In these terms, the number mσδ is the
intersection number of curvettes at the components Eσ and Eδ.)

We shall show that the Poincaré series P{vi}(t) can be interpreted as an integral∫
CS,0

tv dχ

with respect to the Euler characteristic. Moreover, we shall show that in the same
way the W-Poincaré series PW

{vi}(t) is equal to∫
WS,0

tv dχ .

For that we have to define such integrals.
To give the definition we shall consider arcs and divisors on (S, 0) as arcs and

divisors on a resolution π :(X ,D)→(S, 0). In this case, an arc is represented locally
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(in some local coordinates) by a pair of power series in a parameter τ . Let LS,0 be
the space of arcs (that is parametrized curves) on (S, 0) and let B=LS,0/Aut(C, 0)
be the space of branches, i.e. non-parametrized arcs. Let B=

⊔∞
k=0 S

kB. Each
element of B represents a (effective) divisor on (S, 0). However, some divisors are
represented by different elements of B. This can be explained by the following
situation. Let “γ∈B be a branch. It is represented by an arc γ=γ(τ). Then the
branch “γk represented by the arc γ(τk) defines the same divisor as the collection
of k copies of “γ. Let us call a branch “γ (represented by an arc γ) primitive if γ is
an uniformization of its image and let B0⊂B be the set of primitive branches. One
has WS,0=

⊔∞
k=0 S

kB0.
Let JmB be the space of m-jets of branches on (X ,D). The restriction of

the truncation map to B0 is surjective. Therefore, the image of
⊔∞

k=0 S
kB0 in⊔∞

k=0 J
mB is the same as the one of

⊔∞
k=0 S

kB. This produces a problem to use the
image to define the integral over WS,0 through this truncation. To avoid this prob-
lem, let us consider the subspace Jm

primB⊂JmB consisting of the jets each represen-
tative of whom is primitive (a jet is a class of branches). Let Jm=

⊔∞
k=0 S

kJm
primB.

Let wi :WS,0→Q≥0∪{∞}, i=1, 2, ..., r be functions on the set of Weil divi-
sors. Let wm

i :Jm→Q≥0∪{∞} be the function defined by wm
i ([a])=supa∈[a] wi(a)

where [a]⊂
⊔∞

k=0 S
kB0⊂WS,0 is the equivalence class of the m-jet a. Let w:=

(w1, ..., wr):WS,0→(Q≥0∪{∞})r and wm :=(wm
1 , ..., wm

r ):Jm→(Q≥0∪{∞})r. We
shall say that the function w is constructible if wm is constructible for all m (and
therefore integrable with respect to the Euler characteristic).

Definition 4. The integral with respect to the Euler characteristic of the func-
tion tw(−) over the space WS,0 is defined by

(4)
∫

WS,0

tw(−)dχ= lim
m→∞

∫
JmS,0

tw
m(−)dχ∈Z[[t1/d1 , ..., t1/dr ]] ;

where the limit in the right hand side is in the sense of the 〈t1, ..., tr〉-adic topology
on Z[[t1/d1 , ..., t

1/d
r ]], 〈t1, ..., tr〉 is the ideal generated by t1, ..., tr.

If the right hand side of (4) makes no sense, i.e. the limit does not exist, we
regard the function tw(−) as a non-integrable one. For a subset A⊂WS,0 and a func-
tion w:A→Z[[t1/d1 , ..., t

1/d
r ]], the integral

∫
A tw(−)dχ is understood as

∫
WS,0

tŵ(−)dχ,
where ŵ(−) is the extension of the function w by +∞ outside of A (recall that
t+∞=0).

Now let vi, i=1, ..., r be curve and/or divisorial valuations on (S, 0). They
define natural maps (also denoted by vi) from WS,0 to Z[[t1/d1 , ..., t

1/d
r ]]. (In this

case, one has vi(a+b)=vi(a)+vi(b).) Moreover, in this case, one assumes that
d=det(−(Eσ ·Eδ)). One has the following statement.
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Proposition 5.

(5)
∫

WS,0

tv(−)dχ= lim
{π}

∫
Y π
C

tv(−)dχ=P{vi}(t) .

Proof. Let Jmπ be the set of jets of divisors which intersect the exceptional
divisor D of the resolution π only at points of

¨

D. There is a natural map from Jmπ
to Y π. One can see that the preimage of a point from Y π has the Euler characteristic
equal to 1. This follows from the following arguments. An arc at a point of

¨

D in
some local coordinates (u, v) such that

¨

D is given by the equation u=0 can be
written as u=τ s, and v=v(τ) is a (truncated) series in τ . For a fixed s the set
of jets of these arcs has the Euler characteristic equal to 1 (being isomorphic to a
complex affine space). If s=1, the jet belongs to J ˝

primB. If s>1, the set of jets not
belonging to J ˝

primB has the Euler characteristic equal to 1 (being also isomorphic to
a complex affine space). Therefore, the set of jets belonging to J ˝

primB has the Euler
characteristic equal to 0. The preimage of a point from Y π is the union of products
of symmetric powers of these spaces. All of them have the Euler characteristics
equal to zero except the product of the symmetric powers of the spaces of the
spaces of arcs with s=1 whose Euler characteristic is equal to 1.

The fact that the preimage of a point from Y π has the Euler characteristic
equal to 1 (alongside with the Fubini formula) implies the statements. �

The direct computation of the mid term in Equation (5) (see, e.g., [12, Equa-
tion 4]) gives the following equation.

Proposition 6.∫
WS,0

tv(−)dχ= lim
{π}

∫
Y π

tv(−)dχ=
∏
σ∈Γ

(1−tmσ )−χ(
¨

Eσ).

Corollary 7.
PW
{vi}(t)=

∫
WS,0

tv(−)dχ .

4. Curves and divisors on the E7-singularity whose Weil–Poincaré series
do not determine the minimal resolution

Example 8. The dual graph of the minimal resolution of the E7-singularity
(S, 0) is shown in Figure 5. Let C ′ be a curvette at the component E2 and let C ′′

be the blow down of a smooth curve C̃
′′

on the surface of the resolution tangent to
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Figure 1. The minimal resolution graph of the curve C′′.

the component E7 at a smooth point (i.e. not at the intersection point with E6) with
the intersection multiplicity equal to 2 (i.e. the tangency of C̃

′′
and E7 is simple).

The minimal resolution of the curve C ′ coincides with the minimal resolution of the
surface (S, 0). The dual graph of the minimal resolution of the curve C ′′ is shown
in Figure 1. One can show that

PW
C′ (t)=PW

C′′(t)= (1−t6)(1−t8)
(1−t2)(1−t3)(1−t4) .

(The data for these computations and for those in the next example can be taken
from the matrix 7 on page 311.) Therefore, the W–Poincaré series of a curve on the
E7 surface singularity does not determine, in general, the combinatorial type of its
minimal resolution.

Remark 9. We do not know how to prove (or to refute) that the triples (S,C ′, 0)
and (S,C ′′, 0) are not homeomorphic. However, the knots K ′=C ′∩S5

ε and K ′′=
C ′′∩S5

ε in (the rational homology sphere) L=S∩S5
ε are not isotopic. This follows

from the fact that the linking numbers of the knots K ′ and K ′′ with the classes
[Ei]∈H2(X ;Z) (X is the space of the minimal resolution of the surface singularity)
are different. The same applies to the curves C ′ and C ′′ from [9, Example 2].

Example 10. Let D′ be the divisor created by the blow-up of a smooth point
of the component E9 of the resolution shown in Figure 1 and let D′′ be the divisor
created after 3 blow-ups starting at a smooth point of the component E2 and pro-
duced at each step at a smooth point of the previously created divisor. One can
show that for the divisorial valuations v′ and v′′ defined by the divisors D′ and D′′

respectively one has

PW
v′ (t)=PW

v′′ (t)= (1−t6)(1−t8)
(1−t2)(1−t3)(1−t4)(1−t9) .

Therefore, the W–Poincaré series of a divisorial valuation on the E7-singularity does
not determine, in general, the combinatorial type of the minimal resolution.
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5. Main statements

Let (S, 0) be a rational double point and let {vi}, i=1, ..., r, be a collection of
different curve valuations on OS,0 defined by irreducible curves (Ci, 0)⊂(S, 0).

Let us make the following additional assumptions. If the singularity (S, 0) is of
type E7 (respectively of type E8), we either assume that the (minimal) resolution
process does not contain a blow-up at a smooth point of the exceptional divisor of
the minimal resolution of (S, 0) lying on the component E7 (on the component E8
respectively) or assume that does not contain a blow-up at the similar point lying
on the component E2 (on the component E6 respectively).

Theorem 11. Under the previous assumptions the W–Poincaré series

PW
{Ci}(t):=PW

{vi}(t), t=(t1, ..., tr), of the curve C=
⋃r

i=1 Ci determines, up to the

symmetry of the dual graph of the minimal resolution of (S, 0), the combinato-

rial type of the minimal (embedded) resolution of the curve (C, 0)=
⋃r

i=1(Ci, 0) and

therefore the topological type of the link C∩L in L=S∩S5
ε, i.e. the topological type

of the pair (L,C∩L).

Now let {vi}, i=1, ..., r, be a collection of different divisorial valuations on
OS,0. In the cases of E7 and of E8 singularities we assume the same restrictions on
the resolution process of the collection of divisorial valuations as for curves above.

Theorem 12. Under the previous assumptions the W–Poincaré series PW
{vi}(t)

determines, up to the symmetry of the dual resolution graph of (S, 0), the combina-

torial type of the minimal resolution of the collection {vi}.

Remark 13. To a divisorial valuation vi one can associate a curve Ci: a curvette
at the component Eτ(i) defining the valuation vi. Theorem 12 implies that the series
PW
{vi}(t) determines the topological type of the link (

⋃r
i=1 Ci)∩L in L.

Remark 14. In a statement like Theorems 11 and 12 one cannot mix curve and
divisorial valuations in one collection; see an example in [7].

6. The case of one valuation

Let (S, 0) be a rational double point (of type Ak, Dk, E6, E7, or E8) and let v

be either a curve valuation (defined by a curve germ (C, 0)⊂(S, 0)) or a divisorial
valuation on OS,0. In the latter case, let (C, 0)⊂(S, 0) be a curvette at the divisor
defining the valuation. (A resolution of a divisorial valuation is at the same time a
resolution of the corresponding curvette, but not vice versa.) The minimal resolu-
tion of the valuation v is obtained from the minimal resolution of the surface (S, 0)
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by a sequence of blow-ups made (at each step) at intersection points of the strict
transform of the curve C and the exceptional divisor. Let π′ :(X ′,D′)→(S, 0) be the
minimal resolution of the surface (S, 0) such that the strict transform of the curve
C intersects the exceptional divisor D′ at a smooth point of it. This resolution is
obtained from the minimal resolution of (S, 0) by blow-ups made (at each step) at
intersection points of the components of the exceptional divisor.

Definition 15. The resolution π′ :(X ′,D′)→(S, 0) of (S, 0) will be called the
pre-resolution of the valuation v.

Let Eσ0 be the component of the exceptional divisor D′ of the pre-resolution
π′ intersecting the strict transform of curve C and let 
 be the intersection number
of them in the space X ′ of the pre-resolution. We shall use the numbering of the
components of the exceptional divisor of the minimal resolution of (S, 0) shown in
Figures 2, 3, 4, 5, and 7. (They are at the same time components of the exceptional
divisor of the pre-resolution π′.) In the case of the E7 (E8) singularity we either
assume that σ0 is not 7 (8 respectively) or assume that it is not 2 (6 respectively).
Pay attention that in all the cases excluded from consideration the pre-resolution
π′ is the minimal resolution of the surface (S, 0).

Lemma 16. Under the conditions above, the W–Poincaré series PW
C (t) de-

termines, up to the symmetry of the resolution graph of the minimal resolution of

(S, 0), the pre-resolution π′, the component Eσ0 of the exceptional divisor D′, and

the intersection multiplicity 
.

Proof. The proof is based on the analysis of the matrix (mσδ) which has to be
made separately for different cases. In all the cases, let us write the Poincaré series
PW
C (t) in the form

(6)
q∏

i=1
(1−tmi)−1

∏
m>0

(1−tm)sm ,

where m1≤m2≤...≤mq (thus the first product may have repeated factors) and, in
the second product, the (integer) exponents sm are non-negative and are equal to
zero for m=mi, i=1, ..., q. Let us recall that the representation of the Poincaré
series in this form is unique.

Case of Ak singularity. Let (S, 0) be the singularity of type Ak. The minimal
resolution graph is shown in Figure 2.
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Figure 2. The dual resolution graph of the Ak-singularity.

Figure 3. The dual resolution graph of the Dk-singularity.

The matrix (mij) is

1
k+1 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k k−1 k−2 ... i ... 2 1
k−1 2(k−1) 2(k−2) ... 2i ... 4 2
k−2 2(k−2) 3(k−2) ... 3i ... 6 3

... ... ... ... ... ... ... ...
i 2i 3i ... i(k−i+1) ... 2(k−i+1) k−i+1
... ... ... ... ... ... ... ...
1 2 3 ... k−i+1 ... k−1 k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To identify the components of the exceptional divisor D′, let us mark them by
the indices σ being rational numbers in between 1 and k, naming the component
created by the blow-up of the intersection point of the components Eσ1 and Eσ2 by
Eσ1+σ2

2
. (This methods can be applied to other rational double points under some

restrictions.) Since we have to find π′ and Eσ0 up to the symmetry of the graph in
Figure 2, we can assume that σ0≥ k+1

2 . We shall consider the following two cases:
1) σ0=k;
2) k+1

2 ≤σ0<k.
Let us consider Case 1. For the curve case either q=1 or m2

m1
>k (the first option

takes place if C is a curvette at Ek). For the divisorial case one has m2
m1

>k.
In Case 2 one has q≥2, m1=
mσ01, m2=
mσ0k and therefore m2

m1
<k (in con-

trast with Case 1). The fact that the series PW
˝

(t) determines the component Eσ0

follows from the fact that the ratio m2
m1

is strictly increasing with σ0.
In both cases the intersection multiplicity 
 is determined by the equation

m1=
mσ01.

Case of Dk singularity. Let (S, 0) be the singularity of type Dk. The minimal
resolution graph is shown in Figure 3.



Weil–Poincaré series and topology of collections of valuations on rational double points 309

The matrix (mij) is

1
4 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 4 4 ... 4 2 2
4 8 8 ... 8 4 4
4 8 12 ... 12 6 6
... ... ... ... ... ... ...

4 8 12 ... 4(k−2) 2(k−2) 2(k−2)
2 4 6 ... 2(k−2) k k−2
2 4 6 ... 2(k−2) k−2 k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Assume first that k>4. Because of the symmetry of the graph Dk we can
assume that σ0 does not belong to the lower right tail of the graph, that is 1≤σ0≤
k−1 (we use the same numbering of newly created components as above for Ak).
We shall consider the following four cases:

1) 1<σ0≤k−2;
2) k−2<σ0<k−1;
3) σ0=1;
4) σ0=k−1.
In Cases 1 and 2 (both in the curve and the divisorial cases) one has q≥3 and

m1, m2, and m3 are 
mσ01, 
mσ0k−1, and 
mσ0k in a certain order.
In Case 1 at least two of the exponents m1, m2, and m3 coincide (and are equal

to m′). Let us denote the third component by m′′. We always have m′

m′′ >
1
2 . All

three exponents coincide, that is m′′=m′, if and only if σ0=2. If m′′>m′, then σ0<

2 and m1=m2=
mσ0k−1, m3=
mσ01. If m′′<m′, then 2<σ0≤k−2, m1=
mσ01,
m2=m3=
mσ0k−1. In this case, the ratio mσ0(k−1)

mσ01
is strictly increasing with σ0 and

therefore determines σ0.
In Case 2 the exponents m1, m2, and m3 are different and moreover m1=
mσ01,

m2=
mσ0k, m3=
mσ0(k−1), m3
m2

< 5
4 . Again the ratio mσ0(k−1)

mσ01
is strictly increasing

and therefore determines σ0.
The equations above determine 
.
In Case 3 one has: in the curve case either q=2 with m1=m2=2
 or m′=m1=

m2=2
, m′′=m3>4
 with m′

m′′ <
1
2 ; in the divisorial case m′

m′′ ≤ 1
2 , m1=m2=2
.

In Case 4 one has: in the curve case either q=2 with m1=2
 or m1, m2, and
m3 are different with m3

m2
> 5

4 , m1=2
; in the divisorial case m1, m2, and m3 are
different with m3

m2
≥ 5

4 , m1=2
.
Now let k=4, i.e. (S, 0) is the singularity of type D4. Because of the symmetry

of the graph, we can assume that 1≤σ0≤2. We shall consider the following two
cases:
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Figure 4. The dual resolution graph of the E6-singularity.

1) 1<σ0≤2.
2) σ0=1;

In Case 1 one has (both for the curve and for the divisorial cases) m1=m2=
mσ0,3,
m3=
mσ0,1 and m3/m1<2. The ratio mσ03

mσ01
is strictly increasing with σ0 and there-

fore determines the latter one. In Case 2 one has: in the curve case either q=2 with
m1=m2=2
 or m1=m2=2
 and m3/m1>2; in the divisorial case m1=m2=2
 and
m3/m1≥2.

Case of E6 singularity. Let (S, 0) be the singularity of type E6. The minimal
resolution graph is shown in Figure 4.

The matrix (mij) is ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

4/3 5/3 2 1 4/3 2/3
5/3 10/3 4 2 8/3 4/3
2 4 6 3 4 2
1 2 3 2 2 1

4/3 8/3 4 2 10/3 5/3
2/3 4/3 2 1 5/3 4/3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Because of the symmetry of the graph, we can assume that σ0 does not belong to
the right tail of the graph, i.e. (using the same rule of numbering of the components
of the exceptional divisor D′ as above) 1≤σ0≤4. We shall consider the following
four cases:

1) 1<σ0<3;
2) 3≤σ0<4;
3) σ0=1;
4) σ0=4.
In Cases 1 and 3 one has m1<m2; in Cases 2 and 4 m1=m2.
In Case 1 m3

m1
<2. In Case 3 one has: in the curve case either q=2 or m3

m2
>2;

in the divisorial case m3
m2

≥2 with m1=
 in all the cases.
In Case 2 m3

m1
<2. In Case 4 one has: in the curve case either q=2 or m3

m1
>2;

in the divisorial case m3
m1

≥2 with m1=
 in all the cases.
In Case 1 (both for the curve and for the divisorial valuation) one has either

m2
m1

= 3
2 or m3

m1
= 3

2 . If m2
m1

= 3
2 , then σ0≤1.5, the ratio m3

m1
is strictly increasing with σ0
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Figure 5. The dual resolution graph of the E7-singularity.

and therefore determines σ0; m1=
mσ04. If m3
m1

= 3
2 , then σ0≥1.5, the ratio m2

m1
is

strictly decreasing with σ0 and therefore determines σ0; m1=
mσ06. In Case 2 (both
for the curve and for the divisorial valuation) the ratio m3

m1
is strictly increasing with

σ0 and therefore determines σ0; m1=
mσ01.

Case of E7 singularity. Let (S, 0) be the singularity of type E7. The minimal
resolution graph is shown in Figure 5.

The matrix (mij) is

(7)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 4 2 3 2 1
3 6 8 4 6 4 2
4 8 12 6 9 6 3
2 4 6 7/2 9/2 3 3/2
3 6 9 9/2 15/2 5 5/2
2 4 6 3 5 4 2
1 2 3 3/2 5/2 2 3/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us analyze first the situation when we assume that σ0 �=7. We shall consider
the following cases:

1. σ0 �=1, 4;
2. σ0=1;
3. σ0=4.
In Case 1, both for the curve and for the divisorial valuations one has m3=


mσ0,4 and m1 and m2 are 
mσ01 and 
mσ0,7 in a certain order. Moreover m2/m1<2
and m3/m1<7/3.

In Figure 6, the ratio (mσ0,1 :mσ0,4 :mσ0,7)∈RP2 is shown (by the bold lines)
in the affine chart (mσ0,1/mσ0,4,mσ0,7/mσ0,4). (The fact that the edges meeting
at a vertex of valency 2 lie on a straight line is a general feature of pictures of
this sort.) The figure shows that the ratio (mσ0,1 :mσ0,4 :mσ0,7) determines σ0.
However, the explanation above says that the W-Poincaré series determines this
ratio only up to the exchange of the first and the third components. The graph
obtained by exchanging mσ0,1 and mσ0,7 is drawn by thin lines. One can see that
they intersect only at a point on the diagonal mσ0,1

mσ0,4
= mσ0,7

mσ0,4
and therefore the ratios

(mσ0,1 :mσ0,4 :mσ0,7) determines σ0.
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Figure 6. The points (mσ0,1 :mσ0,4 :mσ0,7)∈RP2.

Figure 7. The dual resolution graph of the E8-singularity.

In Case 2, one has m2/m1=2 (in contrast to Case 1 above and Case 3 below);
m1=
. In Case 3, one has m2/m1=4/3 and for the curve case, either q=2 or
m3/m1>7/3; for the divisorial case m3/m1≥7/3; m2=2
.

In the situation when we assume that σ0 �=2, we shall consider the following
four cases:

1. σ0 �=1, 4, 7;
2. σ0=1;
3. σ0=4;
4. σ0=7.
The analysis of the Cases 1 to 3 is the same as above. In Case 4, one has

m2/m1=3/2. This differs Case 4 from Cases 2 and 3 and in Case 1 the value
m2/m1=3/2 holds only if σ0=2. In this case, m1=
.

Case of E8 singularity. Let (S, 0) be the singularity of type E8. The minimal
resolution graph is shown in Figure 7.
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The matrix (mij) is: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 7 10 5 8 6 4 2
7 14 20 10 16 12 8 4
10 20 30 15 24 18 12 6
5 10 15 8 12 9 6 3
8 16 24 12 20 15 10 5
6 12 18 9 15 12 8 4
4 8 12 6 10 8 6 3
2 4 6 3 5 4 3 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The situation when we assume that σ0 �=8 was analyzed in [9]. One can see that,

in this case, the possibility to restore 
 easily follows from the discussion therein.
In the situation when we assume that σ0 �=6, we shall consider the following four
cases:

1. σ0 �=1, 4, 8;
2. σ0=1;
3. σ0=4;
4. σ0=8.
In Case 1, one has m2/m1≤2. The way to determine σ0 in this case is described

in [9]; m1=
mσ08. In Case 2, one has m2/m1=5/2. In Case 3, one has m2/m1=5/3
and either q=2 (in the curve case) or m3/m1≥8/3. This can be met in Case 1
when 3≤σ0<4 (i.e. if σ0 is on the lower tail of the diagram). In this case, one has
5/2≤m3/m1<8/3. In case 3 m1=3
.

In Case 4, one has m2/m1=3/2. This differs Case 4 from Cases 2 and 3. In
Case 1 the value m2/m1=3/2 holds only if σ0=6. In Case 4 m1=2
. �

Let (C, 0) be an irreducible curve on a rational double point (S, 0).

Proposition 17. Under the described assumptions, the W-Poincaré series

PW
C (t) determines the combinatorial type of the minimal embedded resolution of

the curve C and therefore the topological type ot the knot C∩L in L=S∩S5
ε.

Let v be a divisorial valuation on (S, 0).

Proposition 18. Under the described assumptions, the W-Poincaré series

PW
{v}(t) determines the combinatorial type of the minimal resolution of the valu-

ation v.

Proofs of Propositions 17 and 18 are essentially the same as of Theorems 1 and
2 in [9].
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Assume that C1 and C2 are two curves with the (known) W–Poincaré series
PW
Ci

(t) such that the components Eσi
0

of the exceptional divisors D′
i of the pre-

resolutions emerge from the parts (one can say “tails” in all the cases but Ak) of
the resolution graph of the minimal resolution of (S, 0) exchangable by a symmetry
of the graph acting non-trivially on them. (Pay attention that in this case S is one
of the singularities Ak, Dk, and E6. It cannot be a singularity of type E7 or E8 when
the series W–Poincaré series determines the component Eσ0 of the pre-resolution
only under additional conditions.)

Lemma 19. In the described situation (for (S, 0) of the type Ak, Dk, or E6),

The W–Poincaré series PW
Ci

(t), i=1, 2, alongside with the intersection number (C1¨

C2) determines whether the strict transforms of the curves C1 and C2 intersect the

same part of the graph of the minimal resolution of the surface singularity (S, 0) or

different ones.

Proof. If the strict transforms intersect the same part of the graph, then (C1¨

C2)≥
1 ·
2 ·mσ1
0σ

2
0
. (The sign > may hold only if σ1

0=σ2
0 .) If the strict transforms

intersect different parts of the graph, one has (C1¨C2)=
1 ·
2 ·mσ1
0σ

2
0
. Moreover,

from the matrices (mσδ) above one can see that, for fixed up to symmetry σ1
0 and

σ2
0 , the intersection number mσ1

0σ
2
0

for the components σ1
0 and σ2

0 from the same
part is strictly larger than the one for the components from different parts. �

7. The case of several valuations

The idea of the proofs of Theorems 11 and 12 is the same as of Theorems 3
and 4 in [9]. Moreover, the proof of Theorem 12 is literally the same modulo one
remark related with the symmetry of the minimal resolution graph of the surface
singularity: see at the end of the section. This is explained by the fact that the “pro-
jection formula” (the equation connecting the Weil–Poincaré series of a collection of
valuations with the one for the collection with one valuation excluded) is much sim-
pler for a collection of divisorial valuations. In this case, the Weil–Poincaré series
of the smaller collection is obtained from the other one simply by putting the value
1 for the corresponding variable ti. Thus, the Weil–Poincaré series of the smaller
collection is determined by the same series for the larger one. This is not the case,
in general, for a collection of curve valuations. In this case, the projection formula
includes a certain factor for the excluded valuation which, in general, cannot be
directly obtained from the initial Weil–Poincaré series. (This also explains the fact
that, in [9], the proof for divisorial valuations is much shorter than for curve ones.)
For the curve case (Theorem 11) the proof contains some differences. Therefore, we
include some parts of it.
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Let C be an irreducible curve germ in the surface (S, 0) and let π :(X ,D)→
(S, 0) be an embedded resolution of the curve (C, 0)⊂(S, 0). Let Γ be the minimal
resolution graph of C, i.e., the dual graph of π. Let C be the total transform of the
curve C in X . One has

C = C̃+
∑
σ∈Γ

mσEσ,

where C̃ is the strict transform of the curve C. The rational numbers {mσ :σ∈Γ}
are uniquely determined by the system of linear equations

(8) {C̃ ¨Eα+
∑
σ∈Γ

mσ Eσ ¨Eα =0 : Eα ∈D}.

(Each equation is a consequence of the fact C ¨Eα=0; see [13, Equation (1)].)
Let ρ∈Γ be an end and let Δ={ρ=α0, α1, ....αs=σ} be the corresponding dead

arc in Γ (i.e. the minimal connected subgraph of Γ such that σ is a star vertex).
Then one has:

Lemma 20. If −E2
αi
�=1 for i=0, ..., s−1, then there exists an integer N>1,

independent of the branch C, such that mσ=Nmρ.

Proof. Equation (8) for Eρ gives mα1 =(−E2
ρ)mρ=N1mρ with an integer N1>

1. Again, the same equation for Eαi gives

mαi+1 =(−E2
αi

)mαi−mαi−1 =−E2
αi
Nimρ−Ni−1mρ =

=(−E2
αi
Ni−Ni−1)mρ =Ni+1mρ.

Since E2
αi
�=−1, one has Ni+1≥2Ni−Ni−1>Ni provided we assume Ni>Ni−1 by

induction. �

Let C=
⋃r

i=1 Ci be a reducible (that is, r>1) curve germ in the surface (S, 0)
and let π :(X ,D)→(S, 0) be the minimal embedded resolution of the curve (C, 0)⊂
(S, 0). Let Γ be the minimal resolution graph of C, i.e., the dual graph of π. Let
τ(i) be the vertex of Γ such that the component Eτ(i) of the exceptional divisor
D intersects the strict transform C̃i of the curve Ci and let mi

σ :=mστ(i). One has
mσ=(m1

σ, ...,m
r
σ). The reason (somewhat psychological) for that is the fact that,

for a multi-exponent of a term of the Poincaré series PC(t1, ..., tr) or of a factor
of its decomposition, one knows its components m1

σ, ...,m
r
σ, but does not know the

vertex σ. One can say that our aim is to find vertices τ(i) corresponding to the
curve.
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Let Ck (k=1, ..., r) be the total transform of the curve Ck in X . One has

Ck = C̃k+
∑
σ∈Γ

mk
σEσ,

where C̃k is the strict transform of the curve Ck.
Let us fix a pair of branches Ci and Cj and let q :Γ→Q be the function defined

by q(α)=mj
α/m

i
α for α∈Γ. One has the following statement.

Lemma 21. Let Eα be a component of the exceptional divisor D such that

C̃i¨Eα=0 and let {ρ1, ..., ρs}⊂Γ be the set of all vertices connected by an edge

with α. Let us assume that either C̃j intersects Eα or there exists ρi0 such that

q(ρi0)>q(α). Then there exists ρk such that q(α)>q(ρk).

Proof. Assume that q(ρk)≥q(α) for any k=1, ..., s. Applying (8) to Cj and Ci

one gets:

0 = C̃j ¨Eα+mj
αE

2
α+

s∑
k=1

mj
ρk

≥

≥ C̃j ¨Eα+mj
αE

2
α+

s∑
k=1

q(α)mi
ρk

=

= C̃j ¨Eα+q(α)(mi
αE

2
α+

s∑
k=1

mi
ρk

)= C̃j ¨Eα ≥ 0

The inequality is strict if C̃j ¨Eα>0 or if there exists i0 such that q(ρi0)>q(α). This
implies the statement. �

Let [τ(j), τ(i)]⊂Γ be the (oriented) geodesic from τ(j) to τ(i) and let {Δp},
p∈Π, be the connected components of Γ\[τ(j), τ(i)]. For each p∈Π there exists a
unique ρp∈[τ(j), τ(i)] connecting Δp with [τ(j), τ(i)], i.e., such that Δ∗

p=Δp∪{ρp}
is connected.

Proposition 22. With the previous notations, one has:

1. The function q is strictly decreasing along the geodesic [τ(j), τ(i)].
2. For each p∈Π, the function q is constant on Δ∗

p.

Proof. Let α and β be two vertices of Γ connected by an edge and let q(α)>
q(β). Lemma 21 permits to construct a maximal sequence α0, α1, ..., αk of consec-
utive vertices starting with α and β (i.e., α0=α, α1=β) such that q(αi)>q(αi+1).
(We will call a sequence of this sort a decreasing path. If the inequality is in the
other direction, the path will be called increasing.) The maximality means that
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either αk is a deadend of Γ or C̃i ·Eαk
�=0. If αk is a deadend, αk−1 is the only ver-

tex connected with αk and Lemma 21 implies that q(αk)=q(αk−1). Therefore, the
constructed path finishes by the vertex αk=τ(i). Note that, if α∈[τ(j), τ(i)] and
β /∈[τ(j), τ(i)], the end of a maximal decreasing (or increasing) path has to finish at
a deadend and therefore q(α)=q(β). In particular, this implies that the function q

is constant on each connected set Δ∗
p.

Assume that τ(i) �=τ(j). Lemma 21 implies that there exists a vertex α1 con-
nected with τ(j) such that q(τ(j))>q(α1). Therefore, the maximal decreasing path
starting with τ(j) and α1 coincides with the geodesic [τ(j), τ(i)]. �

Remark 23. Let ρ∈Γ be an end and let Δ={ρ=α0, α1, ....αs=σ} be the corre-
sponding dead arc in Γ. In this case, Proposition 22 implies that the ratio mi

α/m
j
α

is constant for α∈Δ and for any pair i, j∈{1, ..., r}. In fact, from Lemma 20, one
can easily deduce that mσ=Nmρ for an integer N>1, in particular, mσ>mρ.

Proof of Theorem 11. We have to show that the Weil-Poincaré series PW
{Ci}(t)

determines the minimal resolution graph Γ of C. In the case under consideration,
one has a projection formula different of the one for divisorial valuations.

Let i0∈{1, ..., r}. The A’Campo type formula (3) for PW
{Ci}(t) implies that

(9) PW
{Ci}(t)|ti0=1 =PW

C\{Ci0}
(t1, ..., ti0−1, ti0+1, ..., tr)·(1−tmτ(i0))|ti0=1 .

Applying (9) several times one gets

(10) PW
C (t)|tj=1 for j �=i0

=PW
Ci0

(ti0)·
∏
i �=i0

(1−t
m

i0
τ(i)

i0
).

Pay attention to the fact that mi0
τ(i)=mi

τ(i0) and therefore the series PW
Ci0

(ti0) can
be determined from the Weil-Poincaré series PC(t) if one knows the multiplicity
mτ(i0). The strategy of the proof follows the steps from [7] (see also [8]):

1) To detect an index i0 for which one can find the corresponding multiplicity
mτ(i0) from the A’Campo type formula for PW

C (t). Then Proposition 17 and equa-
tion (10) permit to recover the minimal resolution graph Γi0 of the curve Ci0 . Equa-
tion (9) gives the possibility to compute the Poincaré series PW

C\{Ci0}
(t1, ..., ti0−1,

ti0+1, ..., tr) of the curve C\{Ci0}. By induction one can assume that the resolu-
tion graph Γi0 of the curve C\{Ci0} is known. Moreover, Lemma 19 implies that,
for each j, the multiplicity mτ(i0) determines whether the vertices of the minimal
resolution graph corresponding to the curves Ci0 and Cj are on the same part from
those exchanged by symmetries or on different ones.

2) To determine the separation vertex of the curves Ci0 and Cj for j �=i0 in
order to join the graphs Γi0 and Γi0 to obtain the resolution graph Γ.
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The second step literally repeats the same one in the proof of Theorem 3 in [9].
Therefore, we omit an analysis of it here.

Proposition 22 implies that, for any fixed i0 and for any j �=i0 and σ∈Γ, one
has mj

σ/m
i0
σ ≥mj

τ(i0)/m
i0
τ(i0). Therefore, one has

1
mi0

σ

mσ ≥
1

mi0
τ(i0)

mτ(i0).

Let PW
C (t)=

∏p
k=1(1−tnk)sk be the Weil-Poincaré series of the curve C, where

sk �=0 for all k. Note that the only case in which PW
C (t)=1 corresponds to the

singularity Ak and two branches C1, C2 in such a way that they are curvettes at
the end points named 1 and k of the dual graph of Ak. In the sequel we omit
this trivial situation. For i∈I={1, ..., r} let ˇ :I→{1, ..., p} be the map defined by
k=ˇ(i) be such that sk>0 and

(11) 1
ni
j

nj ≥
1
ni
k

nk

for all j. Note that if the inequalities (11) hold for nk=mρ, ρ a deadend of Γ, then
(see Proposition 22); one has the same condition for σ, the star vertex of Γ more
close to ρ. Let E=ˇ(I)⊂{1, ..., p} be the set of indices k such that k=ˇ(i) for some
i∈{1, ..., r} and for k∈E let A(k)⊂{1, ..., r} denote the set of indices i such that
k=ˇ(i). Note that A(k) contains all the indices i∈{1, ..., r} such that nk=mτ(i).
Let B(k) be the subset of such indices. Our aim is to show that one can find k∈E
such that B(k) �=∅.

Proposition 24. Let us assume that #E≥2. Then there exists k∈E and

i∈A(k) such that

1. ni
k≥nj

k for any j∈A(k)
2. nj

k≤ni
k′ for any k′∈E, k′ �=k, and j∈A(k′).

Moreover, for any pair (k, i) satistying conditions 1) and 2) above, one has that

i∈B(k) and therefore B(k) �=∅.

Proof. Let j∈A(k), j /∈B(k). One has

1
nj
k

nk >
1

mj
τ(j)

mτ(j)

and therefore χ(
¨

Eτ(j))=0. This implies that τ(j) is connected with only one vertex
in Γ (plus the arrow corresponding to C̃j), i.e., τ(j) is a deadend of the resolution
graph of the curve C\{Cj}. Let σ∈Γ be such that nk=mσ and assume that i∈
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B(k) �=∅. In this case, nk=mτ(i) and one has ni
k=mi

τ(i)=Nmi
τ(j), with an integer

N>1, being τ(j) a deadend of the dual graph of C\Cj} (see 20). In particular,
ni
k>mi

τ(j)=mj
τ(i)=nj

k. Notice that if i, s∈B(k) one has also that nk=mτ(s) and
therefore ni

k=ns
k. As a consequence, if B(k) �=∅ one can fix an index i(k)∈B(k)

taking a maximal one of the set {ni
k :i∈A(k)} as in the condition 1) of the statement.

Let k′∈E, k′ �=k, and j∈A(k′). If j∈B(k′), then nk′ =mτ(j) and therefore
n
i(k)
k′ =m

i(k)
τ(j)=mj

τ(i(k))=nj
k. Otherwise, j∈A(k′)\B(k′) and one has that nj

k=
mj

τ(i(k))=m
i(k)
τ(j) and also n

i(k)
k′ =Nm

i(k)
τ(j) for a positive integer N . As a consequence,

n
i(k)
k′ >nj

k and therefore i(k) satisfies the second requirement of the proposition.
In order to finish the proof, one has to prove that B(k) �=∅ for some k∈E. Let

us assume that B(k)=∅ for some k∈E and nk=mσ, for some σ∈Γ with v(σ)≥3
(here v(σ) is the valency of the vertex σ). Let π′ :(X ′,D′)→(S, 0) be the pre-
resolution of C and let Γ′ be the resolution graph of π′. For any j∈A(k) one has
that τ(j) is an end of Γ\{C̃j}. We will distinguish two cases:

Let us assume that σ /∈Γ′. In this case, also τ(j) /∈Γ′ is a deadend of the dual
resolution graph of the curve C\{Cj} and A(k)={j}. In particular, the vertex σ

appears after τ(j) in the resolution process of a certain branch Ci, i �=j, which is
not a curvette at Eσ. It is clear that in this case (1/ni

k)nk>(1/mi
τ(i))mτ(i) and

k′=ˇ(i) provides a new element k′∈E. Using this new element k′ we can repeat
the argument up to the moment when we reach e∈E such that B(e) �=∅ (note that
nk<nk′).

Assume that σ∈Γ′. If there exists an irreducible component Ci such that its
strict transform by π′ intersects D′ at Eσ one can repeat the same argument of
the above case for k′=ˇ(i) and so there exists an element e∈E such that B(e) �=∅.
Otherwise, σ∈Γ′ must be a star vertex of Γ′ and all the elements of A(k) correspond
to curvettes at some of the end points of Γ′. However, there is (at most) only one
vertex in Γ′ with such conditions: the vertex named k−2 if S=Dk, the vertex named
3 for E6,E7 and E8 and no one for the case Ak. Being #E≥2 in order to finish it
suffices to take a new k′∈E, k′ �=k. �

In order to finish the proof of the Theorem it remains only to treat the case
when #E=1, i.e. k∈E is such that A(k)={1, ..., r}. First of all, we will identify
the cases when B(k)=∅. Taking into account the discussion in the proof of the
Proposition above about the indices j∈A(k)\B(k), the only possibility to have this
situation is when nk=mσ for σ∈Γ′ being a star vertex and all the branches are
curvettes at some end points of Γ′ and no two of them are in the same vertex. This
situations can be described (and so detected) one by one for each of the singularities
Dk, E6,E7,E8 (note that Ak does not appear in this situation). The table below
describe all the possible choices of the ends and the corresponding Weil-Poincaré
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series:
Dk {1, k} → (1−t1t

(k−2)/2
2 )(1−t

1/2
1 t

(k−2)/4
2 )−1

{k−1, k} → (1−t
(k−2)/2
1 t

(k−2)/2
2 )(1−t

1/2
1 t

1/2
2 )−1

{1, k−1, k} → (1−t1t
(k−2)/2
2 t

(k−2)/2
3 )

E6 {1, 4} → (1−t21t
3
2)(1−t

2/3
1 t12)−1

{1, 6} → (1−t21t
2
2)(1−t1t2)−1

{1, 4, 6} → (1−t21t
3
2t

2
3)

E7 {1, 4} → (1−t41t
6
2)(1−t1t

3/2
2 )−1

{1, 7} → (1−t41t
3
2)(1−t21t

3/2
2 )−1

{4, 7} → (1−t61t
3
2)(1−t21t2)−1

{1, 4, 7} → (1−t41t
6
2t

3
3)

E8 {1, 4} → (1−t101 t152 )(1−t21t
3
2)−1

{1, 8} → (1−t101 t62)(1−t51t2
3)−1

{4, 8} → (1−t151 t62)(1−t51t
2
2)−1

{1, 4, 8} → (1−t101 t152 t63)

Now, if the Weil-Poincaré series is not one of the above, then B(k) �=∅ and the
we can choose an index i∈B(k) as in the Proposition above. This finishes the proof
of Theorem 11. �

For the proof of Theorem 12 (an analogue of Theorem 11 for divisorial valua-
tions) the projection formula permits to reduce (to split) the case of r valuations to
the cases of one valuation v1 and (r−1) remaining valuations. For the E8-singularity
in [9] this finishes the proof (due to the absence of symmetries of the E8 graph). In
the case under consideration the multiplicity m1i determines whether the vertices
of the minimal resolution graph corresponding to the divisorial valuations v1 and
vi are on the same part from those exchanged by symmetries or on different ones.

References
1. Gusein-Zade, S. M., Delgado, F. and Campillo, A., Integrals with respect to the

Euler characteristic over the space of functions and the Alexander polynomial,
Proc. Steklov Inst. Math. 238 (2002), 134–147. MR1969310

2. Campillo, A., Delgado, F. and Gusein-Zade, S. M., The Alexander polynomial
of a plane curve singularity via the ring of functions on it, Duke Math. J. 117
(2003), 125–156. MR1962784

3. Campillo, A., Delgado, F. and Gusein-Zade, S. M., The Alexander polynomial of
a plane curve singularity and integrals with respect to the Euler characteristic,
Int. J. Math. 14 (2003), 47–54. MR1955509

http://www.ams.org/mathscinet-getitem?mr=1969310
http://www.ams.org/mathscinet-getitem?mr=1962784
http://www.ams.org/mathscinet-getitem?mr=1955509


Weil–Poincaré series and topology of collections of valuations on rational double points 321

4. Campillo, A., Delgado, F. and Gusein-Zade, S. M., Poincaré series of a rational
surface singularity, Invent. Math. 155 (2004), 41–53. MR2025300

5. Campillo, A., Delgado, F. and Gusein-Zade, S. M., Poincaré series of curves
on rational surface singularities, Comment. Math. Helv. 80 (2005), 95–
102. MR2130568

6. Gusein-Zade, S. M., Delgado, F. and Campillo, A., Universal abelian covers of
rational surface singularities, and multi-index filtrations, Funktsional. Anal. i
Prilozhen. 42 (2008), 3–10 (in Russian); translated in Funct. Anal. Appl. 42
(2008), 83–88. MR2438013

7. Campillo, A., Delgado, F. and Gusein-Zade, S. M., The Poincaré series of divi-
sorial valuations in the plane defines the topology of the set of divisors, Funct.
Anal. Other Math. 3 (2010), 39–46. MR2734559

8. Campillo, A., Delgado, F. and Gusein-Zade, S. M., On the topological type of
a set of plane valuations with symmetries, Math. Nachr. 290 (2017), 1925–
1938. MR3695804

9. Campillo, A., Delgado, F. and Gusein-Zade, S. M., Are algebraic links in the
Poincaré sphere determined by their Alexander polynomials? Math. Z. 294
(2020), 593–613. MR4050077

10. Campillo, A., Delgado, F., Gusein-Zade, S. M. and Hernando, F., Poincaré
series of collections of plane valuations, Int. J. Math. 21 (2010), 1461–
1473. MR2747738

11. Campillo, A., Delgado, F. and Kiyek, K., Gorenstein property and symmetry for
one-dimensional local Cohen-Macaulay rings, Manuscripta Math. 83 (1994),
405–423. MR1277539

12. Delgado, F. and Gusein-Zade, S. M., Poincaré series for several plane divisorial
valuations, Proc. Edinb. Math. Soc. (2) 46 (2003), 501–509. MR1998577

13. Mumford, D., The topology of normal singularities of an algebraic surface and a
criterion for simplicity, Publ. Math. Inst. Hautes Études Sci. 9 (1961), 5–
22. MR0153682

14. Nemethi, A., Poincaré series associated with surface singularities, in Singulari-
ties I, Contemp. Math. 474, pp. 271–297, Am. Math. Soc., Providence,
2008. MR2454352

15. Yamamoto, M., Classification of isolated algebraic singularities by their Alexander
polynomials, Topology 23 (1984), 277–287. MR0770564

A. Campillo
IMUVA (Instituto de Investigación en
Matemáticas)
Universidad de Valladolid
Paseo de Belén, 7
47011 Valladolid
Spain
campillo@agt.uva.es

F. Delgado
IMUVA (Instituto de Investigación en
Matemáticas)
Universidad de Valladolid
Paseo de Belén, 7
47011 Valladolid
Spain
fdelgado@uva.es

http://www.ams.org/mathscinet-getitem?mr=2025300
http://www.ams.org/mathscinet-getitem?mr=2130568
http://www.ams.org/mathscinet-getitem?mr=2438013
http://www.ams.org/mathscinet-getitem?mr=2734559
http://www.ams.org/mathscinet-getitem?mr=3695804
http://www.ams.org/mathscinet-getitem?mr=4050077
http://www.ams.org/mathscinet-getitem?mr=2747738
http://www.ams.org/mathscinet-getitem?mr=1277539
http://www.ams.org/mathscinet-getitem?mr=1998577
http://www.ams.org/mathscinet-getitem?mr=0153682
http://www.ams.org/mathscinet-getitem?mr=2454352
http://www.ams.org/mathscinet-getitem?mr=0770564
mailto:campillo@agt.uva.es
mailto:fdelgado@uva.es


322
Weil–Poincaré series and topology of collections of valuations on rational double points

A. Campillo, F. Delgado and S.M. Gusein-Zade:

S.M. Gusein-Zade
Faculty of Mathematics and Mechanics,
Moscow Center for Fundamental and Ap-
plied Mathematics
Moscow State University
GSP-1
119991 Moscow
Russia
and
National Research University “Higher
School of Economics”
Usacheva street 6
119048 Moscow
Russia
sabir@mccme.ru

Received December 1, 2021
in revised form April 20, 2022

mailto:sabir@mccme.ru

	Weil–Poincaré series and topology of collections of valuations on rational double points
	1 Introduction
	2 The Weil–Poincaré series
	3 Weil–Poincaré series and integrals with respect to the Euler characteristic
	4 Curves and divisors on the E7-singularity whose Weil–Poincaré series do not determine the minimal resolution
	5 Main statements
	6 The case of one valuation
	7 The case of several valuations
	References


