Proper holomorphic embeddings of complements of large Cantor sets in \mathbb{C}^2

G.D. Di Salvo and E.F. Wold

Abstract. We prove that there exist Cantor sets of arbitrarily large 2-dimensional Lebesgue measure whose complements admit proper holomorphic embeddings in \mathbb{C}^2 .

1. Introduction

1.1. The main result

A major unresolved issue, known as Forster's Conjecture, is whether or not every open Riemann surface X admits a holomorphic embedding into \mathbb{C}^2 , and, if it does, whether it admits a *proper* holomorphic embedding. For instance, if Y is a compact Riemann surface, and if $X=Y\setminus C$ where C is a closed set whose connected components are all points, it is unknown whether X embeds (properly or not) into \mathbb{C}^2 . We may consider two extremal cases: (i) the case where C is a finite set, and (ii) the case where C is a Cantor set, and we may further consider the simplest compact Riemann surface in this context, namely $Y=\mathbb{P}^1$. Then in case (i), it is clear that X admits a proper holomorphic embedding into \mathbb{C}^2 , so we will consider the case (ii).

Let Q denote the square $Q = [-1, 1] \times [-1, 1] \subset \mathbb{C}$, and let μ denote the 2-dimensional Lebesgue measure on \mathbb{C} . A procedure for constructing a (large) Cantor set $C \subset Q$ is as follows (see Section 3 for a more detailed description). Let l_1 denote the vertical line dividing Q into two equal pieces, choose $\delta_1 > 0$ small, and remove an open δ_1 -neighbourhood of l_1 to obtain a union Q_2 of two disjoint rectangles. Next, let $l_2^j, j=1, 2$, be horizontal lines dividing each rectangle in Q_2 into equal pieces, choose δ_2 small, and remove an open δ_2 -neighbourhood of $l_2^1 \cup l_2^2$ to obtain

²⁰¹⁰ Mathematics Subject Classification: 32E20.

a disjoint union Q_3 of four rectangles. Next, switch back to vertical lines, chose δ_3 small to obtain Q_4 and so forth, to obtain a sequence $\delta_j \rightarrow 0$ and nested sequence Q_j of rectangles such that $C = \bigcap_j Q_j$ is a Cantor set contained in Q. Our main result is the following.

Theorem 1.1. There are sequences $\{\delta_j\}_j$ converging to zero arbitrarily fast such that the complement $\mathbb{P}^1 \setminus C$ of the resulting Cantor set admits a proper holomorphic embedding into \mathbb{C}^2 . In particular, for any $\varepsilon > 0$ we may achieve that $\mu(C) > 4-\varepsilon$.

The motivation for proving this result is that there have been speculations that considering complements of "fat" Cantor sets could lead to counterexamples to Forster's Conjecture.

We note that Orevkov [18] showed the existence of a Cantor set $C \subset \mathbb{P}^1$ such that $\mathbb{P}^1 \setminus C$ admits a proper holomorphic embedding into \mathbb{C}^2 . His construction is quite cryptical and it is explained in detail in [4], where it is also proved that C can be obtained to have zero Hausdorff dimension. From such a construction it seems difficult, or perhaps impossible, to achieve that C is large.

1.2. History

Dealing with Stein manifolds, one of the most important goals to achieve is to embed them properly holomorphically into \mathbb{C}^N for some N. A first important result comes from Remmert [19], who proved in 1956 that every n-dimensional Stein manifold admits a proper holomorphic embedding into \mathbb{C}^N for N big enough. Such a result was made precise by Bishop and Narasimhan, who independently proved in 1960–61 that N can be taken to be 2n+1 (see [3] and [17]). In 1970, Forster [7] improved Bishop–Narasimhan's result, decreasing N to $\lfloor \frac{5n}{3} \rfloor + 2$ and proving that it is not possible for N to go below $\lfloor \frac{3n}{2} \rfloor + 1$ and conjecturing that the euclidean dimension could have been improved exactly to $\lfloor \frac{3n}{2} \rfloor + 1$. Eliashberg, Gromov (1992) and Shürmann (1997) proved the following

Theorem 1.2. (Eliashberg–Gromov [5] (1992) and Shürmann [21] (1997)) Every *n*-dimensional Stein manifold X, with $n \ge 2$ embeds properly holomorphically into \mathbb{C}^N with $N = \lfloor \frac{3n}{2} \rfloor + 1$.

The proof of the theorem breaks down when n=1; since 1-dimensional Stein manifolds are precisely open connected Riemann surfaces, Forster's conjecture reduces to the following

Conjecture 1.1. Every open connected Riemann surface embeds properly holomorphically into \mathbb{C}^2 .

So far, only a few open Riemann surfaces are known to admit a proper holomorphic embedding into \mathbb{C}^2 . The first known examples are the open unit disk in \mathbb{C} (Kasahara–Nishino, 1970, [22]), open annuli in \mathbb{C} (Laufer, 1973, [14]) and the punctured disk in C (Alexander, 1977, [1]). Later (1995) Stensønes and Globevnik proved in [12] that every finitely connected planar domain without isolated boundary points verifies the conjecture. In 2009, Wold and Forstnerič proved the best result known so far: if \overline{D} is a Riemann surface with smooth enough boundary which admits a smooth embedding into \mathbb{C}^2 , holomorphic on the interior D, then D admits a proper holomorphic embedding into \mathbb{C}^2 (see [10] and next section). Other remarkable results include proper holomorphic embeddings of certain Riemann surfaces into \mathbb{C}^2 with interpolation (see [13]), deformation of continuous mappings $f: S \rightarrow X$ between Stein manifolds into proper holomorphic embeddings under certain hypothesis on the dimension of the spaces (see [2]), embeddings of infinitely connected planar domains into \mathbb{C}^2 (see [11]), the existence of a homotopy of continuous mappings $f: D \to \mathbb{C} \times \mathbb{C}^*$ into proper holomorphic embedding whenever D is a finitely connected planar domain without punctures (see [20]), existence of proper holomorphic embeddings of the unit disc \mathbb{B} into connected pseudoconvex Runge domains $\Omega \subset \mathbb{C}^n$ (when $n \geq 2$) whose image contains arbitrarily fixed discrete subsets of Ω (see [9]), approximation of proper embeddings on smooth curves contained in a finitely connected planar domain D into \mathbb{C}^n (with $n \geq 2$) by proper holomorphic embeddings $f: D \to \mathbb{C}^n$ (see [15]), and the existence of proper holomorphic embeddings into \mathbb{C}^2 of certain infinitely connected domains Ω lying inside a bordered Riemann surface \overline{D} knowing to admit a proper holomorphic embedding into \mathbb{C}^2 [16].

2. Preliminaries

2.1. Notation

We will use the following notation.

Given $K \subset \mathbb{C}$ and a positive real number δ , we define the open subset

$$K(\delta) := \{ z \in \mathbb{C} : \operatorname{dist}(z, K) < \delta \}.$$

• For a closed subset $K \subset \mathbb{P}^1$ we denote by $\mathcal{O}(K)$ the algebra of continuous functions $f \in \mathcal{C}(K)$ such that there exists an open set $U \subset \mathbb{P}^1$ containing K, and $F \in \mathcal{O}(U)$ with $F|_K = f$.

• We let $\pi_j : \mathbb{C}^2 \to \mathbb{C}$ denote the projection onto the *j*-th coordinate line, and given a point $p \in \mathbb{C}^2$ we denote the vertical complex line through p by

$$\Lambda_p := \pi_1^{-1}(\pi_1(p)) = \{ (\pi_1(p), \zeta) : \zeta \in \mathbb{C} \}.$$

• If X is a domain with piecewise smooth boundary in a Riemann surface Y, $f: \overline{X} \to \mathbb{C}^2$ is a holomorphic map, and if $a \in \partial X$ is a smooth boundary point, we say that f(a) is π_1 -exposed for $f(\overline{X})$ if $f(\overline{X}) \cap \Lambda_{f(a)} = \{f(a)\}$, and $\pi_1 \circ f$ is an embedding sufficiently close to a. Similarly, for a smooth map $\gamma: [0, 1] \to \mathbb{C}^2$, we say that $\gamma([0, 1])$ is exposed at $\gamma(1)$ if $\gamma([0, 1]) \cap \Lambda_{\gamma(1)} = \{\gamma(1)\}$, and $\pi_1 \circ \gamma$ is an embedding sufficiently close to 1.

2.2. Results

In this section, we collect the technical tools needed to prove Theorem 1.1.

The following result is essentially Theorem 4.2 in [10]. Although (1) and (2) were not stated explicitly in [10] they are evident from the proof therein and were added to the corresponding Theorem 2.8 in [11].

Theorem 2.1. Let X be a smoothly bounded domain in a Riemann surface Y, $f: \overline{X} \hookrightarrow \mathbb{C}^2$ a holomorphic embedding, and $a_1, ..., a_m \in \partial X$. Let $\gamma_j: [0,1] \to \mathbb{C}^2$ (j=1,...,m) be smooth embedded arcs with pairwise disjoint images satisfying the following properties:

• $\gamma_j([0,1]) \cap f(\overline{X}) = \gamma_j(0) = f(a_j) \text{ for } j=1,...,m, \text{ and }$

• the image $E:=f(\overline{X})\cup \bigcup_{j=1}^m \gamma_j([0,1])$ is π_1 -exposed at $\gamma_j(1)$ for j=1,...,m.

Then given an open set $V \subset \mathbb{C}^2$ containing $\bigcup_{j=1}^m \gamma_j([0,1])$, an open set $U \subset Y$ containing the points a_j that satisfies $f(\overline{U \cap X}) \subset V$, and any $\varepsilon > 0$, there exists a holomorphic embedding $F: \overline{X} \hookrightarrow \mathbb{C}^2$ with the following properties:

(1) $||F-f||_{\overline{X}\setminus U} < \varepsilon$, (2) $F(\overline{U\cap X}) \subset V$, and (3) $F(a_j) = \gamma_j(1)$, and $F(\overline{X})$ is π_1 -exposed at $F(a_j)$ for j=1,...,m.

The following is essentially Lemma 1 in [23]. The difference is that Lemma 1 was stated for π_1 instead of π_2 , and for curves $\lambda: [0, +\infty) \to \mathbb{C}^2$ instead of $\lambda: (-\infty, +\infty) \to \mathbb{C}^2$ – neither make a difference for the proof.

Lemma 2.1. Let $K \subset \mathbb{C}^2$ be a polynomially convex compact set, and let

$$\Lambda = \{\lambda_j(t) : j = 1, \dots, m, \quad t \in (-\infty, +\infty)\}$$

be a collection of pairwise disjoint smooth curves in $\mathbb{C}^2 \setminus K$ without self-intersection, enjoying the immediate projection property (with respect to π_2):

• $\lim_{|t|\to\infty} |\pi_2(\lambda_j(t))| = \infty$ for all j, and

• there exists an M>0 such that $\mathbb{C}\setminus(R\overline{\mathbb{B}}\cup\pi_2(\Lambda))$ does not contain any relatively compact components for $R\geq M$. Then for any r>0 and $\varepsilon>0$ there exists $\phi\in\operatorname{Aut} \mathbb{C}^2$ such that the following are satisfied:

(i) $\|\phi - \operatorname{Id}\|_K < \varepsilon$, and (ii) $\phi(\Lambda) \subset \mathbb{C}^2 \setminus r\overline{\mathbb{B}^2}$.

3. The induction step

We will now describe an inductive procedure to construct a nested sequence of closed rectangles $Q_n \subset Q$, along with holomorphic embeddings $f_n: \overline{\mathbb{P}^1 \setminus Q_n} \to \mathbb{C}^2$ that will be used to construct a proper holomorphic embedding

$$f\colon \mathbb{P}^1 \setminus \bigcap_n Q_n {\longleftrightarrow} \mathbb{C}^2,$$

where $C = \bigcap_n Q_n$ will be a Cantor set, where the construction will enable us to ensure that its Lebesgue measure $\mu(C)$ is arbitrarily close to 4.

Set $Q_1 := Q$ and set $C_1 := \overline{\mathbb{P}^1 \setminus Q_1}$. To construct Q_2 from Q_1 we let l_1 be the vertical line segment dividing Q_1 into two equal pieces. Then, for $0 < \delta_2 << 1$, we set

$$Q_2 := Q_1 \setminus l_1(\delta_2),$$

and we set $C_2 := \overline{\mathbb{P}^1 \setminus Q_2}$. Then C_2 is the complement of the disjoint union of 2 open rectangles $(Q_2^j)^{\circ}, j=1, 2$, contained in Q_1 .

Assume now that we have constructed a nested sequence $\{Q_j\}_{j=1}^n, n \ge 2$, where

$$Q_n = \bigsqcup_{j=1}^{2^{n-1}} Q_n^j$$

is the disjoint union of 2^{n-1} closed rectangles contained in Q_{n-1} , along with an increasing sequence of closed subsets $C_n := \overline{\mathbb{P}^1 \setminus Q_n}$ in \mathbb{P}^1 . We let l_n^j be the line segment – vertical for n odd, horizontal for n even – dividing Q_n^j into two equal pieces, we set $l_n := \bigsqcup_{j=1}^{2^{n-1}} l_n^j$, and for $\delta_{n+1} > 0$ small enough we define

$$Q_{n+1} := Q_n \setminus l_n(\delta_{n+1}) =: \bigsqcup_{j=1}^{2^n} Q_{n+1}^j,$$

and

$$C_{n+1} := \overline{\mathbb{P}^1 \setminus Q_{n+1}} \,.$$

Proposition 3.1. With the procedure above assume that we have constructed Q_n and C_n for $n \ge 1$. Let $K_n \subset C_n^\circ$ be a compact set, let $r_n > 0$, and assume that $f_n: C_n \hookrightarrow \mathbb{C}^2$ is a holomorphic embedding such that

(3.1)
$$f_n(\overline{C_n \setminus K_n}) \subset \mathbb{C}^2 \setminus r_n \overline{\mathbb{B}^2}.$$

Then for any $\varepsilon_n > 0$ and any $r_{n+1} > r_n$, there exist $\delta_{n+1} > 0$ arbitrarily close to zero and a holomorphic embedding $f_{n+1} : C_{n+1} \hookrightarrow \mathbb{C}^2$ such that

(a) $||f_{n+1}-f_n||_{K_n} < \varepsilon_n$, (b) $f_{n+1}(\overline{C_{n+1} \setminus K_n}) \subset \mathbb{C}^2 \setminus r_n \overline{\mathbb{B}^2}$, (c) $f_{n+1}(\partial C_{n+1}) \subset \mathbb{C}^2 \setminus r_{n+1} \overline{\mathbb{B}^2}$.

Proof. We extend f_n to a smooth embedding $\tilde{f}_n \colon C_n \cup l_n \hookrightarrow \mathbb{C}^2$ with $\tilde{f}_n(l_n)$ lying close enough to $f_n(\partial C_n)$ so that by (3.1) we get

(3.2)
$$\tilde{f}_n(l_n) \subset \mathbb{C}^2 \setminus r_n \overline{\mathbb{B}^2}$$

Now Mergelyan's theorem (see e.g., [6]) ensures the existence of a holomorphic embedding $\hat{f}_{n+1}: C_n \cup l_n \hookrightarrow \mathbb{C}^2$ such that

$$\|\hat{f}_{n+1} - \tilde{f}_n\|_{C_n \cup l_n} < \frac{\varepsilon_n}{4},$$

and

(3.3)
$$\hat{f}_{n+1}((\overline{C_n \cup l_n}) \setminus K_n) \subset \mathbb{C}^2 \setminus r_n \overline{\mathbb{B}^2}.$$

Then by choosing a preliminary $\tilde{\delta}_{n+1} > 0$ sufficiently small (to be shrunk further later), and letting the set corresponding to C_{n+1} be denoted by \tilde{C}_{n+1} (and similarly for Q_{n+1}), we have that $\hat{f}_{n+1} \in \mathcal{O}(\tilde{C}_{n+1})$, and

(3.4)
$$\hat{f}_{n+1}(\overline{\widetilde{C}_{n+1} \setminus K_n}) \subset \mathbb{C}^2 \setminus r_n \overline{\mathbb{B}^2}.$$

Next, recall that \widetilde{Q}_{n+1} is constructed from Q_n by splitting each Q_n^j into two smaller rectangles $\widetilde{Q}_n^{j,1}$ and $\widetilde{Q}_n^{j,2}$, by removing the strip $l_n^j(\widetilde{\delta}_{n+1})$. Choose smooth boundary points

(3.5)
$$\tilde{a}_{ji} \in \partial \widetilde{Q}_n^{j,i} \cap \overline{l_n^j}(\tilde{\delta}_{n+1}),$$

for i=1,2, and $j=1,...,2^{n-1}$, and relabel these to get 2^n boundary points a_j , one in each $\partial \widetilde{Q}_{n+1}^j$.

Now choose 2^n pairwise disjoint smoothly embedded arcs $\gamma_j : [0, 1] \hookrightarrow \mathbb{C}^2$ disjoint from $r_n \overline{\mathbb{B}^2}$, such that

$$\gamma_j([0,1]) \cap \hat{f}_{n+1}(\tilde{C}_{n+1}) = \hat{f}_{n+1}(a_j) = \gamma_j(0),$$

and such that each point $\gamma_i(1)$ is π_1 -exposed for the surface

$$\widehat{f}_{n+1}(\widetilde{C}_{n+1}) \cup \bigcup_{j=1}^{2^n} \gamma_j([0,1]).$$

Choose an open set $V \subset \mathbb{C}^2$ containing the arcs $\gamma_j([0,1])$ with $\overline{V} \cap r_n \overline{\mathbb{B}^2} = \emptyset$ and take $U \subset \mathbb{P}^1$ to be the union of sufficiently small open balls centered at the points a_j , so that $U \cap K_n = \emptyset$ and $\hat{f}_{n+1}(\overline{U \cap \widetilde{C}_{n+1}}) \subset V$. Then Theorem 2.1 furnishes a holomorphic embedding $F_{n+1}: \widetilde{C}_{n+1} \hookrightarrow \mathbb{C}^2$ such that $p_j := F_{n+1}(a_j) = \gamma_j(1)$ is an exposed point for $F_{n+1}(\widetilde{C}_{n+1})$ for each j, and

(3.6)
$$\|F_{n+1} - \hat{f}_{n+1}\|_{K_n} < \frac{\varepsilon_n}{4},$$

and also

(3.7)
$$F_{n+1}(\overline{\widetilde{C}_{n+1}\setminus K_n}) \subset \mathbb{C}^2 \setminus r_n \overline{\mathbb{B}^2}.$$

Now choose $\alpha_j \in \mathbb{C}, j=1, ..., 2^n$, such that setting

$$g_{n+1}(z,w) := \left(z, w + \sum_{j=1}^{2^n} \frac{\alpha_j}{\pi_1(p_j) - z}\right),$$

we have that

$$||g_{n+1} \circ F_{n+1} - F_{n+1}||_{K_n} < \frac{\varepsilon_n}{4},$$

and such that the conditions in Lemma 2.1 are satisfied for the collection Λ of curves

$$\lambda_{ji} := g_{n+1} \circ F_{n+1}(\partial \widetilde{Q}_n^{j,i}), \quad i = 1, 2, \ j = 1, \dots, 2^{n-1},$$

that are the boundary of the unbounded complex curve

$$X_{n+1} := g_{n+1} \circ F_{n+1}(\widetilde{C}_{n+1}).$$

Note that we still have

(3.8)
$$g_{n+1} \circ F_{n+1}(\overline{\widetilde{C}_{n+1} \setminus K_n}) \subset \mathbb{C}^2 \setminus r_n \overline{\mathbb{B}^2}.$$

Choose $0 < \eta < <1$ such that $(r_n + \eta)\overline{\mathbb{B}^2} \cap \Lambda = \emptyset$. We may choose a compact polynomially convex set $K' \subset X_{n+1}^{\circ}$ with $g_{n+1} \circ F_{n+1}(K_n) \subset K'$ such that $L = (r_n + \eta)\overline{\mathbb{B}^2} \cup K'$ is polynomially convex (see e.g., Theorem 4.14.6 in [8]). Then by Lemma 2.1 there exists $\phi_{n+1} \in \operatorname{Aut} \mathbb{C}^2$ such that

(3.9)
$$\phi_{n+1}(\Lambda) \subset \mathbb{C}^2 \setminus r_{n+1}\overline{\mathbb{B}^2},$$

329

and

(3.10)
$$\|\phi_{n+1} - \operatorname{Id}\|_L < \frac{\min\{\eta, \varepsilon_n\}}{4}.$$

We consider the map $f_{n+1}: \widetilde{C}_{n+1} \to \mathbb{C}^2$ defined by

$$f_{n+1} := \phi_{n+1} \circ g_{n+1} \circ F_{n+1} \,.$$

We have that (a) and (b) (with \tilde{C}_{n+1} instead of C_{n+1}) clearly hold, but now f_{n+1} has singularities on $\partial \tilde{C}_{n+1}$. However, we now consider $0 < \delta_{n+1} < \tilde{\delta}_{n+1}$ to see what happens on C_{n+1} . As the points to expose are taken on the boundary components (see (3.5)), the singularities of f_{n+1} are not contained in C_{n+1} for any such δ_{n+1} , and so $f_n: C_{n+1} \to \mathbb{C}^2$ is holomorphic. Finally, since ∂C_{n+1} will converge to $\partial \tilde{C}_{n+1}$ as $\delta_{n+1} \to \tilde{\delta}_{n+1}$ we have (c) for δ_{n+1} sufficiently close to $\tilde{\delta}_{n+1}$. \Box

4. Proof of Theorem 1.1

We will prove Theorem 1.1 via an inductive construction, where Proposition 3.1 provides us with the inductive step. Without loss of generality, we may assume that $\varepsilon < 1$.

4.1. The induction scheme

To start the induction, with the notation as in Section 3, we define $f_1: C_1 \hookrightarrow \mathbb{C}^2$ by $f_1(\zeta):=(2/\zeta,0)$ for $\zeta \in \mathbb{C}$, and $f(\infty):=(0,0)$. Setting $r_1=1$ we note that $f_1(\partial C_1) \subset \mathbb{C}^2 \setminus r_1 \mathbb{B}^2$, so if we choose $0 < \delta'_1 <<1$ sufficiently close to zero, and set

$$K_1 := \mathbb{P}^1 \setminus Q_1(\delta_1'),$$

we have that $K_1 \subset C_1^{\circ}$ and $f_1(\overline{C_1 \setminus K_1}) \subset \mathbb{C}^2 \setminus r_1 \overline{\mathbb{B}^2}$. Then the conditions in Proposition 3.1 are satisfied with n=1, and setting $\delta_2 \leq \varepsilon \cdot 2^{-4}$, $r_2=2$, we let f_2 be the map furnished by the proposition, with ε_1 explained in the induction scheme below. We then choose $\delta'_2 < \delta_2/2$ sufficiently close to zero such that if we set

$$K_2 := \mathbb{P}^1 \setminus Q_2(\delta_2'),$$

we have $K_2 \subset C_2^{\circ}$ and $f_2(\overline{C_2 \setminus K_2}) \subset \mathbb{C}^2 \setminus r_2 \overline{\mathbb{B}^2}$.

Let us now state our induction hypothesis I_n for some $n \ge 2$. We assume that we have found and constructed the following.

(i)_n A decreasing sequence $\delta_2 > \delta_3 > ... > \delta_n$ of numbers with $\delta_k \leq \varepsilon \cdot 2^{-2k}$ such that $\{Q_k\}_{k=1}^n$ is a nested sequence of rectangles.

(ii)_n A decreasing sequence $\delta'_1 > \delta'_2 > \ldots > \delta'_n$ of numbers with δ'_1, δ'_2 as above, and $\delta'_k < \delta_k/2$ for $k=1, \ldots, n$, and holomorphic embeddings $f_k : C_k \hookrightarrow \mathbb{C}^2$ such that, setting $K_k := \mathbb{P}^1 \setminus Q_k(\delta'_k)$, we have that $f_m(\overline{C_m \setminus K_k}) \subset \mathbb{C}^2 \setminus r_k \overline{\mathbb{B}^2}$ for $1 \le k \le m \le n$, where $r_k \ge k$.

(iii)_n A sequence of positive numbers $\{\eta_k\}_{k=2}^n$ such that if $f: K_k \to \mathbb{C}^2$ is a holomorphic map with $\|f - f_k\|_{K_k} < \eta_k$, then $f: K_{k-1} \hookrightarrow \mathbb{C}^2$ is an embedding.

(iv)_n A sequence of positive numbers $\{\varepsilon_k\}_{k=1}^{n-1}$ such that $\varepsilon_{k+j} < \eta_k \cdot 2^{-j-1}, j \le n-k-1$, with $\|f_k - f_{k-1}\|_{K_{k-1}} < \varepsilon_{k-1}$ for k=2,...,n.

Our constructions above gives $(i)_n$, $(ii)_n$ and $(iv)_n$ in the case n=2 (possibly shrinking ε_1). Then, choosing η_2 small enough, gives f and f' close to f_2 and f'_2 respectively (the latter by Cauchy estimates) on K_2 such that f is injective and f' never vanishes on K_1 . Being K_1 compact, this is enough to achieve $(iii)_n$ when n=2.

4.2. Passing from I_n to I_{n+1}

Let us assume that I_n is true and prove I_{n+1} . First of all we have that $(i)_{n+1}$, (iii)_{n+1} and the first part of $(iv)_{n+1}$ are just a matter of choosing respectively δ_{n+1} , η_{n+1} and ε_n sufficiently small. By (ii)_n with k=n, and with ε_n above fixed, we may apply Proposition 3.1 to get a holomorphic embedding $f_{n+1}: C_{n+1} \hookrightarrow \mathbb{C}^2$ to obtain the second part of $(iv)_{n+1}$ and $(ii)_{n+1}$ with m=n+1 and k=n. Next, by choosing δ'_{n+1} sufficiently small we get $(ii)_{n+1}$ for k=m=n+1. It remains to explain how to achieve $(ii)_{n+1}$ for m=n+1 and k=1, ..., n-1. Since

$$\overline{C_{n+1} \setminus K_k} = \overline{C_{n+1} \setminus K_n} \cup \overline{K_n \setminus K_k}$$

what is needed is $f_{n+1}(\overline{K_n \setminus K_k}) \subset \mathbb{C}^2 \setminus r_k \mathbb{B}^2$. This follows from (ii)_n, possibly after having decreased ε_n .

4.3. Proof of Theorem 1.1

Consider the objects constructed in the inductive scheme above. Then by $(iv)_n$ we have that $\lim_{j\to\infty} f_j = f$ exists on K_k for any k. We have that

$$\left(\bigcup_{k} C_{k}\right)^{\circ} = \mathbb{P}^{1} \setminus \bigcap_{k} Q_{k} =: \mathbb{P}^{1} \setminus C$$

and so $\lim_{j\to\infty} f_j = f$ exists on $\mathbb{P}^1 \setminus C$. Now for any fixed k we get by (ii)_n that $f_n^{-1}(r_k\overline{\mathbb{B}^2}) \subset K_k$ for all n > k and therefore $f^{-1}(r_k\overline{\mathbb{B}^2}) \subset K_k$, so f is proper. By (iv)_n

we get that $||f - f_k||_{K_k} < \eta_k$, hence by (iii)_n we have that $f: K_{k-1} \hookrightarrow \mathbb{C}^n$ is an embedding for all k, so f is an embedding. Finally, note that when constructing a rectangle Q_{n+1} from Q_n , a crude estimate gives that one obtains Q_{n+1} by removing strips of total area bounded by $2^n \cdot \delta_n$. It follows that

$$\mu(C) = \mu\left(\bigcap_{n} Q_{n}\right) \ge 4 - \sum_{n=1}^{\infty} 2^{n} \cdot \delta_{n} \ge 4 - \varepsilon \cdot \sum_{n=1}^{\infty} 2^{-n} > 4 - \varepsilon.$$

References

- ALEXANDER, H., Explicit imbedding of the (punctured) disc into C², Comment. Math. Helv. 52 (1977), 539–544. MR0481126
- ANDRIST, R., FORSTNERIČ, F., RITTER, T. and WOLD, E. F., Proper holomorphic embeddings into Stein manifolds with the density property, *J. Anal. Math.* 130 (2016), 135–150. MR3574650
- BISHOP, E., Mappings of partially analytic spaces, Amer. J. Math. 83 (1961), 209– 242. MR0123732
- 4. Di SALVO, G. D., Extended explanation of Orevkov's paper on proper holomorphic embeddings of complements of Cantor spaces in C² and a discussion of their measure. Second article in author's Ph.D, thesis, Universitetet i Oslo, 2022.
- ELIASHBERG, Y. and GROMOV, M., Embeddings of Stein manifolds, Ann. of Math. (2) 136 (1992), 123–135. MR1173927
- FORNÆSS, J. E., FORSTNERIČ, F. and WOLD, E. F., Holomorphic approximation: the legacy of Weierstrass, Runge, Oka–Weil and Mergelyan, in Advancements in Complex Analysis – From Theory to Practice. Springer Nature, pp. 133–192, 2020. ISBN 978-3-030-40119-1. MR4264040
- FORSTER, O., Plongements des variétés de Stein, Comment. Math. Helv. 45 (1970), 170–184. MR0269880
- FORSTNERIČ, F., Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 56, Springer, Cham, 2017. MR3700709
- FORSTNERIČ, F., GLOBEVNIK, J. and STENSØNES, B., Embedding holomorphic discs through discrete sets, Math. Ann. 305 (1996), 559–569. MR1397436
- FORSTNERIČ, F., WOLD, E. F. and BORDERED, Riemann Surfaces in C², J. Math. Pures Appl. 91 (2009), 100−114. MR2487902
- FORSTNERIČ, F. and WOLD, E. F., Embeddings of infinitely connected planar domains into C², Anal. PDE 6 (2013), 499–514. MR3071396
- GLOBEVNIK, J. and STENSØNES, B., Holomorphic embeddings of planar domains into C², Math. Ann. 303 (1995), 579–597. MR1359950
- KUTZSCHEBAUCH, F., LØW, E. and WOLD, E. F., Embedding some Riemann surfaces into C² with interpolation, Math. Z. 262 (2009), 603–611. MR2506310
- 14. LAUFER, H. B., Imbedding annuli in \mathbb{C}^2 , J. Anal. Math. 26 (1973), 187–215. MR0346189

- MAJCEN, I., Proper holomorphic embeddings of finitely connected planar domains into Cⁿ, Ark. Mat. 51 (2013), 329–343. MR3090200
- MAJCEN, I., Embedding certain infinitely connected subsets of bordered Riemann surfaces properly into C², J. Geom. Anal. 19 (2009), 695–707. MR2496573
- NARASIMHAN, R., Holomorphic mappings of complex spaces, Proc. Amer. Math. Soc. 11 (1960), 800–804. MR0170034
- OREVKOV, S. Y., Proper analytic embedding of CP¹ minus Cantor set into C², Uspekhi Mat. Nauk 63 (2008), 155–156. (in Russian) English transl.: Russian Math. Surveys 63 (2008), 168–169. MR2406184
- REMMERT, R., Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes, C. R. Acad. Sci. Paris 243 (1956), 211–121. MR0079808
- 20. RITTER, T., A strong Oka principle for embeddings of some planar domains into C×C^{*}, J. Geom. Anal. 23 (2013), 571–597. MR3023850
- SCHÜRMANN, J., Embeddings of Stein spaces into affine spaces of minimal dimension, Math. Ann. 307 (1997), 381–399. MR1437045
- STEHLÉ, J-L., Plongements du disque dans C², in Séminaire P. Lelong (Analyse), Lect. Notes in Math. 275, pp. 119–130, Springer, Berlin, 1970. MR0397012
- WOLD, E. F., Proper holomorphic embeddings of finitely and some infinitely connected subsets of C into C², Math. Z. 252 (2006), 1–9. MR2209147

G.D. Di Salvo Department of Mathematics University of Oslo Postboks 1053 Blindern NO-0316 Oslo Norway giovandd@math.uio.no E.F. Wold Department of Mathematics University of Oslo Postboks 1053 Blindern NO-0316 Oslo Norway erlendfw@math.uio.no

Received December 14, 2021 in revised form February 23, 2022