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Proper holomorphic embeddings of
complements of large Cantor sets in C

2

G.D. Di Salvo and E.F. Wold

Abstract. We prove that there exist Cantor sets of arbitrarily large 2-dimensional Lebesgue
measure whose complements admit proper holomorphic embeddings in C2.

1. Introduction

1.1. The main result

A major unresolved issue, known as Forster’s Conjecture, is whether or not
every open Riemann surface X admits a holomorphic embedding into C

2, and, if it
does, whether it admits a proper holomorphic embedding. For instance, if Y is a
compact Riemann surface, and if X=Y \C where C is a closed set whose connected
components are all points, it is unknown whether X embeds (properly or not) into
C2. We may consider two extremal cases: (i) the case where C is a finite set, and
(ii) the case where C is a Cantor set, and we may further consider the simplest
compact Riemann surface in this context, namely Y =P

1. Then in case (i), it is
clear that X admits a proper holomorphic embedding into C

2, so we will consider
the case (ii).

Let Q denote the square Q=[−1, 1]×[−1, 1]⊂C, and let μ denote the 2–dimen-
sional Lebesgue measure on C. A procedure for constructing a (large) Cantor set
C⊂Q is as follows (see Section 3 for a more detailed description). Let l1 denote
the vertical line dividing Q into two equal pieces, choose δ1>0 small, and remove
an open δ1–neighbourhood of l1 to obtain a union Q2 of two disjoint rectangles.
Next, let lj2, j=1, 2, be horizontal lines dividing each rectangle in Q2 into equal
pieces, choose δ2 small, and remove an open δ2–neighbourhood of l12∪l22 to obtain
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a disjoint union Q3 of four rectangles. Next, switch back to vertical lines, chose δ3
small to obtain Q4 and so forth, to obtain a sequence δj→0 and nested sequence Qj

of rectangles such that C=∩jQj is a Cantor set contained in Q. Our main result
is the following.

Theorem 1.1. There are sequences {δj}j converging to zero arbitrarily fast

such that the complement P1\C of the resulting Cantor set admits a proper holomor-

phic embedding into C
2. In particular, for any ε>0 we may achieve that μ(C)>4−ε.

The motivation for proving this result is that there have been speculations
that considering complements of “fat” Cantor sets could lead to counterexamples
to Forster’s Conjecture.

We note that Orevkov [18] showed the existence of a Cantor set C⊂P1 such
that P

1\C admits a proper holomorphic embedding into C
2. His construction is

quite cryptical and it is explained in detail in [4], where it is also proved that C can
be obtained to have zero Hausdorff dimension. From such a construction it seems
difficult, or perhaps impossible, to achieve that C is large.

1.2. History

Dealing with Stein manifolds, one of the most important goals to achieve is
to embed them properly holomorphically into C

N for some N . A first important
result comes from Remmert [19], who proved in 1956 that every n–dimensional Stein
manifold admits a proper holomorphic embedding into C

N for N big enough. Such
a result was made precise by Bishop and Narasimhan, who independently proved
in 1960–61 that N can be taken to be 2n+1 (see [3] and [17]). In 1970, Forster [7]
improved Bishop–Narasimhan’s result, decreasing N to �5n

3 �+2 and proving that
it is not possible for N to go below �3n

2 �+1 and conjecturing that the euclidean
dimension could have been improved exactly to �3n

2 �+1. Eliashberg, Gromov (1992)
and Shürmann (1997) proved the following

Theorem 1.2. (Eliashberg–Gromov [5] (1992) and Shürmann [21] (1997)) Ev-

ery n–dimensional Stein manifold X, with n≥2 embeds properly holomorphically

into C
N with N=� 3n

2 �+1.

The proof of the theorem breaks down when n=1; since 1–dimensional Stein
manifolds are precisely open connected Riemann surfaces, Forster’s conjecture re-
duces to the following

Conjecture 1.1. Every open connected Riemann surface embeds properly holo-

morphically into C
2.
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So far, only a few open Riemann surfaces are known to admit a proper holo-
morphic embedding into C2. The first known examples are the open unit disk in
C (Kasahara–Nishino, 1970, [22]), open annuli in C (Laufer, 1973, [14]) and the
punctured disk in C (Alexander, 1977, [1]). Later (1995) Stensønes and Globevnik
proved in [12] that every finitely connected planar domain without isolated bound-
ary points verifies the conjecture. In 2009, Wold and Forstnerič proved the best
result known so far: if D is a Riemann surface with smooth enough boundary
which admits a smooth embedding into C

2, holomorphic on the interior D, then D

admits a proper holomorphic embedding into C
2 (see [10] and next section). Other

remarkable results include proper holomorphic embeddings of certain Riemann sur-
faces into C

2 with interpolation (see [13]), deformation of continuous mappings
f : S→X between Stein manifolds into proper holomorphic embeddings under cer-
tain hypothesis on the dimension of the spaces (see [2]), embeddings of infinitely
connected planar domains into C

2 (see [11]), the existence of a homotopy of contin-
uous mappings f : D→C×C∗ into proper holomorphic embedding whenever D is a
finitely connected planar domain without punctures (see [20]), existence of proper
holomorphic embeddings of the unit disc B into connected pseudoconvex Runge
domains Ω⊂C

n (when n≥2) whose image contains arbitrarily fixed discrete subsets
of Ω (see [9]), approximation of proper embeddings on smooth curves contained in a
finitely connected planar domain D into Cn (with n≥2) by proper holomorphic em-
beddings f : D↪→C

n (see [15]), and the existence of proper holomorphic embeddings
into C

2 of certain infinitely connected domains Ω lying inside a bordered Riemann
surface D knowing to admit a proper holomorphic embedding into C

2 [16].

2. Preliminaries

2.1. Notation

We will use the following notation.
Given K⊂C and a positive real number δ, we define the open subset

K(δ) := {z ∈C : dist(z,K)<δ}.

• For a closed subset K⊂P
1 we denote by O(K) the algebra of continuous

functions f∈C(K) such that there exists an open set U⊂P
1 containing K, and

F∈O(U) with F |K=f .
• We let πj : C2→C denote the projection onto the j–th coordinate line, and

given a point p∈C2 we denote the vertical complex line through p by

Λp :=π−1
1 (π1(p))= {(π1(p), ζ) : ζ ∈C} .
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• If X is a domain with piecewise smooth boundary in a Riemann surface Y ,
f : X→C2 is a holomorphic map, and if a∈∂X is a smooth boundary point, we say
that f(a) is π1–exposed for f(X) if f(X)∩Λf(a)={f(a)}, and π1¨f is an embedding
sufficiently close to a. Similarly, for a smooth map γ : [0, 1]→C

2, we say that γ([0, 1])
is exposed at γ(1) if γ([0, 1])∩Λγ(1)={γ(1)}, and π1¨γ is an embedding sufficiently
close to 1.

2.2. Results

In this section, we collect the technical tools needed to prove Theorem 1.1.
The following result is essentially Theorem 4.2 in [10]. Although (1) and (2)

were not stated explicitly in [10] they are evident from the proof therein and were
added to the corresponding Theorem 2.8 in [11].

Theorem 2.1. Let X be a smoothly bounded domain in a Riemann surface

Y , f : X↪→C
2 a holomorphic embedding, and a1, ..., am∈∂X. Let γj : [0, 1]→C

2

(j=1, ...,m) be smooth embedded arcs with pairwise disjoint images satisfying the

following properties:

• γj([0, 1])∩f(X)=γj(0)=f(aj) for j=1, ...,m, and

• the image E :=f(X)∪
⋃m

j=1 γj([0, 1]) is π1–exposed at γj(1) for j=1, ...,m.

Then given an open set V ⊂C
2 containing

⋃m
j=1 γj([0, 1]), an open set U⊂Y contain-

ing the points aj that satisfies f(U∩X)⊂V , and any ε>0, there exists a holomorphic

embedding F : X↪→C
2 with the following properties:

(1) ‖F−f‖X\U<ε,

(2) F (U∩X)⊂V , and

(3) F (aj)=γj(1), and F (X) is π1–exposed at F (aj) for j=1, ...,m.

The following is essentially Lemma 1 in [23]. The difference is that Lemma 1
was stated for π1 instead of π2, and for curves λ : [0,+∞)→C

2 instead of λ : (−∞,

+∞)→C
2 – neither make a difference for the proof.

Lemma 2.1. Let K⊂C
2 be a polynomially convex compact set, and let

Λ= {λj(t) : j =1, ...,m, t∈ (−∞,+∞)}

be a collection of pairwise disjoint smooth curves in C
2\K without self-intersection,

enjoying the immediate projection property (with respect to π2):

• lim|t|→∞ |π2(λj(t))|=∞ for all j, and

• there exists an M>0 such that C\(RB∪π2(Λ)) does not contain any rela-

tively compact components for R≥M .
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Then for any r>0 and ε>0 there exists φ∈AutC2 such that the following are sat-

isfied:

(i) ‖φ−Id ‖K<ε, and

(ii) φ(Λ)⊂C
2\rB2.

3. The induction step

We will now describe an inductive procedure to construct a nested sequence
of closed rectangles Qn⊂Q, along with holomorphic embeddings fn : P1\Qn→C

2

that will be used to construct a proper holomorphic embedding

f : P1\
⋂
n

Qn↪−→C
2,

where C=
⋂

n Qn will be a Cantor set, where the construction will enable us to
ensure that its Lebesgue measure μ(C) is arbitrarily close to 4.

Set Q1 :=Q and set C1 :=P1\Q1. To construct Q2 from Q1 we let l1 be the
vertical line segment dividing Q1 into two equal pieces. Then, for 0<δ2<<1, we
set

Q2 :=Q1\l1(δ2),

and we set C2 :=P1\Q2. Then C2 is the complement of the disjoint union of 2 open
rectangles (Qj

2)¨, j=1, 2, contained in Q1.
Assume now that we have constructed a nested sequence {Qj}nj=1, n≥2, where

Qn =
2n−1⊔
j=1

Qj
n

is the disjoint union of 2n−1 closed rectangles contained in Qn−1, along with an
increasing sequence of closed subsets Cn :=P1\Qn in P

1. We let ljn be the line
segment – vertical for n odd, horizontal for n even – dividing Qj

n into two equal
pieces, we set ln :=

⊔2n−1

j=1 ljn, and for δn+1>0 small enough we define

Qn+1 :=Qn\ln(δn+1)=:
2n⊔
j=1

Qj
n+1,

and
Cn+1 :=P1\Qn+1 .
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Proposition 3.1. With the procedure above assume that we have constructed

Qn and Cn for n≥1. Let Kn⊂C¨

n be a compact set, let rn>0, and assume that

fn : Cn↪→C
2 is a holomorphic embedding such that

fn(Cn\Kn)⊂C
2\rnB2 .(3.1)

Then for any εn>0 and any rn+1>rn, there exist δn+1>0 arbitrarily close to zero

and a holomorphic embedding fn+1 : Cn+1↪→C
2 such that

(a) ‖fn+1−fn‖Kn<εn,

(b) fn+1(Cn+1\Kn)⊂C2\rnB2,

(c) fn+1(∂Cn+1)⊂C
2\rn+1B2.

Proof. We extend fn to a smooth embedding f̃n : Cn∪ln↪→C
2 with f̃n(ln) lying

close enough to fn(∂Cn) so that by (3.1) we get

f̃n(ln)⊂C
2\rnB2 .(3.2)

Now Mergelyan’s theorem (see e.g., [6]) ensures the existence of a holomorphic
embedding f̂n+1 : Cn∪ln↪→C2 such that

‖f̂n+1−f̃n‖Cn∪ln <
εn
4 ,

and

f̂n+1((Cn∪ln)\Kn)⊂C
2\rnB2 .(3.3)

Then by choosing a preliminary δ̃n+1>0 sufficiently small (to be shrunk further
later), and letting the set corresponding to Cn+1 be denoted by C̃n+1 (and similarly
for Qn+1), we have that f̂n+1∈O(C̃n+1), and

f̂n+1(C̃n+1\Kn)⊂C
2\rnB2 .(3.4)

Next, recall that Q̃n+1 is constructed from Qn by splitting each Qj
n into two

smaller rectangles Q̃j,1
n and Q̃j,2

n , by removing the strip ljn(δ̃n+1). Choose smooth
boundary points

(3.5) ãji ∈ ∂Q̃j,i
n ∩ljn(δ̃n+1),

for i=1, 2, and j=1, ..., 2n−1, and relabel these to get 2n boundary points aj , one
in each ∂Q̃j

n+1.
Now choose 2n pairwise disjoint smoothly embedded arcs γj : [0, 1]↪→C

2 disjoint
from rnB2, such that

γj([0, 1])∩f̂n+1(C̃n+1)= f̂n+1(aj)= γj(0),
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and such that each point γj(1) is π1–exposed for the surface

f̂n+1(C̃n+1)∪
2n⋃
j=1

γj([0, 1]).

Choose an open set V ⊂C
2 containing the arcs γj([0, 1]) with V ∩rnB2=∅ and take

U⊂P
1 to be the union of sufficiently small open balls centered at the points aj , so

that U∩Kn=∅ and f̂n+1(U∩C̃n+1)⊂V . Then Theorem 2.1 furnishes a holomorphic
embedding Fn+1 : C̃n+1↪→C

2 such that pj :=Fn+1(aj)=γj(1) is an exposed point for
Fn+1(C̃n+1) for each j, and

‖Fn+1−f̂n+1‖Kn <
εn
4 ,(3.6)

and also

Fn+1(C̃n+1\Kn)⊂C
2\rnB2 .(3.7)

Now choose αj∈C, j=1, ..., 2n, such that setting

gn+1(z, w) :=

⎛⎝z, w+
2n∑
j=1

αj

π1(pj)−z

⎞⎠ ,

we have that
‖gn+1 ¨Fn+1−Fn+1‖Kn <

εn
4 ,

and such that the conditions in Lemma 2.1 are satisfied for the collection Λ of curves

λji := gn+1 ¨Fn+1(∂Q̃j,i
n ), i=1, 2, j =1, ..., 2n−1 ,

that are the boundary of the unbounded complex curve

Xn+1 := gn+1 ¨Fn+1(C̃n+1) .

Note that we still have

gn+1 ¨Fn+1(C̃n+1\Kn)⊂C
2\rnB2 .(3.8)

Choose 0<η<<1 such that (rn+η)B2∩Λ=∅. We may choose a compact polyno-
mially convex set K ′⊂X¨

n+1 with gn+1¨Fn+1(Kn)⊂K ′ such that L=(rn+η)B2∪K ′

is polynomially convex (see e.g., Theorem 4.14.6 in [8]). Then by Lemma 2.1 there
exists φn+1∈AutC2 such that

φn+1(Λ)⊂C
2\rn+1B2 ,(3.9)
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and

‖φn+1−Id ‖L <
min{η, εn}

4 .(3.10)

We consider the map fn+1 : C̃n+1→C
2 defined by

fn+1 :=φn+1 ¨ gn+1 ¨Fn+1 .

We have that (a) and (b) (with C̃n+1 instead of Cn+1) clearly hold, but now fn+1
has singularites on ∂C̃n+1. However, we now consider 0<δn+1<δ̃n+1 to see what
happens on Cn+1. As the points to expose are taken on the boundary components
(see (3.5)), the singularities of fn+1 are not contained in Cn+1 for any such δn+1,
and so fn : Cn+1→C

2 is holomorphic. Finally, since ∂Cn+1 will converge to ∂C̃n+1
as δn+1→δ̃n+1 we have (c) for δn+1 sufficiently close to δ̃n+1. �

4. Proof of Theorem 1.1

We will prove Theorem 1.1 via an inductive construction, where Proposition 3.1
provides us with the inductive step. Without loss of generality, we may assume that
ε<1.

4.1. The induction scheme

To start the induction, with the notation as in Section 3, we define f1 : C1↪→C
2

by f1(ζ):=(2/ζ, 0) for ζ∈C, and f(∞):=(0, 0). Setting r1=1 we note that f1(∂C1)⊂
C

2\r1B2, so if we choose 0<δ′1<<1 sufficiently close to zero, and set

K1 :=P
1\Q1(δ′1),

we have that K1⊂C¨

1 and f1(C1\K1)⊂C2\r1B2. Then the conditions in Proposi-
tion 3.1 are satisfied with n=1, and setting δ2≤ε·2−4, r2=2, we let f2 be the map
furnished by the proposition, with ε1 explained in the induction scheme below. We
then choose δ′2<δ2/2 sufficiently close to zero such that if we set

K2 :=P
1\Q2(δ′2),

we have K2⊂C¨

2 and f2(C2\K2)⊂C
2\r2B2.

Let us now state our induction hypothesis In for some n≥2. We assume that
we have found and constructed the following.

(i)n A decreasing sequence δ2>δ3>...>δn of numbers with δk≤ε·2−2k such
that {Qk}nk=1 is a nested sequence of rectangles.
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(ii)n A decreasing sequence δ′1>δ′2>...>δ′n of numbers with δ′1, δ
′
2 as above, and

δ′k<δk/2 for k=1, ..., n, and holomorphic embeddings fk : Ck↪→C2 such that, setting
Kk :=P

1\Qk(δ′k), we have that fm(Cm\Kk)⊂C
2\rkB2 for 1≤k≤m≤n, where rk≥

k.
(iii)n A sequence of positive numbers {ηk}nk=2 such that if f : Kk→C

2 is a
holomorphic map with ‖f−fk‖Kk

<ηk, then f : Kk−1↪→C
2 is an embedding.

(iv)n A sequence of positive numbers {εk}n−1
k=1 such that εk+j<ηk ·2−j−1, j≤

n−k−1, with ‖fk−fk−1‖Kk−1<εk−1 for k=2, ..., n.
Our constructions above gives (i)n, (ii)n and (iv)n in the case n=2 (possibly

shrinking ε1). Then, choosing η2 small enough, gives f and f ′ close to f2 and f ′
2

respectively (the latter by Cauchy estimates) on K2 such that f is injective and
f ′ never vanishes on K1. Being K1 compact, this is enough to achieve (iii)n when
n=2.

4.2. Passing from In to In+1

Let us assume that In is true and prove In+1. First of all we have that (i)n+1,
(iii)n+1 and the first part of (iv)n+1 are just a matter of choosing respectively
δn+1, ηn+1 and εn sufficiently small. By (ii)n with k=n, and with εn above fixed,
we may apply Proposition 3.1 to get a holomorphic embedding fn+1 : Cn+1↪→C

2

to obtain the second part of (iv)n+1 and (ii)n+1 with m=n+1 and k=n. Next,
by choosing δ′n+1 sufficiently small we get (ii)n+1 for k=m=n+1. It remains to
explain how to achieve (ii)n+1 for m=n+1 and k=1, ..., n−1. Since

Cn+1\Kk =Cn+1\Kn∪Kn\Kk

what is needed is fn+1(Kn\Kk)⊂C
2\rkB2. This follows from (ii)n, possibly after

having decreased εn.

4.3. Proof of Theorem 1.1

Consider the objects constructed in the inductive scheme above. Then by (iv)n
we have that limj→∞ fj=f exists on Kk for any k. We have that(⋃

k

Ck

)
¨

=P
1\

⋂
k

Qk =:P1\C

and so limj→∞ fj=f exists on P
1\C. Now for any fixed k we get by (ii)n that

f−1
n (rkB2)⊂Kk for all n>k and therefore f−1(rkB2)⊂Kk, so f is proper. By (iv)n
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we get that ‖f−fk‖Kk
<ηk, hence by (iii)n we have that f : Kk−1↪→C

n is an embed-
ding for all k, so f is an embedding. Finally, note that when constructing a rectangle
Qn+1 from Qn, a crude estimate gives that one obtains Qn+1 by removing strips of
total area bounded by 2n ·δn. It follows that

μ(C)=μ

(⋂
n

Qn

)
≥ 4−

∞∑
n=1

2n ·δn ≥ 4−ε·
∞∑

n=1
2−n > 4−ε.
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