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Stein neighbourhoods of bordered complex
curves attached to holomorphically convex sets

F. Forstnerič

Abstract. In this paper, we construct open Stein neighbourhoods of compact sets of
the form A∪K in a complex space, where K is a compact holomorphically convex set, A is a
compact complex curve with boundary bA of class C 2 which may intersect K, and the set A∩K

is O(A)-convex.

1. Introduction

An important problem in complex analysis is to understand which sets in a
complex manifold or a complex space admit a basis of open Stein neighbourhoods.
This problem is of both theoretical and practical importance due to the abundance
of analytic techniques available on Stein manifolds. A seminal result of Siu [19]
from 1976 is that a locally closed Stein subspace A of an arbitrary complex space
X admits a basis of open Stein neighbourhoods in X. (See also Suzuki [24, Lemma
3, p. 59] for a special case, and Colţoiu [3] and Demailly [4] for simpler proofs
and generalizations to q-convex subspaces.) Another exposition can be found in [8,
Sections 3.1–3.2] where it was shown in addition that if A⊂X are as above and K is
a compact holomorphically convex set in X (i.e., K is O(Ω)-convex in an open Stein
neighbourhood Ω⊂X of K; see Definition 2.1) such that A∩K is a compact O(A)-
convex set (see Sect. 2), then A∪K admits a basis of open Stein neighbourhoods;
see [8, Theorem 3.2.1] or [7, Theorem 1.2].

The problem of finding Stein neighbourhoods of Stein subvarieties with bound-
aries is more subtle. In this paper, we prove the following result in this direction.
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Theorem 1.1. Assume that X is a complex space and A is a compact com-

plex curve in X with embedded C 2 boundary and having no irreducible components

without boundary. If K is a compact holomorphically convex set in X such that

A∩K is O(A)-convex, then A∪K has a basis of open Stein neighbourhoods (i.e., it

is a Stein compact).

Under the additional assumption that bA∩K=∅, this was proved in my joint
work with Drinovec Drnovšek in 2007; see [5, Theorem 2.1]. (The special case
with K=∅ and X=CP

n is due to Mihalache [15] in 1996.) Here, this condition
is removed by an entirely new proof. Simple examples show that O(A)-convexity
of A∩K is a necessary condition in Theorem 1.1; see [8, Remark 3.2.2]. Hence,
Theorem 1.1 is optimal, except perhaps in terms of the boundary regularity of the
complex curve A. Piecewise C 2 boundary is fine since the corner points can be
added to K, and C 1 boundary would be ideal.

We point out that Theorem 1.1 fails in general if A is a subvariety of higher
dimension dimA>1 whose boundary intersects K. The reason is that a nontriv-
ial envelope of holomorphy of A∪K may appear along bA∩bK, at least if K has
nonempty interior. For example, let A be a closed ball in the complex 2-plane
Σ=C2×{0}⊂C3, and let K be a closed ball in C3 centred at 0. If A is not con-
tained in K but bA intersects the interior of K, then (A∪K)∩Σ is a union of two
compact strongly pseudoconvex domains with a nontrivial envelope of holomorphy
along bA∩bK, and hence A∪K does not have a basis of Stein neighbourhoods.
On the other hand, it was shown by Starčič [20, Theorem 1] that the analogue of
Theorem 1.1 holds if A is a compact complex subvariety with Stein interior whose
embedded strongly pseudoconvex boundary bA of class C 2 does not intersect K.

My initial attempt to prove Theorem 1.1 by adapting the techniques used in [5,
proof of Theorem 2.1] was not successful, so I developed a new approach. An impor-
tant ingredient in the present proof is the seminal theorem of Stolzenberg [21] from
1966, concerning the polynomial hull of the union of a compact polynomially convex
set and a finite number of C 1 curves in a Euclidean space CN . Stolzenberg’s result
easily adapts to Stein spaces via the embedding theorem; see Theorem 2.8. We first
show that every set of the form A∪K as in Theorem 1.1, which we call admissible,
can be slightly enlarged to a more regular special admissible set; see Lemma 2.6.
By [5, Lemma 2.4] there exists a strongly plurisubharmonic function in a neigh-
bourhood of A∪K in X. The main work is to show that any special admissible set
is holomorphically convex, hence a Stein compact (see Theorem 2.5); this proves
Theorem 1.1. The proof of Theorem 2.5, given in Section 3, is based on a couple of
lemmas, the second of which amounts to welding pairs of holomorphically convex
special admissible sets under a suitable geometric condition on their intersection.
(This intersection should be a union of pairwise disjoint complex discs and should



Stein neighbourhoods of bordered complex curves 337

not contain any complex annuli.) Theorem 2.5 is obtained by a finite inductive
application of this welding technique. A version of this technique was previously
used by Poletsky [17] to construct Stein neighbourhoods of certain graphs.

In this regard, I wish to mention the following problem.

Problem 1.2. Assume that X is a complex manifold of dimension n≥3 and K

is a compact set in X which admits an open neighbourhood Ω and a biholomorphic
map Φ:Ω→Φ(Ω)⊂Cn such that Φ(K)⊂Cn is polynomially convex. Let A be a
smooth complex curve as in Theorem 1.1 such that A∩K is O(A)-convex. Does
A∪K admit a Euclidean neighbourhood in X?

It has recently been shown in [9] that if A is a locally closed smooth complex
curve without boundary in a complex manifold X of dimension ≥3 such that A∩K
is compact and O(A)-convex, then, with K as above, the union A∪K admits a
basis of Euclidean Stein neighbourhoods. This is a special case of [9, Theorem
1.1]. However, it is often desirable to have a holomorphic coordinate system around
the entire object under consideration, including its boundary. At this time, I am
unable to answer Problem 1.2 due to technical problems in adapting the methods
from [9]. The only nontrivial problem seems to be that the gluing lemma in the
cited paper (see [9, Theorem 3.7]) does not apply when the curve A is compact
with smooth but non-analytic boundary. If A is analytic past the boundary along
a suitable region in A along which we wish to glue, then [9, Theorem 3.7] applies
and we obtain a Euclidean neighbourhood of A∪K. (See [9, Theorem 1.1]. The
assumption n=dimX≥3 is needed to ensure that the same curve A also embeds
holomorphically into Cn.) We leave a formal statement and proof to an eventual
application.

2. Preliminaries

In this section, we recall some notions and results from the theory of complex
spaces and holomorphic convexity, and we prepare the auxiliary results which will
be used. For the general theory of complex spaces, see [11], [12]; for Stein spaces,
see [13], [14].

Let X be a complex space. We denote by O(X) the algebra of holomorphic
functions on X. By definition, every point p∈X admits an open neighbourhood U⊂
X and a holomorphic embedding φ:U↪→U ′⊂CN onto a closed complex subvariety
φ(U) of a domain U ′ in a complex Euclidean space CN . By shrinking U around
p and taking N the smallest possible (this number is called the local embedding
dimension of X at p), any two such local holomorphic embeddings are related by a
biholomorphism between a pair of their open neighbourhood in CN . This makes it
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possible to introduce differential calculus and the notion of smooth functions and
related objects on complex spaces. A function f on X is said to be of class C r if it
is locally near any point p∈X of the form f=g¨φ, where φ:U↪→U ′⊂CN is a local
holomorphic embedding as above and g is a C r function on the domain U ′. The
function f is (strongly) plurisubharmonic if the local extension g as above can be
chosen (strongly) plurisubharmonic on the ambient domain. A locally closed subset
M of a complex space X is said to be a submanifold of class C r if every point p∈M
admits an open neighbourhood U⊂X and a holomorphic embedding φ:U↪→U ′⊂CN

such that φ(M∩U) is a locally closed submanifold of class C r in CN .
Given a compact set K in a complex space X, its O(X)-convex hull is the set

K̂O(X) =
{
x∈X : |f(x)| ≤ sup

K
|f | for all f ∈O(X)

}
.

The set K is called O(X)-convex if K=K̂O(X). If X is a Stein space then the
hull K̂O(X) of any compact set K is compact. In fact, this is one of two axioms
characterizing Stein spaces, the other one being separation of points by holomorphic
functions.

According to Narasimhan [16] and Fornæss and Narasimhan [6], a complex
space is Stein if and only if it admits a strongly plurisubharmonic exhaustion func-
tion. For manifolds, this is due to Grauert [10, Theorem 2]; see also Hörmander [14,
Theorem 5.2.10]. On a Stein space, the holomorphic hull K̂O(X) equals the hull of K
with respect to the family of all (continuous or smooth) plurisubharmonic functions
on X. By using the easy part of this result that the O(X)-convex hull contains
the plurisubharmonic hull, we infer that if K is a compact O(X)-convex set in a
Stein space X and V ⊂X is a neighbourhood of K, there are a smooth plurisub-
harmonic exhaustion function ρ0 :X→R such that ρ0<0 on K and ρ0>0 on X\V
(see [14, Theorem 5.1.6] and note that the proof given there also applies to Stein
spaces) and a smooth plurisubharmonic exhaustion function ρ:X→R+ such that
K={ρ=0} and ρ is strongly plurisubharmonic on X\K={ρ>0} (see [18, Lemma,
p. 430] or [8, Proposition 2.5.1]). Furthermore, given an O(X)-convex set K and
a plurisubharmonic function ρ in a neighbourhood U of K, there is an exhaust-
ing plurisubharmonic function ρ̃ on X which agrees with ρ near K and is strongly
plurisubharmonic near infinity. To see this, pick a neighborhoood V �U of K, a
strongly plurisubharmonic exhaustion function ρ0 :X→R such that ρ0<0 on K and
ρ0>0 on X\V , and a number c0>0 such that c0ρ0>ρ on bV and c0ρ0<ρ on K,
and define ρ̃=max{c0ρ0, ρ} on V and ρ̃=c0ρ on X\V . By using the regularized
maximum (see Demailly [4] or [8, p. 69]) we can make ρ̃ smooth.

We shall need the following local version of the notion of holomorphic convexity.
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Definition 2.1. A compact set K in a complex space X is holomorphically
convex if there is an open Stein neighbourhood Ω⊂X of K such that K=K̂O(Ω) is
O(Ω)-convex.

Clearly, every compact holomorphically convex set is a Stein compact, i.e., it has
a basis of open Stein neighbourhoods. Although the converse is not true in general, a
Stein compact K can be approximated from the outside by compact holomorphically
convex sets obtained by taking the hulls of K in open Stein neighbourhoods of K.

We shall use the following characterization of holomorphically convex sets.
(This is a folklore result; a specific reference is [18], but likely not the first one.)

Proposition 2.2. Assume that K is a compact set in a complex space X such

that

(a) there is a strongly plurisubharmonic function ρ in a neighborhood K, and

(b) there is a nonnegative plurisubharmonic function τ≥0 in a neighborhood of

K which vanishes precisely on K.

Then, K is holomorphically convex.

Proof. For ε>0 the function t �→ 1
ε−t is strongly increasing and convex on {t<

ε}. Hence, for every small enough ε>0 the function 1
ε−τ is a plurisubharmonic

exhaustion function on the domain Ωε={τ<ε}, which is contained in the domain
of ρ, and hence ρ+ 1

ε−τ is a strongly plurisubharmonic exhaustion function on Ωε.
Thus, Ωε is a Stein neighborhood of K, and K is O(Ωε)-convex as shown by the
function τ . �

A compact set A in a complex space X is said to be a complex curve with C r

boundary bA for some r∈{1, 2, ...,∞} if the following two conditions hold:
(i) A\bA is a closed purely one-dimensional complex analytic subvariety of

X\bA without compact irreducible components, and
(ii) every point p∈bA admits an open neighbourhood U⊂X and a holomorphic

embedding φ:U↪→Ω⊂CN such that φ(A∩U) is a one dimensional complex subman-
ifold of Ω with C r boundary φ(bA∩U). In particular, φ(bA∩U) is an embedded
curve of class C r in CN .

The same notion of a complex curve with boundary was used in [5]. Note
that the boundary bA consists of finitely many closed Jordan curves of class C r,
and A has at most finitely many singular points in the interior Å=A\bA. The
normalization of A is a compact bordered Riemann surface with C r boundary.
Every such surface can be realized as a compact domain with real analytic boundary
in a compact Riemann surface by a conformal diffeomorphism which is of Hölder
class C r−1,α up to the boundary for any 0<α<1 (see Stout [22, Theorem 8.1] and
[1, Theorem 1.10.10] for the discussion and references). Thus, A is a domain with



340 F. Forstnerič

real analytic boundary in a compact one-dimensional complex space with finitely
many singular points, none of which lie on bA.

A compact set L in such a complex curve A is called O(A)-convex if for every
point p∈A\L there is a function f∈A (A) (i.e., continuous on A and holomorphic
on Å=A\bA) such that |f(p)|>maxL |f |. Equivalently, we can use holomorphic
functions on a neighbourhood of A in an ambient one-dimensional complex space,
or continuous subharmonic functions on A. By classical function theory, a compact
set L in A is O(A)-convex if and only if every connected component of A\L intersects
bA. This is an analogue of the Runge condition in open Riemann surfaces, where a
compact set is holomorphically convex if and only if its complement has no relatively
compact connected components.

We shall be concerned with sets of the form A∪K having the properties in
Theorem 1.1. It will be convenient to have a name for them.

Definition 2.3. A pair (A,K) of compact sets in a complex space X is admis-
sible if

(i) A is a compact complex curve in X with embedded C 2 boundary having no
irreducible components without boundary,

(ii) K is a compact holomorphically convex set (see Definition 2.1), and
(iii) the set A∩K is O(A)-convex.

An admissible pair (A,K) is special if in addition A is nonsingular (a union of
finitely many pairwise disjoint embedded complex curves with C 2 boundaries) and
K is a strongly pseudoconvex domain with smooth boundary bK intersecting both
A and bA transversely.

If (A,K) is an admissible pair then A∪K is called an admissible set.

Smoothness of bK is meant as explained above, working in an ambient space
via local holomorphic embeddings. (Alternatively, we can use a global holomorphic
embedding of a Stein neighbourhood of K into CN .) Note that if (A,K) is a special
admissible pair, then A∩bK is a union of finitely many pairwise disjoint C 2 arcs
connecting pairs of points in bA and intersecting bA transversely at the endpoints,
and closed curves contained in A\bA. In fact, these are the relevant properties that
will be used in the proof.

Lemma 2.4. Let (A,K) be an admissible pair in a complex space X.

1. There exists a strongly plurisubharmonic function in a neighbourhood of A∪
K in X.

2. A∪K is holomorphically convex if and only if there exists a nonnegative

plurisubharmonic function τ≥0 in an open neighbourhood of A∪K such that {ρ=
0}=A∪K.
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Proof. The first part is [5, Lemma 2.4]. Although the cited lemma is stated for
the special case A∩bK=∅, its proof also applies in the present situation. (An im-
portant step in the proof is given by [5, Lemma 2.5] which provides an extension of
a C 2 strongly subharmonic function on A to a C 2 strongly plurisubharmonic func-
tion on a neighbourhood of A in X.) The second part is an immediate consequence
of the first part and Proposition 2.2. �

Although we do not know whether A∪K is holomorphically convex for every
admissible pair (A,K), we will show that this holds for special admissible pairs
and every admissible pair can be enlarged as little as desired to obtain a special
admissible pair.

Theorem 1.1 clearly follows from the following couple of results, the first of
which is proved in Section 3.

Theorem 2.5. For every special admissible pair (A,K) in a complex spaces

X, the set A∪K is holomorphically convex.

Lemma 2.6. Given an admissible pair (A,K) in a complex space X and an

open neighbourhood U⊂X of A∪K, there exists a special admissible pair (A′,K ′)
such that A∪K⊂A′∪K ′⊂U .

Proof. We begin by adding to K the finitely many singular points of A. (Since
the boundary bA is embedded, all singular points are contained in the relative
interior A\bA of A.) The new set, still denoted K, is clearly holomorphically
convex.

Pick a smooth plurisubharmonic exhaustion function ρ≥0 on a Stein neigh-
bourhood Ω⊂U of K such that {ρ=0}=K and ρ is strongly plurisubharmonic on
the set {ρ>0}=Ω\K. For every c>0 the domain Ωc={ρ<c} is Stein and its clo-
sure Ωc is holomorphically convex. We now show that Ωc∩A is O(A)-convex if
c>0 is small enough. Fix c0>0. The function u=ρ|A∩Ω :A∩Ω→R+ is plurisubhar-
monic and vanishes precisely on A∩K. Since this set is O(A)-convex, there is a
plurisubharmonic function v :A→R such that v<0 on A∩K and v>0 on A\Ωc0 .
Let

c1 =min{v(x) :x∈A\Ωc0}> 0.

If c2>0 is chosen such that

c1c2 >max{u(x) :x∈A∩bΩc0},

then the function φ:A→R+ given by

φ(x)=
{

max{u(x), c2v(x)}, if x∈A∩Ωc0 ;
c2v(x), if x∈A\Ωc0
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is a nonnegative plurisubharmonic function on A that agrees with u on {v=0},
which is a neighbourhood of A∩K in A. Hence, for all sufficiently small c>0 we
have that

A∩Ωc = {x∈A∩U :u(x)≤ c}= {x∈A :φ≤ c},
so this set is O(A)-convex. For most values of c, the boundary bΩc is smooth and
intersects both A and bA transversely. We now choose K ′={ρ≤c}=Ωc for some c>0
satisfying the above conditions. Note that all singular points of A are contained in
the interior of K ′. Hence, taking A\{ρ<b} for some 0<b<c close to c and rounding
off the corners along bA∩{ρ=b} gives a complex curve A′⊂A without singularities
and with C 2 boundary. Clearly, the new pair (A′,K ′) satisfies the lemma. �

Lemma 2.7. Assume that (A,K) is an admissible pair and Ω⊂X is a Stein

neighbourhood of A∪K such that A∪K is O(Ω)-convex. Then, for any compact

O(A)-convex subset L⊂A such that A∩K⊂L the set K∪L is also O(Ω)-convex.

Proof. We use an idea from Rosay’s proof of Rossi’s local maximum principle
in holomorphic hulls (see [18, Proposition, p. 430]), along with the fact that the
plurisubharmonic hull of a compact set in a Stein space equals its holomorphically
convex hull [6].

It clearly suffices to show that no point p∈A∪K\(K∪L)=A\L belongs to
K̂∪LO(Ω). Since L is O(A)-convex, there exists a smooth strongly plurisubhar-
monic function f on A such that f(p)>0 and f<−1 on L (see [14, Theorem 5.1.6]).
By [5, Lemma 2.5] we may assume that f is plurisubharmonic on a neighbourhood
U⊂X of A. Let V denote the intersection of the set {f≥−1} with a small compact
neighbourhood W⊂U of A. Since f<−1 on L, we have that bV ∩(A∪K)⊂A\L pro-
vided W is chosen small enough. The function ρ̃=max{f, 0}≥0 is then well-defined
and plurisubharmonic on a neighbourhood of A∪K, it vanishes on a neighbourhood
of K∪L, and ρ̃(p)>0. Since A∪K is O(Ω)-convex, ρ̃ extends to a plurisubharmonic
function on Ω without changing its values near A∪K. It follows that p does not
belong to the plurisubharmonic hull of K∪L in Ω, hence neither to the O(Ω)-convex
hull of K∪L. �

We shall need the following version of a theorem of Stolzenberg [21].

Theorem 2.8. Assume that X is a Stein space, K is a compact O(X)-convex
set in X, and C1, ..., Cm⊂X are arcs or closed Jordan curves of class C r for some

r≥1. Set C=
⋃m

j=1 Cj and L=C∪K. Then, the set

A := L̂O(X)\L

is either empty or else a purely one-dimensional complex subvariety of X\L.



Stein neighbourhoods of bordered complex curves 343

Furthermore, if A contains a point p∈C ′
j :=Cj\(

⋃
i �=j Ci∪K), then it contains

the connected component Γ of C ′
j containing p, and the pair (A,Γ ) is a local C r

manifold with boundary at every point in an open subset of Γ whose complement

has zero length.

In particular, if C1, ..., Cm are pairwise disjoint compact embedded C 1 arcs in

X such that at most one endpoint of each Cj is contained in K and the rest of the

arc lies in X\K, then the set
⋃m

j=1 Cj∪K is O(X)-convex.

Theorem 2.8 is obtained by combining Stolzenberg’s theorem in [21], the bound-
ary regularity theorem for analytic subvarieties given by [2, Theorem, p. 255] (this
result is local, so it also holds in complex spaces), and the embedding theorem for
Stein spaces into Euclidean spaces; see [8, Theorem 2.4.1] and the references therein.

Theorem 2.8 also holds if the curves C1, ..., Cm are piecewise C r, since we can
add the finitely many nonsmooth points of C=

⋃m
j=1 Cj to the set K. See also

the exposition given by Stout in [23, Theorem 3.1.1] where Stolzeberg’s theorem is
proved under a weaker regularity assumption on the curves; this generalization will
not be needed.

Another relevant result in this context is the boundary uniqueness theorem for
analytic subvarieties (see Chirka [2, Proposition 1, p. 258]); we state it here for
future reference. This result is local, so it also holds in any complex space.

Proposition 2.9. Let M be a connected (2p−1)-dimensional submanifold of

class C 1 in a complex space X, and let A1, A2⊂X\M be irreducible p-dimensional

complex subvarieties of X\M whose closures contain M . Then, either A1=A2 or

else A1∪A2∪M is a complex analytic subvariety of X.

Proposition 2.9 implies the following. Assume that K is a compact O(X)-
convex set in a Stein space X and A is a compact complex curve with C 1 boundary
in X. Then, Â∪KO(X)=A′∪A∪K, where A′ is a complex curve such that A′\A′⊂
K∪bA. In particular, A′ has at most finitely many irreducible components.

Lemma 2.10. If A is a compact complex curve with C 2 boundary in a Stein

space X, then A′ :=ÂO(X)\A is either empty or a union of finitely many irreducible

complex curves A′
1, ..., A

′
k such that A′

j\A′
j is a union of curves in bA for every j=

1, ..., k. Furthermore, A admits a Stein neighbourhood V ⊂X such that ÂO(V )=A.

For such V and for any compact O(A)-convex set K⊂A with piecewise C 1 boundary

we have that K̂O(V )=K.

Proof. The first claim follows from Theorem 2.8 and Proposition 2.9. By [5,
Theorem 2.1], A is a Stein compact in X. Let us now consider the second part.
Choosing a Stein neighbourhood V ⊂X of A which does not contain any of the
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finitely many complex curves A′
1, ..., A

′
k constituting A′ :=ÂO(X)\A, we get that

ÂO(V )=A. Let K⊂A be a compact O(A)-convex set with piecewise C 1 boundary
bK=

⋃m
i=1 Γi, where Γi are C 1 arcs such that any two of them are either disjoint

or they meet at an endpoint. By Theorem 2.8, the O(V )-hull of bK consists of
finitely many complex curves B1, ..., Bl with boundaries in bK. Since ÂO(V )=A,
any curve Bi from this family which is not contained in K is a domain in A\K
having boundary in bK; but there are no such domains since K is O(A)-convex.
Hence, K̂O(V )=K. �

3. Proof of Theorem 2.5

In this section, we prove Theorem 2.5, i.e., we show that for every special
admissible pair (A,K) in a complex spaces (see Definition 2.3) the set A∪K is
holomorphically convex. As explained in the previous section, this and Lemma 2.6
imply Theorem 1.1.

The proof is based on a couple of lemmas. The first one, Lemma 3.1, shows
that the union of K and a collar in A around A∩bK is holomorphically convex. The
second one, Lemma 3.2, shows that the union of two special holomorphically convex
admissible sets, whose intersection is a union of pairwise disjoint discs, is again
holomorphically convex. The proof amounts to welding plurisubharmonic functions
defining the respective admissible sets along their intersection. Theorem 2.5 follows
easily from these two lemmas.

Recall that A is a union of finitely many pairwise disjoint smooth compact com-
plex curves with C 2 boundaries, K={ρ≤0} where ρ is a strongly plurisubharmonic
exhaustion function on a Stein neighbourhood Ω of K (hence K is O(Ω)-convex),
and 0 is a regular value of both ρ|A and ρ|bA. By compactness of A there is a δ>0
such that

(3.1) every number c∈ [0, δ] is a regular value of ρ|bA and ρ|bA.

For any c∈[0, δ] we set

(3.2) Ac = {x∈A∩Ω : 0≤ ρ(x)≤ c}, Γc = {x∈A∩Ω : ρ(x)= c}.

Note that Ac is an exterior collar in A around A∩bK. Condition (3.1) implies that
Γc is a union of finitely many pairwise disjoints arcs and closed curves of class C 2,
and there is a diffeomorphism Γ0×[0, c]→Ac mapping Γ0×{c′} onto Γc′ for every
c′∈[0, c]. Note that (K,Ac) is a special admissible pair, except that bAc is only
piecewise C 2.
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Lemma 3.1. For every c∈[0, δ] the set K∪Ac is O(Ω)-convex. If Γc does not

contain any closed curves then K∪Γc is also O(Ω)-convex.

Proof. Conditions (3.1) imply that the set Ac in (3.2) is an embedded compact
complex curve with piecewise C 2 boundary (and without singularities) which is a
disjoint union of at most finitely many closed discs D1, ..., Dm and annuli E1, ..., El.
Theorem 2.8 applied to the set K∪bAc shows that its O(Ω)-convex hull contains
K∪Ac together with possibly other closed, irreducible, relatively compact complex
curves in Ω\(K∪bAc). Suppose that C is such a curve which is not contained in Ac.
If the closure C intersects one of the boundaries bDj\K, then it contains this entire
set, and by Proposition 2.9 the union C∪Dj is a complex curve along bDj\K. A
similar argument holds if C intersects one of the closed curves bEj\K. The upshot
is that C together with some connected components of the set Ac\K defines a
closed complex curve in Ω\K whose boundary lies in K. This is impossible since
K is O(Ω)-convex. Hence, K∪Ac is O(Ω)-convex.

If Γc does not contain any closed curves, then K∪Γc is O(Ω)-convex by the
last part of Theorem 2.8. �

The next lemma explains how to glue a pair of holomorphically convex special
admissible sets under a suitable geometric condition on their intersection. This is
the main new idea in our approach.

Lemma 3.2. Assume that (A0,K0) and (A1,K1) are special admissible pairs

in a complex space X satisfying the following conditions.

(a) The special admissible set Li :=Ai∪Ki for i=0, 1 is holomorphically convex.

(b) L0\L1∩L1\L0=∅.

(c) L0∩L1=A0∩A1 is a union of pairwise disjoint discs D1, ..., Dm which do

not intersect the set K :=K0∪K1.

Then, the pair (A=A0∪A1,K=K0∪K1) is a special admissible pair and the set

L0∪L1=A∪K is holomorphically convex.

Proof. It is clear that (A,K) is a special admissible pair. In particular, the
conditions imply that any point in A\K can be connected by a path in this set to
a point in bA\K and the other conditions trivially follow from the hypotheses.

By the assumption, the admissible set Li is O(Ωi)-convex in a Stein domain
Ωi⊂X.

The boundary of every disc Dj in L0∩L1 is of the form

(3.3) bDj =α0,j∪βj∪α1,j∪γj ,

where the arc α0,j⊂bA0 is the closure of bDj∩(A1\bA1), the arc α1,j⊂bA1 is the
closure of bDj∩(A0\bA0), and the arcs βj , γj⊂bA0∩bA1 connect the respective
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endpoints of α0,j and α1,j . For i=0, 1 we define the following sets:

Γi =
m⋃
j=1

αi,j , L′
0 =L0\L1, L′

1 =L1\L0.

Note that the set A0\A1∪Γ0⊂A0 contains A0∩K0 and is clearly O(A0)-convex.
Hence, Lemma 2.7 implies that the set

L′
0∪Γ0 =K0∪A0\A1∪Γ0

is O(Ω0)-convex. The symmetric argument shows that L′
1∪Γ1 is O(Ω1)-convex.

Since L′
i and Γi are disjoint for i=0, 1, it follows from general properties of

O(Ωi)-convex sets that each arc αi,j (j=1, ...,m) has a small compact tubular neigh-
bourhood Λi,j⊂Ωi (defined as a sublevel set of a nonnegative strongly plurisub-
harmonic function vanishing precisely on αi,j ; see [8, Corollary 3.5.2]) such that
these sets are pairwise disjoint, they are disjoint from L′

i and such that, setting
Λi=

⋃m
j=1 Λi,j , the compact set L′

i∪Λi is O(Ωi)-convex for i=0, 1.
Consider the union of the sets L′

i∪Λi and B=
⋃m

j=1 βj∪γj , the latter consisting
of pairwise disjoint arcs connecting L′

i to Λi. By Theorem 2.8, its O(Ωi)-convex hull
consists of Li∪Λi, which is obtained by filling in the discs

⋃m
j=1 Dj , and perhaps

some other irreducible complex curves in Ωi\(L′
i∪Λi∪B) having their ends in L′

i∪
Λi∪B. However, the same argument as in the proof of Lemma 3.1 shows that any
such curve C which is not one of the discs Dj creates a complex curve in the Stein
domain Ωi with boundary in the O(Ωi)-convex set L′

i∪Λi, a contradiction. More
precisely, if the closure of C contains a point p∈βj , then it contains this entire arc
and C∪Dj is analytic along βj . Since every end of C is connected, our geometric
situation implies that the end containing βj also contains the other arc γj in the
boundary of the disc Dj , so C∪Dj is a complex curve along these two arcs. The
curve C may have other ends of the same type. The upshot is that C together with
some of the discs Dj closes up to a complex curve C̃ having its ends in L′

i∪Λi. Since
this set is O(Ωi)-convex, we arrived at a contradiction.

This contradiction shows that the compact set Li∪Λi is O(Ωi)-convex for i=
0, 1. Hence, there is a plurisubharmonic function τi≥0 on Ωi vanishing precisely
on Li∪Λi. We claim that the function τ=max{τ0, τ1}≥0 is then well-defined (and
hence plurisubharmonic) on a neighbourhood of A∪K=L0∪L1, and it vanishes
precisely on A∪K. To see this, note that τ=τ1 on Λ0 since τ0 vanishes there, so
the function τ1 takes over in the maximum before we run out of the domain of τ0,
provided that we stay close enough to A∪K. By taking τ=τ1 in a neighbourhood
of L1\L0 we see that τ is well-defined in a neighbourhood of L1. The symmetric
argument shows that τ is well-defined in a neighbourhood of L0 if we take τ=τ0
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near L0\L1. Finally, any point p∈L0∩L1 has a neighbourhood U⊂X such that
both functions τ0, τ1 are defined on U and at least one of them is positive on
U \(L0∪L1)=U \(A∪K). (The last condition holds because the sets Λ0 and Λ1 are
disjoint.) This proves the claim.

It follows from part 2 of Lemma 2.4 that L0∪L1 is holomorphically convex.
�

Remark 3.3. The conclusion of Lemma 3.2 is false in general if the set L0∩L1=
A0∩A1 contains a complex annulus E. Indeed, such an annulus may be contained
in a bigger annulus E′ in A=A0∪A1 with boundary in K=K0∪K1, and hence it
may generate a nontrivial envelope of holomorphy of A∪K. Note also that in such
case the set L0∪L1 is not admissible since E′ lies in the O(A)-convex hull of A∩K.

Proof of Theorem 2.5. This follows by first using Lemma 3.1 and then per-
forming a finite inductive application of Lemma 3.2. We begin with the special
admissible set Ac∪K (3.2), which is holomorphically convex by Lemma 3.1. We
then successively attach discs with C 2 boundaries in A\K such that each attach-
ment satisfies the conditions of Lemma 3.2, reaching A∪K in finitely many steps.
Every such disc is holomorphically convex by Lemma 2.10. (In fact, we can choose
small discs which may be presented as graphs in local holomorphic coordinates, so
holomorphic convexity is elementary to establish.) Every disc can be chosen such
that its intersection with the previous set is either empty or it consists of one or two
disc. The first case is used to add a new connected component, and the last one
(two discs) to change the topology of the set, i.e., to increase the genus or reduce
the number of connected components. The hypothesis that A∩K is O(A)-convex
guarantees that there is no need to attach a disc to the previous set along its entire
boundary curve. A precise geometric description of this procedure can be found in
standard sources on Riemann surfaces, and also in [1, Section 1.4]. �
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