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Regularity of symbolic powers of square-free
monomial ideals

Truong Thi Hien and Tran Nam Trung

Abstract. We study the regularity of symbolic powers of square-free monomial ideals. We
prove that if I=IΔ is the Stanley-Reisner ideal of a simplicial complex Δ, then reg(I(n))�δ(n−1)+
b for all n�1, where δ=limn→∞ reg(I(n))/n, b=max{reg(IΓ)|Γ is a subcomplex of Δ with F(Γ)⊆
F(Δ)}, and F(Γ) and F(Δ) are the set of facets of Γ and Δ, respectively. This bound is sharp
for any n. When I=I(G) is the edge ideal of a simple graph G, we obtain a general linear upper
bound reg(I(n))�2n+ord-match(G)−1, where ord-match(G) is the ordered matching number of
G.

Introduction

Throughout the paper, let K be a field and R=K[x1, ..., xr] the polynomial
ring of r variables x1, ..., xr with r�1. Let I be a homogeneous ideal of R. Then
the n-th symbolic power of I is defined by

I(n) =
⋂

p∈Min(I)

InRp∩R,

where Min(I) is as usual the set of minimal associated prime ideals of I.
Cutkosky, Herzog, Trung [5], and independently Kodiyalam [21], proved that

the function reg(In) is a linear function in n for n�0. The similar result for
symbolic powers is not true even when I is a square-free monomial ideal (see e.g.
[8, Theorem 5.15]) except for the case dim(R/I)�2 (see [19]).

Key words and phrases: Castelnuovo-Mumford regularity, symbolic power, edge ideal, match-
ing.
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If I is a square-free monomial ideal, Hoa and the second author (see [18, The-
orem 4.9]) proved that the limit

(1) δ(I)= lim
n→∞

reg(I(n))
n

,

does exist, in fact the limit exists for arbitrary monomial ideals (see [8]). Moreover,
reg(I(n))<δ(I)n+dim(R/I)+1 for all n�1. This bound is obviously not sharp for
every n (see Corollary 2.4). There have been many recent results which establish
sharp bounds for reg(I(n)) in the case I is the edge ideal of a simple graph (see e.g.
[1], [13], [14] and [20]).

The aim of this paper is to find sharp bounds for reg(I(n)), for a square-free
monomial ideal I, in terms of combinatorial data from its associated simplicial
complexes and hypergraphs.

For a simplicial complex Δ on the set V ={1, ..., r}, the Stanley-Reisner ideal
of Δ is defined by

IΔ =
(∏

i∈τ

xi | τ ⊆V and τ /∈Δ
)
⊆R.

Let us denote by F(Δ) the set of all facets of Δ.
The first main result of the paper is the following theorem.

Theorem 2.3 Let Δ be a simplicial complex. Then,

reg(I(n)
Δ )� δ(IΔ)(n−1)+b, for all n� 1,

where b=max{reg(IΓ)|Γ is a subcomplex of Δ with F(Γ)⊆F(Δ)}.

This bound is sharp for every n (see Example 2.7). It is worth mentioning that
the number δ(IΔ), which is determined by Equation (1), may be not an integer and
even bigger than reg(IΔ) (see [8, Lemma 5.14 and Theorem 5.15]).

For a simple hypergraph H=(V,E) with vertex set V ={1, ..., r}, the edge ideal
of H is defined by

I(H)=
(∏

i∈e

xi | e∈E

)
⊆R.

Let H∗ be the simple hypergraph corresponding to the Alexander duality I(H)∗
of I(H). Let ε(H∗) be the minimum number of cardinality of edgewise dominant
sets of H∗, this concept was introduced by Dao and Schweig [7].

Then second main result of the paper is the following theorem.

Theorem 2.6 Let H be a simple hypergraph. Then,

reg(I(H)(n))� δ(I(H))(n−1)+|V (H)|−ε(H∗), for all n� 1.
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A hypergraph is a graph if every edge has exactly two vertices. For a graph G,
a linear lower bound for reg(I(G)(n)) is given in [14]:

reg(I(G)(n))� 2n+ν(G)−1,

where ν(G) is the induced matching number of G. Note that this lower bound is
also valid for ordinary powers (see [2, Theorem 4.5]).

On the upper bounds, Fakhari (see [13, Conjecture 1.3]) conjectured that

reg(I(G)(n))� 2n+reg(I(G))−2,

This conjecture may be the best bound up to now of our knowledge.
By using Theorem 2.3, we obtain a general linear upper bound for reg(I(G)(n))

in terms of the ordered matching number of G, although it is weaker than the one
in this conjecture, it provides us a sharp bound. Note that this result also settles
the question (2) of Fakhari in [12].

Theorem 3.5 Let G be a graph. Then,

reg(I(G)(n))� 2n+ord-match(G)−1, for all n� 1,

where ord-match(G) is the ordered matching number of G.

Let us explain the idea to prove Theorems 2.3 and 2.6 as follows. Let i�0 such
that reg(R/I(n))=ai(R/I(n))+i (See Section 1.1 for more details).

The first key point is to prove that ai(R/I(n))�δ(I)(n−1). Assume that α=
(α1, ..., αr)∈Zr such that

Hi
m(R/I(n))α �=0, and ai(R/I(n))= |α|,

where m=(x1, ..., xr) and |α|=α1+...+αr. We reduce to the case α∈Nr. In order to
bound |α|, we use Takayama’s formula (see Lemma 1.4) to compute Hi

m(R/I(n))α,
which allows us to search for α in a polytope in R

r, so that we can get the desired
bound of |α| via theory of convex polytopes (see Theorem 2.2).

The second key point is to bound the index i by using the regularity of a
Stanley-Reisner ideal in terms of the vanishing of reduced homology of simplicial
complexes which derived from Hochster’s formula about the Hilbert series of the
local cohomology module of Stanley-Reisner ideals (see Lemma 1.2).

Our paper is structured as follows. In the next section, we collect notations
and terminology used in the paper, and recall a few auxiliary results. In Section 2,
we prove Theorems 2.3 and 2.6. In the last section, we prove Theorem 3.5.
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1. Preliminaries

We shall follow standard notations and terminology from usual texts in the
research area (cf. [9], [16] and [22]). For simplicity, we denote the set {1, ..., r} by
[r].

1.1. Regularity and projective dimension

Through out this paper, let K be a field, and let R=K[x1, ..., xr] be a stan-
dard graded polynomial ring of r variables over K. The object of our work is the
Castelnuovo-Mumford regularity of graded modules and ideals over R. This invari-
ant can be defined via either the minimal free resolutions or the local cohomology
modules.

Let M be a nonzero finitely generated graded R-module and let

0−→
⊕
j∈Z

R(−j)βp,j(M) −→ ...−→
⊕
j∈Z

R(−j)β0,j(M) −→ 0

be the minimal free resolution of M . The Castelnuovo–Mumford regularity (or
regularity for short) of M is defined by

reg(M)=max{j−i |βi,j(M) �=0},

and the projective dimension of M is the length of this resolution

pd(M)= p.

Let us denote by d(M) the maximal degree of a minimal homogeneous generator
of M . The definition of the regularity implies

d(M)� reg(M).

For any nonzero proper homogeneous ideal I of R, by looking at the minimal
free resolution, it is easy to see that reg(I)=reg(R/I)+1, so we shall work with
reg(I) and reg(R/I) interchangeably.

The regularity of M can also be computed via the local cohomology modules
of M . For i=0, ...,dim(M), we define the ai-invariant of M as follows

ai(M)=max{t |Hi
m(M)t �=0}

where Hi
m(M) is the i-th local cohomology module of M with the support m=

(x1, ..., xr) (with the convention max∅=−∞). Then,

reg(M)=max{ai(M)+i | i=0, ...,dim(M)},
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and
pd(M)= r−min{i |Hi

m(M) �=0}.
For example, since dim(R/m)=0 and H0

m(R/m)=R/m, we have

reg(m)= reg(R/m)+1 = a0(R/m)+1 =max{i | (R/m)i �=0}+1 =1.

Remark 1.1. As usual we shall make the convention that reg(M)=−∞ if
M=0.

1.2. Simplicial complexes and Stanley-Reisner ideals

A simplicial complex Δ over a finite set V is a collection of subsets of V such
that if F∈Δ and G⊆F then G∈Δ. Elements of Δ are called faces. Maximal faces
(with respect to inclusion) are called facets. For F∈Δ, the dimension of F is defined
to be dimF=|F |−1. The empty set, ∅, is the unique face of dimension −1, as long
as Δ is not the void complex {} consisting of no subsets of V . If every facet of Δ
has the same cardinality, then Δ is called a pure complex. The dimension of Δ is
dim Δ=max{dimF |F∈Δ}. The link of F inside Δ is its subcomplex:

lkΔ(F )= {H ∈Δ |H∪F ∈Δ and H∩F =∅}.

Every element in a face of Δ is called a vertex of Δ. Let us denote V (Δ) to be
the set of vertices of Δ. If there is a vertex, say j, such that {j}∪F∈Δ for every
F∈Δ, then Δ is called a cone over j. It is well-known that if Δ is a cone, then it is
an acyclic complex. Recall that a chain complex is called an acyclic complex if all
of whose homology groups are zero. A complex is called a simplex if it contains all
subsets of its vertices, and thus a simplex is a cone over every its vertex.

For a subset τ={j1, ..., ji} of [r], denote xτ =xj1 ...xji . Let Δ be a simplicial
complex over the set V ={1, ..., r}. The Stanley-Reisner ideal of Δ is defined to be
the squarefree monomial ideal

IΔ =(xτ | τ ⊆ [r] and τ /∈Δ) in R=K[x1, ..., xr]

and the Stanley-Reisner ring of Δ to be the quotient ring k[Δ]=R/IΔ. This provides
a bridge between combinatorics and commutative algebra (see [22], [26]).

Note that if I is a square-free monomial ideal, then it is a Stanley-Reisner ideal
of the simplicial complex Δ(I)={τ⊆[r]|xτ �∈I}. When I is a monomial ideal (maybe
not square-free) we also use Δ(I) to denote the simplicial complex corresponding
to the square-free monomial ideal

√
I.

The regularity of a square-free monomial ideal can compute via the vanishing of
reduced homology of simplicial complexes. From Hochster’s formula on the Hilbert
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series of the local cohomology module Hi
m(R/IΔ) (see [22, Theorem 13.13]), one

has

Lemma 1.2. For a simplicial complex Δ, we have

reg(IΔ)= reg(R/IΔ)+1 =max{d | H̃d−1(lkΔ(σ);K) �=0, for some σ ∈Δ}+1.

The Alexander dual of Δ, denoted by Δ∗, is the simplicial complex over V with
faces

Δ∗ = {V \τ | τ /∈Δ}.
Notice that (Δ∗)∗=Δ. If I=IΔ then we shall denote the Stanley-Reisner ideal of
the Alexander dual Δ∗ by I∗. It is a well-known result of Terai [28] (or see [22,
Theorem 5.59]) that the regularity of a squarefree monomial ideal can be related to
the projective dimension of its Alexander dual.

Lemma 1.3. Let I⊆R be a square-free monomial ideal. Then,

reg(I)=pd(R/I∗).

Let F(Δ) denote the set of all facets of Δ. We say that Δ is generated by
F(Δ) and write Δ=〈F(Δ)〉. Note that IΔ has the minimal primary decomposition
(see [22, Theorem 1.7]):

IΔ =
⋂

F∈F(Δ)

(xi | i /∈F ),

and therefore the n-th symbolic power of IΔ is

I
(n)
Δ =

⋂
F∈F(Δ)

(xi | i /∈F )n.

We next describe a formula to compute the local cohomology modules of mono-
mial ideals. Let I be a non-zero monomial ideal. Since R/I is an N

r-graded al-
gebra, Hi

m(R/I) is an Z
r-graded module over R/I for every i. For each degree

α=(α1, ..., αr)∈Zr, in order to compute dimK Hi
m(R/I)α we use a formula given

by Takayama [27, Theorem 2.2] which is a generalization of Hochster’s formula for
the case I is square-free [26, Theorem 4.1].

Set Gα={i|αi<0}. For a subset F⊆[r], we set RF =R[x−1
i |i∈F∪Gα]. Define

the simplicial complex Δα(I) by

(2) Δα(I)= {F ⊆ [r]\Gα |xα /∈ IRF }.

Lemma 1.4. [27, Theorem 2.2]dimK Hi
m(R/I)α=dimK H̃i−|Gα|−1(Δα(I);K).

The following result of Minh and Trung is very useful to compute Δα(I(n)
Δ ),

which allows us to investigate reg(I(n)
Δ ) by using the theory of convex polyhedra.
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Lemma 1.5. [23, Lemma 1.3] Let Δ be a simplicial complex and α∈Nr. Then,

F(Δα(I(n)
Δ ))=

{
F ∈F(Δ) |

∑
i/∈F

αi �n−1
}
.

This lemma can be generalized a little bit as follows.

Lemma 1.6. [19, Lemma 1.3] Let Δ be a simplicial complex and α∈Zr. Then,

F(Δα(I(n)
Δ ))=

⎧⎨⎩F ∈F(lkΔ(Gα)) |
∑

i/∈F∪Gα

αi �n−1

⎫⎬⎭ .

1.3. Hypergraphs

Let V be a finite set. A simple hypergraph H with vertex set V consists of a
set of subsets of V , called the edges of H, with the property that no edge contains
another. We use the symbols V (H) and E(H) to denote the vertex set and the edge
set of H, respectively.

In this paper we assume that all hypergraphs are simple unless otherwise spec-
ified.

In the hypergraph H, an edge is trivial if it contains only one element, a vertex
is isolated if it does not appear in any edge, a vertex is a neighbor of another one if
they are in some edge.

A hypergraph H′ is a subhypergraph of H if V (H′)⊆V (H) and E(H′)⊆E(H).
For an edge e of H, we define H\e to be the hypergraph obtained by deleting e

from the edge set of H. For a subset S⊆V (H), we define H\S to be the hypergraph
obtained from H by deleting the vertices in S and all edges containing any of those
vertices.

A set S⊆E(H) is called an edgewise dominant set of H if every non-isolated
vertex of H is either contained in a non-trivial edge of S or has a neighbor contained
in an edge of S. Define,

ε(H)=min{|S| |S is edgewise dominant}.

For a hypergraph H with V (H)⊆[r], we associate to the hypergraph H a square-
free monomial ideal

I(H)= (xe | e∈E(H))⊆R,

which is called the edge ideal of H.
Notice that if I is a square-free monomial ideal, then I is an edge ideal of a

hypergraph with the edge set uniquely determined by the generators of I.
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Let H∗ be the simple hypergraph corresponding to the Alexander duality I(H)∗
of I(H). We will determine the edge set of H∗, it turns out that E(H∗) is the set of
all minimal vertex covers of H. A vertex cover in a hypergraph is a set of vertices,
such that every edge of the hypergraph contains at least one vertex of that set. It
is an extension of the notion of vertex cover in a graph. A vertex cover S is called
minimal if no proper subset of S is a vertex cover. From the minimal primary
decomposition (see [22, Definition 1.35 and Proposition 1.37]):

I(H∗)=
⋂

e∈E(H)

(xi | i∈ e),

it follows that E(H∗) is just the set of minimal vertex covers of H. Thus,

I(H∗)= (xτ | τ is a minimal vertex cover of H).

In the sequel, we need the following result of Dao and Schweig [7, Theorem
3.2].

Lemma 1.7. Let H be a hypergraph. Then, pd(R/I(H))�|V (H)|−ε(H).

1.4. Matchings in a graph

Let G be a graph. A matching in G is a subgraph consisting of pairwise
disjoint edges. If this subgraph is an induced subgraph, then the matching is called
an induced matching. A matching of G is maximal if it is maximal with respect to
inclusion. The matching number of G, denoted by match(G), is the maximum size
of a matching in G; and the induced matching number of G, denoted by ν(G), is
the maximum size of an induced matching in G.

An independent set in G is a set of vertices no two of which are adjacent to each
other. An independent set in G is maximal (with respect to set inclusion) if the
set cannot be extended to a larger independent set. Let Δ(G) denote the set of all
independent sets of G. Then, Δ(G) is a simplicial complex, called the independence
complex of G. It is well-known that I(G)=IΔ(G).

According to Constantinescu and Varbaro [3], we say that a matching M=
{{ui, vi}|i=1, ..., s} is an ordered matching if:

(1) {u1, ..., us}∈Δ(G),
(2) {ui, vj}∈E(G) implies i�j.

The ordered matching number of G, denoted by ord-match(G) is the maximum size
of an ordered matching in G.

The following result gives a lower bound for reg(I(G)(n)) in terms of the induced
matching number ν(G)
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Lemma 1.8. [14, Theorem 4.6] Let G be a graph. Then,

reg(I(G)(n))� 2n+ν(G)−1, for all n� 1.

1.5. Convex polyhedra

The theory of convex polyhedra plays a key role in our study.
For a vector α=(α1, ..., αr)∈Rr, we set |α|:=α1+...+αr and for a nonempty

bounded closed subset S of Rr we set

δ(S) :=max{|α| |α∈S}.

Let Δ be a simplicial complex over [r]. In general, reg(I(n)
Δ ) is not a linear

function in n for n�0 (see e.g. [8, Theorem 5.15]), but a quasi-linear function as
in the following result.

Lemma 1.9. [18, Theorem 4.9] There exist positive integers N,n0 and rational

numbers a, b0, ..., bN−1<dim(R/IΔ)+1 such that

reg(I(n)
Δ )= an+bk, for all n�n0 and n≡ k mod N, where 0� k�N−1.

Moreover, reg(I(n)
Δ )<an+dim(R/IΔ)+1 for all n�1.

By virtue of this result, we define

δ(IΔ)= a= lim
n→∞

reg(I(n)
Δ )

n
.

In order to compute this invariant we can use the geometric interpretation of
it by means of symbolic polyhedra defined in [4], [8]. Let SP(IΔ) be the convex
polyhedron in R

r defined by the following system of linear inequalities:

(3)

⎧⎨⎩
∑
i/∈F

xi�1 for F∈F(Δ),

x1�0, ..., xr�0,

which is called the symbolic polyhedron of IΔ. Then, SP(IΔ) is a convex polyhedron
in R

r. By [8, Theorem 3.6] we have

(4) δ(IΔ)=max{|v| |v is a vertex of SP(IΔ)}.

Now assume that
Hi

m(R/I
(n)
Δ )α �=0

for some 0�i�dim(R/IΔ) and α=(α1, ..., αr)∈Nr.
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By Lemma 1.4 we have

(5) dimK H̃i−1(Δα(I(n)
Δ );K)=dimK Hi

m(R/I
(n)
Δ )α �=0.

In particular, Δα(I(n)
Δ ) is not acyclic.

Suppose that F(Δ)={F1, ..., Ft} for t�1. By Lemma 1.5 we may assume that

F(Δα(I(n)
Δ ))= {F1, ..., Fs}, where 1� s� t.

For each integer m�1, let Pm be the convex polyhedron of Rr defined by:

(6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
i/∈Fj

xi�m−1 for j=1, ..., s,∑
i/∈Fj

xi�m for j=s+1, ..., t,

x1�0, ..., xr�0.

Then, α∈Pn. Moreover, by Lemma 1.5 one has

(7) Δβ(I(m)
Δ )= 〈F1, ..., Fs〉=Δα(I(n)

Δ ) whenever β∈Pm∩Nr .

Note also that for such a vector β, by Formula (7) we have

dimK H̃i−1(Δβ(I(m)
Δ );K)=dimK H̃i−1(Δα(I(n)

Δ );K) �=0.

Together with Lemma 1.4, this fact yields

(8) Hi
m(R/I

(m)
Δ )β �=0.

In order to investigate the convex polyhedron Pm we also consider the convex
polyhedron Cm in R

r defined by:

(9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
i/∈Fj

xi�m for j=1, ..., s,∑
i/∈Fj

xi�m for j=s+1, ..., t,

x1�0, ..., xr�0.

Note that Cm=mC1 for all m�1, where mC1={my|y∈C1}.
By the same way as in the proof of [15, Lemma 2.1] we obtain the following

lemma.

Lemma 1.10. C1 is a polytope with dim C1=r.

The next lemma gives an upper bound for δ(C1).

Lemma 1.11. δ(C1)�δ(IΔ).
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Proof. Since C1 is a polytope with dim C1=r by Lemma 1.10, δ(C1)=|γ| for
some vertex γ of C1. By [25, Formula (23) on Page 104] we obtain that γ is the
unique solution of a system of linear equations of the form

(10)

⎧⎨⎩
∑
i/∈Fj

xi=1 for j∈S1,

xj=0 for j∈S2,

where S1⊆[t] and S2⊆[r] such that |S1|+|S2|=r. By using Cramer’s rule to get γ,
we conclude that γ is a rational vector. In particular, there is a positive integer,
say p, such that pγ∈Nr. Note that Cp=pC1, so pγ∈Cp∩Nr.

For every j�1, let y=jpγ+α. Then, y∈Nr and |y|=δ(C1)jp+|α|. On the
other hand, by using the fact that jpγ∈Cjp and α∈Pn, we can check that⎧⎪⎨⎪⎩

∑
i/∈Fj

yi�jp+n−1 for j=1, ..., s,∑
i/∈Fj

yi�jp+n for j=s+1, ..., t,

and so y∈Pjp+n∩Nr.
Together with Equation (8), we deduce that Hi

m(R/I
(jp+n)
Δ )y �=0, and therefore

reg(R/I
(jp+n)
Δ )� |y|+i= δ(C1)jp+|α|+i.

Combining with Lemma 1.9, this inequality yields

δ(C1)jp+|α|+i< δ(IΔ)(jp+n)+dim(R/IΔ).

Since this inequality valid for any positive integer j, it forces δ(C1)�δ(IΔ). �

2. Regularity of symbolic powers of ideals

In this section we will prove the upper bound for reg(I(n)
Δ ). First, we start with

the following fact.

Lemma 2.1. Let σ⊆[r] with σ �=[r], S=K[xi |i /∈σ] and J=IRσ∩S. Then,

reg(J (n))� reg(I(n)) for all n� 1.

In particular, δ(J)�δ(I).
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Proof. We may assume that S=K[x1, ..., xs] for some 1�s�r. Let i be an
index and α a vector in Z

s such that

Hi
n(S/J (n))α �=0 and reg(S/J (n))= |α|+i,

where n=(x1, ..., xs) is the homogeneous maximal ideal of S.
Let β=(α1, ..., αs,−1, ...,−1)∈Zr so that Gβ=Gα∪{s+1, ..., r}. By Formula

(2) we deduce that

(11) Δα(J (n))=Δβ(I(n)).

By Lemma 1.4,

dimK Hi
n(S/J (n))α =dimK H̃i−|Gα|−1(Δα(J (n));K),

and thus H̃i−|Gα|−1(Δα(J (n));K) �=0. Together with Equation (11), it yields

H̃i−|Gα|−1(Δβ(I(n));K) �=0.

By Lemma 1.4 again, it gives H
i+(r−s)
m (R/I(n))β �=0 since |Gβ|=|Gα|+(r−s).

Therefore,
reg(R/I(n))� |β|+i+(r−s)= |α|+i=reg(S/J (n)),

it follows that reg(J (n))�reg(I(n)).
Finally, together this inequality with Lemma 1.9 we have

δ(J)= lim
n→∞

reg(J (n))
n

� lim
n→∞

reg(I(n))
n

= δ(I),

and the lemma follows. �

Theorem 2.2. Let I be a square-free monomial ideal. Then, for all i�0 we

have

ai(R/I(n))� δ(I)(n−1).

Proof. If n=1, the theorem follows from Hochster’s formula on the Hilbert
series of the local cohomology module Hi

m(R/IΔ) (see [26, Theorem 4.1]).
We may assume that n�2. If ai(R/I(n))=−∞, the theorem is obvious, so that

we also assume that ai(R/I(n)) �=−∞.
Suppose α∈Zr such that

Hi
m(R/I(n))α �=0 and ai(R/I(n))= |α|.

By Lemma 1.4 we have

(12) dimK H̃i−|Gα|−1(Δα(I(n));K)=dimK Hi
m(R/I(n))α �=0.
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In particular, Δα(I(n)) is not acyclic.
If Gα=[r], then ai(R/I(n))=|α|�0, and hence the theorem holds in this case.
We therefore assume that Gα={m+1, ..., r} for 1�m�r. Let S=K[x1, ..., xm]

and J=IRGα∩S.
Let α′=(α1, ..., αm)∈Nm. By using Formula (2), we have

(13) Δα′(J (n))=Δα(I(n)).

Together with (12), it gives H̃i−|Gα|−1(Δα′(J (n));K) �=0. By Lemma 1.4 we get

H
i−|Gα|
n (S/J (n))α′ �=0,

where n=(x1, ..., xm) is the homogeneous maximal ideal of S.
Let Δ be the simplicial complex over [m] corresponding to the square-free

monomial ideal J . Assume that F(Δ)={F1, ..., Ft}.
By Lemma 1.5 we may assume that F(Δα′(J (n)))={F1, ..., Fs} for 1�s�t.

Let
β=(β1, ..., βm)= 1

n−1α
′ ∈R

m .

By Lemma 1.5 again, we deduce that⎧⎪⎪⎨⎪⎪⎩
∑
i �∈Fj

βi=
1

n−1
∑
i �∈Fj

αi�1 for j=1, ..., s,∑
i �∈Fj

βi=
1

n−1
∑
i �∈Fj

αi�
n

n−1>1 for j=s+1, ..., t.

It follows that β∈C1, where C1 is a polyhedron in R
m defined by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
i �∈Fj

xi�1 for j=1, ..., s,∑
i �∈Fj

xi�1 for j=s+1, ..., t,

x1�0, ..., xm�0.

By Lemma 1.10, C1 is a polytope in R
m.

Hence |β|�δ(C1), and hence |α′|=(n−1)|β|�δ(C1)(n−1). Observe that αj<0
for all j∈Gα={m+1, ..., r}, so

(14) ai(R/I(n))= |α|= |α′|+(αm+1+...+αr)� |α′|� δ(C1)(n−1).

On the other hand, by Lemmas 1.11 and 2.1 we deduce that

δ(C1)� δ(J)� δ(I).

Together with Formula (14), it yields ai(R/I(n))�δ(I)(n−1), and the proof of
the theorem is complete. �
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We are now in position to prove the main result of the paper.

Theorem 2.3. Let Δ be a simplicial complex. Then,

reg(I(n)
Δ )� δ(IΔ)(n−1)+b, for all n� 1,

where b=max{reg(IΓ)|Γ is a subcomplex of Δ with F(Γ)⊆F(Δ)}.

Proof. For simplicity, we put I=IΔ. Let i∈{0, ...,dim(R/I)} and α∈Zr such
that

Hi
m(R/I(n))α �=0, and reg(R/I(n))= ai(R/I(n))+i= |α|+i.

By Lemma 1.4, we have

(15) dimK H̃i−|Gα|−1(Δα(I(n));K)=dimK Hi
m(R/I(n))α �=0.

In particular, Δα(I(n)) is not acyclic.
If Gα=[r], then Δα(I(n)) is either {∅} or a void complex. Because it is not

acyclic, Δα(I(n))={∅}. By Formula (15) we deduce that i=|Gα|=r, and hence
dimR/I=r. It means that I=0, so I(n)=0 as well. Therefore, reg(I(n))=−∞, and
the theorem holds in this case.

We may assume that Gα={m+1, ..., r} for some 1�m�r. Let S=K[x1, ..., xm]
and J=IRGα∩S.

Let α′=(α1, ..., αm)∈Nm. By using Formula (2), we have

(16) Δα′(J (n))=Δα(I(n)).

Together with (15), it gives H̃i−|Gα|−1(Δα′(J (n));K) �=0. By Lemma 1.4 we get

H
i−|Gα|
n (S/J (n))α′ �=0,

where n=(x1, ..., xm) is the homogeneous maximal ideal of S. In particular,

|α′|� ai−|Gα|(S/J (n)).

Together with Lemma 2.1 and Theorem 2.2, it yields

|α′|� δ(J)(n−1)� δ(I)(n−1).

Therefore,

reg(I(n)) = reg(R/I(n))+1 = |α|+i+1 = |α′|+
r∑

j=m+1
αj+i+1

� |α′|+i−|Gα|+1� δ(I)(n−1)+i−|Gα|+1.
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It remains to prove that i−|Gα|+1�b. By Lemma 1.6, we have

F(Δα′(J (n)))=F(Δα(I(n)))=

⎧⎨⎩F ∈F(lkΔ(Gα)) |
∑

j /∈F∪Gα

αj �n−1

⎫⎬⎭ .

It follows that there is a simplicial complex Γ with F(Γ)⊆F(Δ) such that

Δα′(J (n))= lkΓ(Gα).

Since H̃i−|Gα|−1(lkΓ(Gα);K) �=0, by Lemma 1.2 we have i−|Gα|+1�reg(IΓ)�
b, and then proof of the theorem is complete. �

As a direct consequence of Theorem 2.3, we have a simple bound. Namely,

Corollary 2.4. Let I be a square-free monomial ideal. Then,

reg(I(n))� δ(I)(n−1)+dim(R/I)+1, for all n� 1.

Proof. Let Δ be the simplicial complex corresponding to the square-free ideal
I. For every subcomplex Γ of Δ we have dim Γ�dim Δ. It follows from Lemma 1.2
that

reg(IΓ)�dim(R/IΓ)+1�dim(R/IΔ)+1.
Therefore, b=max{reg(IΓ)|F(Γ)⊆F(Δ)}�dim(R/IΔ)+1. Now the corollary fol-
lows from Theorem 2.3. �

We next reformulate Theorem 2.3 for a square-free monomial ideal arising from
a hypergraph.

Theorem 2.5. Let H be a hypergraph. Then, for all n�1, we have

reg(I(H)(n))� δ(I(H))(n−1)+b,

where b=max{pd(R/I(H′))|H′ is a subhypergraph of H∗ with E(H′)⊆E(H∗)}.

Proof. Let Δ be the corresponding simplicial complex of the square-free mono-
mial ideal I(H). Assume that F(Δ)={F1, ..., Fp}. Since

I(H)=
p⋂

j=1
(xi | i /∈Fj),

so that E(H∗)={C1, ..., Cp}, where Cj=[r]\Fj for all j=1, ..., p.
Let Γ be a subcomplex of Δ with F(Γ)⊆F(Δ). We may assume that F(Γ)=

{F1, ..., Fk} for 1�k�p. Then, we have I∗Γ=I(H′) where H′ is the subhypergraph
of H∗ with E(H′)={C1, ..., Ck}.

By Lemma 1.3 we have reg(IΓ)=pd(R/I∗Γ)=pd(R/I(H′)), and therefore the
theorem follows from Theorem 2.3. �
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The next theorem is the second main result of the paper. It bounds the reg-
ularity of symbolic powers of a square-free monomial ideal via the combinatorial
properties of the associated hypergraph.

Theorem 2.6. Let H be a simple hypergraph. Then,

reg(I(H)(n))� δ(I(H))(n−1)+|V (H)|−ε(H∗), for all n� 1.

Proof. By Theorem 2.5, it suffices to show that

pd(R/I(G))� |V (H)|−ε(H∗)

for every hypergraph G with E(G)⊆E(H∗). By Lemma 1.7, it suffices to prove that

|V (G)|−ε(G)� |V (H∗)|−ε(H∗).

In order to prove this inequality, without loss of generality we may assume that
H∗ has no trivial edges or isolated vertices.

Let S be an edgewise-dominant set of G such that |S|=ε(G). For each vertex
v∈V (H∗)\V (G), we take an edge of H∗ containing v, and denote this edge by F (v).
Then,

S′ =S∪{F (v) | v ∈V (H∗)\V (G)}

is an edgewise-dominant set of H∗. It follows that

ε(H∗)� |S′|� |S|+|V (H∗)\V (G)|= |S|+|V (H∗)|−|V (G)|,

and therefore |V (G)|−ε(G)�|V (H∗)|−ε(H∗), as required. �

The following example shows that the bound in Theorem 2.3 is sharp at every
n for the class of matroid complexes. Recall that a simplicial complex Δ is called a
matroid complex if for every subset σ of V (Δ), the simplicial complex Δ[σ] is pure
(see e.g. [26, Chapter 3]). Here, Δ[σ] is the restriction of Δ to σ and defined by
Δ[σ]={τ |τ∈Δ and τ⊆σ}.

Example 2.7. Let Δ be a matroid complex that is not a cone. Then,

reg(I(n)
Δ )= δ(IΔ)(n−1)+b, for all n� 1,

where b=max{reg(IΓ)|Γ is a subcomplex of Δ with F(Γ)⊆F(Δ)}.
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Proof. Let I=IΔ and s=dim(R/IΔ). By [24, Theorem 4.5], for all n�1 we
have:

reg(I(n))= d(I)(n−1)+s+1.

It implies that

lim
n→∞

reg(I(n))
n

= d(I),

so δ(I)=d(I). It remains to show that b=s+1.
Together the fact δ(I)=d(I) with Theorem 2.3, we get s+1�b. On the other

hand, by the same argument as in the proof of Corollary 2.4, we obtain b�s+1.
Hence, b=s+1, as required. �

We conclude this section with a remark on lower bounds.

Remark 2.8. Let I be a square-free monomial ideal. By [8, Lemma 4.2(ii)]
we deduce that d(I)n�d(I(n)), and therefore

reg(I(n))� d(I)n, for all n� 1.

In general, d(I)<δ(I) (see e.g. [8, Lemma 5.14]), so that the bound is not optimal.
On the other hand, by Lemma 1.9, there is a number b such that

reg(I(n))� δ(I)n+b, for all n� 1.

The natural question is to find a good bound for b.

3. Applications

In this section we will apply Theorem 2.3 to the regularity of symbolic powers
of the edge ideal of a graph. We start with a result which allows us to bound the
number b in Theorem 2.3 by choosing a suitable numerical function, which is of
independent interest.

Theorem 3.1. Let Δ be a simplicial complex over [r] and let

Simp(Δ)= {lkΔ(σ) |σ ∈Δ}.

Assume that f : Simp(Δ)→N is a function which satisfies the following properties:

(1) If Λ∈Simp(Δ) is a simplex, then f(Λ)=0.
(2) For every Λ∈Simp(Δ) and every v∈V (Λ) such that Λ is not a cone over

v, f(lkΛ(v))+1�f(Λ).
Then, for every subcomplex Γ of Δ with F(Γ)⊆F(Δ) we have reg(IΓ)�f(Δ)+1.
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Proof. For a subset S of [r] we set pS=(xi |i∈S)⊆R. In order to facilitate an
induction argument on the number of vertices of Δ we prove the following assertion:

(17) reg(pS+IΓ)� f(Δ)+1, for every S⊆ [r],

where all simplicial complexes are considered over [r].
Indeed, if |V (Δ)|�1, then Δ is a simplex. In this case, the assertion is obvious.
Assume that |V (Δ)|�2. If Δ is a simplex, the assertion holds, so we assume

that Δ is not a simplex. We now proceed by backward induction on |S|. If |S|=r,
then

pS+IΓ =(x1, ..., xr).

In this case reg(pS+IΓ)=1, and so the assertion holds.
Assume that |S|<r. If pS+IΓ is a prime, i.e. it is generated by variables, then

reg(pS+IΓ)=1, and then the assertion holds.
Assume that pS+IΓ is not a prime. Then, there is a variable, say xv with v∈[r],

such that xv appears in some monomial generator of pS+IΓ of degree at least 2
and v /∈S. Note that if u is not a vertex of Γ then xu is a monomial generator of
IΓ, and if Γ is a cone over some vertex w then xw does not appear in any monomial
generator of IΓ. It implies that v is a vertex of Γ and Γ is not a cone over v. In
particular, Δ is not a cone over v since F(Γ)⊆F(Δ).

Since

(pS+IΓ)+(xv)= pS∪{v}+IΓ, and (pS+IΓ) : (xv)= pS+IΓ′ ,

where Γ′ is a subcomplex of Γ with F(Γ′)={F∈F(Γ)|v∈F}, by [6, Lemma 2.10]
we have

(18) reg(pS+IΓ)�max{reg(pS∪{v}+IΓ), reg(pS+IΓ′)+1}.

By the backward induction hypothesis, we have

(19) reg(pS∪{v}+IΓ)� f(Δ)+1.

We now claim that

(20) reg(pS+IΓ′)� f(Δ).

Indeed, if pS+IΓ′ is prime, then reg(pS+IΓ′)=1. As Δ is not a cone over v, by the
definition of f we have f(Δ)�f(lkΔ(v))+1�1, and the claim holds in this case.

Assume that pS+IΓ′ is not a prime. Observe that

IΓ′′ =(xv)+IΓ′ ,
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where Γ′′=lkΓ′(v) and this simplicial complex is considered over [r]. Since variable
xv does not appear in any generator of IΓ′ , hence reg(IΓ′′)=reg(IΓ′).

On the other hand, by the induction hypothesis, we have

reg(IΓ′′)= reg(lkΓ′(v))� f(lkΔ(v))+1.

It follows that

reg(pS+IΓ′)� reg(IΓ′)= reg(IΓ′′)� f(lkΔ(v))+1.

Together with the inequality f(lkΔ(v))+1�f(Δ), it yields reg(pS+IΓ′)�f(Δ), as
claimed.

By combining three Inequalities (18)-(20), we obtain reg(pS+IΓ)�f(Δ)+1,
and so the inequality (17) is proved. The lemma now follows from the assertion by
taking S=∅, and the proof is complete. �

We now reformulate Theorem 3.1 for graphs. A graph G is called trivial if it
has no edges. For a subset S of V (G), the closed neighborhood of the set S in G is
the set NG[S]=S∪{v∈V (G)|v is a neighbor of some vertex in S}. For a vertex v

of G, we write NG[v] for NG[{v}]. Recall that Δ(G) is the set of independent sets
of G, which is a simplicial complex and I(G)=IΔ(G).

Corollary 3.2. Let G be a graph and let IG={G\NG[S]|S∈Δ(G)}. Assume

that f : IG→N is a function which satisfies the following properties:

(1) f(H)=0 if H is trivial.

(2) For every H and every non-isolated vertex v of H, f(H\NH [v])+1�f(H).
Then, for every subcomplex Γ of Δ(G) with F(Γ)⊆F(Δ(G)) we have

reg(IΓ)� f(G)+1.

Proof. First we note that, for every graph H and every S∈Δ(H) we have

Δ(H\NH [S])= lkΔ(H)(S).

It implies that
Simp(Δ(G))= {Δ(H) |H ∈IG}.

Therefore, we can define a function g : Simp(Δ(G))→N, by sending Δ(H) to f(H)
for all H∈IG.

Note that for every graph H, we have Δ(H) is a simplex if and only if H is
trivial; and Δ(H) is a cone over a vertex v if and only if v is an isolated vertex
of H. Together with the definition of the function g, it shows that g satisfies
all conditions of Theorem 3.1, and therefore by this theorem we obtain reg(IΓ)�
g(Δ(G))+1=f(G)+1, as required. �
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Remark 3.3. Suppose that H is a (simple) hypergraph and S⊂V (H). Let
NH[S] be the closed neighborhood of S in H, this is the natural extension to hy-
pergraphs from graphs of the notion just prior to Corollary 3.2. Furthermore,
let Δ(H) be the independence complex of H. The equalities I(H)=IΔ(H) and
Δ(H\NH[S])=lkΔ(H)(S) hold just as well for simple hypergraphs. Let

f : {H\NH[S] :S ∈Δ(H)}−→N

be the function defined by

f(H′)=
{

0 if H′ is trivial,
|V (H′)|−ε(H′ ∗)−1 otherwise.

By the same argument as in the proof of Theorem 2.6, we can verify f satisfies
conditions in Theorem 3.1. As a consequence, we recover a result of Dao and
Schweig (see Lemma 1.7).

When applied to the edge ideal of a graph, Theorem 2.3 has the following form.

Lemma 3.4. Let G be a graph. Then,

reg(I(G)(n))� 2(n−1)+b, for all n� 1,

where b=max{reg(IΓ)|Γ is a subcomplex of Δ(G) with F(Γ)⊆F(Δ(G))}.

Proof. Since I(G)=IΔ(G) and δ(I(G))=2 by [8, Example 4.4], therefore the
lemma follows from Theorem 2.3. �

We are now in position to prove the main result of this section.

Theorem 3.5. Let G be a graph. Then,

reg(I(G)(n))� 2n+ord-match(G)−1, for all n� 1.

Proof. By Lemma 3.4, it remains to show that reg(IΓ)�ord-match(G)+1, for
every subcomplex Γ of Δ(G) with F(Γ)⊆F(Δ(G)).

Consider the function f : IG→N defined by

f(H)=
{

0 if H is trivial,
ord-match(H) otherwise.

For every non-isolated vertex v of H, we have f(H\NH [v])+1�f(H) by [10, Lemma
2.1], hence f satisfies all conditions of Corollary 3.2, so that by this corollary

reg(IΓ)� f(G)+1 =ord-match(G)+1,

and the theorem follows. �
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Remark 3.6. Let G be a graph with ord-match(G)=ν(G). Then,

reg(I(G)(n))= 2n+ν(G)−1, for all n� 1.

Indeed, for every positive integer n, the lower bound reg(I(G)(n))�2n+ν(G)−
1 comes from Lemma 1.8, and the upper bound follows from Theorem 3.5 because
ord-match(G)=ν(G).

As a consequence, we quickly recover the main result of Fakhari in [12], which
says that the equality holds when G is a Cameron-Walker graph, where a graph G

is called Cameron-Walker if ν(G)=match(G) (see e.g. [17]). For such a graph G,
ord-match(G)=ν(G) since ν(G)�ord-match(G)�match(G).
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