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Intersection theory and Chern classes in
Bott-Chern cohomology

Xiaojun Wu

Abstract. In this article, we study the axiomatic approach of Grivaux in [Gri10] for rational
Bott-Chern cohomology, and use it in particular to define Chern classes of coherent sheaves in ratio-
nal Bott-Chern cohomology. This method also allows us to derive a Riemann-Roch-Grothendieck
formula for a projective morphism between smooth complex compact manifolds.

In the general case of complex spaces, the Poincaré and Dolbeault-Grothendieck
lemmas are not valid in general. For this reason, and to simplify the exposition, we
only consider non-singular complex spaces in the sequel and let X denote throughout
a complex manifold.

1. Introduction

Chern classes and Chern characteristic classes are very important topological
invariants of complex vector bundles. In order to better reflect the complex structure
of manifolds, we refine Chern classes and Chern characteristic classes, and define
them in rational Bott-Chern cohomology. This is done by introducing suitable
complexes of sheaves of holomorphic and anti-holomorphic forms. There exists a
canonical morphism from the complex of rational Bott-Chern cohomology into the
locally constant sheaf Q, seen as a complex with a single term located in degree 0.
Under this morphism, the image of Chern classes and Chern characteristic classes in
rational Bott-Chern cohomology are the usual ones defined in singular cohomology.

In the fundamental article [Gri10], Grivaux showed that for suitable rational
cohomology theories of compact complex manifolds, one could construct Chern char-
acteristic classes of arbitrary coherent sheaves, and in particular of torsion sheaves,
by induction on the dimension. This can be done provided one has a reasonable
intersection theory, and provided Chern classes can be defined for vector bundles.
One important argument consists of ensuring the validity of the Riemann-Roch-
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Grothendieck formula for closed immersions of smooth hypersurfaces. In [Gri10],
he proves that his axioms hold for rational Deligne cohomology and hence constructs
Chern characteristic classes in rational Deligne cohomology.

We begin by recalling some background for this type of problem. For any
complex manifold X, we denote by K0X the Grothendieck group of vector bundles
on X. For a vector bundle E, we denote by [E] the class represented by E. By
definition, K0X is the quotient of the free abelian group on the set of isomorphism
classes of vector bundles, modulo the relations

[E] = [E′]+[E′′]

for all exact sequences 0→E′→E→E′′→0. It can be endowed with a ring structure
by taking tensor products of vector bundles.

In a similar way, we denote by K0X the Grothendieck group of coherent sheaves
on X, simply by replacing vector bundles in the definition of K0X by coherent
sheaves, and one has a natural morphism K0X→K0X by viewing vector bundles as
coherent sheaves. This morphism is an isomorphism in the projective case. However,
by the fundamental work of Voisin [Voi02], K0X can be strictly smaller than K0X

when X is a compact Kähler manifold. This phenomenon is caused by the lack of
global resolutions of coherent sheaves by locally free sheaves.

Over Q, Chern characteristic class can be seen through the Q-linear morphism

ch :K0(X)⊗ZQ−→A(X),

where A(X) means the cohomology ring in the cohomology theory under consider-
ation. A priori, on arbitrary compact complex manifolds, it is not trivial that this
morphism can extended into a morphism from K0(X)⊗ZQ. Grivaux showed that
this is possible once the cohomology theory satisfies suitable axioms of intersection
theory. The aim of this note is to develop a similar intersection theory for integral
(or rational) Bott-Chern cohomology.

Such theories have been considered in the work [Sch07] of M. Schweitzer, and
have also been developed in a more recent unpublished work of Junyan Cao. They
are more precise than Deligne cohomology or complex Bott-Chern cohomology, in
the sense that there always exist natural morphisms from the integral (or rational)
Bott-Chern cohomology into the other ones. We use here Grivaux’s axiomatic
approach to construct Chern classes in rational Bott-Chern cohomology, for coherent
sheaves on arbitrary compact complex manifolds.

In fact, it would be interesting to give a construction of Chern classes of co-
herent sheaves in the integral Bott-Chern cohomology rather than the rational one,
but substantial difficulties remain. Let F be a coherent sheaf on a smooth hyper-
surface D of X. We denote by i:D→X the inclusion. One of the main difficulties
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is to express the total Chern class c(i∗F) in function of i∗c˝(F) and i∗c˝(ND/X),
where ND/X is the normal bundle of D in X. There exists a formulation of the
Riemann-Roch-Grothendieck formula that does not involve denominators, but it
does not seem to be easily applicable since Chern classes of coherent sheaves, un-
like in the vector bundle case, may involve data in higher degrees than the generic
rank.

For the convenience of the reader, we summarise here the axioms needed in the
axiomatic cohomology theory developed in [Gri10]. We assume that for any compact
complex manifold X we can associate to X a graded commutative cohomology ring
A(X) which is also a Q(⊂A0(X))-algebra. In the following, we will focus on the
rational (or integral) Bott-Chern cohomologies.

Axiom A. (Chern classes for vector bundles)
(1) For each holomorphic map f :X→Y , there exists a functorial pull-back

morphism f∗ :A(Y )→A(X) which is compatible with the products and the gradings
(by construction, cf. Section 2 and Proposition 5).

(2) One has a group morphism c1 :Pic(X)→A1(X) which is compatible with
pull-backs (by construction, cf. Section 4).

(3) (Splitting principle) If E is a holomorphic vector bundle of rank r on
X, then A(P(E)) is a free graded module over A(X) with basis 1, c1(OE(1)), ...,
(c1(OE(1))r−1 (cf. Proposition 7).

(4) (Homotopy principle) For every t in P1, let it be the inclusion X×{t}↪→X×
P1. Then the induced pull-back morphism i∗t :A(X×P1)→A(X)∼=A(X×{t}) is in-
dependent of t (cf. Lemma 6).

(5) (Whitney formula) Let 0→E→F→G→0 be an exact sequence of vector
bundles, then one has c(F )=c(E)·c(F ) and ch(F )=ch(E)+ch(G) where c(E) means
the total Chern class of E and ch(E) means the Chern characteristic class of E (cf.
Proposition 8).

The construction of the pull-back will be given in the second section, and the
other parts are important results of Junyan Cao which will be given in the fourth
section.

Axiom B. (Intersection theory) If f :X→Y is a proper holomorphic map of
relative dimension d, there is a functorial Gysin morphism f∗ :A˝(X)→A˝−d(Y )
satisfying the following properties:

(1) (Projection formula) For any x∈A(X) and any y∈A(Y ) one has f∗(x·
f∗y)=f∗(x)·y (cf. Proposition 6).

(2) Consider the following commutative diagram with p, q the projections on
the first factors
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Y ×Z
� � iY ×Z

��

p

��

X×Z

q

��

Y
� � iY �� X

Assume Z to be compact and iY proper. Then one has i∗Y q∗=p∗i
∗
Y×Z (cf. Propo-

sition 1).
(3) Let f :X→Y be a surjective proper map between compact manifolds, and

let D be a smooth divisor of Y . We denote f∗D=m1D̃1+...+mND̃N with D̃i

simply normal crossing. Let f̃i :D̃i→D (1≤i≤N) be the restriction of f to D̃i.
Then one has

f∗iD∗ =
N∑
i=1

mi iD̃i∗f̃
∗
i

(cf. Proposition 9).
(4) Consider the commutative diagram, where Y and Z are compact and in-

tersect transversally with W=Y ∩Z:

W
� � iW/Y

��
��

iW/Z

��

Y��

iY
��

Z
� �

iZ
�� X.

Then one has i∗Y iZ∗=iW/Y ∗i
∗
W/Z (cf. Proposition 10).

(5) (Excess formula) If Y is a smooth hypersurface of a compact complex man-
ifold X, then for any cohomological class α we have

i∗Y iY ∗α=α·c1(NY/X)

(cf. Proposition 11).
(6) The Hirzebruch–Riemann–Roch theorem holds for (Pn,O(i)) (∀i) (cf. Propo-

sition 14).
(7) Let X be a compact complex manifold with dimCX=n and Y ⊂X be a

closed complex submanifold of complex codimension r≥2. Suppose that p:X̃→X

is the blow-up of X along Y . We denote by E the exception divisor and i:Y →X,
j :E→X̃ the inclusions, and q :E→Y the restriction of p on E. Then p∗ is injective
(cf. Lemma 3) and there is an isomorphism induced by j∗

j∗ :A˝(X̃)/p∗A˝(X)∼=A˝(E)/q∗A˝(Y ).
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In other words, a class α∈A˝(X̃) is in the image of p∗ if and only if the class j∗α

is in the image of q∗ (cf. Proposition 12). If F is the excess conormal bundle on E

defined by the exact sequence

0−→F −→ q∗N∗
Y/X −→N∗

E/X̃
−→ 0,

one has the following excess formula for any cohomology class α on Y :

p∗i∗α= j∗(q∗α·cd−1(F ∗))

(cf. Proposition 13).

In the parentheses, for the convenience of the readers, we state the correspond-
ing verification for the integral Bott-Chern cohomology. Note that in the paper of
Grivaux, he also lists Axiom C for a complete characterization of a theory of Chern
classes of coherent sheaves. However, Axiom A and B imply Axiom C. For this
reason, we omit the list of Axiom C.

Note also that in the published version [Gri10], Axiom A (4) is deleted, but it
is needed to prove Whitney formula, so we still state it explicitly. Also Axiom A
(5) is different from Axiom A (4) in [Gri10]. It is easy to see that Axiom A (4) in
[Gri10] implies Whitney formula in the case that the exact sequence splits. How-
ever, Whitney formula is what is really needed to define uniquely the Chern classes
of vector bundles in Grothendieck’s axiomatic approach and also for the rest of
construction [Gri10] instead of Axiom A (4) in [Gri10]. It does not seem apparent
to the author that it is trivial to deduce Whitney formula in rational Bott-Chern
cohomology for the non-splitting case from the splitting case. To keep in form of
the usual axiomatic definition of Chern classes of vector bundles, we state it in form
of Whitney formula instead of Axiom A (4) in [Gri10].

The verification of Axiom B will constitute the main substance of the fifth
and sixth sections. In principle, pull-backs can be induced by taking the pull-back
of smooth forms, and push-forwards can be induced by taking the push-forward of
currents under proper morphisms. The proof of the first two axioms is then reduced
to considering the natural pairing between smooth forms and currents. The third
and fourth axioms are more complicated, since they demand taking pull-backs of
currents. As in the case of Deligne cohomology, we first reduce the situation to the
case of cycle classes. Then we reduce the verification of properties of cycle classes
in integral Bott-Chern cohomology to the corresponding properties of Deligne cycle
classes. Checking the remaining axioms is more standard. This will be done in the
sixth section.

One difference between the above axiom compared to that of [Gri10] should
be pointed out. It appears that Axiom B (2) is incorrectly formulated in the paper
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of Grivaux for the construction of Chern classes, and that it should actually be
formulated as in the present article. Moreover, to prove Axiom B (3), one needs a
generalised version of Axiom B (2) where the inclusion i:Y →X should be replaced
by a proper map f :Y →X. Since this is the only point that we need this generalised
version, we still form our axiom for closed immersions, but this should be clarified.

In conclusion, we have the following result.

Theorem 1. For a compact complex manifold X, the cohomology ring

⊕kH
k,k
BC(X,Q) satisfies Axiom A, B. In fact, the cohomology ring ⊕kH

k,k
BC(X,Z)

satisfies Axiom A, B except for the sixth one of list B, which demands rational

coefficients to define Chern characteristic classes and the Todd class.

As a consequence, by the work of [Gri10], for the rational Bott-Chern coho-
mology, we get the following result.

Corollary 1. If X is compact and K0X is the Grothendieck ring of coherent

sheaves on X, one can define a Chern character morphism ch:K0X→⊕kH
k,k
BC(X,Q)

such that

(1) the Chern character morphism is functorial by pull-backs of holomorphic

maps.

(2) the Chern character morphism is an extension of the usual Chern character

morphism for locally free sheaves given in Axiom A.

(3) The Riemann–Roch-Grothendieck theorem holds for projective morphisms

between smooth complex compact manifolds. In other words, let p:X→S a projective

morphism of compact complex manifolds and F be a coherent sheaf over X. Then

we have the Riemann-Roch-Grothendieck formula in the rational and complex Bott-

Chern cohomology.

The rational case is a direct consequence of the work of [Gri10], which uses
classical arguments of Serre to reduce the proof to the fact that the Riemann-Roch-
Grothendieck formula holds for a closed immersion. It is proven by construction of
Chern characteristic classes (or equivalently of Chern classes in the rational coeffi-
cient case), using the prescribed axioms of intersection theory.

Let us discuss the case of complex Bott-Chern cohomologies. Using the meth-
ods developed in this note combined with the work of [Gri10], we give as an applica-
tion a more algebraic proof of the Riemann–Roch-Grothendieck theorem of Bismut
[Bis11], [Bis13] under the additional assumption that the morphism is projective.
However, we do not need the condition that the sheaf and all of its direct images are
locally free, nor the condition that the morphism is a submersion (cf. also [BSW21]).
The complex case can be derived from the rational case by the natural morphism
from the rational Bott-Chern cohomology to the complex Bott-Chern cohomology.
In the rest of the paper, we will focus on the rational (or integral) case.
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The organisation of the paper is the following. Section two recalls basic defi-
nitions and introduces pull back and push forward morphisms. Section three intro-
duces a ring structure on the integral Bott-Chern cohomology, in such a way that
it is compatible with the ring structure of the complex Bott-Chern cohomology via
the canonical map. Section four gives the construction of Chern classes associated
with a vector bundle and verifies the list of Axioms A. Section five introduces cycle
classes in integral Bott-Chern cohomology and verifies the intersection theory part
of Axioms B. Section six studies the transformation of Chern classes under blow
ups. This completes the verification of Axioms B.

Acknowledgement. I thank Jean-Pierre Demailly, my PhD supervisor, for his
guidance, patience and generosity. I am indebted to Stéphane Guillermou, Julien
Grivaux, Honghao Gao and Bingyu Zhang for very helpful suggestions, in partic-
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Consortium grant ALKAGE Nr. 670846 managed by J.-P. Demailly. We thank
the anonymous reviewer for a very careful reading of this paper, and for insightful
comments and suggestions.

2. Definition of integral Bott-Chern cohomology classes

In this section, we recall the basic definitions associated with integral Bott-
Chern cohomology. A reference for this part is [Sch07]. Notice that changing Z(p)
by C in the integral Bott-Chern complex gives a complex which defines the complex
Bott-Chern cohomology. Hence one gets a canonical map from the integral Bott-
Chern cohomology to the complex Bott-Chern cohomology. Next, we define pull
backs and push forwards in integral Bott-Chern cohomology. We verify the axioms
without involving the ring structure of the integral Bott-Chern cohomology (namely
Axiom B (2), part of (7)).

Definition 1. The integral Bott-Chern cohomology group is defined as the hy-
percohomology group

Hp,q
BC(X,Z)=Hp+q(X,B∗

p,q,Z)

of the integral Bott-Chern complex
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B˝

p,q,Z :Z(p) Δ−−→O⊕O−→Ω1⊕Ω1 −→ ...−→Ωp−1⊕Ωp−1 −→Ωp −→ ...

−→Ωq−1 −→ 0(1)

where Z(p)=(2πi)pZ at 0 degree and Δ is multiplication by 1 for the first component
and multiplication by −1 for the second component. We call rational (or complex)
Bott-Chern cohomology the hypercohomology of the complex obtained by changing
Z(p) respectively into Q,C.

Notice that the choice of the sign in Δ is to ensure that the natural map from
the integral Bott-Chern cohomology to the complex Bott-Chern cohomology is a
ring morphism. This will be discussed in Section 3. The choice of Z(p) instead of
Z(q) is more or less artificial, but since the Chern class always lies in Hp,p

BC(X,Z)
for some p, this choice poses no problem.

We begin by the definition of pull-backs of cohomology classes. Let f :X→Y

be a holomorphic map, it induces a natural morphism of complexes of abelian
group on any open set U of Y , B˝

p,q,Z,Y (U) f∗

−−→B˝

p,q,Z,X(f−1(U)) which induces the

cohomological class morphism Hp,q
BC(Y,Z) f∗

−−→Hp,q
BC(X,Z). More precisely, the pull-

back of forms induces a morphism of complexes f∗B˝

p,q,Z,Y

f∗

−−→B˝

p,q,Z,X on X which
induces a cohomological morphism H˝(X, f∗B˝

p,q,Z,Y )−−→H˝(X,B˝

p,q,Z,X). On the
other hand, there exists a natural morphism H˝(Y,B˝

p,q,Z,Y )−−→H˝(X, f∗B˝

p,q,Z,Y )
since the pre-image of any open covering of Y gives an open covering of X. The com-
position of two morphisms gives the pull back morphism Hp,q

BC(Y,Z) f∗

−−→Hp,q
BC(X,Z).

The second morphism can be interpreted more formally as follows. There exists a
natural morphism B˝

p,q,Z,Y →Rf∗f
∗B˝

p,q,Z,Y . Taking RΓ(Y,−) on both sides gives
H˝(Y,B˝

p,q,Z,Y )−−→H˝(X, f∗B˝

p,q,Z,Y ).

For a proper holomorphic map f :X→Y of relative dimension d, we next con-
struct a functorial Gysin morphism f∗ :Hp,q

BC(X,Z)→Hp−d,q−d
BC (Y,Z). The construc-

tion is a modification of the similar construction for Deligne cohomological class
given in [ZZ84]. The condition of properness is necessary even if we just consider
cycle classes, since the image of an analytic set is not necessarily an analytic set
when the properness condition is omitted.

Let K˝ be a complex of sheaves on the space X. One denotes by {F pK˝}
the stupid filtration which does not preserve the cohomology at degree p i.e. if
q≥p, F pKq=Kq, otherwise F pKq=0. For the corresponding quotient complex,
we denote it as σpK

˝=K˝/F pK˝. We denote by Ω˝ the complex of sheaves of
holomorphic forms on X. Let i:Z(p)→σpΩ˝⊕σqΩ˝ be the complex map defined by
the diagonal map sending Z(p) into OX⊕OX at degree 0 with a sign −1 at the
second component and viewing Z(p) as a complex centred at degree 0. With the
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above notations, the integral Bott-Chern complex is the mapping cone of i which we
denote as Cone˝(i)[−1]. The idea to define the push-forward of the cohomology class
is to choose compatible resolutions of the complexes Z(p), σpΩ˝⊕σqΩ˝ such that the
both complexes are formed by some kind of currents for which the push-forward is
well-defined.

For the convenience of the readers, we recall here some basic definitions and
properties concerning currents and geometric measure theory. We will use them
to define a resolution of Z(p). For more details and proofs, we refer to the article
of [Kin71]. We need locally integral currents to construct a resolution of locally
constant sheaf.

Definition 2. The space of locally integral currents is defined by

I loc
r (N) := {T ∈Rloc

r (N)|dT ∈Rloc
r (N)}

where Rloc
r is the sheaves of locally rectifiable currents.

We do not give the precise definition of locally rectifiable currents (generalized
singular chains with integer coefficients) here since these definitions by themselves
play no role in the article, just certain properties of locally integral currents. We
refer to the book of [Fed96] for more information.

Lemma 1. The complex of locally integral currents gives a soft resolution of

the locally constant sheaf Z over a manifold.

Proof. It is enough to observe the fact that for T∈I loc
m (Rn) such that dT=0

there exists a S∈I loc
m+1(Rn) such that dS=T (cf. [Fed96] 4.2.10 as a consequence of

the deformation theorem) and the following proposition in [Kin71] Proposition 2.1.9
for the case of top degree.

The fact that the sheaves of locally integral currents are soft can be found in
the discussions on Page 57 [HK74] before Theorem 2.2 (as a consequence of Federer
theory of slicing). �

Theorem 2. Let M be a Riemannian manifold of dimension n. If T∈D′ 0(M)
such that dT=0 then T is the current defined by locally constant functions. If

T∈I loc
n (M) then this function is integral valued.

We now return to the construction of the push forward for hypercohomology.
We denote by D′

X
p,q the sheaf of currents of type (p, q) on X. For each p, (D′

X
p,˝
, ∂)

is a fine resolution of Ωp
X . By taking the conjugation, (D′

X
˝,q
, ∂) is a fine resolution

of Ωq
X . The conjugate of differential forms induces the conjugate of currents. In

particular, σp,˝D′
X

˝,˝ (resp. σ˝,qD′
X

˝,˝) is a Cartan-Eilenberg resolution of σpΩ˝

X

(resp. σqΩ˝

X). Taking the total complex of the double complex, we deduce that
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σpD′
X

˝ is a resolution of σpΩ˝

X . Here, we use an abuse of notation, and actually
mean that we take direct sums of spaces of currents of bidegree (k, l) with k≤p.
Similarly, σqD′

X
˝ is a resolution of σqΩ˝

X . By taking complex coefficients, locally
integral currents extend into a complex of C-vector spaces of currents instead of
Z-modules.

Let Ii
X be sheaf of Z(p) times locally integral currents of real codimension i on

X, as defined above. In the following, to simplify the notations, we make an abuse
of notation to ignore the factor Z(p). The complex I˝

X is a soft resolution of Z by
Lemma 1. The integral Bott-Chern complex is quasi-isomorphic to the following
complex obtained by composing the natural inclusion of forms into currents:

Z(p) Δ−−→σpD′
X

˝⊕σqD′
X

˝

.

This morphism of complexes factorises into

(2) Z(p)−→ I˝

X
Δ−−→σpD′

X
˝⊕σqD′

X
˝

.

In the following, we denote B̃˝

X the mapping cone of Δ in (2). We will call it the
integral Bott-Chern complex involving integral currents and currents.

The morphism of complexes Δ factorises itself into the composition of two
maps: the first is the diagonal map with positive sign on the first component and
negative sign on the second component with image in D′

X
˝⊕D′

X
˝; the second map

is the decomposition of locally integral currents into their components of adequate
bidegrees.

Since the first inclusion is a quasi-isomorphism in the derived category in
D(Sh(X)), the integral Bott-Chern complex is quasi-isomorphic to Cone˝(Δ)[−1]:
I˝

X
Δ−−→σpD′

X
˝⊕σqD′

X
˝. Note that the push-forward of currents and of the locally

integral currents are both well-defined for a proper morphism. We also remark
that the rule df∗=f∗d holds for currents. Hence there exists a natural morphism of
complexes on Y

f∗I˝

X −→ I˝−d
Y , f∗(σpD′

X
˝⊕σqD′

X
˝)−→σp−dD′

Y
˝⊕σq−dD′

Y
˝

which, as will be explained below, induces a cohomological group morphism

f∗ :Hp,q
BC(X,Z)−→Hp−d,q−d

BC (Y,Z).

Here, to define the push-forward for cohomology classes, it is enough to define it
for global section representatives; in fact, the complex I˝

X is soft, which means
any section over any closed subset can be extended to a global section; a soft
sheaf is in particular acyclic, thus the complex σpD′

X
˝⊕σqD′

X
˝ is acyclic. The

hypercohomology of the integral Bott-Chern complex is just the cohomology of
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the global sections of the mapping cone Δ. Now we define the push-forward of a
cohomology class as the push-forward of any of the global currents representing the
cohomology class. By construction, the pull-back and push-forward both satisfy the
functoriality property.

Notice that the use of a resolution of the locally constant sheaf Z(p) seems
to be necessary since a priori we have only natural morphism in inverse direction
H˝(Y, f∗B˝

p,q,Z,X)−−→H˝(X,B˝

p,q,Z,X). The trace morphism tr:f∗ZX→ZY and the
push forward of currents induces a morphism H˝(Y, f∗B˝

p,q,Z,X)−−→H˝(Y,B˝

p,q,Z,Y )
if X,Y have the same dimension. It seems to be not easy to induces from these
two morphisms a morphism H˝(X,B˝

p,q,Z,X)−−→H˝(Y,B˝

p,q,Z,Y ). If we take the quasi-
isomorphic acyclic resolution involving the locally integral currents as in (2), the
hypercohomology of H˝(X,B˝

p,q,Z,X) is represented by global sections. Then the re-
striction of the global section on the open sets induces a morphism H˝(X,B˝

p,q,Z,X)−−→
H˝(Y, f∗B˝

p,q,Z,X) in the desired direction. In this case, we have the following fac-
torisation

H˝(X,B˝

p,q,Z,X) H˝(Y, f∗B˝

p,q,Z,X)

H˝(Y,B˝

p,q,Z,Y [−2d])

f∗

where d is the relative complex dimension. The vertical arrow is the morphism
induced by pushing forward currents, under the assumption that f is proper.

Commutativity can be checked directly. Let T be the global section represent-
ing a cohomology class in H˝(X,B˝

p,q,Z,X). Let (Vi)i be an open Stein covering of
Y such that the hypercohomology class on Y can be calculated by the hyperco-
homology associated with the open cover. We denote by {Ti} the image of T in
H˝(Y, f∗B˝

p,q,Z,X) by restriction on Vi. More precisely, Ti is the restriction of T on
f−1(Vi). Its image in H˝(Y,B˝

p,q,Z,Y [−2d]) is {f∗Ti}, and those sections glue into a
global section f∗T .

The definition of the push-forward of cohomology classes can also be inter-
preted more formally as follows. In order to distinguish the different morphisms
of complexes, we denote by ΔX the map on X involving Z(p) and Δ̃X the map
on X involving locally integral currents. The complex Cone(Δ̃X) involving locally
integral currents is a soft complex. Since f is proper, f∗Cone(Δ̃X) is a soft complex
which means f∗Cone(Δ̃X)=Rf∗Cone(ΔX) in D(Sh(Y )). We denote by aX (resp.
aY ) the morphism from X (resp. Y ) to a point. The push forward of currents
induces a morphism of complexes in C(Sh(Y )): f∗Cone(Δ̃X)→Cone(Δ̃Y )[−2d]. In
other words, we have by composition a morphism in the derived category

Rf∗(Cone(ΔX))−→Cone(ΔY )[−2d].
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Taking RΓ(Y,−)=RaY ∗ on both sides, and using the fact that R(aY ¨f)∗=RaX∗=
RaY ∗¨Rf∗ (since f∗ transforms soft complexes into soft complexes), we get f∗ :
Hp,q

BC(X,Z)→Hp−d,q−d
BC (Y,Z) after taking cohomology.

In the following, once we want to view the push forward of the cohomology
groups as a morphism in the cohomology level induced by a morphism of com-
plexes, we use the above interpretation (for example, in the proof of the projection
formula).

In the case where f is analytic fibration, in the sense that f is a proper surjective
morphism and all fibres are connected, we can additionally define a morphism from
the push forward of the locally constant sheaf ZX to the locally constant sheaf ZY ,
e.g. a morphism f∗ZX→ZY . Any modification f such as a composition of blows-up
with smooth centers is an example of an analytic fibration in the above setting.
We now use this morphism to prove that any modification p yields an injective
morphism p∗ between the corresponding integral Bott-Chern cohomology groups.

In this case, for any connected open set V ⊂Y , we have f∗ZX(V )=ZX(f−1(V ))
where f−1(V ) is a connected open set, so it is enough to define the morphism
f∗ZX→ZY by asserting that it associates the constant function 1 on f−1(V ) to the
constant function 1 on V . In preparation for the next steps, we need the following
lemma.

Lemma 2. For any analytic fibration f :X→Y , there is a commutative dia-

gram

f∗ZX f∗I0
X

ZY I0
Y .

Proof. This is directly verified on any connected open set V ⊂Y . The map
ZX(f−1(V ))→I0

X(f−1(V )) is given by associating the constant function 1 to the
integral current [f−1(V )] associated with f−1(V ). The image of the constant func-
tion 1 under ZX(f−1(V ))→ZY (V ) is the constant function 1 on V . The image of
the constant function 1 under ZY (V )→I0

Y (V ) is the integral current [V ] associated
with V which is also the image of [f−1(V )] under f∗I0

X(V )→I0
Y (V ). �

Using an identification of the push forward of currents on X as currents on Y ,
we get the following commutative diagram

f∗Cone(ΔX) f∗Cone(Δ̃X)

Cone(ΔY )[−2d] Cone(Δ̃Y )[−2d]
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with the above notations. Taking RaY ∗ and cohomology to the commutative dia-
gram gives

H˝(Y, f∗B˝

p,q,Z,X) H˝(X,B˝

p,q,Z,X)

H˝(Y,B˝

p,q,Z,Y [−2d]) H˝(Y,B˝

p,q,Z,Y [−2d]).

f∗

id

In the case of a modification, one can prove that f∗ is injective. This can be
seen via the following

Lemma 3. For any modification f :X→Y , one has

f∗f
∗ = id :H˝,˝

BC(Y,Z)−→H˝,˝
BC(Y,Z).

Proof. Using the above commutative diagram, it is enough to show that for
any open set V ⊂Y and any sheaf in the integral Bott-Chern complex one has the
identity f∗f

∗=id, so that the identity will hold for any hypercocycle representing
an integral Bott-Chern cohomology class.

Let A be an analytic set of X, Z be an analytic set of Y such that the map
f |X\A :X\A→Y \Z is biholomorphic. For any smooth form ω defined on V , we
have f∗f

∗ω=ω. In fact, for any smooth form ω̃ with compact support in V , we can
write

〈f∗f∗ω, ω̃〉= 〈f∗ω, f∗ω̃〉=
∫
f−1V

f∗ω∧f∗ω̃=
∫
f−1V \A

f∗ω∧f∗ω̃

=
∫
V \Z

ω∧ω̃=
∫
V

ω∧ω̃= 〈ω, ω̃〉.

Here, the third and fourth equality hold since the integral of a smooth form on an
analytic set of lower dimension is 0 (such a set being of Lebesgue measure 0 in the
relevant dimension).

For the locally constant sheaf Z, since the analytic fibration has connected
fibres, a straightforward argument yields f∗f

∗=id.
In conclusion the composition of sheaf morphisms: B˝

p,q,Z,Y →f∗f
∗B˝

p,q,Z,Y

(given by the canonical map), f∗f
∗B˝

p,q,Z,Y →f∗B˝

p,q,Z,X (induced by pull-back of
smooth forms) and f∗B˝

p,q,Z,X→B˝

p,q,Z,Y (induced by push-forward of currents) is
the identity map. Notice that a priori, the image complex of the last morphism
should be the quasi-isomorphic complex involving currents instead of smooth forms.
However, in the case of a modification, the push forward of a pull-back of a smooth
form is still a smooth form. In particular, the composition of sheaf morphisms

B˝

p,q,Z,Y −→ f∗f
∗B˝

p,q,Z,Y −→ f∗B˝

p,q,Z,X −→B˝

p,q,Z,Y
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is the identity map. This shows that the canonical map B˝

p,q,Z,Y →f∗f
∗B˝

p,q,Z,Y is
an isomorphism.

Thus we have the following commutative diagram

H˝(Y,B˝

p,q,Z,Y )=H˝(Y, f∗f∗B˝

p,q,Z,Y ) H˝(Y, f∗B˝

p,q,Z,X)

H˝(X, f∗B˝

p,q,Z,Y ) H˝(X,B˝

p,q,Z,X).

The vertical arrows are the canonical maps and the horizontal maps are given by
pull-back of smooth forms. Notice that the composition of

H˝(Y,B˝

p,q,Z,Y )∼=H˝(Y, f∗f∗B˝

p,q,Z,Y )−→H˝(Y, f∗B˝

p,q,Z,X)−→H˝(X,B˝

p,q,Z,X)

is exactly the pull-back of cohomology classes. A comparison of this diagram with
the diagram given before the lemma concludes the proof. �

For complex Bott-Chern cohomology, the following formula in Proposition 1
is valid, since the cohomology class can be represented by global smooth forms
and since the push forward of global forms under the projection is just the inte-
gration over the second component, which commutes with the restriction on the
corresponding (smooth) submanifold.

To prove the case of integral coefficients, we need a relative version of pull back
and push forward for cohomology classes. To do this, we recall some definitions of
derived categories. For a more complete description, we refer to [KS02]. We start
with the definition of a relative soft sheaf.

Definition 3. Let f :X→Y be a continuous proper morphism between topolog-
ical spaces and F be a sheaf of abelian groups on X. Then we say that F is f -soft
if for any y∈Y , F |f−1(y) is soft.

In general, to define Rf∗ (or some right derived functor), one can take any
f∗-injective resolution (or any relative injective resolution). In particular, we do
not need to take an injective resolution (which is the key point of Axiom B (2)).
We verify that a f -soft resolution gives a f∗-injective resolution.

Definition 4. (Definition 1.8.2 in [KS02]) Let F :C→C′ be an additive functor
between abelian categories. A full additive subcategory S of C is called injective
with respect to F if

1. for any X∈Ob(C) there exists X ′∈Ob(S) and an exact sequence 0→X→X ′.
2. For any exact sequence 0→X ′→X→X ′′→0 in C, if X ′, X∈Ob(S) then X ′′∈

Ob(S).
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3. For any exact sequence 0→X ′→X→X ′′→0 in C, if X ′, X,X ′′∈Ob(S) then
we have exact sequence

0−→F (X ′)−→F (X)−→F (X ′′)−→ 0.

Lemma 4. The subcategory formed by f -soft modules in C(Sh(X)) is injective
with respect to f∗ for f proper.

Proof. It is a variant version of Proposition 2.5.10 in [KS02]. We give the proof
in the relative case.

Since any soft module is f -soft by definition and the subcategory formed by soft
modules has enough injective element i.e. it satisfies condition 1, the subcategory
formed by f -soft modules in C(Sh(X)) also satisfies condition 1. Notice that since
f is proper, for any y∈Y , f−1(y) is compact hence closed.

Condition 2 is a direct consequence of equivalence (i) and (ii) in Exercice II.19
(b) in [KS02]. It says that for any exact sequence of ZX modules 0→F ′→F→F ′′→0
with F, F ′ f -soft and for any y∈Y , the hypothesis that 0→F ′|f−1(y)→F |f−1(y)→
F ′′|f−1(y)→0 is exact implies that F ′′|f−1(y) is soft. In particular, F ′′ is f -soft.

Now, we prove condition 3, i.e. that if 0→F ′→F→F ′′→0 is an exact sequence
of f -soft module, then there is an exact sequence

0−→ f∗F
′ −→ f∗F −→ f∗F

′′ −→ 0.

Let y∈Y , we want to check that for any s′′∈Γ(f−1(y), F ′′) there exists s∈Γ(f−1(y),
F ) whose image is s′′. Notice that since f is proper the functors f∗ and f! are the
same. By the base change theorem (Proposition 2.5.2 in [KS02]), we have

(f∗F )y ∼= Γ(f−1(y), F |f−1(y)).

Let Ki be a finite covering of f−1(y) by compact subsets such that there exists
si∈Γ(Ki, F ) whose image is s′′|Ki . This is possible from the assumption that F∈F ′′

is surjective and the fact that f−1(y) is compact. Let us argue by the induction on
the index of the covering to adjust the si’s such that si’s glue to a global section. For
n≥2, on (

⋃
i≤n−1 Ki)∩Kn, we have s′1 the glued section constructed by induction

and s2∈Γ(Kn, F ). Hence s′1−s2∈Γ((
⋃

i≤n−1 Ki)∩Kn, F
′) which extends to s′∈

Γ(f−1(y), F ′) since F ′ is f -soft. Replacing s2 by s2+s′ we may assume that

s′1|(⋃i≤n−1 Ki)∩Kn
= s2|(⋃i≤n−1 Ki)∩Kn

.

Therefore, after finite times induction, there exists s∈Γ(f−1(y), F ) such that s|Ki =
si.
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(Notice that condition 2 can be deduced from condition 3 by the following
commutative diagram. Let K be a closed subset of f−1(y). We have

Γ(f−1(y), F ) Γ(f−1(y), F ′′)

Γ(K,F ) Γ(K,F ′′).

The fact that the bottom and left arrow are surjective implies that the right arrow
is surjective.) �

We also need the following lemma (Lemma 3.1.2) in [KS02].

Lemma 5. Let f :X→Y be a continuous map of locally compact spaces and

K be a flat and f -soft ZX module. For any sheaf G on X, G⊗ZX
K is f -soft.

This lemma entails the following useful corollary.

Corollary 2. Let X,Z be two complex manifolds with Z compact. Let F ˝ be a

flat complex (of sheaves of abelian groups) over X and G˝ be a soft and flat complex

over Z. Then F ˝�G˝ is flat and q-soft with respect to q :X×Z→X.

Proof. The flatness part is from the fact that for abelian groups flatness is
equivalent to torsion-freeness. For any x∈X we have F ˝�G˝|{x}×Z=F ˝

x⊗ZZ
G˝

which, by the lemma, is q-soft. �

Now, we are prepared for the proof of Axiom B (2).

Proposition 1. Consider the following commutative diagram where p, q are

the projections on the first factors

Y ×Z
� � iY ×Z

��

p

��

X×Z

q

��

Y
� � iY �� X

Assume Z to be compact. Then one has in integral Bott-Chern cohomology an

equality i∗Y q∗=p∗i
∗
Y×Z .

Proof. The idea is to use a resolution on X×Z formed by pulling back a resolu-
tion involving smooth forms on X, and tensoring with the pull-back of a resolution
involving currents on Z. This gives a q-soft resolution, and an explicit method to
calculate Rq∗, via Corollary 2.

Let U be an open covering of X formed by geodesic balls with a small enough ra-
dius such that any finite intersection of such balls is diffeomorphic to a euclidean ball.
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Consider the Čech complex “C˝(U ,ZX) associated to ZX (a sheafified version with
the same notation used in Hartshorne [Har77]). More precisely, denote ZX,i0...ip

the restriction of ZX to Ui0...ip =Ui0∩...∩Uip . There exists a complex “C˝(U ,ZX) of
ZX -modules with “Cp(U ,ZX)=

∏
i0...ip

(ji0...ip)∗ZX,i0...ip and the usual Čech differen-
tial where ji0...ip is the inclusion of Ui0...ip (cf. 20.34 [St22]). Therefore, the Čech
complex gives a resolution of ZX (i.e. ZX→ “Cp(U ,ZX) is a quasi-isomorphism). By
Leray theorem, H˝(X,ZX) can be represented by global Čech cocycles. It is a flat
complex on X since all terms are torsion-free. Also, I˝

Z is a flat and soft resolution
of ZZ on Z.

By Corollary 2, “C˝(U ,ZX)�I˝

Z is a q-soft resolution of ZX×Z=ZX�ZZ on
X×Z.

Now we perform a similar construction for the sheaves of smooth forms. The
sheaves of smooth forms C˝,˝

∞,X×Z on X×Z can be viewed as flat ZX -modules and
ZZ-modules. Thus we have quasi-isomorphisms

C˝,˝
∞,X×Z

∼=C˝,˝
∞,X×Z⊗ZX

“C˝(U ,ZX)∼=C˝,˝
∞,X×Z⊗L

ZX
ZX .

Similarly, we have quasi-isomorphisms

C˝,˝
∞,X×Z

∼=C˝,˝
∞,X×Z⊗ZZ

I˝

Z
∼=C˝,˝

∞,X×Z⊗L
ZZ

ZZ .

Therefore, the integral Bott-Chern complex on X×Z in the derived category is
quasi-isomorphic to

(3) B˝

Z,X×Z
∼= Cone(“C˝(U ,ZX)�I˝

Z −→σp,˝C
˝,˝
∞⊕σ˝,qC

˝,˝
∞)[−1]

with the natural inclusion morphism where σp,˝C
˝,˝
∞ means in fact “C˝(U ,ZX)⊗ZX

σp,˝C
˝,˝
∞,X×Z⊗ZZ

I˝

Z (similarly for σ˝,qC
˝,˝
∞). In the following, we denote the right-

handed-side complex as M˝

X×Z in (3). Note that we have quasi-isomorphisms
B˝

Z,X×Z
∼=M˝

X×Z
∼= “C˝(U ,ZX)⊗ZX

B̃˝

X×Z . By Künneth formula (or by fineness of
C˝,˝

∞,X×Z⊗ZZ
I˝

Z), all higher cohomologies of sheaves in M˝

X×Z (before tensoring
“C˝(U ,ZX)) over Ui0...ip×Z are trivial. By Leray theorem, the hypercohomologies of
M˝

X×Z can be represented by global sections. As before, we denote “C˝(U ,ZX)⊗ZX

B̃˝

X×Z
∼=B̃˝

X×Z the Bott-Chern complex involving locally integral currents and cur-
rents as in (2). The tensor product is induced from the tensor product of sheaves
of ZX− (resp. ZZ−)modules. Notice that the sheaves of smooth forms on X×Z

are also q-soft. In particular, we have

Rq∗(B˝

Z,X×Z)∼= q∗(Cone(“C˝(U ,ZX)�I˝

Z −→σp,˝C
˝,˝
∞⊕σ˝,qC

˝,˝
∞)[−1]).

We have natural morphisms q∗pr∗2I˝

Z→q∗I˝

X×Z→I˝

X . It induces a morphism
q∗(“C˝(U ,ZX)�I˝

Z)→(“C˝(U ,ZX)⊗ZX
I˝

X)[−2n] where n=dimCZ. On the other hand,
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since q is a proper submersion, we have a canonical morphism q∗(C˝,˝
∞)→(“C˝(U ,

ZX)⊗ZX
D′ ˝,˝)[−2n] induced by push forward of currents. Thus we get a morphism

q∗(Cone(“C˝(U ,ZX)�I˝

Z −→σp,˝C
˝,˝
∞⊕σ˝,qC

˝,˝
∞)[−1])−→M̃˝

X [−2n]
:=Cone((“C˝(U ,ZX)⊗ZX

I˝

X)−→ “C˝(U ,ZX)⊗ZX
σp,˝D′ ˝,˝⊕ “C˝(U ,ZX)

⊗ZX
σ˝,qD′ ˝,˝)[−2n−1].

Passing to hypercohomology, this morphism induces the push forward of inte-
gral Bott-Chern cohomology by q. The push forward of cohomology classes defined
in this way coincides with the previous one induced by inclusion into currents.

Since this resolution is flat, we can also use it to define the pull-back of cohomol-
ogy classes. More precisely, one can define the pull-back of the cohomology class
as follows. Since iY×Z=(iY , idZ), one has i∗Y×Z :Cone(“C˝(U ,ZX)�I˝

Z→σp,˝C
˝,˝
∞⊕

σ˝,qC
˝,˝
∞)[−1]→Cone(“C˝(U∩Y,ZY )�I˝

Z→σp,˝C
˝,˝
∞⊕σ˝,qC

˝,˝
∞)[−1] induced by pulling

back forms and pulling back currents. Here idZ is a submersion, so the pull back
of currents is well defined (and is in fact the identity!). Passing to hypercohomol-
ogy, we get another way of defining i∗Y×Z for integral Bott-Chern cohomology. We
next check that these two definitions coincide. The inclusion ZZ→I˝

X induces a
commutative diagram

ZX×Z=ZX�ZZ ZY×Z=ZY �ZZ

“C˝(U ,ZX)�I˝

Z
“C˝(U∩Y,ZY )�I˝

Z .

i∗Y ×Z

i∗Y ×Z

This commutative diagram implies that the two definitions of pull back coincide.
Similar arguments show that the push forward by p∗ can be defined using the

corresponding resolutions. It is non trivial to study i∗Y q∗ since the image of q∗ is val-
ued in H˝(X, B̃˝

X) where i∗Y is not always well defined for currents on X. Note that
the image of q∗ is valued in H˝(X, Im(q∗(M˝

X×Z)→M̃˝

X [−2n])) where the sections
can be locally written as

∫
f(x, z)dμ(z) where f(x, z) are smooth forms on X×Z and

dμ(z) locally integral currents (hence with measures coefficients). Note that pull-
back of currents by i∗Y is well defined for such currents valued in Im(p∗(M˝

Y×Z)→
M̃˝

Y [−2n]). Im(q∗(M˝

X×Z)→M̃˝

X [−2n]) is quasi-isomorphic to B˝

X since by the
proof of Dolbeault-Grothendieck lemma (cf. Chap. I Lemma 3.29 [Dem12]), a solu-
tion of ∂u=v for any local ∂-closed current v valued in Im(q∗(M˝

X×Z)→M̃˝

X [−2n])
could be constructed explicitly by integration formula which is also valued in
Im(q∗(M˝

X×Z)→M̃˝

X [−2n]). More precisely, Dolbeault-Grothendieck lemma im-
plies that for fixed k, the complex Im(q∗(C˝,˝

∞,X×Z⊗ZZ
I˝

Z)→D′ ˝,˝
X [−2n]→D′ k+2n,˝

X

[−2n]) formed by currents and forms of fixed first index as a subcomplex of D′ k,˝
X
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is quasi isomorphic to Ωk
X . On the other hand, q∗(“C˝(U ,ZX)�I˝

Z)→ “C˝(U ,ZX)⊗
I˝

X [−2n] factors through “C˝(U ,ZX) with surjective map onto “C˝(U ,ZX). In
particular, Im(q∗(“C˝(U ,ZX)�I˝

Z)→ “C˝(U ,ZX)⊗I˝

X [−2n]) is quasi isomorphic to
“C˝(U ,ZX).

Consider the following commutative diagram

H˝(X,B˝

X) H˝(Y, i∗Y B˝

X) H˝(Y,B˝

Y )

H˝(X, Im(q∗(M˝

X×Z)
→M̃˝

X [−2n]))
H˝(Y, i∗Y Im(q∗(M˝

X×Z)
→M̃˝

X [−2n]))
H˝(Y,M̃˝

Y ).

∼= ∼=

Thus the pull back of currents valued in Im(q∗(M˝

X×Z)→M̃˝

X [−2n]) induces the
pull back of cohomology classes by i∗Y .

Since the resolution is relatively soft with respect to p or q and flat, the
hypercohomologies in the morphisms H˝,˝(X×Z,MX×Z)→H˝,˝(Y ×Z,MY×Z)→
H˝−n,˝−n(Y,M̃Y ) (resp. H˝,˝(X×Z,MX×Z)→H˝−n,˝−n(X,M̃X)→H˝−n,˝−n(Y,
M̃Y )) can be represented by global sections which define the same pull-back and
push-forward in Bott-Chern cohomologies as defined in the beginning of this sec-
tion. The sections are formed by currents valued in Im(q∗(M˝

X×Z)→M̃˝

X [−2n])
(or valued in Im(p∗(M˝

Y×Z)→M̃˝

Y [−2n])) and forms on the open set of U×Z

or (U∩Y )×Z for some open set U of X, which is some intersection of the open
sets in the cover U . The equality asserted in the proposition is satisfied for such
forms and currents. In particular, i∗Y

∫
f(x, z)dμ(z)=

∫
i∗Y f(x, z)dμ(z) for f(x, z)

smooth forms on U×Z and dμ(z) locally integral currents on Z. This concludes the
proof. �

Axiom B (2) can be generalised to any proper morphism f :Y →X, not neces-
sarily a closed immersion with Z compact, which would be needed to prove Axiom B
(3).

By the fact that the pull-back of a current is always well defined in the case of
submersion, one gets the following proposition.

Proposition 2. Let Y,Z be complex manifolds with Z compact and natural

projection p:Y ×Z→Y . The pull-back of global representatives in terms of currents

induces the pull-back of integral Bott-Chern cohomologies defined above in terms of

forms.

Proof. For any connected open set V ⊂Y , we have the following commutative
diagram
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ZY (V ) p∗
��

��

ZY×Z(p−1(V ))

��

I˝

Y (V ) p∗
�� I˝

Y×Z(p−1(V ))

.

The vertical arrow is given by associating the constant 1 to the integral current
associated with [V ] (resp. [p−1(V )]).

Passing to hypercohomology, inclusion of forms and constants B˝ into currents
and locally integral currents B̃˝ induces isomorphism on hypercohomology, so the
morphisms of integral Bott-Chern cohomology groups induced by pulling back forms
and pulling back currents are the same. In other words, the commutative diagram

p∗B˝

Y p∗B̃˝

Y

B˝

Y×Z B̃˝

Y×Z

induces in hypercohomology the commutative diagram

H∗(Y,B˝

Y ) H∗(Y, B̃˝

Y )

H∗(Y ×Z, p∗B˝

Y ) H∗(Y ×Z, p∗B̃˝

Y )

H∗(Y ×Z,B˝

Y×Z) H∗(Y ×Z, B̃˝

Y×Z).

∼=

∼=

Here the terms containing a tilde indicate complexes involving currents, and the
terms without a tilde indicate complexes involving locally constant sheaves or forms.
�

Proposition 3. Let f :Y →X be a proper map between compact complex man-

ifolds. Assume that Z is a compact complex manifold. Consider the following

commutative diagram where p, q are the projections on the first factors

Y ×Z
(f,id)

��

p

��

X×Z

q

��

Y
f

�� X.

Then one has in integral Bott-Chern cohomology an equality f∗q∗=p∗(f, id)∗.
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Proof. There are two ways to prove it. The first way is to consider the following
diagram

Y ×Z Y ×X×Z X×Z

Y Y ×X X.

pY ×Z/Y

(id,f,id) pX×Z

pY ×X pX×Z/X

(id,f) pY ×X/X

To show that f∗pX×Z/X,∗=pY×Z/Y,∗(f, id)∗, using Proposition 1, it is enough to
show that p∗Y×X/XpX×Z/X,∗=pY×X,∗p

∗
X×Z . By Proposition 2, since all the maps

in the right square are projections, the pullback of integral Bott-Chern cohomol-
ogy can be induced from the pullback of currents as well as push forward (for
proper morphism such that the push forward of currents is well defined). In par-
ticular, to show the equality at the level of cohomology, it is enough to show the
equality for global currents representing the corresponding cohomology class. Du-
ally, it is enough to show for smooth form ω on Y ×Z with compact support,
p∗X×Z/XpY×X/X,∗ω=pX×Z,∗p

∗
Y×Xω which is true since we always integrate along

the factor of Y .
The second way is following the proof of Proposition 1. Let U be a cover of

X with small geodesic balls. Let V be a cover of Y with small geodesic balls such
that the image of each geodesic ball is contained in some open set in U . In previous
proof of Proposition 1, we take V to be the intersection of U with Y . The rest of
the proof works identically. �

Remark 1. In the rational coefficient case, instead of the sheaves of locally
integral currents I˝

X , one should consider the image of the natural map I˝

X⊗ZX
QX

to the sheaves of currents which will be denoted by I˝

X,Q. (Note that by Lemma 5,
I˝

X⊗ZX
QX is soft by considering f as a map to a point.) More precisely, in (2),

one should consider
Q(p)−→ I˝

X,Q
Δ−−→σpD′

X
˝⊕σqD′

X
˝

.

Note that the local sections of I˝

X⊗ZX
QX are the rational linear combinations of

locally integral currents which can be seen as currents. In the rational coefficient
case, we work in the (derived) categories of sheaves of QX -modules instead of abelian
groups. For example, we should replace (3) by

B˝

Q,X×Z
∼=Cone(“C˝(U ,QX)�I˝

Z,Q −→σp,˝C
˝,˝
∞⊕σ˝,qC

˝,˝
∞)[−1]

with
C˝,˝

∞,X×Z
∼= “C˝(U ,QX)⊗QX

C˝,˝
∞,X×Z⊗QZ

I˝

Z,Q.

I˝

X,Q is a (flat) resolution of QX . In fact, for any germ of I˝

X,Q, some positive
multiple of this germ is locally integral. As the germs of I˝

X is a resolution of the
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germs of ZX , I˝

X,Q is a resolution of QX . The only issue is to check that I˝

X,Q is soft.
The following arguments are modified from Page 57 of [HK74]. Let Z be a closed
subset of X. Let S∈Γ(Z, I˝

X,Q) which we want to extend onto X. Assume that S

is defined over an open neighbourhood U of Z. Let f be a smooth function on X

which is identically equal to 1 on an open neighbourhood of X\U and is equal to 0
near Z. Let χε be the characteristic function of the set {f<ε}. Fix some 0<ε0<1.
Cover X by open sets Xi such that Xi�Xi+1. For any i, since Xi is compact, there
exists Ni∈N∗ such that NiS|{f≤ε0}∩Xi

values in I˝. By Federer slicing theorem,
for a.e. ε≤ε0, NiχεS is locally integral when restricting to Xi∩{f<ε0}. Thus for
a.e. ε≤ε0, χεS∈Γ(X, I˝

X,Q) which extends S. Hence all our results in the integral
coefficient case also work in the rational coefficient case.

Let f :X→Y be a proper morphism between Riemannian manifolds of relative
dimension r. By compactness of the fibers, the natural morphism f∗I˝

X→I˝

Y [−r]
induces a natural morphism f∗(I˝

X⊗ZX
QX)→I˝

Y ⊗ZY
QY [−r] since some multiple

of a local section of f∗(I˝

X⊗ZX
QX) is integral coefficient (up to restriction to a

relatively compact open subset). Taking image in the sheaf of currents, the induced
natural morphism is independent of the choice of multiple. In other words, we have
a natural morphism f∗I˝

X,Q→I˝

Z,Q[−r].

3. Multiplication of the Bott-Chern cohomology ring

In this section, we discuss a natural ring structure of the integral Bott-Chern
cohomology and we verify the projection formula (Axiom B(1)). Some calcula-
tion of this part is borrowed from an unpublished work of Junyan Cao. The de-
tailed verification of all the calculations can be founded in the author’s PhD thesis
[Wu20].

The complex Bott-Chern cohomology is represented by global differential forms.
The exterior product of forms induces the multiplication of cohomology classes. To
define a multiplication of integral Bott-Chern cohomology which preserves the ring
structure under the canonical map from the integral Bott-Chern cohomology to the
complex Bott-Chern cohomology, we start by defining a modified version of multi-
plication of Deligne cohomology. Recall that the integral Deligne complex D(p)˝ is
the complex in C(Sh(X))

Z(p)−→O−→Ω1 −→ ...−→Ωp−1 −→ 0.

The integral Deligne complex admits a multiplication structure as follows.

∪ :D(p)˝⊗ZX
D(q)˝ −→D(p+q)˝
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x∪y=

⎧⎪⎨⎪⎩
x·y, if deg(x)=0
x∧dy, if deg(x)>0 and deg(y)=p

0, otherwise.

∪ is a morphism of ZX -module sheaf complexes by a direct verification. A modified
version of multiplication is given in the following definition.

Definition 5. For the integral Deligne complex, we define

∪ :D(p)˝⊗ZX
D(q)˝ −→D(p+q)˝

x∪y=

⎧⎪⎨⎪⎩
x·y, if deg(y)=0
(−1)pdx∧y, if deg(y)>0 and deg(x)=p

0, otherwise.

We can verify that ∪ yields a well defined morphism of complexes, namely that

d(x∪y)= dx∪y+(−1)deg(x)x∪dy.

Remark 2. For the definition of multiplication in the integral Bott-Chern com-
plex, we need a modified Deligne complex where we change the signs. To be more
precise, we consider the complex

Z(p) −1−−→O−→Ω1 −→ ...−→Ωp−1 −→ 0.

In this case, we define the multiplication as follows:

x∪y=

⎧⎪⎨⎪⎩
x·y, if deg(y)=0
(−1)p−1dx∧y, if deg(y)>0 and deg(x)=p

0, otherwise.

Proposition 4. The multiplication is associative and homotopy graded-com-

mutative. Thus, it induces a structure of an anti-commutative ring with unit on the

integral Deligne cohomology.

Proof. Considering α∈D(p)˝, α̃∈D(p′)˝ and deg (α)=i, deg (α̃)=j, we prove
the formula

(−1)ijα∪α̃= α̃∪α+(dH+Hd)(α̃⊗α).

Here d is the differential of D(p)˝⊗D(p′)˝, and d(α⊗β) is defined by d(α⊗β)=d α⊗
β+(−1)deg(α)α⊗d β. The modified homotopy operator H is defined by: H(α̃⊗α)=
(−1)j−1α̃∧α, if i �=0, j �=0. Otherwise, H(α̃⊗α)=0. �
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Remark 3. Similarly, for the integral Bott-Chern cohomology, the modified
Deligne complex admits a homotopy operator defined by: H(α̃⊗α)=(−1)jα̃∧α, if
i �=0, j �=0. Otherwise, H(α̃⊗α)=0. We also have the equality:

(−1)ijα∪α̃= α̃∪α+(dH+Hd)(α̃⊗α).

Once we have defined a morphism from a tensor product of two complexes to
another complex. It naturally induces a product on the hypercohomology class. For
self-containedness, we recall the construction.

Definition 6. Consider two complexes of sheaves A˝,B˝, such that there ex-
ists a multiplication denoted by ∪: A˝⊗ZB˝→C˝, α⊗β �→α∪β satisfying the rela-
tion d(α∪β)=(dα)∪β+(−1)deg(α)α∪dβ. Then one can define a product between
H˝(A˝) and H˝(B˝) as follows: let β∈„Ck(Al) and β̃∈„Ck′(Bl′) (where Č means Čech
hypercocycle). One defines a Čech hypercocycle β ·β̃∈„Ck+k′(Cl+l′) by

(β ·β̃)j0...jk+k′ := (−1)k·l
′
βj0...jk∪β̃jk...jk+k′ .

We can check the derivation relation:

δ̌(β ·β̃)= (δ̌β)·β̃+(−1)k+lβ ·(δ̌β̃)

where δ̌β=(−1)lδβ+dβ, δ is the Čech differential.
The multiplicative structure on the integral Deligne complex induces a mul-

tiplicative structure on the integral Bott-Chern complex as follows. We denote
εD the canonical morphism of complexes from the integral Bott-Chern complex
B˝

p,q,Z to the integral Deligne complex D(p)˝. We denote εD the canonical mor-
phism of complexes from the integral Bott-Chern complex B˝

p,q,Z to the modified
conjugated integral Deligne complex D(q)˝ :=0→Z(q) −1−−→OX→...→Ωq−1

X →0 with
a multiplication of (2πi)q−p at degree 0. The modified multiplication of modified
integral Deligne complex in Remark 2 induces a multiplication of modified conju-
gated integral Deligne complex. These two canonical maps induce a multiplicative
structure on the integral Bott-Chern complex as follows. Let y′, y′′ be two elements
of D(p)i,D(q)i over the same open set for some i. If i=0, there exists a unique
element x of B0

p,q,Z such that εD(x)=y′ and εD(x)=y′ if and only if they satisfy
y′′=(2πi)q−py′. The existence of the unique element is trivial for all positive de-
gree. Hence we can define the multiplication x∪x′ of two elements x, x′ of Bi

p,q,Z

and Bj
p′,q′,Z respectively just to be the unique element such that εD(x∪x′)=x∪x′

and εD(x∪x′)=x∪x′ with the cup product of Deligne complex and the modified
cup product of modified conjugated Deligne complex respectively. At degree 0,
the multiplication is just the multiplication of the two integer at degree 0 up to a
constant satisfying the compatible condition. Therefore, the multiplication of the
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integral Bott-Chern complex is well-defined. In conclusion, the cup product of the
complex is given explicitly by the following definition.

Definition 7. Let w, w̃ be two elements of the complex B˝

p,q⊗ZB˝

p′,q′ , and let us
use the following diagrams to denote the elements w, w̃ of mixed degrees

w=
(
c,

u0,0, ..., up−1,0

v0,0, ......, v0,q−1

)
, w̃=

(
c̃,

ũ0,0, ........., ũp′−1,0

ṽ0,0, ..., ṽ0,q′−1

)
.

For instance, at degree 0, we denote w by c, at degree 1, we denote w by (u0,0, v0,0)
etc. With the same notation, the cup product w∪w̃ is represented by the diagram(
c∧c̃, c∧ũ

0,0 , ........., c∧ũp′−1,0 , u0,0∧∂ũp′−1,0 , ... , up−1,0∧∂ũp′−1,0

v0,0∧c̃ , ... , v0,q−1∧c̃ , (−1)q−1∂v0,q−1∧ṽ0,0 , ...... , (−1)q−1∂v0,q−1∧ṽ0,q′−1

)
.

The cup product of integral Bott-Chern cohomology is given explicitly by the
following diagram.

Definition 8. Let w, w̃ be two representatives of hypercocycles of the complex
B˝

p,q⊗ZB˝

p′,q′ , and let us use the following diagrams to denote the elements w, w̃

w=
(
c,

u0,0, ..., up−1,0

v0,0, ......, v0,q−1

)
, w̃=

(
c̃,

ũ0,0, ........., ũp′−1,0

ṽ0,0, ..., ṽ0,q′−1

)
.

For instance, at degree 0, we denote by c an element in „Cp+q(B0
p,q), at degree 1, we

denote by (u0,0, v0,0) an element in „Cp+q−1(B1
p,q) etc. With the same notation, the

cup product w∪w̃ is represented by the diagram(
c∧c̃, ε

0,∗c∧ũ0,0 , ........., εp
′−1,∗c∧ũp′−1,0 , εp

′,∗u0,0∧∂ũp′−1,0 , ... , εp+p′−1,∗up−1,0∧∂ũp′−1,0

ε∗,0v0,0∧c̃ , ... , ε∗,q−1v0,q−1∧c̃ , ε∗,q∂v0,q−1∧ṽ0,0 , ...... , ε∗,q+q′−1∂v0,q−1∧ṽ0,q′−1

)
.

The signs εR,∗, ε∗,S are given as follows:

εR,∗ =
{

(−1)(p+q)(R+1), if R≤p′−1
(−1)p′(R+p+q), if R≥p′

ε∗,S =
{

1, if S≤q−1
(−1)pS+(p+1)(q+1), if S≥q.

Notice that this cup product is just the cup product defined in [Sch07]. Let
us also notice that there exists a more obvious natural product structure on the
complex Bott-Chern cohomology induced by the wedge product of forms. The
signs in the cup product defined in [Sch07] are exactly taken in such a way that the
two products coincide under the natural morphism. The natural inclusion of the
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integral Bott-Chern complex into the complex Bott-Chern complex induces a ring
morphism in hypercohomology. The morphism of complexes εD also induces a ring
morphism in hypercohomology.

Proposition 5. The multiplication is anti-commutative. Thus, it induces a

structure of an anti-commutative ring with unit on the integral Bott-Chern coho-

mology.

Proof. As for Deligne cohomology, there is a natural homotopy operator. We
identify the degree 0 sheaf in the integral Bott-Chern class Z(p) with a subsheaf
of Z(p)⊕Z(q) via the map 1 �→(1, (2πi)q−p). In this way, we can include the
integral Bott-Chern complex into the direct sum of the integral Deligne coho-
mology and the (modified) conjugate integral Deligne complex. We define H :
B˝

p,q,Z⊗ZX
B˝

p′,q′,Z→B˝

p+p′,q+q′,Z by the formula for any element ϕi=(ai, bi)∈Bi
p,q,Z,

ψj=(a′ j , b′ j)∈Bj
p′,q′,Z,

H(ϕi⊗ψj) :=
{

((−1)iai∧bj , (−1)ja′ i∧b′ j), if i �=0, j �=0
0, otherwise.

This is well defined since at degree 0, the homotopy operator is 0 map. We have
checked that

(−1)ijψj∪ϕi =ϕi∪ψj+(dH+Hd)(ϕi⊗ψj).

Therefore, passing to hypercohomology, we have defined an anti-commutative ring
structure on the integral Bott-Chern cohomology. For reference, the formulas for
the homotopy operator of the integral Deligne complex can be found in [EV88]. �

We write ϕ·ψ for the multiplication of cohomology classes. There exists also
another description of cup product following [EV88] by introducing a modified ver-
sion of the Deligne-Beilinson complex. In this way, the projection formula can be
expressed more formally. It differs in sign from the original definitions in [EV88] in
order to get ring morphisms.

The advantage of the Deligne-Beilinson complex is that the multiplication is
either 0 or weight product of two forms. When changing the complex involving
forms by the complex involving currents, it becomes clearer what the sign should
be.

The modified Deligne complex is quasi isomorphic to the following modified
Deligne-Beilinson complex

A(p)˝ =Cone(Z(p)⊕F pΩ˝

X
−ε−�−−−→Ω˝

X)[−1]
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where ε, � are the natural maps. A quasi-isomorphism α:D(p)˝→A(p)˝ can be given
by

Z(p) OX ... Ωp−2 Ωp−1 0

Z(p) OX ... Ωp−2 Ωp⊕Ωp−1 Ωp+1⊕Ωp...

α0 α1 αp−1 αp

−ε −δ1 −δp−1 −δp

with αp(ω)=(−1)p(dω, ω) and αi(ω)=(−1)iω. The symbol δ denotes the differential
of the mapping cone, where in particular

δp−1(η)= (0, dη), δp(ψ, η)= (−dψ,−ψ+dη).

The mapping cone has a negative sign, by the convention that for a complex (A˝, d˝),
the complex A˝[d] has a differential in degree n defined by (−1)ddn−d.

We define a modified cup product ∪0 by the following table which is a morphism
of complexes.

aq fq ωq

ap ap ·aq 0 0
fp 0 −fp∧fq (−1)deg(fp)−1fp∧ωq

ωp ωp ·aq 0 0

.

We can verify that the map from modified Deligne complex to the modified Delinge-
Beilinson complex is also commutative under the modified cup product.

Hence passing to hypercohomology, we have a ring isomorphism for the modi-
fied Deligne cohomology and the modified Deligne-Beilinson cohomology.

As above, the cup product of the Deligne-Beilinson complex and the modified
cup product of the conjugate modified Deligne-Beilinson complex induce a cup
product on the integral Bott-Chern complex. Indeed, the latter is quasi-isomorphic
to

B˝

p,q,Z =Cone(Z(p)⊕F pΩ˝

X⊕F qΩ˝

X

(ε,−(2πi)q−pε)+(−�,−�)−−−−−−−−−−−−−−−→Ω˝

X⊕Ω˝

X)[−1]

where ε is the natural map Z(p)→Ω˝

X and �, � are the natural maps F pΩ˝

X→Ω˝

X and
F pΩ˝

X→Ω˝

X . With this quasi-isomorphism it becomes easier to check the projection
formula.

Proposition 6. (Projection formula) For any holomorphic morphism g, one

has

(1) g∗ϕ·g∗ψ= g∗(ϕ·ψ).

For a proper morphism f , one has

(2) f∗(ϕ·f∗ψ)= f∗ϕ·ψ.



238 Xiaojun Wu

Proof. For the first equality, we can in fact check that on the level of complexes

g∗ϕ∪g∗ψ= g∗(ϕ∪ψ).

Below, we concentrate ourselves on the proof of the second equality. The integral
Bott-Chern complex is quasi-isomorphic to the complex

B̃˝

p,q,Z :=Cone(I˝

X⊕s(F p,˝D′ ˝,˝
X )⊕s(F ˝,qD′ ˝,˝

X ) (ε,−ε)+(−�,−�)−−−−−−−−−−→D′ ˝
X⊕D′ ˝

X)[−1]

where ε is the natural map I˝

X→D′ ˝
X , s(F p,˝D′ ˝,˝

X ) is the total complex of F p,˝D′ ˝,˝
X ,

i.e. the direct sum of spaces of currents of bidegree (k, l) (k≤p), and �, � are the
natural maps s(F p,˝D′ ˝,˝

X )→D′ ˝
X and s(F ˝,qD′ ˝,˝

X )→D′ ˝
X . We start by defining a mul-

tiplication between B˝

p′,q′,Z and B̃˝

p′,q′,Z that is compatible with the multiplication
of the integral Bott-Chern complex. In this way, we avoid the problematic weight
product of two currents. We first perform a similar construction for the integral
Deligne complex. One can represent the product

∪0 :A(p)˝⊗Cone(I˝

X⊕s(F q,˝D′ ˝,˝
X ) ε−�−−→D′ ˝

X)[−1]−→Cone(I˝

X⊕s(F p+q,˝D′ ˝,˝
X )

ε−�−−→D′ ˝
X)[−1]

by the following table
aq fq ωq

ap ap ·aq 0 ap ·ωq

fp 0 fp∧fq 0
ωp 0 ωp∧fq 0

representing elements of

I˝

X s(F q,˝D′ ˝,˝
X ) D′ ˝

X

Z(p) I˝

X 0 D′ ˝
X

F pΩ˝ 0 s(F p+q,˝D′ ˝,˝
X ) 0

Ω˝ 0 D′ ˝
X 0

.

Notice that the wedge product of smooth forms and currents is always well-defined.
We also observe that since a locally integral current is represented by a generalised
measure by the Riesz representation theorem, it defines a current of order 0. We
can check that the multiplication is a morphism of complexes.

One can change the definition of ∪0 for the modified Deligne complex by in-
troducing a different sign for the morphism at degree 0, according to the table

aq fq ωq

ap ap ·aq 0 0
fp 0 −fp∧fq (−1)deg(fp)−1fp∧ωq

ωp ωp ·aq 0 0
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representing elements of

I˝

X s(F q,˝D′ ˝,˝
X ) D′ ˝

X

Z(p) I˝

X 0 0
F pΩ˝ 0 s(F p+q,˝D′ ˝,˝

X ) D′ ˝
X

Ω˝ D′ ˝
X 0 0

.

We have the following commutative diagram of ZX -modules, where, as before,
the multiplication of Deligne complex and the modified multiplication of the modi-
fied Deligne complex induce the multiplication of the integral Bott-Chern complex

B(p, q,Z)˝⊗ZX
B(p′, q′,Z)˝ B(p+p′, q+q′,Z)˝

B(p, q,Z)˝⊗ZX
B̃(p′, q′,Z)˝ B̃(p+p′, q+q′,Z)˝.

∪

∪0

The vertical arrow is induced by the morphism of complexes Z(p)→I˝

X . The “gluing
condition” used to define the multiplication of the integral Bott-Chern complex,
starting from the Deligne complex and the conjugate (modified) Deligne complex,
is that Z(p)⊗I˝

X→I˝

X should be the same for both complexes. Now, the second
equality comes from the straightforward check

f∗(f∗ψ∪0ϕ)=ψ∪0f∗ϕ.

This equality induces as follows the desired formula on the level of hypercohomol-
ogy. By the algebraic Künneth formula (cf. Theorem 15.5 in [Dem12]), we have a
morphism

H∗(RaY ∗B(p, q,Z))⊗H∗(RaY ∗Rf∗B̃(p′, q′,Z))

−→H∗(RaY ∗B(p, q,Z)⊗LRaY ∗(Rf∗B̃(p′, q′,Z))).

Notice that since Z is a PID, B(p′, q′,Z), B̃(p, q,Z), aX∗B̃(p′, q′,Z), aY ∗B̃(p, q,Z)
are torsion free and flat. Notice also that B̃(p, q,Z) is also a soft complex. There
is in fact no need to write functors R and L in the above morphism. More pre-
cisely, RaY ∗B(p, q,Z)⊗LRaY ∗(Rf∗B̃(p, q,Z))=RaY ∗B(p, q,Z)⊗aY ∗(f∗B̃(p, q,Z))=
aY ∗B̃(p, q,Z)⊗aX∗B̃(p′, q′,Z). We have proven that the following diagram com-
mutes:

(*)
B(p, q,Z)⊗f∗B̃(p′, q′,Z) f∗(f∗B(p, q,Z)⊗B̃(p′, q′,Z))

B(p, q,Z)⊗B̃(p′, q′,Z)[−2d] B̃(p+p′, q+q′,Z))[−2d]
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where d is the relative dimension of f . More precisely, the right arrow is given by
f∗(f∗B(p, q,Z)⊗B̃(p′, q′,Z))→f∗(B̃(p+p′, q+q′,Z))→B̃(p+p′, q+q′,Z))[−2d]. Let
us observe that a tensor product of a soft and flat complex by any complex is soft
by Lemma 5. In fact, we can write functors R and L in the above morphism since
all complexes are soft and flat. By taking RaY ∗ we have the following induced map

RaY ∗B(p, q,Z)⊗LRaX∗B̃(p′, q′,Z)→RaY ∗(B(p, q,Z)⊗LRf∗B̃(p′, q′,Z))

RaY ∗B̃(p+p′, q+q′,Z)[−2d].

(Remark that the symbol f∗ used here is denoted f−1 by some authors.) The
left arrow is the natural morphism and the left-down arrow is just the composition.
Taking hypercohomology and composing with the morphism in the Künneth formula
give the projection formula.

The order for taking the cup product is unimportant when passing to hyper-
cohomology, since the integral Bott-Chern cohomology is anti-commutative. This
finishes the proof of the projection formula. �

4. Chern classes of a vector bundle

In this part we give a construction of the Chern class of a vector bundle in
the integral Bott-Chern cohomology. It is borrowed from Junyan Cao (personal
communication). The general line is Grothendieck’s construction of Chern classes
of a vector bundle via the splitting principle. In particular, we prove Axiom A
stated in the introduction.

We first recall the definition of the first Chern class of a line bundle in integral
Bott-Chern cohomology, following [Sch07].

Let L be a holomorphic line bundle over X and U=(Uj) be an open covering
of X with connected intersections such that on each Uj , L is locally trivial by a
nowhere-vanishing section ej . We denote gjk the transition function defined on
Uj∩Uk defined by the relation ek(x)=gjk(x)ej(x). Perhaps with further refinement
of the open covering, we can suppose that gjk=exp(ujk). The element

{gjk}∈«H1(U ,O∗)∼=H1(X,O∗)

determines the isomorphic class of L. Let h be a hermitian metric on L and we
denote by D the Chern connection associated with (L, h) and by Θ the curvature
of the Chern connection. On Uj , the Chern connection is given by the formula

D(ξj(x)ej(x))= (dξj(x)−∂ϕj(x)ξj(x))⊗ej(x)
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where ϕj is the local weight function of the metric under the trivialisation defined
by

e−ϕj(z) = |ej(z)|2h,
which verifies the compatibility condition on Uj∩Uk:

−ϕk+ϕj =ujk+ujk.

We define the Čech 2-cocycle δ(ujk) to be (2πicjkl) which means on Ujkl

2πicjkl =ujk−ujl+ukl.

Taking exponential map on the both sides we know

exp 2πicjkl = gjk∗g−1
jl ∗gkl =1

which in particular shows (2πicjkl)∈„C2(X,Z(1)) a 2−„Cech cocycle with value in
Z(1). We define the first Chern class of L in the integral Bott-Chern cohomology
to be

c1(L)BC,Z := {(2πicjkl), (ujk), (ujk)}∈H1,1
BC(X,Z).

By possible further refinement of the cover, we can assume that two line bundles
L1, L2 are trivialised at the same time. Since the transition functions of L1⊗L2
are the product of corresponding ones of L1, L2, it is easy to see that c1 is a group
morphism by the above construction.

We prove in what follows that this hypercocycle also represents the Chern class
of L in the complex Bott-Chern cohomology. For the complex Bott-Chern coho-
mology, the corresponding global representative (1,1)-form via the quasi-isomorphic
complex L˝

p,q[1] which is defined with p=1, q=1

Lk
p,q =

⊕
r+s=k
r<p,s<q

Er,s if k≤ p+q−2,

Lk−1
p−1,q−1 =

⊕
r+s=k
r≥p,s≥q

Er,s if k≥ p+q,

with differential

L0 prL1 ¨d−−−−→L1 prL2 ¨d−−−−→ ...−→Lk−2
i

2π ∂∂−−−→Lk−1 d−−→Lk d−−→ ...

is just the global form with i
2π∂∂ϕj on Uj . Notice that the complex L˝

p,q is acyclic.
The proof of the quasi isomorphism between L˝

p,q and B˝

p,q can be found in section 12
Chap VI of [Dem12]. (Notice that in [Sch07], the operator i

2π∂∂ is changed by ∂∂.
Here we take this choice so that the first Chern class of a line bundle in the integral
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Bott-Chern class has image as the first Chern class in the complex Bott-Chern class
under the canonical morphism.)

With the same notation as in [Sch07], α0,0 can be chosen to be (ϕj), so the
global representative is θ0,0= i

2π∂∂α
0,0. This is exactly the curvature form on Uj .

Therefore, the hypercocycle of B˝

1,1,Z viewed as a hypercocycle of B˝

1,1,C correspond-
ing to Θ is

{Θ} ←→ {(2πicjkl), (ujk), (ujk)} .
Observe that the first Chern class of the complex Bott-Chern cohomology is just
represented by the curvature. We denote by εBC the canonical map from the
integral Bott-Chern complex to the complex Bott-Chern complex. We have in
hypercohomology

εBC c1(L)BC,Z = c1(L)BC .

Notice that the Chern classes of a vector bundle in integral Bott-Chern cohomology
(which will be defined below) and in complex Bott-Chern cohomology are both
defined by means of the splitting principle, in such a way that for any d and any
vector bundle E we have

εBC cd(E)BC,Z = cd(E)BC .

To construct the Chern class of a vector bundle, we use Grothendieck’s splitting
principle. We begin by proving a Leray-Hirsch type theorem for the integral Bott-
Chern cohomology. This theorem is a direct consequence of the Hodge decompo-
sition theorem and of the Leray-Hirsch theorem for De Rham cohomology, in case
X is a compact Kähler manifold. Here we give a generalisation to arbitrary com-
pact complex manifolds. Before giving the statement in the integral Bott-Chern
cohomology, we need a Künneth type theorem of the same nature for Dolbeault
cohomology, and which will be used in a further induction process.

Theorem 3. (Theorem 1.1 [Meng20], Proposition 11 [ASTT20]) Let X be a

compact complex manifold and E be a vector bundle of rank r on X. One has an

isomorphism ⊕
s≤r−1

Hp−s,k−p−s(X)·cs1(O(1))−→Hp,k−p(P(E)).

Now, we prove the principal proposition of this section, namely a Leray-Hirsch
type theorem for the integral Bott-Chern cohomology.

Proposition 7. Let X be a compact complex manifold, E a vector bundle of

rank r over it. Then, we have

Hk(P(E),B˝

p,q,Z)
=Hk(X,B˝

p,q,Z)⊕Hk−2(X,B˝

p−1,q−1,Z)·ω⊕...⊕Hk−2r+2(X,B˝

p−r+1,q−r+1,Z)·ωr−1
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where ω is the first Chern class of the tautological line bundle over P(E) in

H1,1
BC(P(E),Z) as defined above.

The isomorphism is induced by pull back followed by the cup product of the
integral Bott-Chern cohomology defined in Section 3 which is a morphism of com-
plexes. Note that since we do not assume that p, q≥r−1, some notations need to
be explained for the negative index case. In the proposition we use the following
notations.

If p<0 (resp. q<0), we denote B˝

p,q,Z=B˝

0,q,Z (resp. B˝

p,0,Z). The morphism

F :
⊕

s≤r−1
Hk−2s(X,B˝

p−s,q−s,Z)·ωs −→Hk(P(E),Bp,q)

is defined as follows. Let π :P(E)→X be the natural projection.
If s≤min (p, q), F (α·ωs)=π∗(α)·ωs;
If s≥p, F (α·ωs)=π∗(α)·ωp ·pr0,1(ω)s−p;
If s≥q, F (α·ωs)=π∗(α)·ωq ·pr1,0(ω)s−q,

where the projection pr0,1 is induced by the canonical projection from B˝

1,1,Z to
B˝

0,1,Z. Similarly, pr1,0 is induced by the projection to B˝

1,0,Z.
Notice that when p=q=r, k=2r, this is just the normal splitting principle

without the complicated notations.

Proof. The idea is to use the exact sequence

0−→Ωp[p]−→B˝

p+1,q,Z −→B˝

p,q,Z −→ 0

to reduce the proof to the Dolbeault case. In this proof, we use the usual convention
for differential forms that for p<0, Ωp[p]=0. We begin by proving that the following
diagram is commutative and that its two lines are exact:

⊕
s≤r−1

Hk−2s(X,

Ωp−s[p−s])·ωs

⊕
s≤r−1

Hk−2s(X,

B˝

p+1−s,q−s,Z)·ωs

⊕
s≤r−1

Hk−2s(X,

B˝

p−s,q−s,Z)·ωs

⊕
s≤r−1

Hk−2s+1(X,

Ωp−s[p−s])·ωs

Hk(P(E),Ωp[p]) Hk(P(E),B˝

p+1,q,Z) Hk(P(E),B˝

p,q,Z) Hk+1(P(E),Ωp[p])

We first check the exactness of the two lines. The exactness is just obtained from
the long exact sequence associated with the short exact sequence of sheaves. We
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now check the commutativity of the first square.

Hk−2s(X,Ωp−s[p−s])·ωs

G

��

i �� Hk−2s(X,B˝

p+1−s,q−s,Z)·ωs

F

��

Hk(P(E),Ωp[p]) i �� Hk(P(E),B˝

p+1,q,Z).

The morphism G is induced from the following morphism of complexes Ωp−s[p−
s]⊗ZX

B˝

1,1,Z→Ωp−s+1[p−s+1]. Denote the germs as α∈Ωp−s[p−s], ω=
(
c̃, β;β

)
.

We define
G(α⊗β)=α∧(∂β).

We take it equal to zero otherwise. G defines a morphism at the level of hyper-
cohomology. From now on, we do not pay attention to write α or π∗α when the
context should make the meaning clear. To prove the commutativity at the level of
hypercohomology, it is enough to show the commutativity at the level of complexes.
It is enough to check the commutativity for the case s≤p. We have

i(α∧(∂β)s)= (0, 0, 0....αp−s∧(∂β)s; 0),

which is equal to the image of F ¨i.
We check the commutativity of the second square. Let α=(c, α0, ..., αp−s;β0, ...,

βq−s−1, ω=
(
c̃, β;β

)
be the representatives of hypercocycles. If s≤p, the horizontal

morphism just consists of forgetting the term involving αp−s, thus it is commuta-
tive. Otherwise, α=

(
c, β0, ..., βq−s−1

)
and the morphism is induced by the identity

map at the level of complexes, so it is commutative.
We check the commutativity of the third square.⊕

Hk−2s(X,B˝

p−s,q−s,Z)·ωs

F

��

i ��
⊕

Hk−2s+1(X,Ωp−s[p−s])·ωs

G

��

Hk(P(E),B˝

p,q,Z) i �� Hk+1(P(E),Ωp[p]).

If s≤p−1, take a representative of hypercocycle α=(c, α0, ..., αp−s−1;β0, ..., βq−s−1),
which is the image of hypercocycle of B˝

p−s+1,q−s,Z (c, α0, ..., αp−s−1, 0;
β0, ..., βq−s−1). By the definition of the connecting morphism, i(α) can be taken as
the degree (p−s) element of the hypercocycle δ̌

(
c, α0, ..., αp−s−1, 0;β0, ..., βq−s−1

)
which is ∂αp−s−1. Hence

G(i(α))= ∂αp−s−1∧(∂β)s.

On the other hand, i(F (α))=∂(αp−s−1∧(∂β)s)=∂αp−s−1∧(∂β)s.
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If s=p, we take a representative of the hypercocycle α=
(
c, β0, ..., βq−s−1

)
,

which is the image of the hypercocycle
(
c, 0;β0, ..., βq−s−1

)
of B˝

1,q−s,Z. By definition
of the connecting morphism, i(α) can be taken as the degree 0 element of the
hypercocycle δ̌

(
c, 0;β0, ..., βq−s−1

)
, which is c.

Therefore i(α)=c and G(i(α))=c∧(∂β)s. The two elements with highest de-
grees in the hypercocycle F (α) are c∧β∧(∂β)s−1 and c∧(∂β)s. Now, i(F (α)) is
the degree p element of the hypercocycle δ̌(F (α)), namely

i(F (α))= ∂(c∧β∧(∂β)s−1)=G(i(α)).

If s<p, the sequence

0−→Ωp−s[p]−→B˝

p+1−s,q,Z
∼−−→B˝

p−s,q,Z −→ 0

is an isomorphism between the second and third terms, which therefore induces a
zero connecting morphism. The diagram is also commutative in this case.

At this point, all the asserted commutativity properties have been checked.
Using the five lemma to perform an induction on p, we have to prove that the

following morphism is an isomorphism:

G :
⊕

s≤r−1
Hk−2s(X,Ωp−s[p−s])·ωs −→Hk(P(E),Ωp[p]).

On the Čech cohomology groups «Hp(X,Ωq), one can introduce a ring structure by
the wedge product

«Hp(X,Ωq)×«Hp′
(X,Ωq′)−→«Hp+p′

(X,Ωq+q′).

On the other hand, using the De Rham-Weil isomorphism, we have a canonical
isomorphism

φ : «Hp(X,Ωq)−→Hq,p(X,C).

The isomorphism is compatible with the ring structure of Dolbeault cohomology,
possibly up to a sign (sketched in [Suw09] and detailed in [Wu20]).

Now we prove that G is an isomorphism. Let ω=(c, β;β), so that by defini-
tion G(α·ωs) is represented by the k-hypercocycle G(α·ωs)=π∗(α)∧(∂β)s. By the
construction of the Chern class of the line bundle O(1), we have βjk+βjk=φj−φk

which implies
∂βjk = ∂(φj−φk).

A diagram chasing procedure similar to the proof of the De Rham-Weil isomorphism
gives that the image of ∂βjk in H1,1(P(E),C) is −∂(∂φj), where the later form is the
curvature. The negative sign comes from the convention that if we denote δ, d the
differentials of a double complex, dδ+δd=0. Therefore, to define a double complex
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from the Čech complex and ∂-complex, we have to add a negative sign following
the parity. In conclusion ω represents c1(O(1)), hence by the Leray-Hirsch type
theorem for Dolbeault cohomology, the isomorphism G is settled.

To conclude the proof of the proposition, the five lemma and an induction on
p reduce the proof to the case p=0. It is enough to show that

Hk(P(E),B˝

0,q,Z)
=Hk(X,B˝

0,q,Z)⊕Hk−2(X,B˝

0,q−1,Z)·ω⊕...⊕Hk−2r+2(X,B˝

0,q−r+1,Z)·ωr−1.

The short exact sequence 0→Ωq[q]→B˝

0,q+1,Z→B˝

0,q,Z→0 induces the two lines of
the following diagram are exact.

⊕
s≤r−1

Hk−2s(X,

Ωq−s[q−s])·ωs

��

��

⊕
s≤r−1

Hk−2s(X,

B0,q+1−s)·ωs

��

��

⊕
s≤r−1

Hk−2s(X,

B0,q−s)·ωs

��

��

⊕
s≤r−1

Hk−2s+1(X,

Ωq−s[q−s])·ωs

��

Hk(P(E),Ωq [q]) �� Hk(P(E),B0,q+1) �� Hk(P(E),B0,q) �� Hk+1(P(E),Ωq [q]),

Here we change the connecting morphism of the first line with a sign (−1)s on
the relevant terms. This change does not affect the exactness of sequence but
ensures the commutativity of the diagram. As before, we check that the diagram
is commutative. To simply the sign in the cup product of Bott-Chern cohomology,
we use the anti-commutativity of the integral Bott-Chern class. For any class α,
α·ω=ω ·α. Notice that since p=0, ω is in fact pr0,1ω. With the same notations
as before, this time the morphism G is induced by the morphism of complexes
B˝

1,1,Z⊗ZX
Ωq−s[p−s]→Ωq−s+1[p−s+1]. Denote the germs by α∈Ωq−s[p−s] and

ω=
(
c̃, β;β

)
. We define

G(β⊗α)= (∂β)∧α

and take it equal to zero otherwise. To check the commutativity of the first square,
it is enough to check the commutativity at the level of complexes for the case s≤q.

i((∂β)s∧α)= (0, 0; 0....(∂β)s∧αq−s)

which is equal to the image of F ¨i. The commutativity of the second square is easy.
We now check the commutativity of the third square. Take hypercocycles α=

(c, v0, ..., vq−s), pr0,1(ω)=(c̃, β). It is enough to check the case s≤q, otherwise the
connecting morphism is zero map. If s≤q−1, the image of α under the connecting
morphism is ∂vq−s. The image at the lower right corner of the diagram is (−∂β)s∧
∂vq−s. (The sign comes from the change of the signs in the first line.) On the
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other hand, the image under the connecting morphism of F (α)=(∂β)s∧vq−s is
∂((∂β)s∧vq−s)=(−∂β)s∧∂vq−s.

If s=q, the image of α under the connecting morphism is −c. The image
at the lower right corner of the diagram is (−∂β)s∧−c. On the other hand, the
elements with the two highest degrees in the hypercocycle F (α) are (∂β)s−1∧β∧
c and (∂β)s∧c. The image of the first one under the connecting morphism is
∂((∂β)s−1∧β∧c)=(−∂β)s∧−c.

By the five lemma, similar arguments as those given above reduce the induction
on q to the case q=0, p=0. In the case B˝

p,q,Z=Z, the isomorphism is trivial. �

The splitting principle can thus be applied and gives the following definition
of Chern classes for a vector bundle.

Definition 9. Taking p=q=r, k=2r, there are unique elements ci∈Hi,i
BC(X,Z),

such that
ωr+

∑
(−1)iπ∗(ci)·ωr−i =0

where ω=c1(O(1)) by the above Proposition 7. We define the Chern classes of a
vector bundle E in the integral Bott-Chern cohomology to be precisely the ci.

We now prove some elementary properties of Chern classes in the integral
Bott-Chern cohomology. In particular, we check that Axiom A of the introduction
holds. Let us first observe that such Chern classes are unique, since they satisfy the
Grothendieck axioms for Chern classes included in Axiom A. Notice that the first
Chern class defines a group morphism c1 :Pic(X)→A1(X) which is compatible with
pull-backs by construction.

The first property is the Whitney formula.

Proposition 8. Let 0→E→F→G→0 be a short exact sequence of holomor-

phic vector bundles. Then we have ch(E)+ch(G)=ch(F ) and c(E)·c(G)=c(F ).

Proof. On X×P1, there exists a short exact sequence of holomorphic vector
bundles

0−→ Ẽ−→ F̃ −→ G̃−→ 0,

such that the restriction of exact sequence on the complex submanifold X×{0} is
0→E→F→G→0 and the restriction on X×{∞} is 0→E→E⊕G→G→0. The
existence of such a sequence can be found for example on Page 80 in [Sou92]. In
the case of a direct sum, we obviously have the formulas ch(G)+ch(E)=ch(E⊕G)
and c(E⊕G)=c(E)·c(G) by the splitting principle. More precisely, by the splitting
principle, we can reduce to the case of the direct sum of line bundles. It is enough
to show that for any vector bundle E the total Serge class satisfies s(E⊕OX)=s(E)
by Example 3.1.1 of [Ful84]. This formula is shown in the following Lemma 7.



248 Xiaojun Wu

On the other hand, we have the following commutative diagram for every point
a∈P1:

X×P1 π �� X

X

ia

��

Id
�����������

.

The identity element of the ring ⊕k,p,qH
k(X,B˝

p,q,Z) is the element in H0(X,B˝

0,0,Z)
represented by the constant 1∈Z(0)(X) (more precisely the 0-cocycle 1∈Z(0)(Ui) for
each Ui in the open covering). Via the quasi-isomorphism, it can also be represented
by the integral current associated with X. We denote this element by IdX . By the
projection formula we have for every α∈H˝(X×P1) that

π∗(ia ∗(IdX)·α)=π∗(ia ∗(IdX ·i∗a(α))=π∗(ia ∗(i∗a(α))= Id∗(i∗a(α))= i∗a(α).

By the functoriality of Chern classes, we thus find

π∗(i0 ∗(IdX)·(ch(G̃)+ch(Ẽ)−ch(F̃ )))

= (ch(G̃)+ch(Ẽ)−ch(F̃ ))|X×{0}

=ch(G)+ch(E)−ch(F ), π∗(i∞∗(IdX)·(ch(G̃)+ch(Ẽ)−ch(F̃ )))

= (ch(G̃)+ch(Ẽ)−ch(F̃ ))|X×{∞} =0.

To prove the Whitney formula, it is enough to prove the following homotopy prop-
erty in the next Lemma 6. �

Lemma 6. Let ia :X↪→X×P1 be the inclusion of the compact complex subman-

ifold X×{a}, then i∗a(α) is independent of the choice of a for every α∈H˝

BC(X×
P1,Z).

Proof. Since X×{a} is a codimension 1 analytic set in X×P1, its associated
integral current defines a global section of I2

X . Since [X×{a}] is of type (1,1),
it projects to zero in H0(X,σ1,˝D′ ˝,˝

X ⊕σ˝,1D′ ˝,˝
X ). Hence 2π

√
−1[X×{a}] defines a

hypercocycle for the integral Bott-Chern complex B˝

1,1,Z. By the construction of
the push-forward, this element represents ia ∗(IdX). In the following, we denote
ia ∗(IdX) as {2π

√
−1[X×{a}]} (which is just the cycle class defined in the next

section). With this notation, the end of proof of Proposition 8 gives

ch(G)+ch(E)−ch(F )

=π∗(2π
√
−1({[X×{0}]}−{[X×{∞}]})·(ch(G̃)+ch(Ẽ)−ch(F̃ )))

and we need to show that

{[X×{0}]}−{[X×{∞}]}=0.
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To prove Lemma 6, we need to show that for any p1, p2∈P1,

{[X×{p1}]}−{[X×{p2}]}=0.

By a biholomorphism of P1, we may assume that p1=0, p2=∞ since PGL(2,C) acts
2-transitively on projective space. In the following, we force on showing

{[X×{0}]}−{[X×{∞}]}=0

which finishes the proof of Proposition 8 and Lemma 6 at the same time.
We denote by z the parameter in P1=C∪{∞} and by [0,∞] a (real) line

connecting 0 and ∞ in P1 (for example we can take the positive real axis). Then
the function ln z is well defined on P1\[0,∞]. X×[0,∞] is a real codimension one
real analytic set of X×P1, so it well defines a locally integral current. As a current
d([X×[0,∞]])=−[X×0]+[X×∞]. For any smooth form of type (n+1, n) with
compact support where n is the complex dimension of X〈
∂ ln z, φn+1,n〉=−

〈
ln z, ∂φn+1,n〉=−

∫
X×[0,∞]+−X×[0,∞]−

ln z ·φ=−2iπ
∫
X×[0,∞]

φ.

The second equality is a consequence of the Stokes formula. It shows that pr0,1([X×
[0,∞]])=− 1

2πi∂ln(z). Similarly pr1,0([X×[0,∞]])=− 1
2πi∂ln(z̄). Therefore, in the

space of global sections of the mapping cone Cone(Δ)˝[−1](X×P1) for p=1, q=1,
we have

([X×{0}]−[X×{∞}], 0)= δ(X×[0,∞], 1
2π

√
−1

ln z̄⊕− 1
2π

√
−1

ln z),

where δ is the differential of the integral Bott-Chern complex. In other words,
[X×{0}]−[X×{∞}] is exact, and this means that ch(G)+ch(E)−ch(F )=0 in the
integral Bott-Chern cohomology class. The proof of the total Chern class formula
is similar.

(It would be more direct to conclude that the class of −[X×0]+[X×∞] is
0 in the complex Bott-Chern cohomology. Using a resolution by currents, this
is equivalent to show that as currents on X×P1, −[X×0]+[X×∞] is ∂∂-exact.
However, notice that

−[X×0]+[X×∞] =−i∂∂([X] ln |z|)

where we view z as a meromorphic function on P1 with a single zero at 0 and a
single pole at infinity.) �

Lemma 7. Let E be a vector bundle over compact complex manifold X. Then

we have that for total Serge current (i.e. the inverse of total Chern class)

s(E⊕OX)= s(E).
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Proof. Consider the following diagram

P(E) P(E⊕OX)

X.

π

i

p

It is enough to show that for any k,

π∗(c1(OP(E)(1))k)= p∗(c1(OP(E⊕OX)(1))k+1).

The integral current associated to P(E) represents the first Chern class
c1(OP(E⊕OX)(1) since P(E) is the zero locus of a section of OP(E⊕OX)(1). This
cycle class is also i∗1. Thus we have

p∗(c1(OP(E⊕OX)(1))k+1) = p∗(c1(OP(E⊕OX)(1))k ·i∗1)
= p∗i∗(i∗c1(OP(E⊕OX)(1))k)
=π∗(c1(OP(E)(1))k)

where the second equality follows from the projection formula and the third equality
follows from the fact that OP(E⊕OX)(1)|P(E)=OP(E)(1). �

5. Cohomology class of an analytic set

To prove the other axioms, we have to study the transformation of cohomology
groups under what appears to be the “wrong” direction. For example the pull back
of a cohomology class represented by the closed current associated with a cycle
should morally be represented by the pull back of this current, but such pull backs
are not always well defined. In this section, given an irreducible analytic cycle Z of
codimension k in X, we will associate to it a cycle class in the integral Bott-Chern
cohomology Hk,k

BC(X,Z). Then we will prove a number of elementary properties of
this type of cycle classes. In particular, the projection formula, the transformation
formula of a cycle class under a morphism will be established (Axiom B (3)). At the
end, we will deduce the commutativity property of pull back and push forward by
projections and inclusions, according to Axiom B (4). The excess formula (Axiom B
(5)) is a direct consequence, using the standard deformation technique of the normal
bundle.

Cohomology with support is involved since cycle classes can be represented in
a natural way by currents associated which the cycle. These are in fact supported
in the given analytic sets, whence the appearance of cohomology with support.
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In this section, we denote H˝

|Z|(X, ˝) or H˝

Z(X, ˝) the local hypercohomology
class of some complex on X with support in Z. We start by defining a cycle class
in the integral Bott-Chern cohomology. This is an analogue of the cycle class in
integral Deligne cohomology that has been defined in [ZZ84]. As before, we denote
by Δ:CX→σpΩ˝

X⊕σqΩX
˝.

For any p, q, we have the following commutative diagram with exact lines

0 �� B˝

p,q,Z
��

��

B˝

p,q,C
��

��

CX/ZX
��

��

0

0 �� ZX
�� CX

�� CX/ZX
�� 0.

The vertical morphism of complexes consists of forgetting the terms with degree
>0. It induces the following diagram with exact lines for p=q=k.

H2k−1
|Z| (X,CX/ZX) ��

��

H2k
|Z|(X,B˝

k,k,Z) ��

��

H2k
|Z|(X,B˝

k,k,C) ��

��

H2k
|Z|(X,CX/ZX)

��

H2k−1
|Z| (X,CX/ZX) �� H2k

|Z|(X,ZX) �� H2k
|Z|(X,CX) �� H2k

|Z|(X,CX/ZX).

The first and fourth vertical arrow are the identity map. By the Poincaré duality
for cohomology with support we know

H2k−1
|Z| (X,CX/ZX)∼=H2n−2k+1(Z,CX/ZX)= 0

where the second equality comes from the fact that the real dimension of Z is
2n−2k.

By chasing the diagram, we know for any elements a∈H2k
|Z|(X,B˝

k,k,C) and
b∈H2k

|Z|(X,ZX) such that their images in H2k
|Z|(X,CX) are the same, then there

exists a unique element in H2k
|Z|(X,B˝

k,k,Z) such that the image of this element is a, b
respectively.

To define the cycle class, it is thus enough to associate the cycle two elements
in H2k

|Z|(X,B˝

k,k,C), H2k
|Z|(X,ZX) such that their image in H2k

|Z|(X,CX) is the same.
The cycle Z defines a global section in H0(X, I2k

X ) so it represents an element in
H2k

|Z|(X,ZX). The inclusion ZX→CX induces in the derived category a morphism
I˝

X→D′ ˝
X . These two quasi-isomorphic morphisms induce the same morphism when

passing to hypercohomology. The cycle class in H2k
|Z|(X,ZX) associated with Z has

an image in H2k
|Z|(X,CX) represented also by the integral current associated with

Z.
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On the other hand, CX is quasi-isomorphic to the complex D′ ˝
X . The complex

Bott-Chern complex is quasi isomorphic to the mapping cone C(q)˝[−1] with the
natural map q :D′ ˝

X→σk,˝D′ ˝,˝
X ⊕σ˝,kD′ ˝,˝

X with a negative sign on the second compo-
nent. The integral current associated with Z defines a global section of H0(X,D′ ˝

X)
of bidegree (k, k). And its image in H0(X,σk,˝D′ ˝,˝

X ⊕σ˝,kD′ ˝,˝
X ) is 0. This means

in particular that the integration current defines a hypercocycle. Here the hy-
percohomology class can be represented by this global section since the sheaf of
currents is acyclic. Hence the integration current ([Z], 0⊕0) represents an element
in H2k

|Z|(X,B˝

k,k,C). Under the forgetting map B˝

k,k,C→CX , its image in H2k
|Z|(X,CX)

can also be represented by the same integration current [Z].
In conclusion, the cycle class associated with Z in H2k

|Z|(X,B˝

k,k,Z) is exactly
the class of the integral current associated with Z view as an element in H2k

|Z|(X,

Cone(q̃)˝[−1]) with q̃ :I˝

X→σk,˝D′ ˝,˝
X ⊕σ˝,kD′ ˝,˝

X . The image under the canonical map
H2k

|Z|(X,B˝

k,k,Z)→H2k(X,B˝

k,k,Z) defines finally the cycle class associated with Z

represented by the same integration current. (This construction is already used
in the proof of the Whitney formula.) We denote in the following the cycle class
associated with Z as {[Z]}. In the following, we will only consider smooth cycles.

Notice that iZ∗1={[Z]} where 1∈H0,0
BC(Z,Z) the identity in ⊕p,qH

p,q
BC(Z,Z) if

Z is smooth such that the Bott-Chern cohomology is well defined. The identity
in ⊕p,qH

p,q
BC(Z,Z) corresponds a global constant section 1∈Γ(Z,ZZ) whose image

under iZ∗ in the hypercohomology is defined by locally integral current [Z] by the
construction of the push forward. This global current represents the cycle class
{[Z]} on X.

Now we prove some properties of cycle classes. We start by the following lemma
which expresses the push forward of a cohomology class by an arbitrary morphism
in terms of the pull back and push forward of its projection, and a multiplication
by the cycle class associated with the graph of the morphism.

Lemma 8. Let f :X→Y be a holomorphic map between complex manifolds.

Assume X to be compact. Let α be an integral Bott-Chern cohomology class. Denote

by Γ the graph of f in X×Y and by p1, p2 the two canonical projections. Then one

has

f∗α= p2∗(p∗1α·{[Γ]}).

Proof. This can be checked directly using the multiplication structure as in
the Deligne-Beilinson complex. The compactness condition is just used to ensure
that the push-forward is well defined. Taking [Γ] as the global representative of the
cohomology class, the cup product is induced by the wedge product between the
forms and locally integral currents at the level of complexes. We prove at the level
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of complexes that
f∗(α)= p2∗(p∗1(α)∪0 [Γ]).

It suffices to check on germs on Y . Let U be an open set of X such that U=f−1(V )
for some connected open set V of Y . There are two kinds of sheaves in the Deligne-
Beilinson complex: locally constant sheaf in Z and sheaves of holomorphic forms.

Let α∈Ωp
Y (U). Let ω∈C∞

(n−p,n),c(U) be a smooth form with compact support
in U . Then we have

〈f∗α, ω〉= 〈α, f∗ω〉=
∫
U

α∧f∗ω=
∫

Γ∩p−1
1 (U)

p∗1α∧p∗1f∗ω

=
∫

Γ∩p−1
1 (U)

p∗1α∧p∗2ω= 〈p2∗(p∗1(α)∪0 [Γ]), ω〉.

Notice that p1 induces a biholomorphism between Γ∩p−1
1 (U) and U .

For c∈ZX(U), its image under f∗ via the quasi-isomorphism is the local integral
current cf∗[U ]. The equality at the level of complexes is just

cf∗[U ] = p2∗(c[Γ∩p−1
2 (U)])= p2∗(p∗1(c)∪0 [Γ]).

Passing to hypercohomology gives the desired equality. �

As in [Gri10], we have the following property. It is a combination of the above
lemma and the pull back of the cycle class under a closed immersion.

Proposition 9. Let f :X→Y be a surjective proper map between compact man-

ifolds, and let D be a smooth divisor of Y . We denote f∗D=m1D̃1+...+mND̃N .

Let f̃i :D̃i→D (1≤i≤N) be the restriction of f to D̃i with smooth D̃i. Then we

have in integral Bott-Chern cohomology

f∗iD∗ =
N∑
i=1

mi iD̃i∗f̃
∗
i .

Proof. The proof is identical to the case of the Deligne complex. For self-
containedness, we give briefly the details to indicate where Proposition 3 is needed
and used. The idea consists of passing to the graph and using the above lemma.
Since all spaces are compact, the push-forward is always well-defined. Let Γ be
the graph of iD :D↪→Y and let Γ̃′

i be the graph of i
D̃′

i
:D̃′

i↪→X. We denote all
terms involving X with a prime symbol ′ and all other terms without that symbol.
By definition, [Γ′

i]:=(f̃i, id)∗[Γ̃′
i] as current which induces as cycle class {[Γ′

i]}=
(f̃i, id)∗{[Γ̃′

i]}. [Γ′
i] is supported in the image of (f̃i, id). We denote by pj (j=1, 2)

the natural projections of D×Y , by p′j projections of D×X, and by p̃′j,i projections
of D̃i×X.
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In terms of currents, we have (id, f)∗[Γ]=
∑N

i=1 mi[Γ′
i]. We can prove the cycle

class equality (id, f)∗{[Γ]}=
∑N

i=1 mi{[Γ′
i]} in integral Bott-Chern cohomology as in

Lemma 10. In fact, it can be reduced from the corresponding equality in Deligne
cohomology proven in Corollary 7.7 [EV88] since the natural morphism of Chow
group to integral Deligne cohomologies is compatible with pull back. Then we have

f∗iD∗α= f∗p2∗(p∗1α·{[Γ]})= p′2∗(id, f)∗(p∗1α·{[Γ]})

= p′2∗((id, f)∗p∗1α·(id, f)∗{[Γ]})=
N∑
i=1

mip
′
2∗(p′ ∗1 α·{[Γ′

i]})

=
N∑
i=1

mip
′
2∗(f̃i, id)∗((f̃i, id)∗p′ ∗1 α·{[Γ̃′

i]})=
N∑
i=1

mip̃′2,i∗(p̃′
∗
1,if̃i

∗
α·{[Γ̃′

i]})

=
N∑
i=1

mi iD̃i∗f̃
∗
i α.

The first equality uses Lemma 8. The second formula uses Proposition 3 for f ¨

p′2=p2¨(id, f). The third equality uses the fact that pull-back is a ring morphism.
The fourth equality uses the fact that p′1=p1¨(id, f). The fifth equality uses the
projection formula. The sixth equality uses the fact that p̃′2,i=(f̃i, id)¨p′2 and f̃i¨

p̃′1,i=p′1¨(f̃i, id). The last equality uses another time Lemma 8. The surjectivity of
f is just used to ensure that the pull-back of a divisor is a divisor. �

We give an easy generalisation of a lemma in [Sch07]. It gives the expected
relation between the integral Bott-Chern cohomology and the Deligne cohomology.
In particular, one can reduce the relevant properties of cycle classes in the integral
Bott-Chern cohomology to the Deligne complex case, when they only involve the
group structure.

Lemma 9. For any p≥1, we have a Z-module isomorphism

Hp,p
BC(X,Z)�H2p

D (X,Z(p))⊕H2p−1(X,Ω˝

<p).

Moreover, via the isomorphism, for any proper cycle Z in X, the cycle class {[Z]}BC

associated with Z in the integral Bott-Chern cohomology corresponds to ({[Z]}D, 0),
where {[Z]}D is the cycle class associated with Z in the Deligne cohomology.

This isomorphism is functorial with respect to pull backs.

Proof. We have the short exact sequence

0−→Ω˝

<p[1]−→B˝

p,p,Z −→D(p)˝ −→ 0.
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We can prove as shown in [Sch07] that the short exact sequence is in fact split, so
that we have an abelian group isomorphism

Hp,p
BC(X,Z)�H2p

D (X,Z(p))⊕H2p−1(X,Ω˝

<p)

by taking the hypercohomology. We have to transform the complex involving
smooth forms into a cone complex involving currents. These complexes are quasi-
isomorphic, so that the splitting induces a morphism of complexes in the derived
category. However, we want to modify that splitting to relate the cycle classes in
our different cohomology theories (respectively Deligne and integral Bott-Chern).

Let A be the matrix ( 1
2 −1

2
1
2

1
2

)
We use the construction for A given in the next remark which shows that the integral
Bott-Chern complex is quasi-isomorphic to Cone(I˝

X

(1,0)−−−→σp,˝D˝,˝
X ⊕σ˝,pD˝,˝

X )[−1].
The Deligne complex is quasi-isomorphic to Cone(I˝

X

prp,˝−−−→σp,˝D˝,˝
X )[−1]. There ex-

ists a splitting morphism given by for any element (a, b)∈Ik
X⊕σk−1

p,˝ D˝,˝
X by

F : Cone(I˝

X

prp,˝−−−→σp,˝D˝,˝
X )[−1]−→Cone(I˝

X

(1,0)−−−→σp,˝D˝,˝
X ⊕σ˝,pD˝,˝

X )[−1]
(a, b) �−→ (a, b, 0).

We verify that it is a morphism of complexes:

F (d(a, b))=F (−da,prp,˝a+∂b)= (−da,prp,˝a+∂b, 0)
= d(F (a, b))= d(a, b, 0)= (−da,prp,˝a+∂b, ∂0).

Via this splitting isomorphism the cycle class associated with an analytic set Z is
the cohomology class represented by [Z] and ([Z], 0) respectively. Thus the image
of the cycle class {[Z]}D under F is {[Z]}BC .

The functoriality comes from the functoriality of the construction given in the
remark. �

Remark 4. The sign in the definition of the integral Bott-Chern complex is
unimportant for the group structure of the integral Bott-Chern cohomology when
p=q. In fact, up to an isomorphism of abelian group, we can change the vector
(1,−1) to be any non zero vector in C2. To do it, we need the following construction.

Recall that the integral Bott-Chern complex is Cone(Z (+,−)−−−−→Ω˝

<p⊕Ω˝

<p)[−1]

the mapping cone of the morphism Z
(+,−)−−−−→Ω˝

<p⊕Ω˝

<p. Let A∈GL(2,R) be any
invertible matrix. We denote by aij(1≤i, j≤2) the elements of A. Then we have
the following isomorphism of ZX -complex Ω˝

<p⊕Ω˝

<p. For any k, (ω1, ω2)∈Ωk⊕Ωk
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sends to (a11ω1+a12ω2, a21ω1+a22ω2). The conjugation transforms the holomor-
phic forms to the anti-holomorphic forms and vice versa. (In fact it is RX -morphism
not CX -morphism.) The inverse morphism is induced by the matrix A−1.

Via this isomorphism of complex of ZX -sheaves, the integral Bott-Chern com-
plex is isomorphic to

Cone(Z A(1,−1)t−−−−−−→Ω˝

<p⊕Ω˝

<p)[−1].

For any vector (a, b)∈C2, if we choose adequately A so that (a, b)t=A(1,−1)t, the
integral Bott-Chern complex is isomorphic to Cone(Z (a,b)−−−→Ω˝

<p⊕Ω˝

<p)[−1], which
induces an isomorphism by passing to hypercohomology. This construction is func-
torial with respect to pull-backs, since the pull-back by a holomorphic map preserves
the holomorphic forms and the anti-holomorphic forms.

This construction does not work for complex Bott-Chern cohomology since the
isomorphism we have constructed is not complex linear.

The integral Bott-Chern complex is quasi-isomorphic to Cone(I˝

X
Δ−−→σp,˝D˝,˝

X ⊕
σ˝,pD˝,˝

X )[−1]. Via this quasi-isomorphism, the above construction gives an isomor-
phism of complexes

F : Cone(I˝

X
Δ−−→σp,˝D˝,˝

X ⊕σ˝,pD˝,˝
X )[−1]−→Cone(I˝

X

A(1,−1)t−−−−−−→σp,˝D˝,˝
X ⊕σ˝,pD˝,˝

X )[−1]

sending (a, b, c) to (a, a11b+a12c, a21b+a22c). Here A(1,−1)t is the composition
of Δ with the morphism given as in the above construction for σp,˝D˝,˝

X ⊕σ˝,pD˝,˝
X

and A. Concretely for any k, the differential of T∈IXk sends to (a11prp,˝T−
a12prp,˝T, a21pr

˝,pT−a22pr
˝,pT ) with value in σp,˝D˝,k

X ⊕σ˝,pDk,˝
X . We check that A

induces a morphism of complexes.

F (d(a, b, c))
=F (−da,prp,˝a+∂b,−pr

˝,pa+∂c)
= (−da, a11prp,˝a+a11∂b−a12pr

˝,pa+a12∂c, a21prp,˝a+a21∂b−a22pr
˝,pa+a22∂c).

d(F (a, b, c))
= d(a, a11b+a12c, a21b+a22c)
= (−da, a11prp,˝a+a11∂b−a12prp,˝a+a12∂c, a21pr

˝,pa+a21∂b−a22pr
˝,pa+a22∂c).

In particular, since the cycle class associated with an analytic set Z is represented
by the global section ([Z], 0⊕0) where [Z] is the current associated with Z, its image
under the isomorphism is represented by the same section for any matrix A.

Now we return to the transformation of a cycle class under a morphism in the
integral Bott-Chern cohomology.
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Lemma 10. Let X be any complex manifold, Y and Z be compact submanifolds

of X which intersect transversally and let W=Y ∩Z. Let iY :Y →X be the inclusion.

Then we have in the integral Bott-Chern cohomology the equality

i∗Y {[Z]}= {[W ]}.
Proof. In this proof, we denote {[Z]}BC for the cycle class associated with an

analytic set Z in the integral Bott-Chern cohomology and {[Z]}D for the corre-
sponding class in the Deligne cohomology. Via the isomorphism given in Lemma 9
and the functoriality, the equality i∗Y {[Z]}BC={[W ]}BC is equivalent to the equality
i∗Y {[Z]}D={[W ]}D. The proof in the Deligne complex case is given in the following
via the Bloch cycle classes by Proposition 7.5 of [EV88]. One may refer to [Wu20]
for more details, or more explicit versions of some of the proofs. �

In fact, Lemma 10 gives as a special case the following proposition, which
translates into the equality i∗Y iZ∗1=iW/Y ∗i

∗
W/Z1.

Proposition 10. Consider the following commutative diagram, where Y and

Z are compact and intersect transversally with W=Y ∩Z:

W
� � iW/Y

��
��

iW/Z

��

Y��

iY
��

Z
� �

iZ
�� X

Then we have in the integral Bott-Chern cohomology i∗Y iZ∗=iW/Y ∗i
∗
W/Z .

Proof. The same proof in [Gri10] holds. �
The transversality condition is necessary in the above proposition. Indeed, if

we take Y =Z=W , the morphism i∗Y iY ∗ is not equal to the identity. To calculate
it, we need the following excess formula. In the reverse direction, the formula is far
easier. For any smooth submanifold Z of X and any cohomology class α on X we
have

iZ∗i
∗
Zα=α·{[Z]}.

This can be derived from the projection formula, which implies

iZ∗i
∗
Zα= iZ∗(i∗Zα·1)=α·iZ∗1 =α·{[Z]}.

Proposition 11. If Y is a smooth hypersurface of X with X a compact com-

plex manifold, then for any α an integral Bott-Chern cohomological class,

i∗Y iY ∗α=α·c1(NY/X).

Proof. The same proof in [Gri10] holds using the deformation of the normal
cone (cf. [Ful84] chap V). �
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6. Transformation under blow-up

In this part, we want to show that the integral Bott-Chern class satisfies the
rest of the Axioms B in [Gri10] (see Axiom B (5)(6)(7) in Introduction).

To start with, we prove the transformation formula of the integral Bott-Chern
cohomology under blow up. The closed immersions, projections and blow ups are
the most elementary morphisms in the description of Serre’s proof of Riemann-Roch-
Grothendieck formula. In fact, by considering the graph, any projective morphism
can be written as a composition of a closed immersion and a projection. By devis-
sage, we reduce the general closed immersion to the case of closed immersion of a
smooth hypersurface. To perform this reduction, we need to blow up submanifolds,
and thus a study of the cohomology of blow ups is required. To do this, we will
need the following version for Dolbeault cohomology groups stated in [RYY17].

Theorem 4. Let X be a compact complex manifold with dimCX=n and Y ⊂X

a closed complex submanifold of complex codimension r≥2. Suppose that p:X̃→X

is the blow-up of X along Y . We denote by E the exception divisor and by i:Y →
X, j :E→X̃ the inclusions, by q :E→Y the restriction of p on E. Then for any

0≤l,m≤n, there are isomorphisms

H l,m

∂
(X)⊕⊕r−2

i=0H
l−i−1,m−i−1
∂

(Y )
(p∗,j∗¨c1(OP(NY/X )(1))i∧¨q∗)
−−−−−−−−−−−−−−−−−−−→H l,m

∂
(X̃),

H l,m
∂ (X)⊕⊕r−2

i=0H
l−i−1,m−i−1
∂ (Y )

(p∗,j∗¨c1(OP(NY/X )(1))i∧¨q∗)
−−−−−−−−−−−−−−−−−−−→H l,m

∂ (X̃).

Proof. Let us start with some explanations on Gysin morphism. For any k∈N,
Ωk is quasi-isomorphic to the complex of smooth forms Ck,˝ which is also quasi-
isomorphic to the complex of currents D′ k,˝ by Dolbeault–Grothendieck lemma.
Using the resolution by currents, as in the integral Bott-Chern cohomology case,
one can define a functional Gysin morphism in Dolbeault cohomologies. In this case,
if Y is a codimension r smooth submanifold of X, the image of associated Bloch
cycle class of Y defines a cycle class in Hr(X,Ωr

X) (in fact in Hr
Y (X,Ωr

X)). The
same proof in [Gri10] proves analogue of Proposition 11 for Dolbeault cohomologies.

The first statement follows from the main theorem of [RYY17]. Note that by
their results, both sides have the same complex dimension. To prove the isomor-
phism, it is enough to show that it is injective. Assume that p∗α+

∑r−2
i=0 j∗(q∗βi∧

c1(OP(NY/X)(1))i)=0. Taking j∗ by analogue of Proposition 11 for Dolbeault coho-
mologies gives

q∗i∗α+
r−2∑
i=0

q∗βi∧c1(OP(NY/X)(1))i+1 =0.
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By Theorem 3, βi=0(∀i), i∗α=0. Taking p∗ on the original equation gives α=
p∗p∗α=0 by projection formula which finishes the proof. The second statement
uses the fact that

H l,m
∂ (X)
=ker{∂ : Γ(X,Cl,m

∞ )−→Γ(X,Cl+1,m
∞ )}/Im{∂ : Γ(X,Cl−1,m

∞ )−→Γ(X,Cl,m
∞ )}

= ker{∂ : Γ(X,Cm,l
∞ )−→Γ(X,Cm,l+1

∞ )}/Im{∂ : Γ(X,Cm,l−1
∞ )−→Γ(X,Cm,l

∞ )}

=Hm,l

∂
(X).

Now the second statement comes from the first statement. �

We also need the classical analogue for integral coefficient cohomology (cf.
[GH78], page 603 or Theorem 7.31 [Voi07]) by using the Mayer-Vietoris sequence
involving a tubular neighbourhood of Y .

Lemma 11. Let X be a compact complex manifold with dimCX=n and Y ⊂X

a closed complex submanifold of complex codimension r≥2. Suppose that p:X̃→X

is the blow-up of X along Y . We denote by E the exception divisor and by i:Y →X,

j :E→X̃ the inclusions, by q :E→Y the restriction of p on E. Then for any k there

is an isomorphism

Hk(X,Z)⊕⊕r−2
i=0H

k−2i−2(Y,Z)
(p∗,j∗¨c1(OP(NY/X )(1))i∧¨q∗)
−−−−−−−−−−−−−−−−−−−→Hk(X̃,Z).

Proof. Note that in the book [Voi07], the theorem is stated with the assumption
that X is Kähler. However, its proof only uses the Kähler condition in Lemma 7.28
[Voi07] to conclude that p∗ is injective which can be replaced by an analogue of
Lemma 3 with p=q=0 but with degree n hypercohomology.

Note that for the rational coefficients case, the proof of Theorem 4 with [GH78]
can more easily conclude the proof. �

Using these results, we can prove by induction an analogous result for integral
Bott-Chern cohomology.

Proposition 12. Let X be a compact complex manifold with dimCX=n and

Y ⊂X a closed complex submanifold of complex codimension r≥2. Suppose that

p:X̃→X is the blow-up of X along Y . We denote by E the exception divisor and

by i:Y →X, j :E→X̃ the inclusions, by q :E→Y the restriction of p on E. Then

for any k, l,m there is an isomorphism

Hk(X,B˝

l,m,Z)⊕⊕r−2
i=0H

k−2i−2(Y,B˝

l,m,Z)
(p∗,j∗¨c1(OP(NY/X )(1))i∧¨q∗)
−−−−−−−−−−−−−−−−−−−→Hk(X̃,B˝

l,m,Z).
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In particular, there is an isomorphism

j∗ :Hk(X̃,B˝

l,m,Z)/p∗Hk(X,B˝

l,m,Z)∼=Hk(E,B˝

l,m,Z)/q∗Hk(Y,B˝

l,m,Z).

Proof. The short exact sequence

0−→Ωl+1[−l−1]−→B˝

l+1,m,Z −→B˝

l,m,Z −→ 0

induces a commutative diagram

Hk−l−1,l+1
∂

(X)⊕
⊕r−2

i=0 H
k−l−1−i,l+1−i

∂
(Y )

Hk(X,B˝

l+1,m,Z)⊕
⊕r−2

i=0 H
k−2i−2(Y,B˝

l+1,m,Z)
Hk(X,B˝

l,m,Z)⊕
⊕r−2

i=0 H
k−2i−2(Y,B˝

l,m,Z) ...

Hk−l−1,l+1
∂

(X̃) Hk(X̃,B˝

l+1,m,Z) Hk(X,B˝

l,m,Z) ...

By the five lemma and Theorem 4, one can reduce the proof to the case l=0 by
induction. Then the short exact sequence

0−→Ωm+1[−m−1]−→B˝

0,m+1,Z −→B˝

0,m,Z −→ 0

induces a commutative diagram

Hm+1,k−m−1
∂

(X)⊕
⊕r−2

i=0 H
m+1−i,k−m−1−i

∂
(Y )

Hk(X,B˝

0,m+1,Z)⊕
⊕r−2

i=0 H
k−2i−2(Y,B˝

0,m+1,Z)
Hk(X,B˝

0,m,Z)⊕
⊕r−2

i=0 H
k−2i−2(Y,B˝

0,m,Z) ...

Hm+1,k−m−1
∂

(X̃) Hk(X̃,B˝

0,m+1,Z) Hk(X,B˝

0,m,Z) ...

By the five lemma and Theorem 4 again, one can reduce the proof to the case l=0,
m=0 by induction. This is done directly by Lemma 11. �

A direct application of the proposition is the following general excess formula
compared to Proposition 11.

Proposition 13. With the same notation in the above proposition, if F is the

excess conormal bundle on E defined by the exact sequence

0−→F −→ q∗N∗
Y/X −→N∗

E/X̃
−→ 0,

one has the following excess formula for any cohomology class α on Y :

p∗i∗α= j∗(q∗α·cd−1(F ∗)).
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Proof. Define β=j∗(q∗α·cd−1(F ∗)). By the excess formula for a line bundle,
we have

j∗β = [q∗α·cd−1(F ∗)]·c1(NE/X̃)= q∗α·q∗(cd(NY/X)).
The second equality uses the Whitney formula for Chern class of vector bundles.
Hence j∗β∈Im(q∗) and by the above Proposition we know β=p∗γ for some co-
homology class on X. So p∗β=p∗p

∗γ=γ where the second equality uses p∗p
∗=id

proven in the second section. Then we have

β = p∗p∗β = p∗p∗j∗(q∗α·cd−1(F ∗))= p∗i∗q∗(q∗α·cd−1(F ∗))
= p∗i∗(α·q∗cd−1(F ∗))= p∗i∗α.

The first equality on the second line uses the projection formula. The last equality
uses the fact that q∗cd−1(F ∗)=1, as follows from the next lemma. �

Lemma 12. Let G→X be a vector bundle of rank r which induces π :P(G)→X.

Let H be the vector bundle defined by the exact sequence

0−→H −→π∗G−→OP(G)(1)−→ 0.

Then we have π∗(cr−1(H))=(−1)r−1.

Proof. We start the proof for the complex Bott-Chern cohomology such that
the cohomology class can be represented by global differential forms. By the
Whitney formula for the total Chern class, c(π∗G)=c(H)·c(OP(G)(1)). We denote
h:=c1(OP(G)(1)). Then

c(H)= c(π∗G)(1+h)−1 =(1+c1(π∗G)+...+cr(π∗G))(1−h+h2+...).

The element of degree r−1 on two sides is cr−1(H)=(−1)r−1hr−1+(−1)r−2hr−2c1
(π∗G)+...+cr−1(π∗G). π∗ is given by integration along the fibre direction. By
degree reason, π∗cr−1(H)=(−1)r−1π∗h

r−1=(−1)r−1. The integration can be cal-
culated by a metric on OP(G)(1) induced by a smooth Hermitian metric on G. This
finishes the proof of the complex case.

Since the equality is taken in H0,0
BC(X,Z)=H0(X,Z)∼=Z which is a lattice in

H0,0
BC(X,C)=H0(X,C)∼=C. We deduces the integral case from the complex one.

�

Everything we have done also works for rational Bott-Chern cohomology. In
[Gri10], Grivaux shows that as soon as one has a good intersection theory for some
cohomology theory, one can use the Riemann-Roch-Grothendieck formula to con-
struct the Chern class of a coherent sheaf by an induction on dimension. The last
axiom that remains to be proven is the Hirzebruch–Riemann–Roch theorem. It can
be reduced to the case of the Deligne complex by the following observation made
in Lemma 7.2 of [Sch07].



262 Xiaojun Wu

Lemma 13. Let X be a compact Kähler manifold. Then for any p∈N∗ and

k∈N we have

Hk(X,Ω˝

<p)∼=⊕r+s=k,r<pH
r,s(X,C).

Since Pn is Kähler, the lemma gives the complete description of the integral
Bott-Chern cohomology for the projective spaces.

Proposition 14. The natural morphism ⊕kH
k,k
BC(Pn,Z)→⊕pH

2p
D (Pn,Z(p)) in-

duces an isomorphism of rings. In particular, the Hirzebruch–Riemann–Roch theo-

rem holds for integral Bott-Chern cohomology.

Proof. By Lemma 13, we have for any p∈N∗

H2p(Pn,Ω˝

<p)= 0−→Hp,p
BC(Pn,Z)−→H2p

D (Pn,Z(p))−→H2p+1(Pn,Ω˝

<p)= 0.

The second morphism is the natural morphism from Bott-Chern cohomology to
Deligne cohomology which is in fact an isomorphism shown by the exact sequence.
For p=0, it is also an isomorphism since the complexes are the same. Since the
natural morphism from Bott-Chern cohomology to Deligne cohomology is a ring
morphism, we have the first statement. �

Remark 5. As far as we know, it seems that Grivaux’s method does not work
for constructing Chern classes of a coherent sheaf in the integral Bott-Chern co-
homology, as opposed to the rational cohomology. The main reason is that the
Chern characteristic class is additive but the total Chern class is multiplicative, and
switching from one to the other involves denominators. The proof given in [Ful84]
for the Riemann-Roch-Grothendieck formula in the context of coherent sheaves and
the Chow ring reduces to proving that the Riemann-Roch-Grothendieck formula
holds for vector bundles. The additivity of the Chern characteristic class and the
nature of the formula ensure that after proving the special case of bundles, the
Riemann-Roch-Grothendieck formula will also be valid for coherent sheaves on pro-
jective manifolds. However, one needs the projectivity condition to ensure that
the Grothendieck group of coherent sheaves and the Grothendieck group of vector
bundles are the same.

There exists an analogue of the “integral” Riemann-Roch-Grothendieck formula
given in [Jou70]. In this work, Jouanolou proved that for a closed embedding
f :X→Y of non-singular varieties of codimension d and for any vector bundle of
rank e on X, then the total Chern class in Chow groups satisfies

c(f∗E)= 1+f∗(P (c1(N), ..., cd(N), c1(E), ..., ce(E)))

where N is the normal bundle and P is some universal polynomial depending only
on d, e. This formula does not work directly for coherent sheaves by simply replacing
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e with the generic rank of the coherent sheaf involved, even in the projective case.
This is caused by the lack of additivity and the appearance of polynomials. As a
consequence, a different choice of the values of e will give a completely different
class. As a matter of fact, a coherent sheaf can carry in its Chern classes some
information that extend to degrees beyond its generic rank. At this point, there
does not seem to exist a similar integral Riemann-Roch-Grothendieck formula for
coherent sheaves.

An easy counter example is obtained by considering f :P2→P3 and F=OP2/m0.
The left hand side is equal to c(OP3/m0)= c(O

P3 )
c(m0) =1−c1(OP3(1))3, but the right

hand of the universal polynomial with d=1, e=1 where 1 is the generic rank of
OP3/m0 gives 1+f∗P (c1(N), c1(OP2/m0))=1+f∗P (c1(OP2(1)), c1(OP2/m0))=1+
f∗
( 1

1+c1(OP2/m0)−c1(OP2 (1))−1
)
=1+c1(OP3(1))2+c1(OP3(1))3. The same example

shows that the formula is not valid when we taking e to be the largest number
such that the Chern class is not trivial. We do not know whether there are any
substitutes of the Riemann-Roch-Grothendieck formula used in Grivaux’s induction
argument, that would be capable of defining Chern classes in integral Bott-Chern
cohomology.
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