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Two-dimensional Weyl sums failing square-root
cancellation along lines

Julia Brandes and Igor E. Shparlinski

Abstract. We show that a certain two-dimensional family of Weyl sums of length P takes
values as large as P 3/4+o(1) on almost all linear slices of the unit torus, contradicting a widely held
expectation that Weyl sums should exhibit square-root cancellation on generic subvarieties of the
unit torus. This is an extension of a result of J. Brandes, S. T. Parsell, C. Poulias, G. Shakan and
R. C. Vaughan (2020) from quadratic and cubic monomials to general polynomials of arbitrary
degree. The new ingredients of our approach are the classical results of E. Bombieri (1966) on
exponential sums along a curve and R. J. Duffin and A. C. Schaeffer (1941) on Diophantine
approximations by rational numbers with prime denominators.

1. Introduction

Given their central role in many number theoretic applications, it is no surprise
that Weyl sums and their properties have been subject to thorough investigation
over the years. For a collection ϕ of linearly independent polynomials ϕ1, ..., ϕr∈
Z[X] with respective degrees k1, ..., kr we consider the Weyl sums

fϕ(α)=
∑

1�x�P

e(α1ϕ1(x)+...+αrϕr(x)),

where e(z)=exp (2πiz) and α=(α1, ..., αr). We also write T=R/Z for the unit
torus, and refer to the end of this section for other notational conventions we use.

Whilst it is well known that fϕ(α) can be of order P when the entries of α lie
in the neighbourhood of fractions with a small denominator, the general expectation
has always been that for a “typical” α one should have the upper and lower bounds

(1.1) P 1/2 �|fϕ(α)| ≤P 1/2+o(1).
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This question has recently been investigated in work by Chen and Shparlinski [7],
which in particular implies that the bounds (1.1) hold for a subset of α∈Tr of full
Lebesgue measure whenever the polynomials ϕ have a non-vanishing Wronskian [7,
Corollary 2.2]. A particularly strong version of this result, applicable to the situ-
ation when ϕj(X)=Xj for 1�j�r, is available in subsequent work [6], where the
interested reader can also find a more comprehensive bibliography on the subject.

In practical applications it is often necessary to control the size of fϕ(α) on
linear slices of Tr, where some of the αi are fixed to lie in some set of full measure,
whereas the remaining ones range over the entire unit interval. Such situations
typically arise in “minor arcs” situations where some, but not all, entries of α

may have a good rational approximation and thus lie in an anticipated exceptional
set. This problem has recently been studied in a very general setup by Chen and
Shparlinski [7] (see also [8]), refining an approach developed by Wooley [15]. Their
main result [7, Theorem 2.1] asserts that whenever the polynomials ϕ have a non-
vanishing Wronskian, then for almost all (α1, ..., αd)∈Td one has bounds of the
shape

sup
αd+1,...,αr∈T

|fϕ(α1, ..., αr)| ≤P 1/2+Γ(d,ϕ)+o(1),

where Γ(d,ϕ) is a non-negative function depending on the degrees of the polyno-
mials ϕ, for the precise definition of which we refer to [7]. Unfortunately, even
though the bound of [7, Theorem 2.1] gives strong results in a number of configu-
rations and notably implies that one can take Γ(d,ϕ)=0 for all admissible r-tuples
of polynomials when d=r, in many other cases the bounds it furnishes do not beat
even the trivial bound. In such situations, one has to resort to the more classical
methods employing bounds of Weyl or Hua type and their subsequent generalisa-
tions (see [14, Lemma 2.4 and Theorem 5.2] for the former, and [14, Lemma 2.5]
as well as the results of [16, Section 14] for the latter). Bounds of this nature
provide also the crucial input in the work by Erdoğan and Shakan [11], as well
as in recent work by Chen and Shparlinski [9] in which, motivated by some links
to certain questions on classical partial differential equations, they establish upper
bounds along linear slices of the exponential sum associated with pairs of polyno-
mials ϕ1, ϕ2 differing by a linear term. Several related results have recently been
obtained by Barron [1]. However, as these bounds use Vinogradov’s mean value
theorem (see [3, Theorem 1.1] or [16, Theorem 1.1]) as their main input, which is
inefficient for Weyl sums whose degree exceeds their dimension, they are inherently
unable to provide bounds stronger than O(P 1−ck) for some positive parameter ck
of size ck�k−2.

Whilst exponents of this magnitude are not believed to be sharp in general,
Brandes et al. [4] have recently shown that one cannot hope to have Γ(d,ϕ)=0 for
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all choices of polynomials with non-vanishing Wronskian when d<r. In particular,
for the choice ϕ1(x)=Xk+X and ϕ2(X)=Xk with k=2 or k=3, they show in [4,
Theorem 1.3] that for all α2∈R\Q and any τ>0 there exist arbitrarily large values
of P for which we have the lower bound

(1.2) sup
α∈T

|fϕ(α1, α2)|�P 3/4−τ ,

and that for almost all α2∈T this bound can be matched by a corresponding upper
bound

sup
α∈T

|fϕ(α1, α2)| ≤P 3/4+o(1).

To our knowledge, this is the first indication in the literature that the expecta-
tion that (1.1) should hold for all α on a linear slice of Tr may be too naive. In [4]
the authors speculate that the same behaviour as in (1.2) might continue to hold
for polynomials ϕ1(X)=Xk+X and ϕ2(X)=Xk with k�4.

The goal of this paper is therefore to extend the bound in (1.2) to more general
polynomials, allowing also for higher degrees.

Theorem 1. Let ϕ∈Z[X] be a polynomial of degree k�2, and set

(1.3) f(α1, α2)=
∑

1�x�P

e(α1(ϕ(x)+x)+α2ϕ(x)).

There exists a set C ⊆T of full Lebesgue measure such that for all α2∈C one has

the bound

lim sup
P→∞

P−3/4 sup
α1∈T

|f(α1, α2)|=∞.

Thus, whenever ϕ=(ϕ1, ϕ2) is a pair of polynomials differing only by a linear
term, the associated exponential sum is are substantially larger than originally an-
ticipated on almost all linear slices of T. The fact that in our result the polynomials
under consideration differ only by a linear term seems to play a role, since linear
exponential sums do not exhibit square root cancellation in the same manner as
their cousins of higher degree do. It is therefore an interesting question to inves-
tigate whether the behaviour observed in Theorem 1 persists, perhaps in a weaker
form, even when the polynomials occurring in the exponential sum differ by more
than a linear term.

Unlike in [4], our result in Theorem 1 is not complemented by a matching
upper bound, however some nontrivial estimates can be found in [9]. The methods
presented in [4] could conceivably be adapted to provide best possible upper bounds
even in the more general case considered in the manuscript at hand for all α2 lying
in a subset of full measure of a suitably defined set of “major arcs”. This would
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be sufficient when k�3, as then the entire unit interval T can be covered by such
major arcs. For higher degrees, these methods fail and we have no improvements
over the existing results of [9]. Nonetheless, we believe that these difficulties are of
a technical rather than fundamental nature, and consequently it seems likely that
the exponent 3/4 should be sharp in those cases also.

Our argument is a streamlined version of that presented in [4, Section 8], which
deals with the case of ϕ(X)=Xk for k=2, 3. However, we augment this approach
by two classical results. Firstly, we appeal to a bound of Bombieri [2, Theorem 6]
on exponential sums along a curve over a finite field, and secondly we make use of
a result of Duffin and Schaeffer [10, Theorem I] which allows us to restrict to the
case where the diophantine approximations we consider have a prime denominator.

Notation. Throughout the paper, we make use of the following conventions.
When x∈R we denote by ‖x‖ the distance from x to the nearest integer. Moreover,
P always denotes a large positive number, and the letter p is reserved for primes.
We use the Vinogradov ‘�’, ‘�’ and equivalent Bachmann–Landau notations ‘O(·)’
liberally, and here the implied constants are allowed to depend on ϕ and τ , but never
on P or α.

2. Assembling the toolbox

2.1. Approximations by rational exponential sums

In our examination of the exponential sum (1.3) we rely heavily on our under-
standing of the closely related sum

g(α, γ)=
∑

1�x�P

e(αx+γϕ(x))

and its associated approximations. Indeed, it is apparent from the respective defi-
nitions of these exponential sums that

(2.1) f(α1, α2)= g(α1, α1+α2).

When ϕ(X)=Xk, the latter one of these has been studied in [5] and [4], but it
turns out that in the situation we are mainly interested in the pure power may be
replaced by a more general polynomial. For q∈N, a, c∈Z and β∈R set

S(q; a, c)=
q∑

x=1
e
(
ax+cϕ(x)

q

)
and I(β)=

∫ P

0
e(βx) dx,
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and recall that for non-vanishing β we can compute

(2.2) |I(β)|=P

∣∣∣∣ sin(πβP )
πβP

∣∣∣∣�min{P, ‖β‖−1},

while a classical Weil bound (see, for example, [13, Corollary II.2F]) shows that
when p is prime and p�c one has

(2.3) |S(p; a, c)|� (k−1)p1/2.

The bound (2.3) is a special case of the bound of Bombieri [2, Theorem 6] for
exponential sums along a curve. An important special case of [2, Theorem 6] can
be formulated as follows.

Lemma 2. Let F (X,Y ), G(X,Y ) be polynomials over the finite field Fp of p

elements of degrees d1 and d2, respectively. If the polynomial G is not constant

along the curve F (x, y)=0 then

∣∣∣∣∣∣∣∣
∑

x,y∈Fp

F (x,y)=0

e(G(x, y))

∣∣∣∣∣∣∣∣
�
(
d2
1+2d1d2−3d1

)
p1/2+d2

1.

Next, we recall the following approximation result given by [14, Lemma 4.2]
which we present in a slightly simplified form.

Lemma 3. Suppose that F is a function with a continuous second derivative

F ′′(x) and a monotonic first derivative F ′(x) in the interval [1, P ], and such that

for some integers H1 and H2 we have H1<F ′(α)<H2 for all α∈[1, P ]. Then

∑
1�x�P

e(F (x))=
H2∑

n=H1

∫ P

1
e(F (α)−hα) dα+O (logH) ,

where H=max{2, |H1|, |H2|}.

We also need the following elementary result whose proof can be obtained from
that of [4, Lemma 2.2] by means of purely typographical changes (replacing xk with
ϕ(x)).

Lemma 4. For any positive integer q and any integer c we have

q∑
b=1

|S(q; b, c)|� q3/2.
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We then have the following straightforward modification of [5, Theorem 3]
or [14, Theorem 4.1].

Lemma 5. Let ϕ∈Z[X] be a polynomial of degree k�2. Suppose that γ∈Q
with γ=c/p in lowest terms, where p is a prime number, and fix a∈Z such that

|α−a/p|�(2p)−1. Set then β=α−a/p. In this notation we have

g(α, γ)= p−1S(p; a, c)I(β)+O(p1/2 log p).

Proof. Since γ=c/p is in lowest terms, we have c 
≡0 (mod p).
Just like in the proof of [14, Theorem 4.1], we sort the variables into residue

classes, which we then encode in terms of exponential sums. Thus

g(α, γ)= 1
p

p∑
b=1

S(p; a+b, c)g(β−b/p, 0).

By Lemma 3 we have g(β−b/p, 0)=I(β−b/p)+O(1), so that together with Lemma 4
we find that

g(α, γ)= 1
p

p∑
b=1

S(p; a+b, c)I(β−b/p)+O(p1/2).

Since p�c, it follows upon deploying (2.2) and (2.3) that

g(α, γ)−p−1S(p; a, c)I(β)� p−1/2
p−1∑
b=1

‖β−b/p‖−1 � p1/2 log p,

where in the last step we use that

‖β−b/p‖� (2p)−1

for all b 
≡0(modp). This completes the proof. �

2.2. A lower bound on rational exponential sums

Our second main tool shows that the complete exponential sum S(p; a, c) can-
not be smaller than p1/2 too often. It is useful to denote the leading coefficient of
ϕ by lc(ϕ).

Lemma 6. Let p be a prime satisfying p>(2k)4 with p�lc(ϕ), and let c∈Z with

p�c. Then there exists a∈Z with p�(a+c) such that

|S(p; a, a+c)|� 1
2p

1/2.
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Proof. When k=2, the desired result follows from classical bounds on Gauss
sums, so it is sufficient to consider the case when k�3. By averaging and shifting
the variable of summation, the result follows if we can show that

(2.4)
p−1∑
a=1

|S(p; a−c, a)|2 � 1
2p

2

for all primes p>(2k)4 not dividing lc(ϕ).
We begin by noting that

p−1∑
a=1

|S(p; a−c, a)|2 = p

p∑
m,n=1

ϕ(m)+m≡ϕ(n)+n(modp)

e
(
c(m−n)

p

)
−
∣∣∣∣∣

p∑
m=1

e
(
cm

p

)∣∣∣∣∣
2

.

The second sum vanishes, and in the first one we make the change of variables
n=m−h and isolate the term corresponding to h=0. Hence

(2.5)
p−1∑
a=1

|S(p; a−c, a)|2 = p2+p

p∑
m=1

p−1∑
h=1

Δ(m,h)≡0(modp)

e(ch),

where we put
Δ(m,h)= (ϕ(m+h)−ϕ(m)+h)/h.

Hence, upon re-inserting in the term corresponding to h=0 in the sum on the right-
hand side of (2.5) we discern that

(2.6)

∣∣∣∣∣
p∑

m=1

p−1∑
h=1

Δ(m,h)≡0(modp)

e(ch)

∣∣∣∣∣�
∣∣∣∣∣

p∑
m,h=1

Δ(m,h)≡0(modp)

e(ch)

∣∣∣∣∣+
∣∣∣∣∣

p∑
m=1

Δ(m,0)≡0(modp)

∣∣∣∣∣.

If k�2, then Δ(X,Y ) is a nontrivial polynomial in two variables of degree exactly
k−1, so the congruence

Δ(m,h)≡ 0 (mod p)

defines a curve over the finite field Fp of p elements. In particular, since Δ(X,Y ) is
a nontrivial polynomial of degree exactly k−1 with respect to X with the leading
monomial k lc(ϕ)Xk−1, for p>k and p�lc(ϕ) the congruence

Δ(m, 0)≡ 0 (mod p), m∈{1, ..., p},

has at most k−1 solutions, which bounds the second sum on the right hand side
of (2.6). Moreover, the variable h is not constant along this curve, so we may apply
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Lemma 2 (with d1=k−1 and d2=1) to the first sum. Thus altogether, after simple
calculations, we find that

(2.7)

∣∣∣∣∣
p∑

m=1

p−1∑
h=1

Δ(m,h)≡0(modp)

e(ch)

∣∣∣∣∣�
(
(k−1)2+2(k−1)−3

)√
p+(k−1)2+k−1.

Under our assumption p>(2k)4, for the right hand side in (2.7) we have(
(k−1)2+2 (k−1)−3

)√
p+(k−1)2+k−1

=
(
k2−4

)√
p+k (k−1)<k2√p+k2 < 1

4p+ 1
4
√
p< 1

2p.

In view of (2.5), we derive (2.4), which is sufficient to establish the result. �

3. Proof of the main result

The following result, going back to Duffin and Schaeffer [10], is a key ingredient
in our arguments as it allows us to focus on those α∈T whose rational approxima-
tions have prime denominators.

Lemma 7. There is a set C ⊆T of full Lebesgue measure such that for any

α∈C there are infinitely many approximations∣∣∣∣α− a

p

∣∣∣∣< 1
p2 log log p

with a∈Z and p being a prime number.

Proof. Since
∑

p prime

1
p log log p =∞ and

∑
p prime

p−1
p log log p � 1

2
∑

p prime

1
log log p

this is a direct application of [10, Theorem I]. �

We also remark that Lemma 7 is a special case of the Duffin-Schaeffer conjec-
ture, recently established as a theorem by Koukoulopoulos and Maynard [12].

We now have the wherewithal to embark on the proof of Theorem 1. Fix
τ>0, and let α2∈C , where C is as in Lemma 7. Then we can find an arbitrar-
ily large prime number p, and a2∈Z not divisible by p, that satisfy |α2−a2/p|�
p−2(log log p)−1. For any fixed such p satisfying p>(2k)4 and not dividing lc(ϕ),
define P via the relation

(3.1) P = 1
2p

2 log log p.
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Lemma 6 now guarantees the existence of an integer a1 with a1+a2 
≡0(modp) and
having the property that

(3.2) |S(p; a1, a1+a2)|� p1/2.

Take now β2=α2−a2/p and β1=−β2, and put α1=a1/p+β1. Then upon recalling
that γ=α1+α2 in (2.1), we see that γ=c/p with c=a1+a2 
≡0(modp), whereupon
Lemma 5 yields the relation

g(α1, γ)= p−1S(p; a1, a1+a2)I(β1)+O(p1/2 log p).

Recall now our definition of P from (3.1). Since

|β1|= |β2|� p−2(log log p)−1 =(2P )−1,

and the elementary fact that η−1 sin η�2/π for |η|�π/2, it follows further from (2.2)
that

|I(β1)|�P/2,

so upon inserting (3.2) we discern that

|g(α1, γ)|�Pp−1/2 �P 3/4 (log logP )1/4 .

In the light of (2.1) and Lemma 7, this establishes the desired result.
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