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Overcompleteness of coherent frames
for unimodular amenable groups

Martijn Caspers and Jordy Timo van Velthoven

Abstract. This paper concerns the overcompleteness of coherent frames for unimodular
amenable groups. It is shown that for coherent frames associated with a localized vector a set
of positive Beurling density can be removed yet still leave a frame. The obtained results extend
various theorems of [J. Fourier Anal. Appl., 12(3):307-344, 2006] to frames with non-Abelian index
sets.

1. Introduction

The aim of this paper is to provide quantitative results on the overcompleteness
of a frame in the orbit of a square-integrable representation (7, H,) of an amenable
unimodular group G, i.e., a family of the form

(1.1) m(A)g = (T(A)g)rea

for a vector geH, and a discrete ACG satisfying the frame inequalities

Alfl3, <D 17N < Bl fIR,,  for all f€Har,
AEA

for some constants 0< A< B<oo. Clearly, any such system is complete in H,, i.e.,
its span is dense in H,. A frame is called ezact (or a Riesz basis) if it ceases to be
a frame after the removal of an arbitrary element and is called overcomplete, other-
wise. The removal of a vector from a frame leaves either a frame or an incomplete
system, see, e.g., [9].
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For G=R2? and 7 being the projective Schrédinger representation on L?(R?),
the overcompleteness of coherent frames 7(A)g (so-called Gabor frames) is well-
understood through the quantitative framework [4] and [5]. Among others, the
theory [4] and [5] provides density conditions for frames and Riesz bases and criteria
under which infinite sets can be removed yet still leave a frame. For possibly non-
Abelian groups G, density conditions for frames of the form (1.1) have been obtained
more recently in, e.g., [11], [12], [16], [19] and [22]. These density conditions (see also
Corollary 3.4) assert that if m(A)g is a frame for H, with an L2-localized vector
g€B2 (cf. Section 2.4), then the associated lower Beurling density D~ (A) of A
satisfies

(1.2) D (A) = lim inf ZANZER)

>d
86 oK) C

where (K, )nen is any strong Folner sequence and d, >0 the formal degree of 7; see
Section 2. In addition, necessarily D~ (A)=d, whenever 7(A)g is an exact frame.
For (classes of) nilpotent groups G, it is also known that for a frame m(A)g with an
L'-localized vector g€BL, the inequality (1.2) must be strict (cf. [1], [19] and [18]),
so that 7(A)g is necessarily overcomplete.

The main result of the present paper provides a criterion for a coherent frame
under which a set of positive density can be removed yet leave a frame.

Theorem 1.1. Let G be a second-countable unimodular amenable group with
an integrable irreducible projective representation (7, H,) of formal degree d.>0.
Let ACG be discrete.

Suppose w(A)g is a frame for H, with geBL and D~ (A)>d,. Then there exists
I'CA with D™ (T')>0 such that (7(X\)g)xea\r s a frame for Hr.

In addition to Theorem 1.1, the present paper also provides a necessary condi-
tion for positive density removal (see Proposition 4.3). Both results extend corre-
sponding theorems of [4] and [5] to frames arising from possibly non-Abelian groups.
Theorem 1.1 applies, in particular, to smooth vectors of square-integrable represen-
tations of nilpotent Lie groups (cf. Example 2.3), but also to unimodular groups
with possibly exponential growth. Necessary density conditions for frames arising
from nonunimodular groups (e.g., the affine or az+b group) form currently an open
problem.

The possibility of removing sets from an adequate frame yet still leaving a
frame can also be deduced from the main results on abstract frames in [14]; see,
e.g., [14, Corollary 1.5]. These results do, however, not provide information on the
quantity that can be removed, which is the key contribution of Theorem 1.1.

Our proof of Theorem 1.1 follows the overall proof structure of the correspond-
ing result for Gabor frames in L?(R%) (cf. [4] and [5]). The key ingredients are an
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identity relating frame measure and Beurling density (Theorem 3.2) and a suitable
truncation of a Gram matrix (see Lemma 4.4). Despite these similarities, there are
several important steps that require new methods and techniques in the case of
non-Abelian groups. For example, in the setting of general amenable groups, the
existence of an adequate “reference system” forming a Riesz basis is unknown(')
and techniques based on the spectral invariance of matrix algebras are not available
in settings with exponential growth; see [13] and [30] for examples of settings in
which spectral invariance fails. The alternative arguments provided by the present
paper to circumvent these obstructions are considered as the main technical con-
tribution and appear to yield more direct proofs even in the case of Abelian index
sets.

Lastly, it should be mentioned that for a Gabor frame 7(A)g for L2(R%), in
addition to Theorem 1.1, it is possible to choose I'CA such that the density of A\T'
is arbitrary close to d,=1, see [2]. A similar statement for non-Abelian groups
remains an open problem.

The paper is organized as follows. Section 2 provides preliminaries on Fglner
sequences, integrable representations and frames. In Section 3 the notion of a frame
measure is introduced and related to formal degree and Beurling density. The main
results on overcomplete coherent frames are proven in Section 4.

2. Notation and preliminary results

Let G be a second-countable unimodular locally compact group with Haar
measure pg. Throughout, we fix a compact symmetric unit neighborhood QCG.

2.1. Fglner sequences

A (right) Folner sequence is a sequence (K, ), en of nonnull compact sets K,, CG
satisfying, for all compact sets K CG,

K,KAK,
lim pe(EnKAK,)
n—00 ‘ug(Kn)
The locally compact group G is called amenable if it admits a Fglner sequence. For
an amenable group G, a Fglner sequence can be chosen to satisfy the additional

properties

(2.1) K,CKnp and G=|J K,,
neN

=0.

(1) See [20], [25] and [26] for constructions of orthonormal bases in the orbit of (classes of)
nilpotent Lie groups.
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see, e.g., [10, Theorem 3.2.1].
A (right) strong Folner sequence is a Fglner sequence (K, )nen satisfying the
stronger condition

=0
n—o00 HG(Kn)

for all compact sets K CG. If (K,,)nen is a Folner sequence and UCG is a compact
symmetric unit neighborhood, then (K,U),cn is a strong Folner sequence (cf. [27,
Proposition 5.10]). Clearly, also strong Fglner sequences exist with the additional
properties (2.1).

2.2. Discrete sets

A set ACG is called relatively separated if, for some (all) compact unit neigh-
borhoods U CG,

sup #(ANaU) < co.

zeG
For a relatively separated A, its relative separation (relative to the fixed neighbor-
hood Q) is defined to be Rel(A):=sup,cq #(ANzQ)<oco. Given a compact unit
neighborhood U, a set ACG is called U-dense if G=|J ., AU. Equivalently, A is
U-dense if #(ANzU)>1 for all z€G. A set is relatively dense if it is U-dense for
some compact unit neighborhood U.

2.3. Local maximal functions
For FEL® (G), its (left-sided) local maximal function ML F:G—[0, 00) is de-
fined by

MY F(x)=esssup |F(zz)|, z€G.
z€Q

The associated (left-sided) Wiener amalgam space W% (LP), with p€[1, 2], is defined
by

WHLP):={F €L (G): M*F € LP(G)}.
Each space WL (LP), pe[1, 2], satisfies WE(LP)— LP, and additionally WL (LP)— L.

The following restriction property will be essential in the sequel, see, e.g., [17,
Lemma 1].
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Lemma 2.1. Let ACG be relatively separated and let FEW™(L?) be contin-
wous. For any compact set KCGQG,

> IFP< Rel(A) /KCQ |MYF(2)]? dug («).

v ~ pa(Q)

In particular, for every >0, there exists compact K CG such that

> FWP <

AEANK®

In a similar fashion as above, the right-sided local maximal function M®L of
FeL.(G) is defined by MR F(z)=esssup, g |F(zz)|. The associated (two-sided)

loc
Wiener amalgam space W(L!) is defined as

W(LY) ={FeLy(G): M"M*F e L'(G)}

and equipped with the norm || F ||y :=||ME*MEF| 1.
The local maximal functions satisfy

(2.3) MY (Fy«Fy) <|Fy|*MEPFy, and MT(Fy+Fy) < MR F | Fy),

provided the convolution product Fj*F5 is (almost everywhere) well-defined. In
particular, the inequalities (2.3) imply that (WE(LY))V«WE(LY)—W (L), where
the involution v is defined as FV(x)=F(z~!) for x€G.

2.4. Integrable representations

A projective unitary representation (m, H,) on a Hilbert space H is a strongly
measurable map 7m:G—U(H ) satisfying

m(zy) =o(z,y)r(x)n(y), =,y€G,

for a function o:GxG—T. For a vector g€ H, the associated coeflicient transform
Vg:Hr—L>(G) is defined through the matrix coefficients

Vof(z)={(f,n(x)g), z€G.

The absolute value |V, f|:G— [0, c0) is continuous for all f, geH; see [31, Theorem
7.5].

A projective representation (7, H) is said to be irreducible if {0} and H, are
the only closed subspaces of H, invariant under all operators m(x) for z€G.
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An irreducible projective representation (m,H,) is called square-integrable or
a discrete series representation of G if there exists g€H,\ {0} such that

/IVgg )? dpc (x /Ig, 9 dpe(z) <

The significance of a discrete series representation (m, H,) of G is that there exists
dr>0, called the formal degree of mw, such that

(2.4) /G<f1’ m(x)g1) (7w () g2, f2) dpc(z) = d7 (f1, f2) (91, g2)

for all fi, f2,91,92€H. For a square-integrable representation m, we define the
subspace
B2:={geH.:Vyge WH(L?)}.
Then B2 is nonzero and norm dense in H,, see, e.g., [15] and [17].
In addition to square-integrability, a vector g€ H, \ {0} satisfying

L/ V,g(2)| dps () < o0
G

is called an integrable vector. An integrable representation is an irreducible repre-
sentation admitting an integrable vector. For an integrable representation m, we
also consider the subspace

={g€H:VygeWh(L"}.

If ge?—[,r is an integrable vector and heC.(G)\{0}, then the associated Garding
vector m(h)g:= [ h z)gduc(x) defines an element of BL. Therefore, the space
Bl is nonzero and norm dense in Hr.

The following simple lemma will be used below.

Lemma 2.2. Let (m,H,) be an irreducible integrable representation of G.
Then BLCB2 and Bi={geH:V,ge W (L")}.

Proof. Let geBL be nonzero. The orthogonality relations (2.4) yield

%mw:@mmjé@m@mw@mﬂwWde,xea

Set C’:zdw||g||;_fr. Then |Vyg|(z) <C(|Vy9|*|Vyg|)(x) for all z€ G. By Equation (2.3),
it follows therefore that MLV, g<C(|V,g|xM*V,g), and thus L*(G)+ L' (G)—L*(G)
implies that

||]\4LVQ9||L2 < C||V99||L2||MLV99HL1~
Similarly, it follows that ML MRV, g<C(M"V,gxM*V,g). Since |V,g|"=|V,g|, and
hence MEV,g=(M*V,g), this implies ||V,g|lw <C||MEV,g| 11 |MEVyg|. O
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Lastly, we mention a class of groups and projective representations for which

B} is nonzero.

Ezample 2.3. Let N be a connected, simply connected nilpotent Lie group and
let (7, H,) be an irreducible unitary representation of N. Denote by H° the (dense)
subspace of smooth vectors of 7, i.e., the space of all vectors geH, such that the
orbit map z—7(x)g is smooth.

Suppose that 7 is square-integrable modulo the center Z of N, meaning that
there exists nonzero geH, such that

/ |<ga77(37)9>|2 dMN/Z(x) < 00.
N/Z

Then, given a smooth cross-section s:N/Z— N, the mapping 7’:=pos forms a (pro-
jective) discrete series representation of G:=N/Z. Moreover, for any smooth vector
gEH®, the function Vyg=(g,n’(-)g) is a Schwartz function on G (see [8, Theo-
rem 4.5.11]), and hence geBL. See, e.g., [7, Section 6.2] for further details and
properties.

The interested reader is referred to [23] for a list of low-dimensional nilpotent
Lie groups and explicit realizations of their irreducible representations in L?(R9)
for some suitable deN.

2.5. Coherent frames

Let (7, H) be a square-integrable projective representation of G. For a nonzero
vector g€, and a discrete set ACG, a family m(A)g=(m(A)g)aen is called a co-
herent system in H,. A coherent system 7(A)g is called a frame for H, if there
exist A, B>0, called frame bounds, such that

Alfl3, < 317N < BIfIR,,  f€Hn

AEA

Equivalently, the system 7(A)g is a frame if the frame operator

Sg,A:HTr — Hnr, f»—>z<f,7r()\)g>ﬁ()\)g
AEA

is bounded and invertible. If w(A)g is a frame for H, with frame bounds A and
B, then the system (hy)aca given by h)\::S;}\w()\)g is a frame for H, with frame
bounds B~! and AL, called the canonical dual frame of m(A)g. The systems m(A)g
and (ha)aea satisfy 0<(m(X)g, ha)<1 for all A€eA. A frame for which the frame

bounds can be chosen to be A=B=1 is called a Parseval frame.
The following well-known covering properties of the index set of a coherent

frame will be used below, see, e.g., [11], [16] and [18] for proofs.
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Lemma 2.4. If n(A)g is a frame for H, with geB2, then A is relatively
separated and relatively dense.

For a frame 7(A)g for H,, the associated coefficient operator Cy p:H.—(*(A)
is defined by fr—((f,7(A)g))rea. Its adjoint Dy p:=C} ) is the reconstruction op-
erator, given by Dy xc=3", ., exm(A)g for cel*(A). The Gramian operator is the
composition CyaDya on (2(A), which will be identified with the matrix

((m(N)g, 7(A)g))anea-

3. Frame measure and Beurling density

Henceforth, let (m,H.) be a discrete series representation of G of formal di-
mension d; >0.

3.1. Frame measure

In this section we define a notion of frame measure for a given coherent frame.
This notion is a special case of the so-called ultrafilter frame measure function for
abstract frames as considered in [6].

Definition 3.1. Let (K,)nen be a strong Felner sequence in G satisfying the
cover property (2.1). Let w(A)g be a coherent frame for H, with canonical dual
frame (hx)aea-

The lower and upper frame measure of w(A)g are defined by

1

M~ = lim inf ——— Ag, h
(On):= Jim, nf, ey | 2 (FWoh)
and
1
M*(Gp):= lim sup ———— m(A)g, hy),
(Gn):= lim sup #(ANzK,) AGA%Kf (Ag: )
respectively.

It will follow from Theorem 3.2 (cf. Corollary 3.3) that the frame measures of
a coherent frame 7(A)g with g€B2 are independent of the choice of strong Fglner
sequence.
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3.2. Beurling density

For a discrete set ACG, its lower and upper Beurling density are defined by

_ .. #H(ANZK) . #(ANzK,)
D (A):=1 f 7 sp. DT(A):=1 sup —————=
(8= i it ECTER e D)= i g SRR

where (K,)nen is any strong Falner sequence. The definition of D™ and D™ are
independent of the choice of Fglner sequence, cf. [27, Proposition 5.14].

The following theorem relates the notions of frame measure and Beurling den-
sity. In particular, it shows that the frame measures only depend on the density of
the index set and the formal degree of the representation.

Theorem 3.2. Suppose 7(A\)g is a frame for H, with geB2. Then

dx

M*(gA):d—” and M+(gA):D*(A)'

D*(A)

Proof. Without loss of generality, it will be assumed throughout the proof that
llg %, —=d¥?, so that Vy:Hr—L*(G) is an isometry. Write gy=m()\)g for AEA.
Suppose (gx)xea is frame for H, with frame bounds A, B>0. Then the index set A
is relatively separated and relatively dense. Therefore, there exists ng€N such that
1<#(ANzK,,)<oo for all z€q.

Let >0 and z€G be arbitrary and let n€N be such that n>nq. In addition,
fix a symmetric compact unit neighborhood K CG such that

(3.1) / Vog)PP duc(y)<e® and > [Vug(W)[* <e?,
G/K AEANKe®
cf. Lemma 2.1 and Equation (2.4). For fixed ye@, it follows that

=)o, = { 3 (x0T 7 ) = S Voo IToTa o)

AEA AEA

Define H(y):=> ycp Vogr(y )W,ha(y) for y€G, and write H(y)= Zle H;(y), where

Hy(y)= > Vanrx)Veha(y), Ha()= > Vaga()Vaha(y),
AeAnz(K,\KSK) AeAnz(K, K)e

and

Hj(y)= > Vagr(y)Vyha(y) = > Vagr(y)Vyha(y).

AeAN(z K, K\z(K,\KSK)) AeANz K, KNz K¢ K
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The proof is split into four steps.

Step 1. This step provides estimates of T;: fo y)dug(y) for i=1,2,3.
Similar estimates for metric balls in settings with polynomlal growth can be found
n [16], [22] and [24].

FEstimate T7. Note that a direct calculation entails

T1:/ Hi(y) duc(y)—/ Hi(y) duc(y) = > (Vagn, Vgha) 2 —L,
@ G\eKn AeANz(Kn\KEK)

where L::fG\xKn Hl(y)dﬂG(y):ZAeAmm(Kn\K;K) fG\xKn Voga () Voha(y) dpc (y)-
For estimating L, note first that an application of Cauchy-Schwarz’ inequality gives

1/2
\ [ Vne)Tmw duc(y)‘ < ( / VggA(y)PduG(y)) Ioall.
G\zK, G\zK,

where it is used that ||Vyha|L2=|hxlln,. Since Aex(K,\KSK), it follows that
AK CxK,. Hence, a change-of-variable gives

/ IVgg(/\‘ly)\Qduc(y)S/ IVgg(A‘ly)IQduc(yF/ Vog (W) dpc (y).-
G\zK, G\\K G\K

Therefore, Equation (3.1) yields

1/2
(/ Voar(y)|? dﬂa(@/)) <e.
G/zK,

IL|<e > lhallze, <eA™Y2H#(ANZK,),
AeAnz (K, \KSK)

where it used that ||hy |3, <A/2 for all A€A.

Hence,

Estimate Ty. An application of Cauchy-Schwarz’ inequality gives

‘ " Hs(y) dMG(Z/)‘</$Kn ( > Vo (y ) <Z|V ha(y |2> dpc(y)-

AeAnz(K, K)e AeA

For yexzK,, and Aex(K,K)°, one has A\¢xK,, K and hence A¢yK. Therefore,

> )|vggA<y>2)%s( > |vggA<y>2)%=( 5 |vgg<y—u>|2)%.

AeANz (K, K)e AeANyKe© AeANyKe©
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By Equation (3.1), it holds that

1

(X mooe) <

AEANKe®

and hence

1

[ mancti|<e [ (3 1m0 P duol) <4 Hlal ol

AEA
=A™V (K )

by the frame property of (hx)xea-

Estimate T3. A direct calculation gives

/m RLOTEOENDS / Vo) 1Vyha ()] dsc (v)

AeANz K, KNz KEK

< > 1Vagall2[[Vghall L2

AeANz K, KNaKS K

SA_1/2B1/2#(Aﬂ(xKnKﬁfL'KfLK))7

where it is used that |gx|l2, <BY? and ||hy||2, <A™ for all A€A.

Step 2. Using the notation of Step 1, we have

> o= [ H@)due() T Tt L
AeANz (K, \KSK) Kn
This implies that

[ H et Xt

AeANz K,

y) dpc(y)— > (gx, ha) — > (gx, hx)

AEANZ(K, \ K¢S K) NeANZ K\ (2(Kn\ K2 K))

< |Ty|+ T3] +| L]+ > {ga, h)|
AeANz K, Nz K¢ K

<eATV2dYV2ug(K,)+ ATV 2BY 24 (AN (2 K, KNz KEK) )
(3.2)

+eATYV24(ANZK,) +# (AN (2K, Nz K K)),
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where the last step used the estimates of Ty, T35 and L (cf. Step 2) together with

[(gx, )| <1.

To further estimate the difference (3.2), we use a suitable upper bound for the
cardinality #(AN(zK, KNzKSK)). By a standard packing argument, there exists
C(K,A)>0 such that, for all compact sets UCG,

#(ANU) < Cua(UK),

see, e.g., [27, Lemma 2.4] or [11, Corollary 3.4]. Applying this to the sets U=
c K, KNxKSK yields that

#(AN (2K, KNzK.K)) < Cug((z K, KNz, K. K)K) = Cug (v K, K*Nz KSK?)
(3.3) =Cuc(K,K*NKSK?).
Setting C":=(1+A~Y2BY/2)C, it follows therefore from combining (3.2) and (3.3)
that

|/ HO e~ Y o)

AeANz K,
<eATV24V2 10 (K ) +e ATV 2 (ANZ K, ) +C pa (K, K2NKSK?).

with all constants independent of z and n.

Step 3. Recall that pg(K,)™' [ ;. H(y)duc(y)=dr. Therefore, the esti-
mates obtained in Step 2 imply that

1
dw—m Z (gx, ha)

AEANZ K,
1/2 #(Amen)_i_ /MG(KnKQOK;KQ)
/‘LG(KH) MG(Kn)

Multiplying both sides with pe(K,)/#(ANzK,) yields

#(AN2zK,)\ " 1
dﬂ( ;U'G(Kn) ) _#(AﬂxKn) Z <g/\7h)\>

AEANZ K,
#(ANzK,)\ '
pa(Kn) )
K, K2NKEK?) (#(ANzK,)\
ne(Kn) < G (Kn) ) '

<eATV24M2 4 A

SgA—l/Q_*_SA—l/Qd;/Q(

(3.4) +ortel
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By the strong Fglner property (2.2), it follows that

2 c 172
lim pe (K, K*NKEK ):0.
n—00 HG(Kn)
Therefore,
, #(ANzK,)\ " 1
3.5 1 de| —————| ————— ,ha)| =0,
@9 el (TR gt D o

AeANz K,

where it is used that D~ (A)>0 since A is relatively dense, see, e.g., [27, Lemma 3.8].

Step 4. Using (3.5), the conclusion Df’('A) =M™ (Ga) can be shown as follows.
For i€N, choose n; €N increasing and x; €G such that

1
M7T(Gp)=lim ————— I
(Ga) imoo #(ANT; Kn,) AeAﬁZofriKm< |

Then, by (3.5) and definition of the lower Beurling density,

#(ANz K, )\ ! d.
no(Kn,) > D)

Conversely, for €N choose n; €N increasing and x; €G such that

M*(Gy) = lim d,, <

_ . #(Amszn)
A= _
D=0 )

Then, by (3.5) and definition of M (G,),
de | .
=lim ———— Z (g, ha) S MT(Ga).

D*(A) i—00 #(Aﬂlenl) NEAMT K,

The identity Df—’('A) =M~ (Gp) is shown similarly. O

Theorem 3.2 provides an extension of [5, Theorem 3] for Gabor frames in
L?(R%) to general coherent frames. The partition technique used in the proof re-
sembles the proof method of [4, Theorem 5] (see also [21]), but the above proof
crucially avoids the use of a reference system forming a Riesz basis, which is un-
known to exist in the setting of the present paper. Instead, the proof compares
the given coherent frame to a continuous reproducing formula (2.4), much like the
density conditions [16], [22] and [24] for groups with polynomial growth.
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Corollary 3.3. The lower and upper frame measures M~ (Ga) and M™(Gy)
of a coherent frame mw(A)g wth g€ B2 are independent of the choice of strong Folner
sequence (Kp)nen-

Proof. By Theorem 3.2, it follows that M~ (Gx)=d,/D"(A). Since DT (A) is
independent of the choice of a strong Fglner sequence by [27, Proposition 5.14], the
claim for M ~(Gy) follows. The same argument shows the claim for M (G,). O

3.3. Density conditions
Two immediate consequences of Theorem 3.2 are the following:

Corollary 3.4. Let geB2. If m(A)g is a frame for H,, then D= (A)>d.. If
7(A)g is a Riesz basis for Hr, then DT (A)=d.

Proof. If 7(A)g is a frame for H, with canonical dual frame (hy)xea, then 0<
(m(N)g, ha) <1 for all A€ A, so that Theorem 3.2 yields 1>M*(Gpr)=d./D~(A). If
7m(A)g is a Riesz basis, then (hy)xea is bi-orthogonal to mw(A)g, so that (m(A)g, ha)=1
for all A€ A, and thus 1=M~(Gr)=d,/D*(A) by Theorem 3.2. O

Corollary 3.4 recovers the statement on frames in [11, Theorem 1.3] and [12,
Theorem 3.14] under a seemingly weaker condition on the generating vector g€
Hr. Instead of the assumption V,ge WL (L?), it is assumed in [11] and [12] that
V(M) SWE(L?).

Corollary 3.5. Suppose w(A)g is a frame for H, with g€B% and frame bounds
A, B>0. Then

(3.6) A<d D™ (N)gll3,, <dz DT (M)llgl,, < B.
In particular, if A=B, then D~ (A)=D%*(A).
Proof. If w(A)g is a frame for H, with canonical dual frame (hy)xca, then
(r(N)g. 1x) = ((Ng. 5, A7) < = I (Ngly, = ol AeA.
Hence, applying Theorem 3.2 yields dr/D~(A)=M"(Gx) <A™ g|l3, , and thus
A<d'D™(A)lgl, -

Using instead the lower bound (m(X)g, ha)>B~|g|l3,., it follows by similar argu-
ments that d;' D" (A)||g||3, <B, as required. O
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4. Overcompleteness of coherent frames

This section concerns rigidity theorems for coherent frames showing that infi-
nite sets can be removed yet leave a frame.

4.1. Infinite excess

The excess of a coherent frame w(A)g for H, is the supremum over the cardi-
nalities of all subsets I'CA such that (7(\)g)xea\r is complete in H.

Theorem 4.2 shows that overcomplete coherent frames 7(A)g with g€B2 have
infinite excess. For this, the following characterization will be used, cf. [3, Corollary
5.7].

Theorem 4.1. ([3]) Let (ga)aeca be a frame for a Hilbert space H with canon-
ical dual frame (hy)xea. Then the following are equivalent:

(i) There exists an infinite subset ' CA such that (gx)xea\r s a frame for H;

(ii) There exists a€(0,1) and an infinite subset Ao CA such that

sup (gx, ha) <a.

AEA,
Theorem 4.2. Suppose w(A)g is a frame for H, with g€B2 and D (A)>d,.
There exists an infinite set T CA such that (m(X)g)xea\r is a frame for Hy.

Proof. An application of Theorem 3.2 yields that M~ (Gr)=d./D*(A)<1,
where the inequality follows by assumption. Therefore, there exists e>0 and se-
quences (z;);en and (n;)ien in G resp. N such that

1 S (r(N)g ha) <1-2

#(ANziKn,) AEANT; Ky,

for all ieN. Since 0<(m(A)g, ha)<1, it follows that at least ¢/(1—¢)-#(ANx; K,,)
of the terms (m(X\)g, ha), where Ae ANz; K, satisfy (w(\)g, ha)<1—e. Therefore,
there exists an infinite set A’CA such that supyca/(m(X)g, ha)<1—e. Hence, the
conclusion follow by Theorem 4.1. [J

Theorem 4.2 can also be deduced from a combination of Theorem 3.2 and the
relation between excess and the ultrafilter frame measure function defined in [6];
see [6, Theorem 4.4].
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4.2. Positive density removal

This section provides two results on the removal of sets with positive density,
which is a stronger conclusion than the removal of merely infinite sets provided
by Theorem 4.2. The first result is the following necessary condition, which is an
adaption of [4, Proposition 2] to the setting of the present paper.

Proposition 4.3. Suppose that w(A)g is a frame for H, with geB2. If there
exists a subset ' CA with density D~ (I')>0 such that (m(X)g)xea\r is a frame for
Hr, then DT (A)>d,.

Proof. Let (hy)xea be the canonical dual frame of w(A)g. Suppose I'CA is as in
the statement and that (7(\)g)xea\r is a frame for H. Then also (S;}\/2W(A)g)>\€A\p

is a frame for ‘H, with lower frame bound, say, A>0. Since Sg_/l\/ 27r(A)g is a Par-
seval frame for H,, given v, the optimal lower frame bound A’7 >0 of the frame

(S;}\/2W(A)9)AEA\{7} is

A =118, Y *n(Mallde, =1~ (x(1)g. 5, 37 (1)a).
Therefore, it necessarily follows that A<A =1—(n(7y)g,h,) for all y€I', which
implies that TCA":={A€A:(n(N)g, ha)<1—A}. Thus, D~ (A")>0.
For showing that DT (A)>d,, it now suffices to show the upper bound

(4.1) D™ (N) < LD (A)(1—d,/D* ()

The inequality (4.1) is trivially satisfied whenever d,/D*(A)<1—A. Assume there-
fore that 1>d, /D" (A)>1—A. We have for any 2€G and compact K CG such that
ANz K is nonempty,

S L (fWe)

AEANZ K

Sm( 2 (@ Nghat D <w<A>gth>)

AEA MK AEA\A/ Nz K
< (1-A)-#N Nz K)+#(A\A'NzK)
- #(ANzK)
#(ANzK)—A-#(AN'NxK)
#(ANzK) ’

which yields that

#(N'N2K) _ 1 #(ANzK) (1_ 1 5

(4.2)

pe(K) — A pe(K) #(ANzK) <7T(/\)97hx>>.

AEANz K



Overcompleteness of coherent frames for unimodular amenable groups 293

Let €>0 be arbitrary. Choose a sequence of z;€G and increasing n; €N such that
ANz; K, is nonempty and

1 —
mAeAmmeni<w(/\)g’hA>_M Ga)| <e.

There exists j=j(¢)€N such that, for all i> 7,

_ #(N Nz Ky,
D (AN)—e< T2 12,
Combining this with the inequality (4.2) yields that
—e< l #(Aﬂ(EZKm)
for all >j. Therefore, by Theorem 3.2,

(4.3) D= (A) (1—M"(Ga)+e)

1 1
D= (A)—e< ZD+(A> (1-M~(Gp)+e) = ZD+(A)(1—d7T/D+(A)+5).
As >0 was chosen arbitrary, this shows (4.1) and finishes the proof. O

The last result shows that for a coherent frame m(A)g with geBL one can
always remove a set of positive density yet leave a frame. For this, the following
simple lemma will be used, cf. [4, Lemma 5].

Lemma 4.4. ([4]) Let (gx)xea be a frame for H with frame operator S:H—
H. For T'CA, define the truncated coefficient operator Cyr:H.—0*(T") by Cyr=
({*s9+))ver- Then (gx)aea\r s a frame for H if and only ifHCg,pS;}\C;FHB(@)<1.

Theorem 4.5. Suppose w(A)g is a frame for H, with g€BL and D~ (A)>d,.
Then there exists ' CA such that D™(I')>0 and (7(\)g)xea\r s a frame for H.

Proof. By re-scaling m(A)g if necessary, it may be assumed that w(A)g is a
frame with frame bounds 0<A<B<2. Since geBLCB2 (cf. Lemma 2.2) and
D~ (A)>d,, it follows by Theorem 3.2 that M*(Gp)=d./D~(A)<1. Fix ae(0,1)
such that M+ (Gp)<a<1.

Step 1. In this step, it will be shown that the set A, :={\eA:{(w(N)g, h\)<a}
has positive lower Beurling density. It follows from the definition of A, that for
x€G and compact K CG such that ANz K is non-empty,

1
#(ANzK) /\e%]:mK@T()\)g, ha)
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:m( > mNg )+ D <7T(A)g,hk>)

AEA Nz K AeAA Nz K

> e (L2, )

A€ANzK  AEA\AoNzK
#(ANzK)—#(AaNzK)
#(ANzK)

Hence,

#haaK) (1 1 W #(ANZK)
e z<1 e O <<A>g,hA>)MG(K) .

AeEANz K

Let >0 be arbitrary. Take a sequence of z; €G and increasing n; €N with ANx; K
nonempty such that

m > (m(Ng, ha)-MT(Gy)| <e

v )\EAﬁaciKni

Choose i sufficiently large such that

_ . #(AQZEZK,M)
b (A) °= MG(KM) .
Then we find that

IU’G(K’M) MG(KM)

> (1—a~ (M*(Gp)—€)) (D~ (A)—2),

As by assumption M (Gp)<a, D™ (A)>d, and £>0 may be chosen arbitrary cho-
sen arbitrarily small, this shows that D~ (A,)>0.

Step 2. This step provides a convenient expression for Cy, ASQ AC A toapply

Lemma 4.4. For this, recall that the frame operator S A is positive with 0<A<
Sg.a<B<2, so that ||[I—Sy Al pew,)<1. Therefore, S;}\ can be expanded as

A= (I=Sga) =Y (I-C; \Cynr).
7=0 j=0

Since Cg’A(I—C';ACg,A):(I—CQ,ACQ*’A)C’Q’A, it follows by induction that

Cg’A(I—Cg)ACg’A)jZ([—CQ’AC;)A)ng,A, jGN,
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and hence

[e.9]

Cy,ASg_,/l\C;,A =Cya Z([_C;,ACQ,A)jC;,A = Z(I_CQ,AC;,A)ng,AczA
j=0 j=0

with convergence in the operator norm. For N eNU{oo}, define M¥) e CA*A by

N
MW= "(I-CyAC; ) CynCy o
j=0
and write M(N)=DW) 4 R(N) where D®V) is the diagonal part of M(N). Note that,
in particular, we have that M(‘X’):C’g,AS{;}\C’;’A.

Step 3. This step will show the existence of a subset I'CA,, such that D~ (T")>
0 and ||Cg7FS;11\C;’FHB(52) <1. Tt follows then by Lemma 4.4 that (7(\)g)xea\r is &
frame for H,. Throughout this step, fix 0<e<(1—«)/3 and choose N >1 such that

(4.4) ||CQ7AS;}\C;7A_M(N) ||B(€2) = ”M(Oo) —M HB(ZQ) se

Since geBL by assumption, it follows that the matrix ({(m(A)g, T(X)g))r.rea
associated to the operator Cy AC'; A2 (A)—0%(A) satisfies

[(T(N)g, 7(X)g)| = @ATIN)=@((N)7X), AN €A,

for ®:=|V,g|€eW(G). The matrix M) being a sum of products involving
({gr, 9n))xxen and I, it follows therefore by [28, Proposition 4.6] that there exists
©cW(G) such that

M) <min{O((X)"1A), 0(A"I\)}, AN €A,
Choose a compact symmetric unit neighborhood U; CG such that

Rel(A) )—1
pa(Q)

where QCG is the fixed compact symmetric unit neighborhood. On the other
hand, since D~ (A,)>0, there also exists a compact symmetric unit neighborhood
Us CG such that G:U)\GAQ AUs. Set U:=UyU; and let 'CA,, be a maximal family
such that (YUi)yer consists of pairwise disjoint sets. For showing that D~ (I")>0,
it suffices to show that T' is relatively dense, see, e.g., [27, Lemma 3.8]. Arguing
by contradiction, assume that there exists x€G such that 'NzU=g. Since A,
is Us-dense, there exists A\g€A,NaUs. Note that Ag¢I'. Set I'g:=T'U{A\¢}. By

(4.5) |@~1Ufwse-(
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maximality of T', the family (yU1),er, is not pairwise disjoint, so that there exists
YoEMUINTo\{Ao}. Since v9€NU; and A\g€aUs, it follows that

Yo € TNaUU; =T NaU,

which contradicts that 'NzU=@. Thus, I' is U-dense, and D~ (I") >0.
It remains to show that ||Og,FS;}\O;,F||B(52) <1. For this, note first that

1Cyr Sy ACer e = 1PrCyaS; ACE AP e,

where Pr:0%(A)—¢?(A) is the projection operator given by (Prc),=c, for €I, and
0 otherwise. Using the notation from Step 2, this yields
1C.rS; ACorllBez) < [P R™N) Pr | g2y +[| Pe DY) Pr| g2y
+||PF(M(°°)—M(N))PFHB(W)
<||PrR™) Pr| g2y + |1 P D) Pr| g2
+||PF(D(OO)—D(N))PFHB(eZ)
+ || Po(M©) = MM Pr| g2,
By Equation (4.4), it follows that || Pr(D(®) — DOV)) Pp|| g(42) <e, which also implies

that ||PF(M(°°) —M(N))PFHB(W) <e. In addition, since M () ={gx, ha))anen, it
follows by definition of A, that

||PFD(°°)PFHB(22) < su;lz (gys hy) < v
yE

Lastly, consider the matrix (REY]XY),)%,Y/GF. For v,+'€l’ with v#~/, it follows that
(7v')~'v¢U; since the family (yU),er is pairwise disjoint by construction of T
Thus,

IR | <min{O((v)"19),0(y )}, v#7', v, €T

On the other hand, |R£f7\;)\:0 by definition. Therefore, setting ©":=0-1y; yields

R <min{€'((7)719),0'(r )}, 7y €
Applying [28, Proposition 4.6] therefore gives
Rel(T")

PrRM) P 0y < 10| <
| Pr FHB(@)_MG(Q)H [w <

Rel(A)
1e(Q)
where the last inequality follows by Equation (4.5). In conclusion, a combination

of the estimates above gives ||Cg,FS;11\C;7F”B(g2) <e+a+e+e<1, which completes
the proof. O

10 1ys|lw <e,
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Theorem 4.2 recovers [5, Theorem 6] in the case of Gabor systems. In contrast

to the proof of [5, Theorem 6] (see [4, Theorem 8]), the proof provided above
does not use techniques relying on spectral invariance, which are only available in
settings with polynomial growth [29]. The possibility of providing a proof without
these techniques was mentioned in [4, p. 133].
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