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Overcompleteness of coherent frames
for unimodular amenable groups

Martijn Caspers and Jordy Timo van Velthoven

Abstract. This paper concerns the overcompleteness of coherent frames for unimodular
amenable groups. It is shown that for coherent frames associated with a localized vector a set
of positive Beurling density can be removed yet still leave a frame. The obtained results extend
various theorems of [J. Fourier Anal. Appl., 12(3):307-344, 2006] to frames with non-Abelian index
sets.

1. Introduction

The aim of this paper is to provide quantitative results on the overcompleteness
of a frame in the orbit of a square-integrable representation (π,Hπ) of an amenable
unimodular group G, i.e., a family of the form

π(Λ)g=(π(λ)g)λ∈Λ(1.1)

for a vector g∈Hπ and a discrete Λ⊆G satisfying the frame inequalities

A‖f‖2
Hπ

≤
∑
λ∈Λ

|〈f, π(λ)g〉|2 ≤B‖f‖2
Hπ

for all f ∈Hπ,

for some constants 0<A≤B<∞. Clearly, any such system is complete in Hπ, i.e.,
its span is dense in Hπ. A frame is called exact (or a Riesz basis) if it ceases to be
a frame after the removal of an arbitrary element and is called overcomplete, other-
wise. The removal of a vector from a frame leaves either a frame or an incomplete
system, see, e.g., [9].
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For G=R
2d and π being the projective Schrödinger representation on L2(Rd),

the overcompleteness of coherent frames π(Λ)g (so-called Gabor frames) is well-
understood through the quantitative framework [4] and [5]. Among others, the
theory [4] and [5] provides density conditions for frames and Riesz bases and criteria
under which infinite sets can be removed yet still leave a frame. For possibly non-
Abelian groups G, density conditions for frames of the form (1.1) have been obtained
more recently in, e.g., [11], [12], [16], [19] and [22]. These density conditions (see also
Corollary 3.4) assert that if π(Λ)g is a frame for Hπ with an L2-localized vector
g∈B2

π (cf. Section 2.4), then the associated lower Beurling density D−(Λ) of Λ
satisfies

D−(Λ) := lim
n→∞

inf
x∈G

#(Λ∩xKn)
μG(Kn) ≥ dπ,(1.2)

where (Kn)n∈N is any strong Følner sequence and dπ>0 the formal degree of π; see
Section 2. In addition, necessarily D−(Λ)=dπ whenever π(Λ)g is an exact frame.
For (classes of) nilpotent groups G, it is also known that for a frame π(Λ)g with an
L1-localized vector g∈B1

π, the inequality (1.2) must be strict (cf. [1], [19] and [18]),
so that π(Λ)g is necessarily overcomplete.

The main result of the present paper provides a criterion for a coherent frame
under which a set of positive density can be removed yet leave a frame.

Theorem 1.1. Let G be a second-countable unimodular amenable group with

an integrable irreducible projective representation (π,Hπ) of formal degree dπ>0.
Let Λ⊆G be discrete.

Suppose π(Λ)g is a frame for Hπ with g∈B1
π and D−(Λ)>dπ. Then there exists

Γ⊆Λ with D−(Γ)>0 such that (π(λ)g)λ∈Λ\Γ is a frame for Hπ.

In addition to Theorem 1.1, the present paper also provides a necessary condi-
tion for positive density removal (see Proposition 4.3). Both results extend corre-
sponding theorems of [4] and [5] to frames arising from possibly non-Abelian groups.
Theorem 1.1 applies, in particular, to smooth vectors of square-integrable represen-
tations of nilpotent Lie groups (cf. Example 2.3), but also to unimodular groups
with possibly exponential growth. Necessary density conditions for frames arising
from nonunimodular groups (e.g., the affine or ax+b group) form currently an open
problem.

The possibility of removing sets from an adequate frame yet still leaving a
frame can also be deduced from the main results on abstract frames in [14]; see,
e.g., [14, Corollary 1.5]. These results do, however, not provide information on the
quantity that can be removed, which is the key contribution of Theorem 1.1.

Our proof of Theorem 1.1 follows the overall proof structure of the correspond-
ing result for Gabor frames in L2(Rd) (cf. [4] and [5]). The key ingredients are an
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identity relating frame measure and Beurling density (Theorem 3.2) and a suitable
truncation of a Gram matrix (see Lemma 4.4). Despite these similarities, there are
several important steps that require new methods and techniques in the case of
non-Abelian groups. For example, in the setting of general amenable groups, the
existence of an adequate “reference system” forming a Riesz basis is unknown(1)
and techniques based on the spectral invariance of matrix algebras are not available
in settings with exponential growth; see [13] and [30] for examples of settings in
which spectral invariance fails. The alternative arguments provided by the present
paper to circumvent these obstructions are considered as the main technical con-
tribution and appear to yield more direct proofs even in the case of Abelian index
sets.

Lastly, it should be mentioned that for a Gabor frame π(Λ)g for L2(Rd), in
addition to Theorem 1.1, it is possible to choose Γ⊆Λ such that the density of Λ\Γ
is arbitrary close to dπ=1, see [2]. A similar statement for non-Abelian groups
remains an open problem.

The paper is organized as follows. Section 2 provides preliminaries on Følner
sequences, integrable representations and frames. In Section 3 the notion of a frame
measure is introduced and related to formal degree and Beurling density. The main
results on overcomplete coherent frames are proven in Section 4.

2. Notation and preliminary results

Let G be a second-countable unimodular locally compact group with Haar
measure μG. Throughout, we fix a compact symmetric unit neighborhood Q⊆G.

2.1. Følner sequences

A (right) Følner sequence is a sequence (Kn)n∈N of nonnull compact sets Kn⊆G

satisfying, for all compact sets K⊆G,

lim
n→∞

μG(KnKΔKn)
μG(Kn) = 0.

The locally compact group G is called amenable if it admits a Følner sequence. For
an amenable group G, a Følner sequence can be chosen to satisfy the additional
properties

Kn ⊆Kn+1 and G=
⋃
n∈N

Kn,(2.1)

(1) See [20], [25] and [26] for constructions of orthonormal bases in the orbit of (classes of)
nilpotent Lie groups.
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see, e.g., [10, Theorem 3.2.1].
A (right) strong Følner sequence is a Følner sequence (Kn)n∈N satisfying the

stronger condition

lim
n→∞

μG(KnK∩Kc
nK)

μG(Kn) = 0(2.2)

for all compact sets K⊆G. If (Kn)n∈N is a Følner sequence and U⊆G is a compact
symmetric unit neighborhood, then (KnU)n∈N is a strong Følner sequence (cf. [27,
Proposition 5.10]). Clearly, also strong Følner sequences exist with the additional
properties (2.1).

2.2. Discrete sets

A set Λ⊆G is called relatively separated if, for some (all) compact unit neigh-
borhoods U⊆G,

sup
x∈G

#(Λ∩xU)<∞.

For a relatively separated Λ, its relative separation (relative to the fixed neighbor-
hood Q) is defined to be Rel(Λ):=supx∈G #(Λ∩xQ)<∞. Given a compact unit
neighborhood U , a set Λ⊆G is called U -dense if G=

⋃
λ∈Λ λU . Equivalently, Λ is

U -dense if #(Λ∩xU)≥1 for all x∈G. A set is relatively dense if it is U -dense for
some compact unit neighborhood U .

2.3. Local maximal functions

For F∈L∞
loc(G), its (left-sided) local maximal function MLF :G→[0,∞) is de-

fined by

MLF (x)= ess sup
z∈Q

|F (xz)|, x∈G.

The associated (left-sided) Wiener amalgam space WL(Lp), with p∈[1, 2], is defined
by

WL(Lp) :=
{
F ∈L∞

loc(G) :MLF ∈Lp(G)
}
.

Each space WL(Lp), p∈[1, 2], satisfies WL(Lp)↪→Lp, and additionally WL(Lp)↪→L∞.
The following restriction property will be essential in the sequel, see, e.g., [17,

Lemma 1].
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Lemma 2.1. Let Λ⊆G be relatively separated and let F∈WL(L2) be contin-

uous. For any compact set K⊆G,

∑
λ∈Λ∩Kc

|F (λ)|2 ≤ Rel(Λ)
μG(Q)

∫
KcQ

|MLF (x)|2 dμG(x).

In particular, for every ε>0, there exists compact K⊆G such that∑
λ∈Λ∩Kc

|F (λ)|2 ≤ ε.

In a similar fashion as above, the right-sided local maximal function MRL of
F∈L∞

loc(G) is defined by MRF (x)=ess supz∈Q |F (zx)|. The associated (two-sided)
Wiener amalgam space W (L1) is defined as

W (L1) :=
{
F ∈L∞

loc(G) :MLMRF ∈L1(G)
}

and equipped with the norm ‖F‖W :=‖MLMRF‖L1 .
The local maximal functions satisfy

ML(F1∗F2)≤ |F1|∗MLF2 and MR(F1∗F2)≤MRF1∗|F2|,(2.3)

provided the convolution product F1∗F2 is (almost everywhere) well-defined. In
particular, the inequalities (2.3) imply that (WL(L1))∨∗WL(L1)↪→W (L1), where
the involution ∨ is defined as F∨(x)=F (x−1) for x∈G.

2.4. Integrable representations

A projective unitary representation (π,Hπ) on a Hilbert space Hπ is a strongly
measurable map π :G→U(Hπ) satisfying

π(xy)=σ(x, y)π(x)π(y), x, y ∈G,

for a function σ :G×G→T. For a vector g∈Hπ, the associated coefficient transform
Vg :Hπ→L∞(G) is defined through the matrix coefficients

Vgf(x)= 〈f, π(x)g〉, x∈G.

The absolute value |Vgf |:G→[0,∞) is continuous for all f, g∈Hπ; see [31, Theorem
7.5].

A projective representation (π,Hπ) is said to be irreducible if {0} and Hπ are
the only closed subspaces of Hπ invariant under all operators π(x) for x∈G.
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An irreducible projective representation (π,Hπ) is called square-integrable or
a discrete series representation of G if there exists g∈Hπ\{0} such that∫

G

|Vgg(x)|2 dμG(x)=
∫
G

|〈g, π(x)g〉|2 dμG(x)<∞.

The significance of a discrete series representation (π,Hπ) of G is that there exists
dπ>0, called the formal degree of π, such that∫

G

〈f1, π(x)g1〉〈π(x)g2, f2〉 dμG(x)= d−1
π 〈f1, f2〉〈g1, g2〉(2.4)

for all f1, f2, g1, g2∈Hπ. For a square-integrable representation π, we define the
subspace

B2
π :=

{
g ∈Hπ :Vgg ∈WL(L2)

}
.

Then B2
π is nonzero and norm dense in Hπ, see, e.g., [15] and [17].

In addition to square-integrability, a vector g∈Hπ\{0} satisfying∫
G

|Vgg(x)| dμG(x)<∞

is called an integrable vector. An integrable representation is an irreducible repre-
sentation admitting an integrable vector. For an integrable representation π, we
also consider the subspace

B1
π :=

{
g ∈Hπ :Vgg ∈WL(L1)

}
.

If g∈Hπ is an integrable vector and h∈Cc(G)\{0}, then the associated Gårding
vector π(h)g :=

∫
G
h(x)π(x)gdμG(x) defines an element of B1

π. Therefore, the space
B1
π is nonzero and norm dense in Hπ.

The following simple lemma will be used below.

Lemma 2.2. Let (π,Hπ) be an irreducible integrable representation of G.

Then B1
π⊆B2

π and B1
π={g∈Hπ :Vgg∈W (L1)}.

Proof. Let g∈B1
π be nonzero. The orthogonality relations (2.4) yield

Vgg(x)= dπ‖g‖−2
Hπ

∫
G

〈g, π(y)g〉〈π(y)g, π(x)g〉 dμG(y), x∈G.

Set C :=dπ‖g‖−2
Hπ

. Then |Vgg|(x)≤C(|Vgg|∗|Vgg|)(x) for all x∈G. By Equation (2.3),
it follows therefore that MLVgg≤C(|Vgg|∗MLVgg), and thus L2(G)∗L1(G)↪→L2(G)
implies that

‖MLVgg‖L2 ≤C‖Vgg‖L2‖MLVgg‖L1 .

Similarly, it follows that MLMRVgg≤C(MRVgg∗MLVgg). Since |Vgg|∨=|Vgg|, and
hence MRVgg=(MLVgg)∨, this implies ‖Vgg‖W ≤C‖MLVgg‖L1‖MLVgg‖L1 . �
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Lastly, we mention a class of groups and projective representations for which
B1
π is nonzero.

Example 2.3. Let N be a connected, simply connected nilpotent Lie group and
let (π,Hπ) be an irreducible unitary representation of N . Denote by H∞

π the (dense)
subspace of smooth vectors of π, i.e., the space of all vectors g∈Hπ such that the
orbit map x �→π(x)g is smooth.

Suppose that π is square-integrable modulo the center Z of N , meaning that
there exists nonzero g∈Hπ such that∫

N/Z

|〈g, π(x)g〉|2 dμN/Z(x)<∞.

Then, given a smooth cross-section s:N/Z→N , the mapping π′ :=ρ¨s forms a (pro-
jective) discrete series representation of G:=N/Z. Moreover, for any smooth vector
g∈H∞

π , the function Vgg=〈g, π′(·)g〉 is a Schwartz function on G (see [8, Theo-
rem 4.5.11]), and hence g∈B1

π. See, e.g., [7, Section 6.2] for further details and
properties.

The interested reader is referred to [23] for a list of low-dimensional nilpotent
Lie groups and explicit realizations of their irreducible representations in L2(Rd)
for some suitable d∈N.

2.5. Coherent frames

Let (π,Hπ) be a square-integrable projective representation of G. For a nonzero
vector g∈Hπ and a discrete set Λ⊆G, a family π(Λ)g=

(
π(λ)g)λ∈Λ is called a co-

herent system in Hπ. A coherent system π(Λ)g is called a frame for Hπ if there
exist A,B>0, called frame bounds, such that

A‖f‖2
Hπ

≤
∑
λ∈Λ

|〈f, π(λ)g〉|2 ≤B‖f‖2
Hπ

, f ∈Hπ.

Equivalently, the system π(Λ)g is a frame if the frame operator

Sg,Λ :Hπ −→Hπ, f �−→
∑
λ∈Λ

〈f, π(λ)g〉π(λ)g

is bounded and invertible. If π(Λ)g is a frame for Hπ with frame bounds A and
B, then the system (hλ)λ∈Λ given by hλ :=S−1

g,Λπ(λ)g is a frame for Hπ with frame
bounds B−1 and A−1, called the canonical dual frame of π(Λ)g. The systems π(Λ)g
and (hλ)λ∈Λ satisfy 0<〈π(λ)g, hλ〉≤1 for all λ∈Λ. A frame for which the frame
bounds can be chosen to be A=B=1 is called a Parseval frame.

The following well-known covering properties of the index set of a coherent
frame will be used below, see, e.g., [11], [16] and [18] for proofs.
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Lemma 2.4. If π(Λ)g is a frame for Hπ with g∈B2
π, then Λ is relatively

separated and relatively dense.

For a frame π(Λ)g for Hπ, the associated coefficient operator Cg,Λ :Hπ→�2(Λ)
is defined by f �→(〈f, π(λ)g〉)λ∈Λ. Its adjoint Dg,Λ :=C∗

g,Λ is the reconstruction op-
erator, given by Dg,Λc=

∑
λ∈Λ cλπ(λ)g for c∈�2(Λ). The Gramian operator is the

composition Cg,ΛDg,Λ on �2(Λ), which will be identified with the matrix
(〈π(λ)g, π(λ′)g〉)λ,λ′∈Λ.

3. Frame measure and Beurling density

Henceforth, let (π,Hπ) be a discrete series representation of G of formal di-
mension dπ>0.

3.1. Frame measure

In this section we define a notion of frame measure for a given coherent frame.
This notion is a special case of the so-called ultrafilter frame measure function for
abstract frames as considered in [6].

Definition 3.1. Let (Kn)n∈N be a strong Følner sequence in G satisfying the
cover property (2.1). Let π(Λ)g be a coherent frame for Hπ with canonical dual
frame (hλ)λ∈Λ.

The lower and upper frame measure of π(Λ)g are defined by

M−(GΛ) := lim
n→∞

inf
x∈G

1
#(Λ∩xKn)

∑
λ∈Λ∩xKn

〈π(λ)g, hλ〉

and

M+(GΛ) := lim
n→∞

sup
x∈G

1
#(Λ∩xKn)

∑
λ∈Λ∩xKn

〈π(λ)g, hλ〉,

respectively.

It will follow from Theorem 3.2 (cf. Corollary 3.3) that the frame measures of
a coherent frame π(Λ)g with g∈B2

π are independent of the choice of strong Følner
sequence.
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3.2. Beurling density

For a discrete set Λ⊆G, its lower and upper Beurling density are defined by

D−(Λ) := lim
n→∞

inf
x∈G

#(Λ∩xKn)
μG(Kn) resp. D+(Λ) := lim

n→∞
sup
x∈G

#(Λ∩xKn)
μG(Kn) ,

where (Kn)n∈N is any strong Følner sequence. The definition of D− and D+ are
independent of the choice of Følner sequence, cf. [27, Proposition 5.14].

The following theorem relates the notions of frame measure and Beurling den-
sity. In particular, it shows that the frame measures only depend on the density of
the index set and the formal degree of the representation.

Theorem 3.2. Suppose π(Λ)g is a frame for Hπ with g∈B2
π. Then

M−(GΛ)= dπ
D+(Λ) and M+(GΛ)= dπ

D−(Λ) .

Proof. Without loss of generality, it will be assumed throughout the proof that
‖g‖Hπ =d

1/2
π , so that Vg :Hπ→L2(G) is an isometry. Write gλ=π(λ)g for λ∈Λ.

Suppose (gλ)λ∈Λ is frame for Hπ with frame bounds A,B>0. Then the index set Λ
is relatively separated and relatively dense. Therefore, there exists n0∈N such that
1≤#(Λ∩xKn0)<∞ for all x∈G.

Let ε>0 and x∈G be arbitrary and let n∈N be such that n≥n0. In addition,
fix a symmetric compact unit neighborhood K⊆G such that∫

G/K

|Vgg(y)|2 dμG(y)≤ ε2 and
∑

λ∈Λ∩Kc

|Vgg(λ)|2 ≤ ε2,(3.1)

cf. Lemma 2.1 and Equation (2.4). For fixed y∈G, it follows that

dπ = ‖π(y)g‖2
Hπ

=
〈∑

λ∈Λ

〈π(y)g, hλ〉gλ, π(y)g
〉

=
∑
λ∈Λ

Vggλ(y)Vghλ(y).

Define H(y):=
∑

λ∈Λ Vggλ(y)Vghλ(y) for y∈G, and write H(y)=
∑3

i=1 Hi(y), where

H1(y)=
∑

λ∈Λ∩x(Kn\Kc
nK)

Vggλ(y)Vghλ(y), H2(y)=
∑

λ∈Λ∩x(KnK)c
Vggλ(y)Vghλ(y),

and

H3(y)=
∑

λ∈Λ∩(xKnK\x(Kn\Kc
nK))

Vggλ(y)Vghλ(y) =
∑

λ∈Λ∩xKnK∩xKc
nK

Vggλ(y)Vghλ(y).
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The proof is split into four steps.

Step 1. This step provides estimates of Ti :=
∫
xKn

Hi(y)dμG(y) for i=1, 2, 3.
Similar estimates for metric balls in settings with polynomial growth can be found
in [16], [22] and [24].

Estimate T1. Note that a direct calculation entails

T1 =
∫
G

H1(y) dμG(y)−
∫
G\xKn

H1(y) dμG(y)=
∑

λ∈Λ∩x(Kn\Kc
nK)

〈
Vggλ, Vghλ〉L2−L,

where L:=
∫
G\xKn

H1(y)dμG(y)=
∑

λ∈Λ∩x(Kn\Kc
nK)

∫
G\xKn

Vggλ(y)Vghλ(y)dμG(y).
For estimating L, note first that an application of Cauchy-Schwarz’ inequality gives∣∣∣∣

∫
G\xKn

Vggλ(y)Vghλ(y) dμG(y)
∣∣∣∣≤

(∫
G\xKn

|Vggλ(y)|2 dμG(y)
)1/2

‖hλ‖Hπ ,

where it is used that ‖Vghλ‖L2 =‖hλ‖Hπ . Since λ∈x(Kn\Kc
nK), it follows that

λK⊆xKn. Hence, a change-of-variable gives∫
G\xKn

|Vgg(λ−1y)|2 dμG(y)≤
∫
G\λK

|Vgg(λ−1y)|2 dμG(y)=
∫
G\K

|Vgg(y)|2 dμG(y).

Therefore, Equation (3.1) yields(∫
G/xKn

|Vggλ(y)|2 dμG(y)
)1/2

≤ ε.

Hence,
|L| ≤ ε

∑
λ∈Λ∩x(Kn\Kc

nK)

‖hλ‖Hπ ≤ εA−1/2#(Λ∩xKn),

where it used that ‖hλ‖Hπ≤A−1/2 for all λ∈Λ.

Estimate T2. An application of Cauchy-Schwarz’ inequality gives∣∣∣∣
∫
xKn

H2(y) dμG(y)
∣∣∣∣≤

∫
xKn

( ∑
λ∈Λ∩x(KnK)c

|Vggλ(y)|2
)1

2
(∑

λ∈Λ

|Vghλ(y)|2
)1

2

dμG(y).

For y∈xKn and λ∈x(KnK)c, one has λ /∈xKnK and hence λ /∈yK. Therefore,
( ∑

λ∈Λ∩x(KnK)c
|Vggλ(y)|2

)1
2

≤
( ∑

λ∈Λ∩yKc

|Vggλ(y)|2
)1

2

=
( ∑

λ∈Λ∩yKc

|Vgg(y−1λ)|2
)1

2

.
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By Equation (3.1), it holds that
( ∑

λ∈Λ∩Kc

|Vgg(λ)|2
)1

2

≤ ε,

and hence∣∣∣∣
∫
xKn

H2(y) dμG(y)
∣∣∣∣≤ ε

∫
xKn

(∑
λ∈Λ

|〈π(y)g, hλ〉|2
)1

2

dμG(y)≤ εA−1/2‖g‖HπμG(xKn)

= εA−1/2d1/2
π μG(Kn)

by the frame property of (hλ)λ∈Λ.

Estimate T3. A direct calculation gives∫
xKn

|H3(y)| dμG(y)≤
∑

λ∈Λ∩xKnK∩xKc
nK

∫
G

|Vggλ(y)||Vghλ(y)| dμG(y)

≤
∑

λ∈Λ∩xKnK∩xKc
nK

‖Vggλ‖L2‖Vghλ‖L2

≤A−1/2B1/2#
(
Λ∩(xKnK∩xKc

nK)
)
,

where it is used that ‖gλ‖Hπ≤B1/2 and ‖hλ‖Hπ≤A−1/2 for all λ∈Λ.

Step 2. Using the notation of Step 1, we have
∑

λ∈Λ∩x(Kn\Kc
nK)

〈gλ, hλ〉=
∫
xKn

H(y) dμG(y)−T2−T3+L.

This implies that∣∣∣∣
∫
xKn

H(y) dμG(y)−
∑

λ∈Λ∩xKn

〈gλ, hλ〉
∣∣∣∣

=
∣∣∣∣
∫
xKn

H(y) dμG(y)−
∑

λ∈Λ∩x(Kn\Kc
nK)

〈gλ, hλ〉−
∑

λ∈Λ∩xKn\(x(Kn\Kc
nK))

〈gλ, hλ〉
∣∣∣∣

≤ |T2|+|T3|+|L|+
∑

λ∈Λ∩xKn∩xKc
nK

|〈gλ, hλ〉|

≤ εA−1/2d1/2
π μG(Kn)+A−1/2B1/2#

(
Λ∩(xKnK∩xKc

nK)
)

+εA−1/2#(Λ∩xKn)+#(Λ∩(xKn∩xKc
nK)),

(3.2)
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where the last step used the estimates of T2, T3 and L (cf. Step 2) together with
|〈gλ, hλ〉|≤1.

To further estimate the difference (3.2), we use a suitable upper bound for the
cardinality #(Λ∩(xKnK∩xKc

nK)). By a standard packing argument, there exists
C(K,Λ)>0 such that, for all compact sets U⊆G,

#(Λ∩U)≤CμG(UK),

see, e.g., [27, Lemma 2.4] or [11, Corollary 3.4]. Applying this to the sets U=
xKnK∩xKc

nK yields that

#(Λ∩(xKnK∩xKc
nK))≤CμG((xKnK∩xnK

c
nK)K)=CμG(xKnK

2∩xKc
nK

2)
=CμG(KnK

2∩Kc
nK

2).(3.3)

Setting C ′ :=(1+A−1/2B1/2)C, it follows therefore from combining (3.2) and (3.3)
that ∣∣∣∣

∫
xKn

H(y) dμG(y)−
∑

λ∈Λ∩xKn

〈gλ, hλ〉
∣∣∣∣

≤ εA−1/2d1/2
π μG(Kn)+εA−1/2#(Λ∩xKn)+C ′μG(KnK

2∩Kc
nK

2).

with all constants independent of x and n.

Step 3. Recall that μG(Kn)−1 ∫
xKn

H(y)dμG(y)=dπ. Therefore, the esti-
mates obtained in Step 2 imply that∣∣∣∣dπ− 1

μG(Kn)
∑

λ∈Λ∩xKn

〈gλ, hλ〉
∣∣∣∣

≤ εA−1/2d1/2
π +εA−1/2 #(Λ∩xKn)

μG(Kn) +C ′μG(KnK
2∩Kc

nK
2)

μG(Kn) .

Multiplying both sides with μG(Kn)/#(Λ∩xKn) yields
∣∣∣∣dπ

(
#(Λ∩xKn)
μG(Kn)

)−1
− 1

#(Λ∩xKn)
∑

λ∈Λ∩xKn

〈gλ, hλ〉
∣∣∣∣

≤ εA−1/2+εA−1/2d1/2
π

(
#(Λ∩xKn)
μG(Kn)

)−1

+C ′μG(KnK
2∩Kc

nK
2)

μG(Kn)

(
#(Λ∩xKn)
μG(Kn)

)−1
.(3.4)
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By the strong Følner property (2.2), it follows that

lim
n→∞

μG(KnK
2∩Kc

nK
2)

μG(Kn) = 0.

Therefore,

(3.5) lim
n→∞

sup
x∈G

∣∣∣∣dπ
(

#(Λ∩xKn)
μG(Kn)

)−1

− 1
#(Λ∩xKn)

∑
λ∈Λ∩xKn

〈gλ, hλ〉
∣∣∣∣=0,

where it is used that D−(Λ)>0 since Λ is relatively dense, see, e.g., [27, Lemma 3.8].

Step 4. Using (3.5), the conclusion dπ

D−(Λ) =M+(GΛ) can be shown as follows.
For i∈N, choose ni∈N increasing and xi∈G such that

M+(GΛ)= lim
i→∞

1
#(Λ∩xiKni)

∑
λ∈Λ∩xiKni

〈gλ, hλ〉.

Then, by (3.5) and definition of the lower Beurling density,

M+(GΛ)= lim
i→∞

dπ

(
#(Λ∩xiKni)
μG(Kni)

)−1

≤ dπ
D−(Λ) .

Conversely, for i∈N choose ni∈N increasing and xi∈G such that

D−(Λ)= lim
i→∞

#(Λ∩xiKni)
μG(Kni)

.

Then, by (3.5) and definition of M+(GΛ),

dπ
D−(Λ) = lim

i→∞

1
#(Λ∩xiKni)

∑
λ∈Λ∩xiKni

〈gλ, hλ〉≤M+(GΛ).

The identity dπ

D+(Λ) =M−(GΛ) is shown similarly. �

Theorem 3.2 provides an extension of [5, Theorem 3] for Gabor frames in
L2(Rd) to general coherent frames. The partition technique used in the proof re-
sembles the proof method of [4, Theorem 5] (see also [21]), but the above proof
crucially avoids the use of a reference system forming a Riesz basis, which is un-
known to exist in the setting of the present paper. Instead, the proof compares
the given coherent frame to a continuous reproducing formula (2.4), much like the
density conditions [16], [22] and [24] for groups with polynomial growth.
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Corollary 3.3. The lower and upper frame measures M−(GΛ) and M+(GΛ)
of a coherent frame π(Λ)g wth g∈B2

π are independent of the choice of strong Følner

sequence (Kn)n∈N.

Proof. By Theorem 3.2, it follows that M−(GΛ)=dπ/D
+(Λ). Since D+(Λ) is

independent of the choice of a strong Følner sequence by [27, Proposition 5.14], the
claim for M−(GΛ) follows. The same argument shows the claim for M+(GΛ). �

3.3. Density conditions

Two immediate consequences of Theorem 3.2 are the following:

Corollary 3.4. Let g∈B2
π. If π(Λ)g is a frame for Hπ, then D−(Λ)≥dπ. If

π(Λ)g is a Riesz basis for Hπ, then D+(Λ)=dπ.

Proof. If π(Λ)g is a frame for Hπ with canonical dual frame (hλ)λ∈Λ, then 0≤
〈π(λ)g, hλ〉≤1 for all λ∈Λ, so that Theorem 3.2 yields 1≥M+(GΛ)=dπ/D

−(Λ). If
π(Λ)g is a Riesz basis, then (hλ)λ∈Λ is bi-orthogonal to π(Λ)g, so that 〈π(λ)g, hλ〉=1
for all λ∈Λ, and thus 1=M−(GΛ)=dπ/D

+(Λ) by Theorem 3.2. �

Corollary 3.4 recovers the statement on frames in [11, Theorem 1.3] and [12,
Theorem 3.14] under a seemingly weaker condition on the generating vector g∈
Hπ. Instead of the assumption Vgg∈WL(L2), it is assumed in [11] and [12] that
Vg(Hπ)⊆WL(L2).

Corollary 3.5. Suppose π(Λ)g is a frame for Hπ with g∈B2
π and frame bounds

A,B>0. Then

A≤ d−1
π D−(Λ)‖g‖2

Hπ
≤ d−1

π D+(Λ)‖g‖2
Hπ

≤B.(3.6)

In particular, if A=B, then D−(Λ)=D+(Λ).

Proof. If π(Λ)g is a frame for Hπ with canonical dual frame (hλ)λ∈Λ, then

〈π(λ)g, hλ〉= 〈π(λ)g, S−1
g,Λπ(λ)g〉≤ 1

A
‖π(λ)g‖2

Hπ
= 1

A
‖g‖2

Hπ
, λ∈Λ.

Hence, applying Theorem 3.2 yields dπ/D
−(Λ)=M+(GΛ)≤A−1‖g‖2

Hπ
, and thus

A≤ d−1
π D−(Λ)‖g‖2

Hπ
.

Using instead the lower bound 〈π(λ)g, hλ〉≥B−1‖g‖2
Hπ

, it follows by similar argu-
ments that d−1

π D+(Λ)‖g‖2
Hπ

≤B, as required. �
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4. Overcompleteness of coherent frames

This section concerns rigidity theorems for coherent frames showing that infi-
nite sets can be removed yet leave a frame.

4.1. Infinite excess

The excess of a coherent frame π(Λ)g for Hπ is the supremum over the cardi-
nalities of all subsets Γ⊆Λ such that (π(λ)g)λ∈Λ\Γ is complete in Hπ.

Theorem 4.2 shows that overcomplete coherent frames π(Λ)g with g∈B2
π have

infinite excess. For this, the following characterization will be used, cf. [3, Corollary
5.7].

Theorem 4.1. ([3]) Let (gλ)λ∈Λ be a frame for a Hilbert space H with canon-

ical dual frame (hλ)λ∈Λ. Then the following are equivalent:

(i) There exists an infinite subset Γ⊆Λ such that (gλ)λ∈Λ\Γ is a frame for H;

(ii) There exists α∈(0, 1) and an infinite subset Λα⊆Λ such that

sup
λ∈Λα

〈gλ, hλ〉≤α.

Theorem 4.2. Suppose π(Λ)g is a frame for Hπ with g∈B2
π and D+(Λ)>dπ.

There exists an infinite set Γ⊆Λ such that (π(λ)g)λ∈Λ\Γ is a frame for Hπ.

Proof. An application of Theorem 3.2 yields that M−(GΛ)=dπ/D
+(Λ)<1,

where the inequality follows by assumption. Therefore, there exists ε>0 and se-
quences (xi)i∈N and (ni)i∈N in G resp. N such that

1
#(Λ∩xiKni)

∑
λ∈Λ∩xiKni

〈π(λ)g, hλ〉< 1−2ε

for all i∈N. Since 0<〈π(λ)g, hλ〉≤1, it follows that at least ε/(1−ε)·#(Λ∩xiKni)
of the terms 〈π(λ)g, hλ〉, where λ∈Λ∩xiKni , satisfy 〈π(λ)g, hλ〉≤1−ε. Therefore,
there exists an infinite set Λ′⊆Λ such that supλ∈Λ′〈π(λ)g, hλ〉≤1−ε. Hence, the
conclusion follow by Theorem 4.1. �

Theorem 4.2 can also be deduced from a combination of Theorem 3.2 and the
relation between excess and the ultrafilter frame measure function defined in [6];
see [6, Theorem 4.4].



292 Martijn Caspers and Jordy Timo van Velthoven

4.2. Positive density removal

This section provides two results on the removal of sets with positive density,
which is a stronger conclusion than the removal of merely infinite sets provided
by Theorem 4.2. The first result is the following necessary condition, which is an
adaption of [4, Proposition 2] to the setting of the present paper.

Proposition 4.3. Suppose that π(Λ)g is a frame for Hπ with g∈B2
π. If there

exists a subset Γ⊆Λ with density D−(Γ)>0 such that (π(λ)g)λ∈Λ\Γ is a frame for

Hπ, then D+(Λ)>dπ.

Proof. Let (hλ)λ∈Λ be the canonical dual frame of π(Λ)g. Suppose Γ⊆Λ is as in
the statement and that (π(λ)g)λ∈Λ\Γ is a frame for Hπ. Then also (S−1/2

g,Λ π(λ)g)λ∈Λ\Γ

is a frame for Hπ with lower frame bound, say, A>0. Since S
−1/2
g,Λ π(Λ)g is a Par-

seval frame for Hπ, given γ∈Γ, the optimal lower frame bound A′
γ>0 of the frame

(S−1/2
g,Λ π(λ)g)λ∈Λ\{γ} is

A′
γ =1−‖S−1/2

g,Λ π(γ)g‖2
Hπ

=1−〈π(γ)g, S−1
g,Λπ(γ)g〉.

Therefore, it necessarily follows that A≤A′
γ=1−〈π(γ)g, hγ〉 for all γ∈Γ, which

implies that Γ⊆Λ′ :={λ∈Λ:〈π(λ)g, hλ〉≤1−A}. Thus, D−(Λ′)>0.
For showing that D+(Λ)>dπ, it now suffices to show the upper bound

D−(Λ′)≤ 1
A
D+(Λ)(1−dπ/D

+(Λ)).(4.1)

The inequality (4.1) is trivially satisfied whenever dπ/D+(Λ)≤1−A. Assume there-
fore that 1≥dπ/D

+(Λ)>1−A. We have for any x∈G and compact K⊆G such that
Λ∩xK is nonempty,

1
#(Λ∩xK)

∑
λ∈Λ∩xK

〈π(λ)g, hλ〉

≤ 1
#(Λ∩xK)

( ∑
λ∈Λ′∩xK

〈π(λ)g, hλ〉+
∑

λ∈Λ\Λ′∩xK

〈π(λ)g, hλ〉
)

≤ (1−A)·#(Λ′∩xK)+#(Λ\Λ′∩xK)
#(Λ∩xK)

= #(Λ∩xK)−A·#(Λ′∩xK)
#(Λ∩xK) ,

which yields that

#(Λ′∩xK)
μG(K) ≤ 1

A

#(Λ∩xK)
μG(K)

(
1− 1

#(Λ∩xK)
∑

λ∈Λ∩xK

〈π(λ)g, hλ〉
)
.(4.2)
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Let ε>0 be arbitrary. Choose a sequence of xi∈G and increasing ni∈N such that
Λ∩xiKni is nonempty and∣∣∣∣∣∣

1
#(Λ∩xiKni)

∑
λ∈Λ∩xiKni

〈π(λ)g, hλ〉−M−(GΛ)

∣∣∣∣∣∣<ε.

There exists j=j(ε)∈N such that, for all i≥j,

D−(Λ′)−ε≤ #(Λ′∩xiKni)
μG(Kni)

.

Combining this with the inequality (4.2) yields that

D−(Λ′)−ε≤ 1
A

#(Λ∩xiKni)
μG(Kni)

(1−M−(GΛ)+ε)(4.3)

for all i≥j. Therefore, by Theorem 3.2,

D−(Λ′)−ε≤ 1
A
D+(Λ)

(
1−M−(GΛ)+ε

)
= 1

A
D+(Λ)(1−dπ/D

+(Λ)+ε).

As ε>0 was chosen arbitrary, this shows (4.1) and finishes the proof. �

The last result shows that for a coherent frame π(Λ)g with g∈B1
π one can

always remove a set of positive density yet leave a frame. For this, the following
simple lemma will be used, cf. [4, Lemma 5].

Lemma 4.4. ([4]) Let (gλ)λ∈Λ be a frame for H with frame operator S :H→
H. For Γ⊆Λ, define the truncated coefficient operator Cg,Γ :Hπ→�2(Γ) by Cg,Γ=
(〈·, gγ〉)γ∈Γ. Then (gλ)λ∈Λ\Γ is a frame for H if and only if

∥∥Cg,ΓS
−1
g,ΛC

∗
g,Γ

∥∥
B(�2)<1.

Theorem 4.5. Suppose π(Λ)g is a frame for Hπ with g∈B1
π and D−(Λ)>dπ.

Then there exists Γ⊆Λ such that D−(Γ)>0 and (π(λ)g)λ∈Λ\Γ is a frame for Hπ.

Proof. By re-scaling π(Λ)g if necessary, it may be assumed that π(Λ)g is a
frame with frame bounds 0<A<B<2. Since g∈B1

π⊆B2
π (cf. Lemma 2.2) and

D−(Λ)>dπ, it follows by Theorem 3.2 that M+(GΛ)=dπ/D
−(Λ)<1. Fix α∈(0, 1)

such that M+(GΛ)<α<1.

Step 1. In this step, it will be shown that the set Λα :={λ∈Λ:〈π(λ)g, hλ〉<α}
has positive lower Beurling density. It follows from the definition of Λα that for
x∈G and compact K⊆G such that Λ∩xK is non-empty,

1
#(Λ∩xK)

∑
λ∈Λ∩xK

〈π(λ)g, hλ〉
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= 1
#(Λ∩xK)

( ∑
λ∈Λα∩xK

〈π(λ)g, hλ〉+
∑

λ∈Λ\Λα∩xK

〈π(λ)g, hλ〉
)

≥ 1
#(Λ∩xK)

( ∑
λ∈Λα∩xK

0+
∑

λ∈Λ\Λα∩xK

α

)

=α
#(Λ∩xK)−#(Λα∩xK)

#(Λ∩xK) .

Hence,

#(Λα∩xK)
μG(K) ≥

(
1−α−1 1

#(Λ∩xK)
∑

λ∈Λ∩xK

〈π(λ)g, hλ〉
)

#(Λ∩xK)
μG(K) .

Let ε>0 be arbitrary. Take a sequence of xi∈G and increasing ni∈N with Λ∩xiKni

nonempty such that∣∣∣∣∣∣
1

#(Λ∩xiKni)
∑

λ∈Λ∩xiKni

〈π(λ)g, hλ〉−M+(GΛ)

∣∣∣∣∣∣<ε.

Choose i sufficiently large such that

D−(Λ)−ε≤ #(Λ∩xiKni)
μG(Kni)

.

Then we find that
#(Λα∩xiKni)

μG(Kni)
≥
(
1−α−1(M+(GΛ)−ε)

)#(Λ∩xiKni)
μG(Kni)

≥
(
1−α−1(M+(GΛ)−ε)

)
(D−(Λ)−ε).

As by assumption M+(GΛ)<α, D−(Λ)>dπ and ε>0 may be chosen arbitrary cho-
sen arbitrarily small, this shows that D−(Λα)>0.

Step 2. This step provides a convenient expression for Cg,ΛS
−1
g,ΛC

∗
g,Λ to apply

Lemma 4.4. For this, recall that the frame operator Sg,Λ is positive with 0<A≤
Sg,Λ≤B<2, so that ‖I−Sg,Λ‖B(Hπ)<1. Therefore, S−1

g,Λ can be expanded as

S−1
g,Λ =

∞∑
j=0

(I−Sg,Λ)j =
∞∑
j=0

(I−C∗
g,ΛCg,Λ)j .

Since Cg,Λ(I−C∗
g,ΛCg,Λ)=(I−Cg,ΛC

∗
g,Λ)Cg,Λ, it follows by induction that

Cg,Λ(I−C∗
g,ΛCg,Λ)j =(I−Cg,ΛC

∗
g,Λ)jCg,Λ, j ∈N,
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and hence

Cg,ΛS
−1
g,ΛC

∗
g,Λ =Cg,Λ

∞∑
j=0

(I−C∗
g,ΛCg,Λ)jC∗

g,Λ =
∞∑
j=0

(I−Cg,ΛC
∗
g,Λ)jCg,ΛC

∗
g,Λ

with convergence in the operator norm. For N∈N∪{∞}, define M (N)∈CΛ×Λ by

M (N) :=
N∑
j=0

(I−Cg,ΛC
∗
g,Λ)jCg,ΛC

∗
g,Λ

and write M (N)=D(N)+R(N), where D(N) is the diagonal part of M (N). Note that,
in particular, we have that M (∞)=Cg,ΛS

−1
g,ΛC

∗
g,Λ.

Step 3. This step will show the existence of a subset Γ⊆Λα such that D−(Γ)>
0 and ‖Cg,ΓS

−1
g,ΛC

∗
g,Γ‖B(�2)<1. It follows then by Lemma 4.4 that (π(λ)g)λ∈Λ\Γ is a

frame for Hπ. Throughout this step, fix 0<ε<(1−α)/3 and choose N≥1 such that∥∥Cg,ΛS
−1
g,ΛC

∗
g,Λ−M (N)∥∥

B(�2) =
∥∥M (∞)−M (N)∥∥

B(�2) ≤ ε.(4.4)

Since g∈B1
π by assumption, it follows that the matrix (〈π(λ)g, π(λ′)g〉)λ,λ′∈Λ

associated to the operator Cg,ΛC
∗
g,Λ :�2(Λ)→�2(Λ) satisfies

|〈π(λ)g, π(λ′)g〉|=Φ(λ−1λ′)=Φ((λ′)−1λ), λ, λ′ ∈Λ,

for Φ:=|Vgg|∈W (G). The matrix M (N) being a sum of products involving
(〈gλ, gλ′〉)λ,λ′∈Λ and I, it follows therefore by [28, Proposition 4.6] that there exists
Θ∈W (G) such that

|M (N)
λ,λ′ | ≤min{Θ((λ′)−1λ),Θ(λ−1λ′)}, λ, λ′ ∈Λ.

Choose a compact symmetric unit neighborhood U1⊆G such that

‖Θ·1Uc
1
‖W ≤ ε·

(
Rel(Λ)
μG(Q)

)−1

,(4.5)

where Q⊆G is the fixed compact symmetric unit neighborhood. On the other
hand, since D−(Λα)>0, there also exists a compact symmetric unit neighborhood
U2⊆G such that G=

⋃
λ∈Λα

λU2. Set U :=U2U1 and let Γ⊆Λα be a maximal family
such that (γU1)γ∈Γ consists of pairwise disjoint sets. For showing that D−(Γ)>0,
it suffices to show that Γ is relatively dense, see, e.g., [27, Lemma 3.8]. Arguing
by contradiction, assume that there exists x∈G such that Γ∩xU=∅. Since Λα

is U2-dense, there exists λ0∈Λα∩xU2. Note that λ0 /∈Γ. Set Γ0 :=Γ∪{λ0}. By
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maximality of Γ, the family (γU1)γ∈Γ0 is not pairwise disjoint, so that there exists
γ0∈λ0U1∩Γ0\{λ0}. Since γ0∈λ0U1 and λ0∈xU2, it follows that

γ0 ∈Γ∩xU2U1 =Γ∩xU,

which contradicts that Γ∩xU=∅. Thus, Γ is U -dense, and D−(Γ)>0.
It remains to show that ‖Cg,ΓS

−1
g,ΛC

∗
g,Γ‖B(�2)<1. For this, note first that

‖Cg,ΓS
−1
g,ΛC

∗
g,Γ‖B(�2) = ‖PΓCg,ΛS

−1
g,ΛC

∗
g,ΛPΓ‖B(�2),

where PΓ :�2(Λ)→�2(Λ) is the projection operator given by (PΓc)γ=cγ for γ∈Γ, and
0 otherwise. Using the notation from Step 2, this yields

‖Cg,ΓS
−1
g,ΛC

∗
g,Γ‖B(�2) ≤‖PΓR

(N)PΓ‖B(�2)+‖PΓD
(N)PΓ‖B(�2)

+‖PΓ(M (∞)−M (N))PΓ‖B(�2)

≤‖PΓR
(N)PΓ‖B(�2)+‖PΓD

(∞)PΓ‖B(�2)

+‖PΓ(D(∞)−D(N))PΓ‖B(�2)

+‖PΓ(M (∞)−M (N))PΓ‖B(�2).

By Equation (4.4), it follows that ‖PΓ(D(∞)−D(N))PΓ‖B(�2)≤ε, which also implies
that ‖PΓ(M (∞)−M (N))PΓ‖B(�2)≤ε. In addition, since M (∞)=(〈gλ, hλ′〉)λ,λ′∈Λ, it
follows by definition of Λα that

‖PΓD
(∞)PΓ‖B(�2) ≤ sup

γ∈Γ
〈gγ , hγ〉≤α.

Lastly, consider the matrix (R(N)
γ,γ′)γ,γ′∈Γ. For γ, γ′∈Γ with γ �=γ′, it follows that

(γ′)−1γ /∈U1 since the family (γU1)γ∈Γ is pairwise disjoint by construction of Γ.
Thus,

|R(N)
γ,γ′ | ≤min{Θ((γ′)−1γ),Θ(γ−1γ′)}, γ �= γ′, γ, γ′ ∈Γ.

On the other hand, |R(N)
γ,γ |=0 by definition. Therefore, setting Θ′ :=Θ·1Uc

1
yields

|R(N)
γ,γ′ | ≤min{Θ′((γ′)−1γ),Θ′(γ−1γ′)}, γ, γ′ ∈Γ.

Applying [28, Proposition 4.6] therefore gives

‖PΓR
(N)PΓ‖B(�2) ≤

Rel(Γ)
μG(Q)‖Θ

′‖W ≤ Rel(Λ)
μG(Q) ‖Θ·1Uc

1
‖W ≤ ε,

where the last inequality follows by Equation (4.5). In conclusion, a combination
of the estimates above gives ‖Cg,ΓS

−1
g,ΛC

∗
g,Γ‖B(�2)≤ε+α+ε+ε<1, which completes

the proof. �
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Theorem 4.2 recovers [5, Theorem 6] in the case of Gabor systems. In contrast
to the proof of [5, Theorem 6] (see [4, Theorem 8]), the proof provided above
does not use techniques relying on spectral invariance, which are only available in
settings with polynomial growth [29]. The possibility of providing a proof without
these techniques was mentioned in [4, p. 133].
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