
DOI: 10.4310/ARKIV.2024.v62.n1.a1
c© 2024 by Institut Mittag-Leffler. All rights reserved

Ark. Mat., 62 (2024), 1–19

Evolution of eigenvalue of the Wentzell-Laplace
operator along the conformal mean curvature

flow

Shahroud Azami

Abstract. In this paper, we investigate continuity, differentiability and monotonicity for
the first nonzero eigenvalue of the Wentzell-Laplace operator along the conformal mean curvature
flow on n-dimensional compact manifolds with boundary for n≥3 under a boundary condition. In
especial, we show that the first nonzero eigenvalue of the Wentzell-Laplace operator is monotonic
under the conformal mean curvature flow and we find some monotonic quantities dependent to
the first nonzero eigenvalue along the conformal mean curvature flow.

1. Introduction

Let (M, g0) be an n-dimensional compact Riemannian manifold with smooth
boundary ∂M , where n≥3. Yamabe problem is a generalization of uniformization
theorem. For a closed manifold M , the Yamabe conjecture [26] asserts that in
each conformal class of g0 there is a metric g of constant scalar curvature Rg. R.
Hamilton ([2] and [14]) introduced the Yamabe flow

∂g

∂t
=−(Rg−Rg)g g(0)= g0,

for find such a metric, where R is a scalar curvature of M and Rg=
∫
M

Rg dVg∫
M

dVg
is

the mean value of the scalar curvature on M . There are two generalization of the
Yamabe problem for manifolds with boundary. The first case finds a conformal
metric which has constant scalar curvature in the interior of M and vanishing mean
curvature on ∂M . The second case tries to get a conformal metric with vanishing
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scalar curvature in the interior of M and constant mean curvature on ∂M . These
generalization of the Yamabe problem were studied by many authors, see [4], [10],
[11], [15] and [16] and references therein. Brendle [4] has introduced some geometric
flows to study the Yamabe problem with boundary. For the first case, Brendle [4],
introduced the Yamabe flow with boundary as follows

(1) ∂g

∂t
=−(Rg−Rg)g in M, and Hg =0 on ∂M,

where H is the mean curvature of ∂M . Almaraz and Sun [10] studied the conver-
gence of Yamabe flow with boundary (1). For second case, Brendle considered the
normalized conformal mean curvature flow, and is defined as

(2) ∂g

∂t
=−2(Hg−Hg)g on ∂M, and Rg =0 in M,

where Hg=
∫
∂M

Hg dAg∫
∂M

dAg
is the average of the mean curvature Hg. The uniqueness

and existence of the flow (2) has been studied in [1].
On the other hand, the study of the eigenvalue problem with Wentzell boundary

has recently attacked a lot of attention (see [9], [7], [13] and [25]). Let Δ and Δ
be the Laplace-Beltrami operators on M and ∂M , respectively. Assume that τ is a
real number. The eigenvalue problem for Wentzell boundary conditions given by

(3)
{

Δu=0, in M,

−τΔu+ ∂u
∂ν =λu on ∂M,

where ν denotes the outward unit normal vector field of ∂M . When τ=0, the
eigenvalue problem (3) becomes the following Steklov eigenvalue problem{

Δu=0, in M,
∂u
∂ν =σu on ∂M.

When τ≥0, the spectrum of the Wentzell-Laplace problem (3) consist in an increas-
ing countable sequence of eigenvalue

0 =λ0 <λ1 ≤λ2 ≤ ...≤λk ≤ ...

with corresponding real orthonormal eigenfunction u0, u1, u2, .... Throughout the
paper, we assume that τ≥0. We have the following variational characterization for
the first nonzero eigenvalue λ1 of Wentzell-Laplace operator

λ= inf
u∈C∞(M)\{0}

{∫
M

|∇gu|2 dVg+τ
∫
∂M

|∇gu|2 dAg∫
∂M

u2 dAg
:
∫
∂M

u dAg =0, Δgu=0
}
.
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There are many papers on the evolution of the eigenvalue of geometric operators
under geometric flows, see [3], [8], [12], [20], [22], [23] and the references therein.
In [19], Ho and Koo studied the evolution of Steklov eigenvalue along the geodesic
curvature on two-dimensional compact Riemannian manifold with smooth boundary
∂M . Also, Ho [18] investigated the evolution of the Dirichlet eigenvalue on manifolds
with boundary along the Yamabe flow with boundary (1) and he [17] studied the
evolution of the Steklov eigenvalue under the conformal mean curvature flow. The
main results of this paper are as follows:

Theorem 1.1. Let λ(t) be the nonzero first eigenvalue of Wentzell-Laplace

operator (3). Then, we have the following cases:

(i) if min∂M Hg≥ n−2
n−1 max∂M Hg≥0 then λ(t) is nondecreasing and differen-

tiable almost everywhere along the unnormalized conformal mean curvature flow on

[0, T ).
(ii) If max∂M Hg≤ n−2

n−1 min∂M Hg≤0 then λ(t) is nonincreasing and differen-

tiable almost everywhere along the unnormalized conformal mean curvature flow on

[0, T ).
(iii) If max∂M Hg≥0 then the quantity

λ(t)−
∫ t

0

(
(n−1)min

∂M
Hg−(n−2)max

∂M
Hg

)
λ(s) ds

is nondecreasing along the unnormalized conformal mean curvature flow on [0, T ).
(iv) If min∂M Hg≤0 then the quantity

λ(t)−
∫ t

0

(
(n−1)max

∂M
Hg−(n−2)min

∂M
Hg

)
λ(s) ds

is nonincreasing along the unnormalized conformal mean curvature flow on [0, T ).

Theorem 1.2. Let λ(t) be the nonzero first eigenvalue of Wentzell-Laplace

operator (3). Then we get the following cases:

(i) if τ=0 and min∂M (Hg−Hg)≥ n−2
n−1 max∂M (Hg−Hg)≥0 then λ(t) is nonde-

creasing and differentiable almost everywhere along the normalized conformal mean

curvature flow on [0, T ).
(ii) If τ=0 and max∂M (Hg−Hg)≤ n−2

n−1 min∂M (Hg−Hg)≤0 then λ(t) is nonin-
creasing and differentiable almost everywhere along the normalized conformal mean

curvature flow on [0, T ).
(iii) If max∂M (Hg−Hg)≥0 then the quantity

λ(t)−
∫ t

0

(
(n−1)min

∂M
(Hg−Hg)−(n−2)max

∂M
(Hg−Hg)

)
λ(s) ds

is nondecreasing along the normalized conformal mean curvature flow on [0, T ).
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(iv) If min∂M (Hg−Hg)≤0 then the quantity

λ(t)−
∫ t

0

(
(n−1)max

∂M
(Hg−Hg)−(n−2)min

∂M
(Hg−Hg)

)
λ(s) ds

is nonincreasing along the normalized conformal mean curvature flow on [0, T ).

2. Evolution of eigenvalue under the unnormalized flow

Let (M, g0) be an n-dimensional compact Riemannian manifold with smooth
boundary ∂M with n≥3. From [4, p. 630] we can find a metric conformal to g0
such that the scalar curvature in M is zero. Thus, without loss of generality we can
assume that

(4) Rg0 =0, in M.

We consider the unnormalized conformal mean curvature flow

(5) ∂g

∂t
=−2Hgg in ∂M, and Rg =0 on M, g(0)= g0.

Let g=u
4

n−2 g0, then Riemannian volume on M and on ∂M induced by the metric
g, dVg and dAg respectively, satisfy that dVg=u

2n
n−2 dVg0 and dAg=u

2(n−1)
n−2 dAg0 .

We also, have

(6)
{
−4(n−1)

n−2 Δg0u+Rg0u=Rgu
n+2
n−2 , in M,

2(n−1)
n−2

∂u
∂ν +Hg0u=Hgu

n
n−2 on ∂M,

From (4), (5), and (6) we infer

(7)
{

Δg0u=0, in M,
∂u
∂t =−n−2

2 Hgu on ∂M.

Hence, the evolution of the volume form of ∂M with respect to the metric g satisfies

(8) ∂

∂t
(dAg)= 2(n−1)

n−2 u
2(n−1)
n−2 −1 ∂u

∂t
dAg0 =−(n−1)Hg dAg.

From [4, Lemma 3.8], using (6) and (7) we conclude

∂

∂t
(Hg)=−(n−1)∂Ĥg

∂νg
+H2

g , on ∂M
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where Ĥg is the harmonic extension of Hg to M with respect to g, i.e.

Δg0Ĥg =0 in M, Ĥg =Hg on ∂M.

Along the flow (5), from [17, Lemma 2.1] we get

(9) ∂u

∂t
=−n−2

2 Ĥgu in M.

Although, we do not know the differentiability for the first eigenvalue λ(t) of
Wentzell-Laplace operator, in following lemma we show that λ(t) is a continuous
function respect to t-variable along the flow (5) on [0, T ) where T is taken to be the
maximum time of existence for the flow.

Lemma 2.1. If g1 and g2 are two metrics on Riemannian manifold M which

satisfy

(10) 1
1+ε

g1 ≤ g2 ≤ (1+ε)g1,

then

(11) λ(g2)−λ(g1)≤
(
(1+ε)n+ 1

2 −1
)
λ(g1).

In particular, λ(t) is a continuous function in the t-variable.

Proof. Inequality (10) yields

(12) (1+ε)−n
2 dVg1 ≤ dVg2 ≤ (1+ε)n

2 dVg1 ,

and

(13) (1+ε)−
n−1

2 dAg1 ≤ dAg2 ≤ (1+ε)
n−1

2 dAg1 .

Let

G(g(t), f(t)) :=
∫
M

|∇gf(t)|2g(t) dVg(t)+τ

∫
∂M

|∇gf(t)|2g(t) dAg(t)(14)

=
∫
∂M

f(t)
(
∂f(t)
∂νg(t)

−τΔg(t)f(t)
)

dAg(t).

Then

G(g(t2), f(t2))
∫
∂M

f2 dAg(t1)−G(g(t1), f(t1))
∫
∂M

f2 dAg(t1)

=
(∫

M

|∇gf(t2)|2g(t2) dVg(t2)−
∫
M

|∇gf(t1)|2g(t1) dVg(t1)

) ∫
∂M

f2 dAg(t1)
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+
(∫

∂M

f2 dAg(t1)−
∫
∂M

f2 dAg(t2)

) ∫
M

|∇gf(t1)|2g(t1) dVg(t1)

+τ

(∫
M

|∇gf(t2)|2g(t2) dAg(t2)−
∫
M

|∇gf(t1)|2g(t1) dAg(t1)

) ∫
∂M

f2 dAg(t1)

+τ

(∫
∂M

f2 dAg(t1)−
∫
∂M

f2 dAg(t2)

) ∫
M

|∇gf(t1)|2g(t1) dAg(t1).

Using (12) and (13) we get

G(g(t2), f(t2))
∫
∂M

f2 dAg(t1)−G(g(t1), f(t1))
∫
∂M

f2 dAg(t1)

≤
(
(1+ε)n

2 +1−1
) ∫

M

|∇gf(t1)|2g(t1) dVg(t1)

∫
∂M

f2 dAg(t1)

+
(
1−(1+ε)−

n−1
2

) ∫
∂M

f2 dAg(t1)

∫
M

|∇gf(t1)|2g(t1) dVg(t1)

+τ
(
(1+ε)

n−1
2 +1−1

)∫
M

|∇gf(t1)|2g(t1) dAg(t1)

∫
∂M

f2 dAg(t1)

+τ
(
1−(1+ε)−

n−1
2

) ∫
∂M

f2 dAg(t1)

∫
M

|∇gf(t1)|2g(t1) dAg(t1)

=
(
(1+ε)n

2 +1−(1+ε)−
n−1

2

) ∫
M

|∇gf(t1)|2g(t1) dVg(t1)

∫
∂M

f2 dAg(t1)

+τ
(
(1+ε)

n−1
2 +1−(1+ε)−

n−1
2

) ∫
M

|∇gf(t1)|2g(t1) dAg(t1)

∫
∂M

f2 dAg(t1)

≤
(
(1+ε)n

2 +1−(1+ε)−
n−1

2

) ∫
M

|∇gf(t1)|2g(t1) dVg(t1)

∫
∂M

f2 dAg(t1)

+τ
(
(1+ε)n

2 +1−(1+ε)−
n−1

2

) ∫
M

|∇gf(t1)|2g(t1) dAg(t1)

∫
∂M

f2 dAg(t1).

Therefore, we have

G(g(t2), f(t2))∫
∂M

f2 dAg(t2)
−G(g(t1), f(t1))∫

∂M
f2 dAg(t1)

≤
(
(1+ε)n

2 +1−(1+ε)−
n−1

2

) ∫
M

|∇gf(t1)|2g(t1) dVg(t1)∫
∂M

f2 dAg(t2)

+τ
(
(1+ε)n

2 +1−(1+ε)−
n−1

2

) ∫
M

|∇gf(t1)|2g(t1) dAg(t1)∫
∂M

f2 dAg(t2)

≤
(
(1+ε)n

2 +1−(1+ε)−
n−1

2

)
(1+ε)

n−1
2

G(g(t1), f(t1))∫
∂M

f2 dAg(t1)
.

This shows that (11) is true and completes the proof of lemma. �
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Proposition 2.2. Let g=g(t), t∈[0, T ), be the solution of the unnormalized

conformal mean curvature flow (5), and λ(t) be the corresponding first eigenvalue

of Wentzell-Laplace operator (3). Then for any t1≤t2 we have

(15) λ(t2)≥λ(t1)+
∫ t2

t1

G(g(t), f(t)) dt,

where

G(g(t), f(t)) = 2
∫
∂M

∂f(t)
∂t

(
∂f(t)
∂νg(t)

−τΔg(t)f(t)
)
dAg−(n−2)

∫
M

Ĥg|∇gf(t)|2g dVg

(16)

−(n−3)τ
∫
∂M

Hg|∇gf(t)|2g dAg,

f(t) is a smooth function in M×[0, T ) satisfying
∫
∂M

f2 dAg=1,
∫
∂M

f dAg=0, and
Δgf(t)=0 in M , such that at time t2, f(t2) is the corresponding eigenfunction for

the eigenvalue λ(t2).

Proof. Motivated by the works of X.-D. Cao [5] and [6] and J. Y. Wu et al.
[24], we first let at time t2, f2=f(t2) be the eigenfunction for the first eigenvalue
λ(t2) of g(t2). We consider the following smooth function in ∂M defined by

h(t)= u(t2)
n−1
n−2

u(t)
n−1
n−2

f2,

along the unnormalized conformal mean curvature flow (5) where u=u(t) is the
solution of (7) for t∈[0, T ). We assume that

f(t)= h(t)(∫
∂M

h(t)2 dAg

) 1
2
,

which f(t) is smooth function under the flow (5), satisfies
∫
∂M

f2 dAg=1, Δgf(t)=0
in M , and at time t2, f(t2) is the corresponding eigenfunction for the eigenvalue
λ(t2) of Wentzell-Laplace operator. Also, by definition of h(t) and f(t) we get∫

∂M

f(t) dAg(t) = 1(∫
∂M

h(t)2 dAg

) 1
2

∫
∂M

h(t) dAg(t)

= 1(∫
∂M

h(t)2 dAg

) 1
2

∫
∂M

(
u(t2)
u(t)

)n−1
n−2

f(t2)u
(n−1)
n−2 dAg0

= 1(∫
∂M

h(t)2 dAg

) 1
2

∫
∂M

f(t2) dAg(t2)
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= 0.

We extended function f(t) to a harmonic function in M with respect to g, which
we still denote it by f(t). Notice, G(g(t), f(t)) is a smooth function respect to t.
Since g=u

4
n−2 g0, we have

〈∇gφ,∇gψ〉g =u− 4
n−2 〈∇g0φ,∇g0ψ〉g0 ,

for any smooth functions φ, ψ in M . This yields

G(g(t), f(t))=
∫
M

u2|∇gf(t)|2g0
dVg0 +τ

∫
∂M

|∇gf(t)|2g dAg.

By derivation with respect to t, along the flow (5) we obtain

G(g(t), f(t)) := d

dt
G(g(t), f(t))

(17)

=2
∫
M

〈
∇gf(t),∇g

∂f(t)
∂t

〉
g

dVg+2
∫
M

u
∂u

∂t
|∇gf(t)|2g0

dVg0

+2τ
∫
∂M

〈
∇gf(t),∇g

∂f(t)
∂t

〉
g

dAg+2τ
∫
∂M

Hg|∇gf(t)|2g0
dAg0

−(n−1)τ
∫
∂M

Hg|∇gf(t)|2g dAg.

In last line we use (8). Using (7) and (9), we get

G(g(t), f(t)) = 2
∫
M

〈
∇gf(t),∇g

∂f(t)
∂t

〉
g

dVg−(n−2)
∫
M

Ĥg|∇gf(t)|2g(t) dVg(t)

+2τ
∫
∂M

〈
∇gf(t),∇g

∂f(t)
∂t

〉
g

dAg−(n−3)τ
∫
∂M

Hg|∇gf(t)|2g dAg.

From integration by parts we conclude

G(g(t), f(t))= 2
∫
∂M

∂f(t)
∂t

∂f(t)
∂νg(t)

dAg−(n−2)
∫
M

Ĥg|∇gf(t)|2g(t) dVg(t)

(18)

−2τ
∫
∂M

∂f(t)
∂t

Δgf(t) dAg−(n−3)τ
∫
∂M

Hg|∇gf(t)|2g dAg.

=2
∫
∂M

∂f(t)
∂t

(
∂f(t)
∂νg(t)

−τΔg(t)f(t)
)

dAg−(n−2)
∫
M

Ĥg|∇gf(t)|2g dVg

−(n−3)τ
∫
∂M

Hg|∇gf(t)|2g dAg.
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Taking integration on the both sides of (17) on interval [t1, t2]⊂[0, T ), we arrive at

(19) G(g(t2), f(t2))−G(g(t1), f(t1))=
∫ t2

t1

G(g(t), f(t)) dt.

Since f(t2) is the corresponding eigenfunction of the eigenvalue λ(t2), we deduce

G(g(t2), f(t2))=λ(t2)
∫
∂M

f(t2)2 dAg(t2) =λ(t2).

Noticing, by definition of first eigenvalue for Wentzell-Laplace operator we have

G(g(t1), f(t1))≥λ(t1)
∫
∂M

f(t1)2 dAg(t1) =λ(t1).

This completes the proof of Proposition. �

Proposition 2.3. Let g=g(t), t∈[0, T ), be the solution of the unnormalized

conformal mean curvature flow (5), and λ(t) be the corresponding first eigenvalue

of Wentzell-Laplace operator (3). Then for any t1≤t2 we have

(20) λ(t2)≤λ(t1)+
∫ t2

t1

G(g(t), f(t)) dt,

where G(g(t), f(t)) defines in (16), f(t) is a smooth function in M×[0, T ) satisfying∫
∂M

f2 dAg=1,
∫
∂M

f dAg=0, and Δgf(t)=0 in M , such that at time t1, f(t1) is

the corresponding eigenfunction for the eigenvalue λ(t1), and T is taken to be the

maximum time of existence for the flow.

Proof. The proof is almost the same as the proof of Proposition 2.2. At time
t1, we consider f1=f(t1) is the eigenfunction for the first eigenvalue λ(t1) of g(t1).

We assume the smooth function h(t)=
(

u(t1)
u(t)

)n−1
n−2

f1 in ∂M along the flow (5) where

u=u(t) is the solution of (7) for t∈[0, T ). We let f(t)= h(t)
(∫

∂M
h(t)2 dAg

) 1
2
, which f(t)

is smooth function under the flow (5), satisfies
∫
∂M

f2 dAg=1, Δgf(t)=0 in M ,
and at time t1, f(t1) is the corresponding eigenfunction for the eigenvalue λ(t1) of
Wentzell-Laplace operator. We extended function f(t) to a harmonic function in M

with respect to g, which we still denote it by f(t). We define G(g(t), f(t)) as (14).
Then it is clear that (18) and (19) are still hold. Since f(t1) is the corresponding
eigenfunction of the eigenvalue λ(t1), we get

G(g(t1), f(t1))=λ(t1)
∫
∂M

f(t1)2 dAg(t1) =λ(t1).
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Also, by definition of first eigenvalue for Wentzell-Laplace operator we have

G(g(t2), f(t2))≥λ(t2)
∫
∂M

f(t2)2 dAg(t2) =λ(t2).

By combining all these the proof of Proposition is complete �

Proof of Theorem 1.1. To prove the theorem we will use the Propositions 2.2
and 2.3.

Case (i)
In this case, we show that in inequality (15) we G(g(t), f(t))≥0 when t is sufficiently
closed to t2. Notice that at time t2, f(t2) is the corresponding eigenfunction for the
eigenvalue λ(t2). Therefore, at time t2 we have

G(g(t2), f(t2)) = 2λ(t2)
∫
∂M

∂f(t2)
∂t

f(t2) dAg−(n−2)
∫
M

Ĥg|∇gf(t2)|2g dVg(21)

−(n−3)τ
∫
∂M

Hg|∇gf(t2)|2g dAg.

Under the unnormalized conformal mean curvature flow, from the constraint con-
dition

d

dt

∫
∂M

f(t)2 dAg =0,

we know that

(22) 2
∫
∂M

∂f(t2)
∂t

f(t2) dAg =(n−1)
∫
∂M

f(t2)2Hg(t2) dAg ≥ (n−1)min
∂M

Hg.

Combining (21) and (22), we obtain

G(g(t2), f(t2)) ≥ (n−1)min
∂M

Hgλ(t2)−(n−2)
∫
M

Ĥg|∇gf(t2)|2g dVg

−(n−3)τ
∫
∂M

Hg|∇gf(t2)|2g dAg.

Since Ĥg is harmonic, the maximal principal implies that

max
M

Ĥg =max
∂M

Hg and min
M

Ĥg =min
∂M

Hg.

Hence,

G(g(t2), f(t2)) ≥ (n−1)min
∂M

Hgλ(t2)−(n−2)max
∂M

Hg

∫
M

|∇gf(t2)|2g dVg

−(n−3)τ max
∂M

Hg

∫
∂M

|∇gf(t2)|2g dAg.
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Since max∂M Hg≥0 we obtain

G(g(t2), f(t2))≥
(

(n−1)min
∂M

Hg−(n−2)max
∂M

Hg

)
λ(t2).

The condition min∂M Hg≥ n−2
n−1 max∂M Hg≥0 implies G(g(t2), f(t2))≥0. Notice f(t)

is a smooth function with respect to t-variable. Therefore, we have G(g(t), f(t))≥0
in any sufficient small neighborhood of t2. Thus,∫ t2

t1

G(g(t), f(t)) dt≥ 0,

for any t1<t2 sufficiently close to t2. In the end, by (15), we conclude

λ(t2)≥λ(t1)

for any t1<t2 sufficiently close to t2. Since t2∈[0, T ) is arbitrary, then λ(t) is
nondecreasing along the unnormalized conformal mean curvature flow.

In order to show the the differentiability for λ, since λ(t) is nondecreasing
on [0, T ) under the unnormalized conformal mean curvature flow, by the classical
Lebesgue’s theorem ([21, Chap. 4]), λ(t) is differentiable almost everywhere on
[0, T ).

Case (ii)
In this case, we show that in inequality (20) we G(g(t), f(t))≤0 when t is sufficiently
closed to t1. Note that at time t1, f(t1) is the corresponding eigenfunction for the
eigenvalue λ(t2). Hence, at time t1 we get

(23) G(g(t1), f(t1))= 2λ(t1)
∫
∂M

∂f(t1)
∂t

f(t1) dAg−(n−2)
∫
M

Ĥg|∇gf(t2)|2g dVg.

Under the unnormalized conformal mean curvature flow we have

(24) 2
∫
∂M

∂f(t1)
∂t

f(t1) dAg =(n−1)
∫
∂M

f(t1)2Hg(t1) dAg ≤ (n−1)max
∂M

Hg.

Combining (23) and (24), we infer

G(g(t1), f(t1))≤
(

(n−1)max
∂M

Hg−(n−2)min
∂M

Hg

)
λ(t1).

The condition max∂M Hg≤ n−2
n−1 min∂M Hg≤0 yields G(g(t1), f(t1))≤0. Thus, we

arrive at G(g(t), f(t))≤0 in any sufficient small neighborhood of t1. Therefore,∫ t2

t1

G(g(t), f(t)) dt≤ 0,
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for any t2>t1 sufficiently close to t1. In the end, by (20), we deduce

λ(t2)≤λ(t1)

for any t2>t1 sufficiently close to t1. Since t1∈[0, T ) is arbitrary, then λ(t) is non-
increasing along the unnormalized conformal mean curvature flow. This completes
the proof of case (ii).

Case (iii)
Assume that at time t2, f(t2) is the corresponding eigenfunction for the eigenvalue
λ(t2). Then, at time t2, we get

G(g(t2), f(t2)) = 2λ(t2)
∫
∂M

∂f(t2)
∂t

f(t2) dAg−(n−2)
∫
M

Ĥg|∇gf(t2)|2g dVg(25)

−(n−3)τ
∫
∂M

Hg|∇gf(t2)|2g dAg.

From the condition ∫
∂M

f(t)2 dAg =1,

we have

(26) 2
∫
∂M

∂f(t2)
∂t

f(t2) dAg =(n−1)
∫
∂M

f(t2)2Hg(t2) dAg ≥ (n−1)min
∂M

Hg.

Plugging (26) into (25) we obtain

G(g(t2), f(t2)) ≥ (n−1)min
∂M

Hgλ(t2)−(n−2)
∫
M

Ĥg|∇gf(t2)|2g dVg

−(n−3)τ
∫
∂M

Hg|∇gf(t2)|2g dAg.

Due to maxM Ĥg=max∂M Hg, minM Ĥg=min∂M Hg, and max∂M Hg≥0 we con-
clude

G(g(t2), f(t2)) ≥
(

(n−1)min
∂M

Hg−(n−2)max
∂M

Hg

)
λ(t2)

+τ max
∂M

Hg

∫
∂M

|∇gf(t2)|2g dAg

≥
(

(n−1)min
∂M

Hg−(n−2)max
∂M

Hg

)
λ(t2).

Therefore, in any sufficient small neighborhood of t2 we have

G(g(t), f(t)) ≥
(

(n−1)min
∂M

Hg−(n−2)max
∂M

Hg

)
λ(t).
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Thus, ∫ t2

t1

G(g(t), f(t)) dt≥
∫ t2

t1

(
(n−1)min

∂M
Hg−(n−2)max

∂M
Hg

)
λ(s) ds,

for any t1<t2 sufficiently close to t2. Hence, by (15), we conclude

λ(t2)−
∫ t2

0

(
(n−1)min

∂M
Hg−(n−2)max

∂M
Hg

)
λ(s) ds

≥λ(t1)−
∫ t1

0

(
(n−1)min

∂M
Hg−(n−2)max

∂M
Hg

)
λ(s) ds,

for any t1<t2 sufficiently close to t2. Since t2∈[0, T ) is arbitrary, then the quantity

λ(t)−
∫ t

0

(
(n−1)min

∂M
Hg−(n−2)max

∂M
Hg

)
λ(s) ds,

is nondecreasing along the unnormalized conformal mean curvature flow.

Case (iv)
Let at time t1, f(t1) be the corresponding eigenfunction for the eigenvalue λ(t1).
Then, at time t1, we obtain

G(g(t1), f(t1)) = 2λ(t1)
∫
∂M

∂f(t1)
∂t

f(t1) dAg−(n−2)
∫
M

Ĥg|∇gf(t1)|2g dVg(27)

−(n−3)τ
∫
∂M

Hg|∇gf(t1)|2g dAg.

From the condition
∫
∂M

f(t)2 dAg=1, we get

(28) 2
∫
∂M

∂f(t1)
∂t

f(t1) dAg =(n−1)
∫
∂M

f(t1)2Hg(t1) dAg ≤ (n−1)max
∂M

Hg.

Applying (28) into (27) we arrive at

G(g(t1), f(t1)) ≤ (n−1)max
∂M

Hgλ(t1)−(n−2)
∫
M

Ĥg|∇gf(t1)|2g dVg

−(n−3)τ
∫
∂M

Hg|∇gf(t1)|2g dAg.

Since maxM Ĥg=max∂M Hg, minM Ĥg=min∂M Hg, and min∂M Hg≤0, we deduce

G(g(t1), f(t1))≤
(

(n−1)max
∂M

Hg−(n−2)min
∂M

Hg

)
λ(t1)(29)

+τ min
∂M

Hg

∫
∂M

|∇gf(t2)|2g dAg
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≤
(

(n−1)max
∂M

Hg−(2n−3)min
∂M

Hg

)
λ(t1).

Therefore, in any sufficient small neighborhood of t1 we have

G(g(t), f(t)) ≤
(

(n−1)max
∂M

Hg−(n−2)min
∂M

Hg

)
λ(t).

Hence, ∫ t2

t1

G(g(t), f(t)) dt≤
∫ t2

t1

(
(n−1)max

∂M
Hg−(n−2)min

∂M
Hg

)
λ(s) ds,

for any t2>t1 sufficiently close to t1. Thus, by (20), we infer

λ(t2)−
∫ t2

0

(
(n−1)max

∂M
Hg−(n−2)min

∂M
Hg

)
λ(s) ds

≤ λ(t1)−
∫ t1

0

(
(n−1)max

∂M
Hg−(n−2)min

∂M
Hg

)
λ(s) ds,

for any t2>t1 sufficiently close to t1. Since t1∈[0, T ) is arbitrary, then the quantity

λ(t)−
∫ t

0

(
(n−1)max

∂M
Hg−(n−2)min

∂M
Hg

)
λ(s) ds,

is nonincreasing along the unnormalized conformal mean curvature flow. �

3. Evolution of eigenvalue under the normalized flow

Assume that (M, g0) be an n-dimensional compact Riemannian manifold with
smooth boundary ∂M with n≥3. We assume that

Rg0 =0 in M.

We consider the normalized conformal mean curvature flow

(30) ∂g

∂t
=−2(Hg−Hg)g on ∂M, and Rg =0 in M, g(0)= g0.

If g=u
4

n−2 g0, then we have

(31)
{

Δg0u=0, in M,
∂u
∂t =−n−2

n (Hg−Hg)u on ∂M.
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Hence, the evolution of the volume form of ∂M with respect to the metric g satisfies

(32) ∂

∂t
(dAg)=−(n−1)(Hg−Hg) dAg.

From [4, Lemma 3.8], using (6) and (31) we conclude

∂

∂t
(Hg)=−(n−1)∂Ĥg

∂νg
+Hg(Hg−Hg), on ∂M.

Along the flow (30), we get

(33) ∂u

∂t
=−n−2

2 (Ĥg−Hg)u in M.

Proposition 3.1. Let g=g(t), t∈[0, T ), be the solution of the normalized con-

formal mean curvature flow (30), and λ(t) be the corresponding first eigenvalue of

Wentzell-Laplace operator (3). Then for any t1≤t2 we have

λ(t2)≥λ(t1)+
∫ t2

t1

B(g(t), f(t)) dt,

where

B(g(t), f(t))= 2
∫
∂M

∂f(t)
∂t

(
∂f(t)
∂νg(t)

−τΔg(t)f(t)
)
dAg(34)

−(n−2)
∫
M

(Ĥg−Hg)|∇gf(t)|2g dVg

−(n−3)τ
∫
∂M

(Hg−Hg)|∇gf(t)|2g dAg,

f(t) is a smooth function in M×[0, T ) satisfying
∫
∂M

f2 dAg=1,
∫
∂M

f dAg=0, and
Δgf(t)=0 in M , such that at time t2, f(t2) is the corresponding eigenfunction for

the eigenvalue λ(t2).

Proof. We first let at time t2, f2=f(t2) is the eigenfunction for the first nonzero
eigenvalue λ(t2) of g(t2). We assume the following smooth function in ∂M defined
by

h(t)= u(t2)
n−1
n−2

u(t)
n−1
n−2

f2,

along the unnormalized conformal mean curvature flow (5) where u=u(t) is the
solution of (7) for t∈[0, T ). We assume that

f(t)= h(t)(∫
∂M

h(t)2 dAg

) 1
2
,
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which f(t) is smooth function under the flow (5), satisfies
∫
∂M

f2 dAg=1, Δgf(t)=0
in M , and at time t2, f(t2) is the corresponding eigenfunction for the eigenvalue
λ(t2) of Wentzell-Laplace operator. Also, by definition of h(t) and f(t) we get∫
∂M

f(t) dAg(t)=0.
We extended function f(t) to a harmonic function in M with respect to g,

which we still denote it by f(t). The function G(g(t), f(t)) is a smooth function
respect to t. By derivation of G(g(t), f(t)) with respect to t, along the flow (5) we
get

B(g(t), f(t)) := d

dt
G(g(t), f(t))

= 2
∫
M

〈
∇gf(t),∇g

∂f(t)
∂t

〉
g

dVg+2
∫
M

u
∂u

∂t
|∇gf(t)|2g0

dVg0

+2τ
∫
∂M

〈
∇gf(t),∇g

∂f(t)
∂t

〉
g

dAg+2τ
∫
∂M

(Hg−Hg)|∇gf(t)|2g0
dAg0

−(n−1)τ
∫
∂M

(Hg−Hg)|∇gf(t)|2g dAg.

In last line we use (32). Using (31) and (33) we obtain

B(g(t), f(t)) = 2
∫
M

〈
∇gf(t),∇g

∂f(t)
∂t

〉
g

dVg−(n−2)
∫
M

(Ĥg−Hg)|∇gf(t)|2g(t) dVg(t)

+2τ
∫
∂M

〈
∇gf(t),∇g

∂f(t)
∂t

〉
g

dAg

−(n−3)τ
∫
∂M

(Hg−Hg)|∇gf(t)|2g dAg.

From integration by parts we arrive at

B(g(t), f(t)) = 2
∫
∂M

∂f(t)
∂t

(
∂f(t)
∂νg(t)

−τΔg(t)f(t)
)

dAg

−(n−2)
∫
M

(Ĥg−Hg)|∇gf(t)|2g dVg

−(n−3)τ
∫
∂M

(Hg−Hg)|∇gf(t)|2g dAg.

The definition of B(g(t), f(t)) yields

G(g(t2), f(t2))−G(g(t1), f(t1))=
∫ t2

t1

B(g(t), f(t)) dt.
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Since f(t2) is the corresponding eigenfunction of the eigenvalue λ(t2), we have

G(g(t2), f(t2))=λ(t2)
∫
∂M

f(t2)2 dAg(t2) =λ(t2).

Also, by definition of first eigenvalue for Wentzell-Laplace operator we deduce

G(g(t1), f(t1))≥λ(t1)
∫
∂M

f(t1)2 dAg(t1) =λ(t1).

This completes the proof of Proposition. �

Proposition 3.2. Let g=g(t), t∈[0, T ), be the solution of the normalized con-

formal mean curvature flow (5), and λ(t) be the corresponding first eigenvalue of

Wentzell-Laplace operator (3). Then for any t1≤t2 we have

λ(t2)≤λ(t1)+
∫ t2

t1

B(g(t), f(t)) dt,

where B(g(t), f(t)) defines in (34), f(t) is a smooth function in M×[0, T ) satisfying∫
∂M

f2 dAg=1,
∫
∂M

f dAg=0, and Δgf(t)=0 in M , such that at time t1, f(t1) is

the corresponding eigenfunction for the eigenvalue λ(t1), and T is taken to be the

maximum time of existence for the flow.

Proof. The proof is almost the same as the proof of Proposition 2.3. It is
enough to replace (Hg−Hg) and (Ĥg−Hg) instead of Hg and Ĥg, respectively. �

If in proof of Theorem 1.1, we substitute (Hg−Hg) and (Ĥg−Hg) instead of
Hg and Ĥg, respectively, then we get the Theorem 1.2.
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