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Stable functors and cohomology theory in
abelian categories

Shoutao Guo and Li Liang

Abstract. In this paper, we first introduce stable functors with respect to a preenvelop-
ing/precovering subcategory and investigate some of their properties. Using that we then introduce
and study a relative complete cohomology theory in abelian categories. Some properties of the
cohomology including vanishing are given. As applications, we give some characterizations of ob-
jects of finite homological dimensions including the flat dimension, cotorsion dimension, Gorenstein
injective/flat dimension and projectively coresolved Gorenstein flat dimension.

Introduction

Tate cohomology was initially defined for representations of finite groups.
Avramov and Martsinkovsky [2] extended the definition so that it can work well for
finitely generated modules of finite Gorenstein dimension over a noetherian ring.
Sather-Wagstaff, Sharif and White [27] further investigated Tate cohomology for
objects in abelian categories with enough projectives and injectives. As a broad
generalization of Tate cohomology to the realm of infinite group algebras or even
associative rings, complete cohomology was introduced by Vogel and Goichot [15],
Mislin [22] and Benson and Carlson [4] independently, and was further treated by
Avramov and Veliche [3] and Nucinkis [23]. The main purpose of this paper is to
introduce and study a relative complete cohomology theory in abelian categories.
Much of our motivation comes from the theory on stabilization of functors devel-
oped by Martsinkovsky and Russell recently in [18]–[20], which is very useful for
studying complete homology theory.

Key words and phrases: stable functor, complete/Tate cohomology, special preenvelop-
ing/precovering subcategory.
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The definition of projective/injective stabilization of functors was first given
by Auslander and Bridger in [1]. It is known that the Hom modulo projectives is
actually the projective stabilization of the covariant Hom functor, which plays an
important role in the field of representation theory. The applications of injective
stabilization of covariant functors are displayed in the complete homology theory
[20] and in the (co)torsion theory [19]. In this paper we introduce a relative version
of stabilization of functors with respect to a preenveloping/precovering subcategory
to extend the complete cohomology theory.

Let A be an abelian category, and V a special preenveloping subcategory of A.
For a contravariant additive functor F from A to the category Ab of abelian groups,
the V-stable functor FV of F is defined as the cokernel of the natural transformation
ρ:LV

0 F→F; see 2.1. Here LV
0 F is the 0th left derived functor of F with respect

to V. Let M and N be objects in A. As a special case where F=HomA(−, N),
we denote FV(M) by HomV

A(M,N). Then there is an equality HomV
A(M,N)=

HomA(M,N)/VHomA(M,N); see Proposition 2.4. Here VHomA(M,N) is the sub-
group of HomA(M,N) consisting of those morphisms f :M→N that factor through
an object in V. In Section 2, we mainly discuss the exactness of V-stable functors.
The following result is from Corollary 2.12, Lemma 2.14 and Proposition 2.15.

Theorem A. Let F be a contravariant additive functor from A to Ab, and V
a special preenveloping subcategory of A. If F is half HomA(−,V)-exact, then so is

FV
, and the following statements are equivalent.

(i) FV
is right HomA(−,V)-exact.

(ii) FV=0.
(iii) F is right HomA(−,V)-exact.

Moreover, if F is left HomA(−,V)-exact, then the following statements are equiva-

lent.

(i) FV
is left HomA(−,V)-exact.

(ii) FV(Θi
VM)=0 for each object M in A and all i≥1.

(iii) FV(ΘVM)=0 for each object M in A.

In the above theorem, Θi
VM denotes the ith V-cosyzygy of M ; see 1.3. A con-

travariant functor F is said to be half HomA(−,V)-exact if for each HomA(−,V)-
exact short exact sequence 0−−→A′−−→A−−→A′′−−→0 of objects in A, the sequence
F(A′′)−−→F(A)−−→F(A′) is exact. If furthermore the sequence 0→F(A′′)−−→
F(A)−−→F(A′) is exact, then we call F left HomA(−,V)-exact. Right HomA(−,V)-
exact functors are defined dually; see 2.10. We mention that the dual result of
Theorem A is given in Corollary 2.13, Lemma 2.14 and Proposition 2.17.
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As an immediate consequence of Theorem A one gets that the functor
HomV

A(−, N) is left HomA(−,V)-exact if and only if HomV
A(Θ≥1

V M,N)=0 for each
object M in A if and only if HomV

A(ΘVM,N)=0 for each object M in A, and if
V is closed under direct summands then HomV

A(−, N) is right HomA(−,V)-exact
if and only if HomV

A(M,N)=0 for each object M in A if and only if N∈V; see
Corollary 2.16.

Using the tools developed in Section 2, we study a relative complete cohomology
theory with respect to a special precovering/preenveloping subcategory in Sections 3
and 4.

Let V be a special preenveloping subcategory of A. For two objects M and N in
A and n∈Z, the nth complete cohomology of M and N with respect to V is defined as
}ExtnV(M,N)=colimiHomV

A(Θi
VM,Θi+n

V N); see Definition 3.4. The following result
is from Theorem 3.10 and Propositions 3.12, 4.5 and 4.14.

Theorem B. Let V be a special preenveloping subcategory of A, and let M and

N be objects in A with M
�−−→I and N

�−−→J proper V-coresolutions. For each n∈Z
there exist natural isomorphisms

}ExtnV(M,N)∼= colimi Ext1A(Θi+1
V M,Θi+n

V N)∼= Hn(H̃omA(I, J)).

Moreover, if V is closed under direct summands, and N has a Tate V-coreso-
lution N

�−−→I
α−−→T , then for each object M in A and each n∈Z, there is a natural

isomorphism
}ExtnV(M,N)∼= Hn(HomA(M,T )).

If furthermore Ext≥1
A (⊥V,V)=0, then for each n∈Z there is a natural isomor-

phism
}ExtnV(M,N)∼= colimi S−i

V Extn+i
A (M,N).

In the above theorem, H̃omA is the stable Hom functor (see 4.1), and S−i
V Ext

is the left satellite functor of contravariant Ext functor; see 1.5 for more details.
We mention that the dual result of Theorem B for ÊxtnW(M,N) is also true; see
Theorem 3.10 and Propositions 3.12, 4.5 and 4.15.

The relative complete cohomology has expected properties including vanishing.
The next result is from Theorem 4.9.

Theorem C. Let V be a special preenveloping subcategory of A closed under

direct summands. Then for each object N in A the following statements are equiv-

alent.

(i) V-idAN<∞.

(ii) }ExtnV(N,−)=0=}ExtnV(−, N) for all n∈Z.
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(iii) }Ext0V(N,N)=0.

The definition of V-injective dimension is given in 1.7. The dual version of
Theorem C can be found in Theorem 4.11.

In the final section, we give some applications of the above vanishing results,
and characterize objects of finite homological dimensions including the flat dimen-
sion, cotorsion dimension, Gorenstein injective/flat dimension and projectively core-
solved Gorenstein flat dimension.

1. Preliminaries

Throughout this paper, A denotes an abelian category. We use the term “sub-
category” to mean a “full and additive subcategory that is closed under isomor-
phisms”.

1.1 Special preenveloping/precovering subcategories. Given a subcat-
egory X of A, we write

⊥X = {M | Ext1A(M,X)= 0 for all X ∈X}
X⊥ = {N | Ext1A(X,N)= 0 for all X ∈X}.

Here Ext1A(−,−) is the 1st Yoneda Ext group. A special X-preenvelope of an object
M in A is an exact sequence 0→M→X→C→0 with X∈X and C∈⊥X. Dually,
a special X-precover of M is an exact sequence 0→K→X ′→M→0 with K∈X⊥

and X ′∈X. Recall that a subcategory X of A is special preenveloping if each object
in A has a special X-preenvelope. Dually a subcategory X of A is called special
precovering if each object in A has a special X-precover.

Setup. Throughout this paper, the symbol V denotes a special preenveloping
subcategory of A, and the symbol W denotes a special precovering subcategory of A.

1.2 Proper (co)resolutions. Let M be an object in A. A proper V-co-
resolution of M is a complex I of objects in V such that I−n=0=Hn(I) for all
n>0 and H0(I)∼=M , and the associated exact sequence I+≡0→M→I0→I1→... is
HomA(−,V)-exact (that is, it remains exact after applying the functor HomA(−, V )
to it for each V ∈V), which is always denoted M

�−−→I. The proper W-resolutions
P

�−−→M of M are defined dually.

1.3 (Co)Syzygies. A proper V-coresolution M
�−−→I of an object M in A is

called special if each Ker(Ii→Ii+1) is in ⊥V for i≥1. Since V is a special preen-
veloping subcategory, every object in A has a special proper V-coresolution. We
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let Θi
VM denote the kernel Ker(Ii→Ii+1) for some special proper V-coresolution

M
�−−→I; it is always called the ith V-cosyzygy of M . We always set ΘVM=Θ1

VM .
Dually, a proper W-resolution P

�−−→M of an object M in A is called special if
each Coker(Pi+1→Pi) is in W⊥ for i≥1. Since W is a special precovering subcat-
egory, every object in A has a special proper W-resolution. We let ΩW

i M denote
the cokernel Coker(Pi+1→Pi) for some special proper W-resolution P

�−−→M ; it is
always called the ith W-syzygy of M . We always set ΩWM=ΩW

1 M .

1.4 Remark. We mention that Θi
VM is in ⊥V, and ΩW

i M is in W⊥ for each
i≥1, which are used frequently in the paper.

1.5 Left satellite functors. Let F be a contravariant additive functor from
A to the category Ab of abelian groups. For an object M in A, there is a special
V-preenvelope 0→M→I

π−−→ΘVM→0 of M with I∈V and ΘVM∈⊥V. Following
Cartan and Eilenberg [6], the 1st left satellite of F with respect to V, denoted S−1

V F,
is defined as S−1

V F(M)=Ker F(π). Then S−1
V F is a contravariant additive functor

from A to Ab, and it is independent of the choices of special V-preenvelopes. We
set S−n

V F=S−1
V (S−n+1

V F) for each n>0, and set S0
V F=F.

Let G be a covariant additive functor from A to the category Ab of abelian
groups. For each object M in A, there is a special W-precover 0→ΩWM

ε−−→P→
M→0 of M with P∈W and ΩWM∈W⊥. The 1st left satellite of G with respect
to W, denoted S−1

W G, is defined as S−1
W G(M)=Ker G(ε). Then S−1

W G is a covari-
ant additive functor from A to Ab, and it is independent of the choices of special
W-precovers. We set S−n

W G=S−1
W (S−n+1

W G) for each n>0, and set S0
W G=G.

Let M and N be objects in A. For the contravariant functor F=ExtiA(−, N),
the value of the left satellite functor S−n

V F at M , S−n
V F(M), is always denoted

S−n
V ExtiA(M,N). For the covariant functor G=ExtiA(M,−), the value of the left

satellite functor S−n
W G at N , S−n

W G(N), is always denoted S−n
W ExtiA(M,N).

1.6 Remark. Since S−n
V F(I)=0 for each I∈V and any n>0, one has

S−n
V F(M)=S−n+k

V F(Θk
VM)

for n>k≥0. Similarly, since S−n
W G(P )=0 for each P∈W and any n>0, one has

S−n
W G(M)=S−n+k

W G(ΩW
k M) for n>k≥0.

1.7 Dimensions and relative cohomology. The V-injective dimension of
an object N in A is the quantity

V-idAN = inf{sup{n≥ 0 | In �=0} | N �−−→ I is a proper V-coresolution of N}.
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Let N be an object in A with N
�−−→I a proper V-coresolution. Then for each object

M in A and every i∈Z, the ith relative V-cohomology of N with coefficients in M

is defined as
ExtiAV(M,N)=Hi(HomA(M, I)).

Specially, if A has enough injectives and V is the subcategory of injectives, then
V-idAN is the classical injective dimension, and ExtiAV(M,N) is actually the group
ExtiA(M,N).

Dually, one has the definition of W-projective dimension, W-pdAM , of an object
M in A. Also, for objects M and N in A with P

�−−→M a proper W-resolution, the
ith relative W-cohomology of M with coefficients in N is defined as

ExtiWA(M,N)=Hi(HomA(P,N)).

1.8 Remark. The relation between ExtiAV(M,N) and ExtiWA(M,N) may be de-
rived from balanced pairs given by Chen [9, Definition 1.1]. Specially, if (W,V)
is a balanced pair in A, then by [9, Lemma 2.1] there is a natural isomorphism
ExtiAV(M,N)∼=ExtiWA(M,N) for all objects M and N in A, and each i≥0. In the
following we will recall the definition of balanced pairs.

1.9 Balanced pairs. Recall that a pair (X,Y) of subcategories of A is called
a balanced pair if the following conditions hold:

• X is precovering and Y is preenveloping.
• For each object M in A, there is a proper X-resolution X→M such that the

associated exact sequence X+ is HomA(−,Y)-exact.
• For each object N in A, there is a proper Y-coresolution N→Y such that the

associated exact sequence Y + is HomA(X,−)-exact.
Balanced pairs arise naturally from cotorsion triplets. Recall from [9] that

a triplet (X,Z,Y) of subcategories of A is a complete hereditary cotorsion triplet
if both (X,Z) and (Z,Y) are complete hereditary cotorsion pairs, see [13] for the
definition of complete hereditary cotorsion pairs. It follows from Estrada, Pérez and
Zhu [14, Proposition 4.2] that if (X,Z,Y) is a complete hereditary cotorsion triplet
then (X,Y) is a balanced pair(1). As an immediate consequence one gets that if A
has enough projectives and injectives then (Prj, Inj) is a balanced pair, where Prj
is the subcategory of projectives and Inj is the subcategory of injectives. For more
examples of balanced pairs one refers to [9] and [14].

The next result can be found in [9, Lemma 2.4].

(1) This result was first proved by Chen in [9, Proposition 2.6] under the assumption that A
has enough projectives and injectives.
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1.10 Lemma. Let M be an object in A. Then for each n≥0, the following
statements are equivalent.

(i) W-pdAM≤n.
(ii) ExtiWA(M,−)=0 for all i>n.
(iii) For each proper W-resolution P

�−−→M , Coker(Pn+1→Pn) is in W.

Dually, one has the following result.

1.11 Lemma. Let N be an object in A. Then for each n≥0, the following
statements are equivalent.

(i) V-idAN≤n.
(ii) ExtiAV(−, N)=0 for all i>n.
(iii) For each proper V-coresolution N

�−−→I, Ker(In→In+1) is in V.

2. Stable functors of additive functors

In this section, we introduce relative stable functors of additive functors and
investigate some properties including the exactness of these functors.

Setup. Throughout this section, we let F (resp., G) be a contravariant (resp.,
covariant) additive functor from A to the category Ab of abelian groups.

2.1 Stable functors. For each object M in A, there is a proper V-coresolution
M

�−−→I. The ith left derived functor of F with respect to V, denoted LV
i F , is defined

as LV
i F(M)=Hi(F(I)). It is known that LV

i F(M) is independent of the choices of
proper V-coresolutions of M ; see Enochs and Jenda [13, Section 8.2].

According to the universal property of cokernels there is a natural transforma-
tion ρ:LV

0 F→F. The cokernel of ρ, denoted by FV, is called the V-stable functor of F.
For an object M in A, FV(M) is independent of the choices of proper V-coresolutions
of M . It is clear that FV is a contravariant additive functor from A to Ab.

Dually, for each object N in A, there is a proper W-resolution P
�−−→N . The

ith left derived functor of G with respect to W, denoted LW
i G, is defined as

LW
i G(M)=Hi(G(P )). It is known that LW

i G(N) is independent of the choices
of proper W-resolutions of N ; see [13, Section 8.2].

It follows from the universal property of cokernels that there is a natural trans-
formation �:LW

0 G→G. The cokernel of �, denoted by GW, is called the W-stable
functor of G. For an object N in A, GW(N) is independent of the choices of proper
W-resolutions of N . Clearly, GW is a covariant additive functor from A to Ab.

The following result is used frequently in the paper.
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2.2 Theorem. Let M and N be objects in A. Then the following statements
hold.

(a) Let 0→M
d−−→I0→ΘVM→0 be a special V-preenvelope of M . Then there

is a natural isomorphism FV(M)∼=CokerF(d).
(b) Let 0→ΩWN→P0

f−−→N→0 be a special W-precover of N . Then there is a
natural isomorphism GW(N)∼=Coker G(f).

Proof. We only prove (a); the statement (b) is proved dually.
Fix a proper V-coresolution 0→ΘVM→I1→I2→.... Then one gets a proper

V-coresolution 0→M
d−−→I0→I1→.... This yields the following commutative dia-

gram with exact rows and columns:

F(I1)

��

�� F(I0)
F(d)

��

�� LV
0 F(M)
ρM

��

�� 0

0 �� F(M)

����

F(M)
����

�� 0

Coker F(d) η
�� FV(M),

where the dotted morphism η is induced by the universal property of cokernels.
Then η is an isomorphism by the Snake Lemma. �

2.3 Corollary. If M is in V and N is in W, then FV(M)=0=GW(N).
Let M and N be objects in A, and let F=HomA(−, N) and G=HomA(M,−).

We always denote FV(M) by HomV
A(M,N), and denote GW(N) by HomW

A (M,N).

2.4 Proposition. For objects M and N in A, there are two equalities

HomV
A(M,N)=HomA(M,N)/VHomA(M,N), and

HomW
A (M,N)=HomA(M,N)/WHomA(M,N).

Here VHomA(M,N) (resp., WHomA(M,N)) is the subgroup of HomA(M,N) con-
sisting of the morphisms that factor through an object in V (resp., W).

Proof. We only prove the first equality; the second one is proved dually.
For an object M in A, there is a proper V-coresolution M

�−−→I. Applying
the functor HomA(−, N) to the exact sequence 0→M

d−−→I0→I1→..., one gets the
following commutative diagram:

HomA(I1, N) �� HomA(I0, N)
d∗

��

π
�� LV

0 HomA(M,N) ��

ρM������
����

��
0

HomA(M,N).
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By the definition of V-stable functor, one has

HomV
A(M,N)=HomA(M,N)/ Im ρM =HomA(M,N)/ Im d∗.

So it is sufficient to show Im d∗=VHomA(M,N). Clearly, Im d∗⊆VHomA(M,N).
Conversely, let f be in VHomA(M,N). Then there exists an object C∈V and mor-
phisms g :M→C and h:C→N such that f=hg. Since the sequence HomA(I0, C)→
HomA(M,C)→0 is exact, there exists a morphism λ:I0→C such that g=λd. Then
f=hg=hλd=d∗(hλ)∈Im d∗, as desired. �

2.5 Remark. Assume that A has enough injectives and V is the subcategory of
injectives in A. Then by Proposition 2.4, HomV

A(M,N) is the stable Hom group
based on injectives given by Nucinkis [23]. Dually, if A has enough projectives and
W is the subcategory of projectives in A, then by Proposition 2.4, HomW

A (M,N) is
the classical stable Hom group.

In the following we collect some results on exactness of V-stable functors and
W-stable functors.

2.6. Let M be an object in A with 0→M→I→ΘVM→0 and 0→M→I ′→
Θ′

VM→0 special V-preenvelopes. Then one gets the following commutative diagram
with exact rows:

(2.6.1) 0 �� M �� I

β
��

g
�� ΘVM

α
��

�� 0

0 �� M �� I ′
g′

�� Θ′
VM

�� 0.

Dually, let N be an object in A with 0→ΩWN→P→N→0 and 0→Ω′WN→
P ′→N→0 special W-precovers. Then one gets the next commutative diagram with
exact rows:

(2.6.2) 0 �� ΩWN

ϕ
��

�� P

��

�� N �� 0

0 �� Ω′WN �� P ′ �� N �� 0.

2.7 Proposition. Adopt the notation from 2.6. FV(α) and GW(ϕ) are isomor-
phisms.

Proof. We prove that FV(α) is an isomorphism; the next statement is proved
dually.
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We adopt the setup and notation in 2.6. One gets an exact sequence

0−→ I

(
β
g

)
−−−→ I ′⊕ΘVM

(g′,−α)−−−−−→Θ′
VM −→ 0;

it is split as I∈V and Θ′
VM∈⊥V (see Remark 1.4). Then there exists a morphism

(τ, λ):I ′⊕ΘVM→I satisfying idI=(τ, λ)
(
β
g

)
=τβ+λg. Hence one obtains the fol-

lowing commutative diagram with exact rows:

0 �� I

(
β
g

)
�� I ′⊕ΘVM(

τ λ
g′ −α

)
��

(g′,−α)
�� Θ′

VM
�� 0

0 �� I

(
1
0
)
�� I⊕Θ′

VM
(0,1)

�� Θ′
VM

�� 0.

It follows from the Snake Lemma that
(

τ λ
g′ −α

)
:I ′⊕ΘVM→I⊕Θ′

VM is an isomor-
phism. Since FV is an additive functor and FV(I)=0=FV(I ′) by Corollary 2.3, it is
obvious that FV(α) is an isomorphism. �

2.8. Let 0→M ′→M→M ′′→0 be an exact sequence of objects in A which
is HomA(−,V)-exact. Fix special V-preenvelopes 0→M ′→I0→ΘVM

′→0 and 0→
M ′′→H0→ΘVM

′′→0. One gets the following commutative diagram with exact
rows and columns (see [13, Remark 8.2.2]):

(2.8.1) 0

��

0

��

0

��

0 �� M ′

��

�� M

��

�� M ′′

��

�� 0

0 �� I0

��

�� I0⊕H0

��

�� H0

��

�� 0

0 �� ΘVM
′ ��

��

S ��

��

ΘVM
′′ ��

��

0.

0 0 0

Since ΘVM
′ and ΘVM

′′ are in ⊥V (see Remark 1.4), so is S. Thus the middle
column is a special V-preenvelope of M , and the third non-zero row is HomA(−,V)-
exact; in this case we write S as ΘVM . Inductively, one gets a HomA(−,V)-exact
short exact sequence

0−→Θi
VM

′ −→Θi
VM −→Θi

VM
′′ −→ 0

for each i≥1.
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Dually, let 0→N ′→N→N ′′→0 be an exact sequence of objects in A which
is HomA(W,−)-exact. Fix special W-precovers 0→ΩWN ′→P0→N ′→0 and 0→
ΩWN ′′→Q0→N ′′→0. One gets the following commutative diagram with exact
rows and columns (see [13, Lemma 8.2.1]):

0
��

0

��

0
��

0 �� ΩWN ′

��

�� T

��

�� ΩWN ′′

��

�� 0

0 �� P0

��

�� P0⊕Q0

��

�� Q0

��

�� 0

0 �� N ′ ��

��

N ��

��

N ′′ ��

��

0.

0 0 0

Since ΩWN ′ and ΩWN ′′ are in W⊥ (see Remark 1.4), so is T . Thus the middle
column is a special W-precover of N , and the first non-zero row is HomA(W,−)-
exact; in this case we write T as ΩWN . Inductively, one gets a HomA(W,−)-exact
short exact sequence

0−→ΩW
i N ′ −→ΩW

i N −→ΩW
i N ′′ −→ 0

for each i≥1.

2.9 Remark. In 2.8, one sees that Θi
VM is actually based on the special proper

V-coresolution M
�−−→I⊕H, where M ′ �−−→I and M ′′ �−−→H are special proper V-co-

resolutions of M ′ and M ′′, respectively. Similarly, ΩW
i N is actually based on the

special proper W-resolution P⊕Q
�−−→N, where P

�−−→N ′ and Q
�−−→N ′′ are special

proper W-resolutions of N ′ and N ′′, respectively. Proposition 2.7 above asserts
that FV(Θi

VM) and GW(ΩW
i N) are independent of the choices of special proper

V-coresolutions and special proper W-resolutions, respectively.

2.10. The contravariant functor F is said to be half HomA(−,V)-exact if for
each HomA(−,V)-exact short exact sequence 0−−→A′−−→A−−→A′′−−→0 of objects
in A, the sequence F(A′′)−−→F(A)−−→F(A′) is exact. If furthermore the sequence
0→F(A′′)−−→F(A)−−→F(A′) is exact, then we call F left HomA(−,V)-exact. Right
HomA(−,V)-exact functors are defined dually.

The covariant functor G is half HomA(W,−)-exact if for each HomA(W,−)-
exact short exact sequence 0−−→A′−−→A−−→A′′−−→0 of objects in A, the sequence
G(A′)−−→G(A)−−→G(A′′) is exact. If furthermore the sequence 0→G(A′)−−→
G(A)−−→G(A′′) is exact, then we call G left HomA(W,−)-exact. Right HomA(W,−)-
exact functors are defined dually.
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2.11 Theorem. Let F be a left HomA(−,V)-exact functor and G a left
HomA(W,−)-exact functor. Then the following statements hold.

(a) For each HomA(−,V)-exact short exact sequence 0→M ′→M→M ′′→0 in
A, there exists an exact sequence

...−−→FV(ΘVM)−−→FV(ΘVM
′)−−→FV(M ′′)−−→FV(M)−−→FV(M ′).

(b) For each HomA(W,−)-exact short exact sequence 0→N ′→N→N ′′→0 in
A, there exists an exact sequence

...−−→GW(ΩWN)−−→GW(ΩWN ′′)−−→GW(N ′)−−→GW(N)−−→GW(N ′′).

Proof. We prove (a); the statement (b) is proved dually.
Applying the functor F to the diagram (2.8.1), one gets the following commu-

tative diagram:

0

��

0

��

0

��

F(ΘVM
′′)

��

F(ΘVM)

��

F(ΘVM
′)

��

0 �� F(H0)

��

�� F(I0⊕H0)

��

�� F(I0)

��

�� 0

0 �� F(M ′′)

��

�� F(M)

��

�� F(M ′)

��

FV(M ′′)

��

FV(M)

��

FV(M ′).

��

0 0 0

Since F is left HomA(−,V)-exact, all rows and columns are exact by Theorem 2.2.
Thus by the Snake Lemma one has an exact sequence

0−→F(ΘVM
′′)−→F(ΘVM)−→F(ΘVM

′)−→FV(M ′′)−−→FV(M)−→FV(M ′).
(2.11.1)

The sequence 0−−→ΘVM
′−−→ΘVM−−→ΘVM

′′−−→0 is a HomA(−,V)-exact short
exact sequence as ΘVM

′′∈⊥V. Fix special V-preenvelopes 0→ΘVM
′→I1→Θ2

VM
′→

0 and 0→ΘVM
′′→H1→Θ2

VM
′′→0. There is a commutative diagram with exact
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rows and columns:

0

��

0

��

0

��

0 �� ΘVM
′

��

�� ΘVM

��

�� ΘVM
′′

��

�� 0

0 �� I1

��

�� I1⊕H1

��

�� H1 ��

��

0

0 �� Θ2
VM

′

��

�� Θ2
VM

��

��

Θ2
VM

′′

��

�� 0.

0 0 0

Since Θ2
VM

′ and Θ2
VM

′′ are in ⊥V, so is Θ2
VM . Thus the middle column is a

special V-preenvelope of ΘVM . Applying the functor F to the above diagram and
combining the exact sequence (2.11.1), one gets the following commutative diagram
with exact columns:

0

��

0

��

0

��

F (Θ2
VM

′′)

��

�� F (Θ2
VM)

��

�� F (Θ2
VM

′)

��

0 �� F (H1)

��

�� F (I1⊕H1)

��

�� F (I1) ��

��

0 ��

��

0 ��

��

0

��

0 �� F (ΘVM
′′)

��

�� F (ΘVM)

��

�� F (ΘVM
′)

��

�� FV(M ′′) �� FV(M) �� FV(M ′)

F
V(ΘVM

′′)

��

�� F
V(ΘVM) ��

��

F
V(ΘVM

′)

��

δ
�� FV(M ′′) ��

��

FV(M) ��

��

FV(M ′).

��

0 0 0 0 0 0

Here the first three non-zero rows are exact, and δ :FV(ΘVM
′)→FV(M ′′) is ob-

tained by the universal property of cokernels. Taking out a part from the above
commutative diagram, one gets the following commutative diagram with the first
two rows and all columns exact:

F(I1⊕H1)

��

�� F(I1)

��

�� 0

��

F (ΘVM)

��

�� F (ΘVM
′)

��

�� F
V(M ′′)

FV(ΘVM) ��

��

FV(ΘVM
′) δ

��

��

FV(M ′′).

��

0 0 0
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It follows from [6, III. Lemma 3.2] that the sequence

FV(ΘVM)−→FV(ΘVM
′) δ−−→FV(M ′′)

is exact. The exactness of the sequence FV(ΘVM
′) δ−−→FV(M ′′)→FV(M) can be

obtained similarly. Hence one gets that the sequence

FV(ΘVM
′′)−→FV(ΘVM)−→FV(ΘVM

′)−→FV(M ′′)−→FV(M)−→FV(M ′)

is exact. Continuing this process, one gets the desired exact sequence in the state-
ment. �

2.12 Corollary. Let F be a left HomA(−,V)-exact functor. Then the following
statements are equivalent.

(i) FV is left HomA(−,V)-exact.
(ii) FV(Θi

VM)=0 for each object M in A and all i≥1.
(iii) FV(ΘVM)=0 for each object M in A.

Proof. The implication (ii)⇒(iii) is clear, and (iii)⇒(i) holds by Theorem 2.11.
(i)=⇒(ii): For each i≥1, consider a special V-preenvelope

0−→Θi−1
V M −→ Ii−1 −→Θi

VM −→ 0.

By (i) one gets an exact sequence 0→FV(Θi
VM)→FV(Ii−1). Since Ii−1 is in V, one

gets FV(Ii−1)=0 by Corollary 2.3, and so FV(Θi
VM)=0. �

Dually, we have the next result; one refers to Martsinkovsky and Zangurashvili
[21, Theorem 4.10] for some more equivalent conditions in the case where W is the
subcategory of projectives and G=HomA(M,−).

2.13 Corollary. Let G be a left HomA(W,−)-exact functor. Then the follow-
ing statements are equivalent.

(i) GW is left HomA(W,−)-exact.
(ii) GW(ΩW

i N)=0 for each object N in A and all i≥1.
(iii) GW(ΩWN)=0 for each object N in A.

An absolute analog of the following lemma can be found in [21, Proposition 4.3].

2.14 Lemma. If F is a half HomA(−,V)-exact functor, then so is the func-
tor FV. If G is a half HomA(W,−)-exact functor, then so is the functor GW.
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Proof. We prove the first statement; the second one is proved dually.
Let 0−−→M ′−−→M−−→M ′′−−→0 be a HomA(−,V)-exact short exact sequence

in A. Applying the functor F to the diagram (2.8.1), one gets the following com-
mutative diagram with exact columns by Theorem 2.2:

0 �� F(H0)

��

�� F(I0⊕H0)

��

�� F(I0)

��

�� 0

F(M ′′)

��

�� F(M)

��

�� F(M ′)

��

FV(M ′′) ��

��

FV(M) ��

��

FV(M ′).

��

0 0 0

The first two rows are exact as F is a half HomA(−,V)-exact additive functor, then
so is the third one by [6, III. Lemma 3.2]. Thus FV is half HomA(−,V)-exact. �

2.15 Proposition. Let F be a half HomA(−,V)-exact functor. Then the fol-
lowing statements are equivalent.

(i) FV is right HomA(−,V)-exact.
(ii) FV=0.
(iii) F is right HomA(−,V)-exact.

Proof. (i)=⇒(ii): For an object M in A, consider a special V-preenvelope

0−→M −→ I0 −→ΘVM −→ 0.

Then from (i) one has an exact sequence FV(I0)→FV(M)→0. Since I0∈V, one
gets F

V(I0)=0 by Corollary 2.3, and so F
V(M)=0.

(ii)=⇒(iii): By the definition of V-stable functor, there exists an exact se-
quence of functors LV

0 F ρ−−→F→FV→0. So ρ is an epimorphism by (ii). Since the
functor LV

0 F is right HomA(−,V)-exact by [13, Theorem 8.2.5(2)], the statement
(iii) holds.

(iii)=⇒(i): Let 0−−→M ′−−→M−−→M ′′−−→0 be a HomA(−,V)-exact short exact
sequence in A. By Lemma 2.14, the sequence FV(M ′′)−−→FV(M)−−→FV(M ′) is ex-
act. Then by Theorem 2.2 one gets the following commutative diagram with exact
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rows and columns:

F (M ′′)

��

�� F (M)

��

�� F (M ′)

��

�� 0

F
V(M ′′)

��

�� F
V(M)

��

�� F
V(M ′).

��

0 0 0

So the sequence FV(M ′′)−−→FV(M)−−→FV(M ′)−−→0 is exact. �

Let N be an object in A. We notice that if V is closed under direct summands,
then N is in V if and only if the functor F=HomA(−, N) is right HomA(−,V)-exact.
Thus the following result is immediate by Proposition 2.15.

2.16 Corollary. Suppose that V is closed under direct summands. Then the
following statements are equivalent for an object N in A.

(i) HomV
A(−, N) is right HomA(−,V)-exact.

(ii) HomV
A(M,N)=0 for each object M in A.

(iii) N∈V.

Dually, we have the following two results.

2.17 Proposition. Let G be a half HomA(W,−)-exact functor. Then the
following statements are equivalent.

(i) GW is right HomA(W,−)-exact.
(ii) GW=0.
(iii) G is right HomA(W,−)-exact.

2.18 Corollary. Suppose that W is closed under direct summands. Then the
following statements are equivalent for an object M in A.

(i) HomW
A (M,−) is right HomA(W,−)-exact.

(ii) HomW
A (M,N)=0 for each object N in A.

(iii) M∈W.

3. A cohomology theory based on stable functors

In this section we focus on the stable functors HomV
A(−, N) and HomW

A (M,−),
and introduce a cohomology theory based on these functors. Note that there are
equalities HomV

A(M,N)=HomA(M,N)/VHomA(M,N) and HomW
A (M,N)=

HomA(M,N)/WHomA(M,N) for all objects M and N in A by Proposition 2.4.
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3.1 Lemma. The following statements hold:
(a) Let N and N ′ be objects in A. Then for each object M∈A, there is a

natural isomorphism HomV
A(M,N⊕N ′)∼=HomV

A(M,N)⊕HomV
A(M,N ′).

(b) Let M and M ′ be objects in A. Then for each object N∈A, there is a
natural isomorphism HomW

A (M⊕M ′, N)∼=HomW
A (M,N)⊕HomW

A (M ′, N).

Proof. We only prove (a); the statement (b) is proved dually.
Let 0→M→I→ΘVM→0 be a special V-preenvelope of M . Then by Theo-

rem 2.2, one obtains the following commutative diagram with exact rows:

HomA(I,N⊕N ′)
∼=
��

�� HomA(M,N⊕N ′)
∼=
��

�� HomV
A(M,N⊕N ′)

η
��

�� 0

HomA(I,N)⊕HomA(I,N ′) �� HomA(M,N)⊕HomA(M,N ′) �� HomV
A(M,N)⊕HomV

A(M,N ′) �� 0,

where η is obtained by the universal property of cokernels. Moreover, η is an
isomorphism by the Five Lemma. �

3.2. Let M and N be objects in A. Adopt the notation from 2.6. There is an
induced morphism α:ΘVM→Θ′

VM , and one has an isomorphism(
τ λ
g′ −α

)
: I ′⊕ΘVM −→ I⊕Θ′

VM

by the proof of Proposition 2.7. Fix a proper V-coresolution

0−→N −→ J0 −→ J1 −→ ...

of N . Then one gets the following commutative diagram with exact rows:

HomA(J1, I ′⊕ΘVM)
∼=
��

�� HomA(J0, I ′⊕ΘVM)
∼=
��

�� LV
0 HomA(N, I ′⊕ΘVM)

φ
��

�� 0

HomA(J1, I⊕Θ′
VM) �� HomA(J0, I⊕Θ′

VM) �� LV
0 HomA(N, I⊕Θ′

VM) �� 0,

where φ is obtained by the universal property of cokernels. Moreover, φ is an iso-
morphism by the Five Lemma. Furthermore, one obtains the following commutative
diagram with exact rows by the definition of V-stable functors:

LV
0 HomA(N, I ′⊕ΘVM)

∼=φ
��

�� HomA(N, I ′⊕ΘVM)
∼=
��

�� HomV
A(N, I ′⊕ΘVM)

ψ
��

�� 0

LV
0 HomA(N, I⊕Θ′

VM) �� HomA(N, I⊕Θ′
VM) �� HomV

A(N, I⊕Θ′
VM) �� 0,

where ψ is obtained by the universal property of cokernels. Again by the Five
Lemma, ψ is an isomorphism. It follows from Corollary 2.16 and Lemma 3.1 that
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the morphism from HomV
A(N,ΘVM) to HomV

A(N,Θ′
VM) obtained by composition

with ψ is an isomorphism.
Dually, one gets that the morphism from HomW

A (Ω′WN,M) to HomW
A (ΩWN,M)

is an isomorphism.

3.3 Lemma. Let M and N be objects in A. Then there is a natural morphism

Δ1 : HomV
A(M,N)−→HomV

A(ΘVM,ΘVN).

Moreover, it is independent of the choices of V-cosyzygies, that is, if 0→M→I ′→
Θ′

VM→0 and 0→N→J ′→Θ′
VN→0 are another special V-preenvelopes, then there

exists a commutative diagram with columns isomorphisms

HomV
A(M,N) Δ1

�� HomV
A(ΘVM,ΘVN)

∼=
��

HomV
A(M,N)

Δ′
1
�� HomV

A(Θ′
VM,Θ′

VN).

Proof. Fix a special V-preenvelope 0→M
σ−−→I0→ΘVM→0 of M . Applying

the functor HomA(−, N) to the above sequence and using Theorem 2.2, one gets
the next diagram with the row exact and δ1=δ1π1:

HomA(I0, N) σ∗
�� HomA(M,N)

π1
�� ����

���
δ1

�� Ext1A(ΘVM,N) �� Ext1A(I0, N).

HomV
A(M,N)

��
δ1 ��������

(3.3.1)

For objects ΘVM and N , fix special V-preenvelopes 0→ΘVM
τ−−→I1→Θ2

VM→0 and
0→N→J0 ς−−→ΘVN→0. Consider the following commutative diagram with exact
rows and columns:

(3.3.2) HomA(I1, J0)

��

τ∗
�� HomA(ΘVM,J0)

ς∗
��

HomA(I1,ΘVN) �� HomA(ΘVM,ΘVN) π2
�� ��

∂1
��

HomV
A(ΘVM,ΘVN).

Ext1A(ΘVM,N)
β1

�� ��������

Since both ΘVM and Θ2
VM are in ⊥V (see Remark 1.4), and J0 is in V, one has

Ext1A(ΘVM,J0)= 0=Ext1A(Θ2
VM,J0),
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and hence ∂1 and τ∗ are epimorphisms. One has π2ς∗τ
∗=0, so π2ς∗=0. Thus by

the universal property of cokernels, one gets an epimorphism β1 :Ext1A(ΘVM,N)→
HomV

A(ΘVM,ΘVN) such that β1∂1=π2. Thus Δ1=β1δ1 is the desired morphism
from HomV

A(M,N) to HomV
A(ΘVM,ΘVN), which is natural as the connecting mor-

phisms δ1 and ∂1 are natural.
Finally the existence of the commutative diagram in the statement follows a

standard argument, and the vertical arrow is an isomorphism; see Proposition 2.7
and 3.2. �

Continuing the construction in Lemma 3.3, one gets a sequence

HomV
A(M,Θn

VN) Δ1−−→HomV
A(ΘVM,Θ1+n

V N) Δ2−−→HomV
A(Θ2

VM,Θ2+n
V N)−→ ....

So we have the next definition.

3.4 Definition. Let M and N be objects in A. For each n∈Z, the nth complete
cohomology of M and N with respect to V is defined as

}ExtnV(M,N)= colimiHomV
A(Θi

VM,Θi+n
V N).

3.5 Remark. It is easy to see that }ExtnV(−, N) is a contravariant additive func-
tor from A to Ab. Specially, if A has enough injectives and V is the subcategory of
injectives, then }ExtnV(M,N) is the cohomology group given by Nucinkis in [23].

The following result is dual to Lemma 3.3.

3.6 Lemma. Let M and N be objects in A. Then there is a natural morphism

Λ1 : HomW
A (M,N)−→HomW

A (ΩWM,ΩWN).

Moreover, it is independent of the choices of W-syzygies, that is, if 0→Ω′WM→
Q′→M→0 and 0→Ω′WN→P ′→N→0 are both special W-precovers, then there
exists a commutative diagram with columns isomorphisms

HomW
A (M,N) Λ1

�� HomW
A (ΩWM,ΩWN)

∼=
��

HomW
A (M,N)

Λ′
1

�� HomW
A (Ω′WM,Ω′WN).

Continuing the construction in Lemma 3.6, one gets a sequence

HomW
A (ΩW

n M,N) Λ1−−→HomW
A (ΩW

1+nM,ΩWN) Λ2−−→HomW
A (ΩW

2+nM,ΩW
2 N)−→ ....

So we have the next definition.
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3.7 Definition. Let M and N be objects in A. For each n∈Z, the nth complete
cohomology of M and N with respect to W is defined as

ÊxtnW(M,N)= colimiHomW
A (ΩW

i+nM,ΩW
i N).

3.8 Remark. It is easy to see that ÊxtnW(M,−) is a covariant additive functor
from A to Ab. Specially, if A has enough projectives and W is the subcategory of
projectives, then ÊxtnW(M,N) is the cohomology group given in [4].

3.9 Construction. For objects M and N in A, we construct the following
commutative diagrams

HomV
A(M,N)

∼=

��

��
δ1

����
���

���
�

Δ1
�� HomV

A(ΘVM,ΘVN)

∼=

��

		
δ2

		���
����

����
Δ2

�� HomV
A(Θ2

VM,Θ2
VN)
		

δ3

		���
����

����

∼=

��

�� ...

Ext1A(ΘVM,N) Ψ2
��

β1
�� ������������

μ1

�����
����

���
Ext1A(Θ2

VM,ΘVN) Ψ3
��

β2
�� �������������

μ2

		���
����

���
Ext1A(Θ3

VM,Θ2
VN) �� ...

S−1
V Ext1A(M,N)

��

ι1
�����������

Φ1
�� S−1

V Ext1A(ΘVM,ΘVN)
��

ι2
������������

Φ2
�� S−1

V Ext1A(Θ2
VM,Θ2

VN)
��

ι3
������������

�� ...,

(3.9.1)

HomW
A (M,N)

∼=

��

��

�����
����

��
�� HomW

A (ΩWM,ΩWN)

∼=

��

		

		���
����

����
�� HomW

A (ΩW
2 M,ΩW

2 N)
		

		���
����

����

∼=

��

�� ...

Ext1A(M,ΩWN) ��

�� ������������

		���
����

���
Ext1A(ΩWM,ΩW

2 N) ��

�� �������������

		���
����

����
Ext1A(ΩW

2 M,ΩW
3 N) �� ...

S−1
W Ext1A(M,N)

��

�����������
�� S−1

W Ext1A(ΩWM,ΩWN)
��

�������������
�� S−1

W Ext1A(ΩW
2 M,ΩW

2 N)
��

�������������
�� ....

(3.9.2)

We construct the diagram (3.9.1); the diagram (3.9.2) is constructed similarly.
Adopt the setup and the notation from the proof of Lemma 3.3. One gets

the monomorphism δ1 and epimorphism β1 with Δ1=β1δ1. Similarly, one gets the
monomorphism δ2 and epimorphism β2 with Δ2=β2δ2.

Fix special V-preenvelopes 0→ΘVM
τ−−→I1→Θ2

VM→0 and 0→N→J0 ς−−→
ΘVN→0. Consider the next commutative diagram with exact rows and columns:

HomA(I1, J0)
τ∗

����

�� HomA(I1,ΘVN)

��

HomA(ΘVM,J0) ς∗
�� HomA(ΘVM,ΘVN) ∂1

�� ��

δ2
��

Ext1A(ΘVM,N)

Ψ2

� � � � �

Ext1A(Θ2
VM,ΘVN)
λ
��

Ext1A(I1,ΘVN).
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Here both ∂1 and τ∗ are epimorphisms, as ΘVM and Θ2
VM are in ⊥V and J0∈V.

It is easy to see δ2ς∗=0, so one gets a morphism

Ψ2 : Ext1A(ΘVM,N)−→Ext1A(Θ2
VM,ΘVN)

such that Ψ2∂1=δ2. By the diagram (3.3.2), one has δ2β1∂1=δ2π2=δ2. So one gets
Ψ2=δ2β1, as ∂1 is an epimorphism. Similar as above, one obtains Ψ3=δ3β2.

By the definition of left satellite functors, S−1
V Ext1A(M,N) is the kernel of the

morphism from Ext1A(ΘVM,N) to Ext1A(I0, N), so the morphism ι1 in (3.9.1) is the
natural embedding, and so are ι2 and ι3. Consider the next diagram

Ext1A(ΘVM,N)

Ψ2
��

μ1



� � � � � � �

S−1
V Ext1A(ΘVM,ΘVN) �� ι2 �� Ext1A(Θ2

VM,ΘVN) λ
�� Ext1A(I1,ΘVN).

Since λΨ2∂1=λδ2=0 and ∂1 is an epimorphism, one has λΨ2=0. Thus there is
a morphism μ1 :Ext1A(ΘVM,N)→S−1

V Ext1A(ΘVM,ΘVN) such that ι2μ1=Ψ2. Set
Φ1=μ1ι1. Similarly, one gets the morphism μ2 in (3.9.1) with ι3μ2=Ψ3. Set Φ2=
μ2ι2.

Finally, consider the following commutative diagram with exact rows:

0 �� HomV
A(M,N)
η1

��

δ1
�� Ext1A(ΘVM,N) �� Ext1A(I0, N)

0 �� S−1
V Ext1A(M,N) ι1

�� Ext1A(ΘVM,N) �� Ext1A(I0, N),

where the first exact sequence is given in the diagram (3.3.1), the morphism η1 is ob-
tained by the universal property of kernels. So one has ι1η1=δ1, moreover, it follows
from the Five Lemma that η1 is an isomorphism. Similarly, one gets the second and
third vertical isomorphisms η2 :HomV

A(ΘVM,ΘVN)→S−1
V Ext1A(ΘVM,ΘVN) and η3 :

HomV
A(Θ2

VM,Θ2
VN)→S−1

V Ext1A(Θ2
VM,Θ2

VN) in (3.9.1) such that ι2η2=δ2 and ι3η3=
δ3. It implies that the triangles on the right side of the first, second and third ver-
tical isomorphisms in (3.9.1) are commutative, respectively.

Since ι2η2β1=δ2β1=Ψ2=ι2μ1 and ι2 is a monomorphism, one has η2β1=μ1,
which implies that the triangle on the left side of the second vertical isomorphism
in (3.9.1) is commutative. Similarly, one obtains the triangle on the left side of the
third vertical isomorphism in (3.9.1) is commutative, that is η3β2=μ2. Hence all
the squares in (3.9.1) are commutative.

Now continuing this construction one gets the commutative diagram (3.9.1).
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3.10 Theorem. Let M and N be objects in A. For each n∈Z there exist
natural isomorphisms

}ExtnV(M,N)∼= colimiExt1A(Θi+1
V M,Θi+n

V N)∼= colimi S−1
V Ext1A(Θi

VM,Θi+n
V N)

and

ÊxtnW(M,N)∼= colimiExt1A(ΩW
i+nM,ΩW

i+1N)∼= colimi S−1
W Ext1A(ΩW

i+nM,ΩW
i N).

Proof. Since the functor colimi is exact, one gets the first isomorphism by the
commutative diagram (3.9.1). The isomorphism

}ExtnV(M,N)∼= colimi S−1
V Ext1A(Θi

VM,Θi+n
V N)

holds again by (3.9.1). The remaining isomorphisms can be proved similarly. �

3.11 Construction. Let M and N be objects in A and n∈Z. For each k≥1,
the exact sequence 0→Θk

VM→Ik→Θk+1
V M→0 yields an exact sequence

Extn+k
A (Θk

VM,N) δ−−→Extn+k+1
A (Θk+1

V M,N)−→Extn+k+1
A (Ik, N).

The connecting morphism δ induces a morphism from Extn+k
A (Θk

VM,N) to the ker-
nel S−1

V Extn+k+1
A (Θk

VM,N)∼=S−(k+1)
V Extn+k+1

A (M,N); see Remark 1.6. Composed
with the natural embedding from S−k

V Extn+k
A (M,N)∼=S−1

V Extn+k
A (Θk−1

V M,N) to
Extn+k

A (Θk
VM,N) one gets a morphism

δ : S−k
V Extn+k

A (M,N)−→ S−(k+1)
V Extn+k+1

A (M,N).

Similarly, consider the connected sequence Ext∗A(M,−) of covariant functors,
one gets a morphism

∂ : S−k
W Extn+k

A (M,N)−→ S−(k+1)
W Extn+k+1

A (M,N).

As constructed in 3.11, {S−i
V Extn+i

A (M,N)}i≥1 and {S−j
W Extn+j

A (M,N)}j≥1
are direct systems. Then we have the next result.

3.12 Proposition. Suppose that Ext≥1
A (⊥V,V)=0=Ext≥1

A (W,W⊥). Let M

and N be objects in A. Then for each n∈Z, there are natural isomorphisms

}ExtnV(M,N)∼= colimi S−i
V Extn+i

A (M,N)

and
ÊxtnW(M,N)∼= colimj S−j

W Extn+j
A (M,N).
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Proof. We prove the first isomorphism; the second one is proved dually.
Fix an integer n. For each i≥max{1, 1−n}, one gets a natural isomorphism

Extn+i
A (Θi

VM,N)∼= Ext1A(Θi
VM,Θi+n−1

V N)

by dimension shifting as Ext≥1
A (⊥V,V)=0. Then it follows from (3.3.2) that there

exists an epimorphism

βi : Extn+i
A (Θi

VM,N)−→HomV
A(Θi

VM,Θi+n
V N).

Applying functor HomA(−, N) to the special V-preenvelope

0−→Θi
VM

ι−−→ Ii
π−−→Θi+1

V M −→ 0,

one gets a long exact sequence

...−→Extn+i
A (Θi

VM,N) δi−−→Extn+i+1
A (Θi+1

V M,N)−→Extn+i+1
A (Ii, N)−→ ....

(3.12.1)

This yields that {Extn+i
A (Θi

VM,N)}i≥max{1,1−n} is a direct system. The functor
colimi is exact, so one gets an epimorphism

βM,N : colimi Extn+i
A (Θi

VM,N)−→ colimiHomV
A(Θi

VM,Θi+n
V N).

We next clarify βM,N is a monomorphism. Applying functor HomA(Θi
VM,−)

to the special V-preenvelope

0−→Θi+n−1
V N

τ−−→J i+n−1 σ−−→Θi+n
V N −→ 0,

one gets an exact sequence

HomA(Θi
VM,J i+n−1)−→HomA(Θi

VM,Θi+n
V N)−→Ext1A(Θi

VM,Θi+n−1
V N)−→ 0,

as Θi
VM∈⊥V and J i+n−1∈V. An element in Ker(βM,N ) can be represented by an

element ϕ in

Extn+i
A (Θi

VM,N)∼= Ext1A(Θi
VM,Θi+n−1

V N)
∼= HomA(Θi

VM,Θi+n
V N)/ Im HomA(Θi

VM,σ)

for some i; one writes ϕ=ϕ+Im HomA(Θi
VM,σ) with ϕ∈HomA(Θi

VM,Θi+n
V N).

Then it suffices to prove δi(ϕ)=0. It follows from (3.3.2) that

βM,N (ϕ)=βM,N (ϕ+Im HomA(Θi
VM,σ))

=ϕ+VHomA(Θi
VM,Θi+n

V N)



62 Shoutao Guo and Li Liang

=0

in HomV
A(Θi

VM,Θi+n
V N). This yields that ϕ factors through an object in V, and

hence through Ii such that ϕ=λι for λ∈HomA(Ii,Θi+n
V N). Consider the following

commutative diagram with exact rows:

Θi
VM

ϕ
��

��
ι

�� Ii

λ

��		
		
		
		
	

ψ
��

π
�� �� Θi+1

V M

ω
��

φ

��
 
 
 
 


Θi+n
V N ��

τ
�� J i+n σ

�� �� Θi+n+1
V N.

Since (ψ−τλ)ι=0 and the sequence

0−→HomA(Θi+1
V M,J i+n) π∗

−−→HomA(Ii, J i+n) ι∗−−→HomA(Θi
VM,J i+n)−→ 0

is exact, one has ψ−τλ∈Ker ι∗=Im π∗. Thus there is a morphism φ in
HomA(Θi+1

V M,J i+n) satisfying ψ−τλ=π∗(φ)=φπ. So σφπ=σ(ψ−τλ)=σψ=ωπ,
which yields that σφ=ω as π is an epimorphism. Hence

δi(ϕ)= δi(ϕ+Im HomA(Θi
VM,σ))=ω+Im HomA(Θi+1

V M,σ).

Since ω=σφ=HomA(Θi+1
V M,σ)(φ)∈Im HomA(Θi+1

V M,σ), it follows that δi(ϕ)=0.
This implies that βM,N is a monomorphism, and hence an isomorphism.

Finally, we prove that there is an isomorphism

colimi Extn+i
A (Θi

VM,N)∼= colimi S−i
V Extn+i

A (M,N).

Consider the exact sequence (3.12.1). Then one gets the next equalities:

Im δi =Ker(Extn+i+1
A (Θi+1

V M,N)−→Extn+i+1
A (Ii, N))

=S−1
V Extn+i+1

A (Θi
VM,N)

=S−i−1
V Extn+i+1

A (M,N),

where the last equality follows from Remark 1.6. Passing onto direct limits one gets

colimi Extn+i
A (Θi

VM,N)∼=colimi Im δi =colimi S−i
V Extn+i

A (M,N).

This completes the proof. �

3.13 Remark. The first isomorphism in Proposition 3.12 was proved by
Nucinkis in [23, Theorem 3.6] for V=Inj in the category of R-modules, and the
second one was proved by Kropholler in [17, Section 3.3] for W=Prj in the category
of R-modules; see also Celikbas, Christensen, Liang and Piepmeyer [8, Appendix B].
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4. Stable cohomology

In this section we consider the stable cohomology with respect to a preenvelop-
ing/precovering subcategory (not necessarily special). Throughout this section all
complexes are cochain complexes of objects in A. We start by recalling the definition
of stable cohomology that was first introduced by Goichot [15].

4.1. For complexes X and Y of objects in A, the symbol HomA(X,Y ) denotes
the complex of abelian groups with the degree-n term

HomA(X,Y )n =
∏
i∈Z

Hom(Xi, Y n+i)

and the differential given by ∂(α)=∂Y α−(−1)|α|α∂X for a homogeneous element
α. The bounded Hom-complex HomA(X,Y ) is the subcomplex of HomA(X,Y ) with
degree-n term

HomA(X,Y )n =
∐
i∈Z

HomA(Xi, Y n+i).

We denote by H̃omA(X,Y ) the quotient complex HomA(X,Y )/HomA(X,Y ), which
is called stable Hom-complex.

4.2 Definition. Let M and N be objects in A with M
�−−→I and N

�−−→J proper
V-coresolutions of M and N , respectively. For each n∈Z, the nth bounded coho-
mology of M and N with respect to V is

ExtnV(M,N) = Hn(HomA(I, J)),

and the nth stable cohomology of M and N with respect to V is

ẼxtnV(M,N) = Hn(H̃omA(I, J)).

Dually, let P �−−→M and Q
�−−→N be proper W-resolutions of M and N , respec-

tively. For each n∈Z, the nth bounded cohomology of M and N with respect to W
is

ExtnW(M,N) = Hn(HomA(P,Q)),

and the nth stable cohomology of M and N with respect to W is

ẼxtnW(M,N) = Hn(H̃omA(P,Q)).

4.3 Remark. Any two proper V-coresolutions and proper W-resolutions of M
are homotopy equivalent, respectively; see [13, Section 8.2]. Thus the above defini-
tions of bounded cohomology and stable cohomology are independent of the choices
of proper V-coresolutions and proper W-resolutions, respectively.
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4.4. For a complex X=...→Xn−1 ∂n−1

−−−→Xn→Xn+1→Xn+2→... of objects in
A, the symbol X⊃n denotes the quotient complex

...−→ 0−→Coker ∂n−1 −→Xn+1 −→Xn+2 −→ ...,

the symbol X≥n denotes the subcomplex

...−→ 0−→Xn −→Xn+1 −→ ...,

and the symbol Σn(−) denotes the shift functor.
In view of Proposition 2.4, it can be proved similarly as in [23, Theorem 4.4]

(see also [8, Appendix B]) that stable cohomology is actually the cohomology given
in Section 3. In the following we give the proof for the convenience of the reader.

4.5 Proposition. Let M and N be objects in A. Then for all n∈Z, there are
natural isomorphisms

ẼxtnV(M,N)∼= }ExtnV(M,N) and ẼxtnW(M,N)∼= ÊxtnW(M,N).

Proof. We prove the first isomorphism; the second one is proved dually.
Let M

�−−→I and N
�−−→J be proper V-coresolutions of M and N , respectively.

Suppose that μ̃ is an element of ẼxtnV(M,N) represented by a morphism μ of degree
n, which is a chain map in high degrees, i.e., the following diagram

0 �� Θi
VM

μ̂i

��

�� Ii

μi

��

�� Ii+1 ��

μi+1

��

...

0 �� Θi+n
V N �� J i+n �� J i+n+1 �� ...

is commutative up to a sign (−1)n for i�0. Thus μi induces a unique element
μ̂i∈HomA(Θi

VM,Θi+n
V N). In this way, μ defines an element μ̂∈}ExtnV(M,N) in

view of Proposition 2.4. In order to show this yields a morphism

φn : ẼxtnV(M,N)−→ }ExtnV(M,N),

it must be verified that μ̂ is independent of the choices of representative μ of μ̃ in
ẼxtnV(M,N). If μ̃=ν̃ in ẼxtnV(M,N), then μ−ν is 0-homotopic in high degrees, so
one has the following commutative diagram:

0 �� Θi
VM

μ̂i−ν̂i

��

ι
�� Ii

μi−νi

��

di
��

δi



�
�
�
�
�

Ii+1 ��

��

δi+1



�
�
�
�
�

...

0 �� Θi+n
V N

ι′
�� J i+n �� J i+n+1 �� ...
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for all i�0. Since ι′(μ̂i−ν̂i)=(μi−νi)ι=(ι′δi+δi+1di)ι=ι′δiι and ι′ is a monomor-
phism, one has μ̂i−ν̂i=δiι. Then μ̂i−ν̂i factors through Ii∈V, whence it is zero in
HomV

A(Θi
VM,Θi+n

V N).
We will continue to claim that φn is an isomorphism. On one hand, let μ̃

be an element of ẼxtnV(M,N) such that φn(μ̃)=0 in }ExtnV(M,N). Then for all
i�0, the induced morphism μ̂i :Θi

VM→Θi+n
V N factors through an object C∈V and

hence through ι:Θi
VM→Ii. So one can construct a morphism δk+1 :Ik+1→Jk+n

for each k≥i, so μ is 0-homotopic in high degrees, i.e., μ̃=0 in ẼxtnV(M,N). On
the other hand, let μ̂∈}ExtnV(M,N) be a family of elements in the direct sys-
tem of HomV

A(Θi
VM,Θi+n

V N). Such a family is represented by an element μ̄=
μ+VHomA(Θi

VM,Θi+n
V N) for some i�0. Extending μ, one gets a morphism I≥i→

Σn(J≥i+n), which yields an element μ̃ in ẼxtnV(M,N) with φn(μ̃)=μ̂. �

Since ẼxtnV(M,N) and }ExtnV(M,N) (resp., ẼxtnW(M,N) and ÊxtnW(M,N)) are
naturally isomorphic, we will not distinguish these two notations; we use the nota-
tion }ExtnV(M,N) (resp., ÊxtnW(M,N)).

4.6 Proposition. Let M and N be objects in A. Then there are exact se-
quences

...−→ExtiV(M,N)−→ExtiAV(M,N)−→ }ExtiV(M,N)−→Exti+1
V (M,N)−→ ...

and

...−→ExtiW(M,N)−→ExtiWA(M,N)−→ ÊxtiW(M,N)−→Exti+1
W (M,N)−→ ....

Proof. We prove the first one; the second one is proved dually.
Fix proper V-coresolutions M

�−−→I and N
�−−→J . Then one gets an exact se-

quence

(4.6.1) 0−→HomA(I, J)−→HomA(I, J)−→ H̃omA(I, J)−→ 0.

It follows from a result by Christensen, Frankild and Holm [10, Proposition 2.7] that
ExtnAV(M,N)∼=Hn(HomA(I, J)) for all n∈Z. Thus (4.6.1) yields the exact sequence
in the statement. �

4.7 Proposition. The following statements hold:
(a) Let 0→N ′→N→N ′′→0 be a HomA(−,V)-exact short exact sequence in A.

Then for each object M in A there is an exact sequence

...−→ }ExtnV(M,N ′)−→ }ExtnV(M,N)−→ }ExtnV(M,N ′′)−→ }Extn+1
V (M,N ′)−→ ....
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(b) Let 0→M ′→M→M ′′→0 be a HomA(−,V)-exact short exact sequence
in A. Then for each object N in A there is an exact sequence

...−→ }ExtnV(M ′′, N)−→ }ExtnV(M,N)−→ }ExtnV(M ′, N)−→ }Extn+1
V (M ′′, N)−→ ....

Proof. We only prove (a); the statement (b) is proved similarly.
Let N ′ �−−→I and N ′′ �−−→H be proper V-coresolutions of N ′ and N ′′, respec-

tively. Then N has a proper V-coresolution N
�−−→J such that there is a degree-wise

split exact sequence 0→I→J→H→0; see [13, Remark 8.2.2]. Let M
�−−→L be a

proper V-coresolution of M . Then the sequence

0−→ H̃omA(L, I)−→ H̃omA(L, J)−→ H̃omA(L,H)−→ 0

is exact, which yields the exact sequence in the statement. �

The next result is proved dually.

4.8 Proposition. The following statements hold:
(a) Let 0→M ′→M→M ′′→0 be a HomA(W,−)-exact short exact sequence

in A. Then for each object N in A there is an exact sequence

...−→ ÊxtnW(M ′′, N)−→ ÊxtnW(M,N)−→ ÊxtnW(M ′, N)−→ Êxtn+1
W (M ′′, N)−→ ....

(b) Let 0→N ′→N→N ′′→0 be a HomA(W,−)-exact short exact sequence in A.
Then for each object M in A there is an exact sequence

...−→ ÊxtnW(M,N ′)−→ ÊxtnW(M,N)−→ ÊxtnW(M,N ′′)−→ Êxtn+1
W (M,N ′)−→ ....

The following are the vanishing results that were advertised in the introduction;
a special case where V is the subcategory of injectives was first proved by Nucinkis
in [23, Theorem 3.7].

4.9 Theorem. Suppose that V is closed under direct summands. Then for
each object N in A, the following statements are equivalent.

(i) V-idAN<∞.
(ii) }ExtnV(N,−)=0=}ExtnV(−, N) for all n∈Z.
(iii) }Ext0V(N,N)=0.

Proof. The implication (ii)=⇒(iii) is clear.
(i)=⇒(ii): Let M be an object in A with M

�−−→J a proper V-coresolution. Since
V-idAN is finite, it follows from Lemma 1.11 that there is a proper V-coresolution
N

�−−→I with I bounded. So one has HomA(I, J)=HomA(I, J). This implies

}ExtnV(N,M) = 0 = }ExtnV(M,N)
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for all n∈Z.
(iii)=⇒(i): Let N

�−−→I be a proper V-coresolution of N . Then one gets
H0(H̃omA(I, I))=0, and so for idI∈HomA(I, I)0 one has

idI +HomA(I, I)0 ∈Z0(H̃omA(I, I))=B0(H̃omA(I, I)).

Thus there is a morphism ϕ∈HomA(I, I)−1 such that idI −∂(ϕ)∈HomA(I, I)0 is
bounded. So there is an integer i�0 such that ∂i−1

I ϕi+ϕi+1∂i
I=idIi . Thus one has

∂i−1
I ϕi∂i−1

I =∂i−1
I , which yields that the epimorphism ∂i−1

I :Ii−1→Im ∂i−1
I is split.

V is closed under direct summands, so one has Im ∂i−1
I ∈V. Thus V-idAN is finite.

�

4.10 Corollary. Suppose that V is closed under direct summands. Then for
each object N in A and n∈Z, the following statements are equivalent.

(i) ExtiAV(C,N)=0 for each object C∈V and all i�n.
(ii) ExtiV(−, N)=0 for all i�n.

Proof. (i)=⇒(ii): Let M be an object with M
�−−→I a proper V-coresolution,

and let α:N �−−→J be a proper V-coresolution of N . For each C∈V, the complex
HomA(C, (Cone α)⊃n−2) is acyclic by (i), where Cone α denotes the mapping cone of
α. Thus by a result by Celikbas, Christensen, Liang and Piepmeyer [7, Proposition
A.2], the complex HomA(I, (Cone α)⊃n−2) is acyclic. So for each i�n one has

ExtiV(M,N)=Hi(HomA(I, J))=Hi(HomA(I, (Cone α)⊃n−2))= 0.

(ii)=⇒(i): For each C∈V and each i∈Z, one has }ExtiV(C,N)=0 by Theorem
4.9. So ExtiAV(C,N)=0 for each i�n by Proposition 4.6. �

Dually, we have the following two results.

4.11 Theorem. Suppose that W is closed under direct summands. Then for
each object M in A, the following statements are equivalent.

(i) W-pdAM<∞.
(ii) ÊxtnW(−,M)=0=ÊxtnW(M,−) for all n∈Z.
(iii) Êxt0W(M,M)=0.

4.12 Corollary. Suppose that W is closed under direct summands. Then for
each object N in A and n∈Z, the following statements are equivalent.

(i) ExtiWA(M,D)=0 for each object D∈W and all i�n.
(ii) ExtiW(M,−)=0 for all i�n.

We end this section with a new computation of stable cohomology }ExtnV(−,−)
(resp., ÊxtnW(−,−)) via Tate V-coresolutions (resp., Tate W-resolutions).
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4.13 Tate (co)resolutions. Recall from [27] that a complex T of objects in
V is totally V-acyclic if it is acyclic and the complex HomA(C, T ) and HomA(T,C)
are acyclic for each object C∈V. Let N be an object in A. A Tate V-coresolution
of N is a diagram N

�−−→I
α−−→T wherein T is a totally V-acyclic complex of objects

in V, N �−−→I is a proper V-coresolution of N , and αn is an isomorphism for n�0.
Dually, one has the definitions of a totally W-acyclic complex H and a Tate

W-resolution H
γ−−→P

�−−→M of M .

The next result generalizes [23, Theorem 7.3].

4.14 Proposition. Suppose that V is closed under direct summands. Let N

be an object in A that has a Tate V-coresolution N
�−−→I

α−−→T . Then for each object
M in A and all n∈Z, there is a natural isomorphism

}ExtnV(M,N)∼= Hn(HomA(M,T )).

Proof. Fix n∈Z, and let p≥n such that αi is an isomorphism for each i≥p.
Set L=Ker(∂p

I ) and K=Ker(∂n−1
T ). Since the complex T is HomA(−,V)-exact,

K
�−−→Σn−1T≥n−1 is a proper V-coresolution of K. Thus for each object C∈V and

i≥1, one has

ExtiAV(C,K)=Hi(HomA(C,Σn−1T≥n−1))
=Hi+n−1(HomA(C, T≥n−1))
=Hi+n−1(HomA(C, T ))
= 0,

where the last equality holds as T is HomA(V,−)-exact. This yields ExtiV(M,K)=0
for all i≥1 by Corollary 4.10. Thus from Proposition 4.6 one gets }Ext1V(M,K)∼=
Ext1AV(M,K). This is the third isomorphism in the next computation

}ExtnV(M,N) ∼= }Extn−p
V (M,L)

∼= }Ext1V(M,K)
∼= Ext1AV(M,K)
∼= H1(HomA(M,Σn−1T≥n−1))
= Hn(HomA(M,T≥n−1))
= Hn(HomA(M,T )).

The first two isomorphisms hold by Proposition 4.7 and Theorem 4.9; the fourth
one holds as K

�−−→Σn−1T≥n−1 is a proper V-coresolution of K. �

Dually, we have the following result.
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4.15 Proposition. Suppose that W is closed under direct summands. Let M

be an object in A that has a Tate W-resolution H→P
�−−→M . Then for each object

N in A and all n∈Z, there is a natural isomorphism

ÊxtnW(M,N)∼= Hn(HomA(H,N)).

4.16 Remark. We will study the relation between }ExtnV(M,N) and
ÊxtnW(M,N) when (W,V) is a balanced pair, and give a balance result in [16];
see 1.9 for the definition of balanced pairs.

5. Applications of the vanishing results

Let A be the category R-Mod of left R-modules, where R is an associative
ring. In this section, we give some applications of the vanishing results showed in
the above section, and give some characterizations of modules of finite homological
dimension including the flat dimension, cotorsion dimension, Gorenstein injective
(flat) dimension and projectively coresolved Gorenstein flat dimension.

5.1 Gorenstein injective objects. Recall from Enochs and Jenda [12] that
a left R-module M is called Gorenstein injective if there is a HomR(Inj,−)-exact
acyclic complex ...→E1→E0→E0→E1→... of injective left R-modules such that
M∼=Ker(E0→E1), where Inj is the subcategory of injective left R-modules. Let
V=GInj be the subcategory of Gorenstein injective left R-modules. It was proved
by Šaroch and Št’ovíček that V is a special preenveloping subcategory; see [25,
Theorem 5.6]. In this case, the V-injective dimension V-idN of a left R-module N

is actually the Gorenstein injective dimension GidRN .
The next result gives a characterization of modules of finite Gorenstein injective

dimension; it follows from Theorem 4.9.

5.2 Proposition. The following are equivalent for a left R-module N .
(i) GidRN<∞.
(ii) }ExtnGInj(N,−)=0=}ExtnGInj(−, N) for all n∈Z.
(iii) }Ext0GInj(N,N)=0.

5.3 Flat and cotorsion objects. A left R-module M is called cotorsion (see
Enochs [11]) if Ext1R(F,M)=0 for each flat left R-module F . Let V=Cot be the
subcategory of cotorsion left R-modules and W=Flat the subcategory of flat left
R-modules. Then V is a special preenveloping subcategory and W is a special pre-
covering subcategory; see [5, Proposition 2]. In this case, the V-injective dimension
V-idN of a left R-module N is actually the cotorsion dimension cdRN ; see Mao and
Ding [24]. Meanwhile, the W-projective dimension W-pdM of a left R-module M

is actually the flat dimension fdRM .
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We have the following two results by applying Theorem 4.9 and Theorem 4.11
respectively.

5.4 Proposition. The following are equivalent for a left R-module N .
(i) cdRN<∞.
(ii) }ExtnCot(N,−)=0=}ExtnCot(−, N) for all n∈Z.
(iii) }Ext0Cot(N,N)=0.

5.5 Proposition. The following are equivalent for a left R-module M .
(i) fdRM<∞.
(ii) ÊxtnFlat(−,M)=0=ÊxtnFlat(M,−) for all n∈Z.
(iii) Êxt0Flat(M,M)=0.

5.6 Gorenstein flat modules. Recall from [13] that a left R-module M is
called Gorenstein flat if there exists an acyclic complex ...→F1→F0→F 0→F 1→
... of flat left R-modules with M∼=Ker(F 0→F 1) such that it remains exact after
applying the functor E⊗R− for each injective right R-module E. Let W=GFlat be
the subcategory of Gorenstein flat left R-modules. Then W is a special precovering
subcategory by [25, Corollary 4.12], and the W-projective dimension W-pdM of a
left R-module M is actually the Gorenstein flat dimension GfdRM .

The next result is immediate by Theorem 4.11.

5.7 Proposition. The following are equivalent for a left R-module M .
(i) GfdRM<∞.
(ii) ÊxtnGFlat(−,M)=0=ÊxtnGFlat(M,−) for all n∈Z.
(iii) Êxt0GFlat(M,M)=0.

5.8 Projectively coresolving Gorenstein flat modules. Recall from [25]
that a left R-module M is called projectively coresolved Gorenstein flat if there
exists an acyclic complex ...→P1→P0→P 0→P 1→... of projective left R-modules
with M∼=Ker(P 0→P 1) such that it remains exact after applying the functor E⊗R−
for each injective right R-module E. Let W=PGF be the subcategory of projec-
tively coresolved Gorenstein flat left R-modules. Then W is a special precovering
subcategory by [25, Theorem 4.9], and the W-projective dimension W-pdM of a
left R-module M is actually the projectively coresolved Gorenstein flat dimension
PGF-dimRM .

The next result is immediate by Theorem 4.11.

5.9 Proposition. The following are equivalent for a left R-module M .
(i) PGF-dimRM<∞.
(ii) ÊxtnPGF(−,M)=0=ÊxtnPGF(M,−) for all n∈Z.
(iii) Êxt0PGF(M,M)=0.
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