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Decay of extremals of Morrey’s inequality

Ryan Hynd, Simon Larson and Erik Lindgren

Abstract. We study the decay (at infinity) of extremals of Morrey’s inequality in R
n.

These are functions satisfying

sup
x �=y

|u(x)−u(y)|
|x−y|1−

n
p

=C(p, n)‖∇u‖Lp(Rn),

where p>n and C(p, n) is the optimal constant in Morrey’s inequality. We prove that if n≥2 then
any extremal has a power decay of order β for any

β <−1
3

+
2

3(p−1)
+

√(
−1

3
+

2
3(p−1)

)2
+

1
3
.

1. Introduction

Morrey’s classical inequality in R
n states that for p>n, there is a constant

C=C(p, n) such that

(1.1) [u]
C

0,1−n
p (Rn)

=sup
x�=y

|u(x)−u(y)|
|x−y|1−n

p
≤C(p, n)

(∫
Rn

|∇u|p dx
) 1

p

,

for all functions whose first order partial derivatives belong to Lp(Rn). In a series
of papers (cf. [7]–[9]), Hynd and Seuffert study this inequality and prove that there
is a smallest constant C>0 such that (1.1) holds and that there are extremals of
this inequality. An extremal is a function for which equality is attained in (1.1).
They also prove that up to translation, rotation, dilatation and multiplication by a
constant, any extremal function u satisfies

1. −Δpu=c(δen−δ−en) in R
n for a constant c>0,
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2. |u|≤1, u(en)=1, u(−en)=−1,
3. u is antisymmetric with respect to the xn-variable,
4. u is positive in R

n∩{xn>0}.
See Theorem 2.4 and Propositions 3.1, 3.4 and 3.5 in [9]. Here Δpu:=
∇·(|∇u|p−2∇u) is the p-Laplace operator. In addition to this, they study the be-
havior at infinity of extremals in dimensions n≥2 and prove that there is β>0 and
C>0 such that

(1.2) sup
|x|≥R

|u| ≤CR−β , for all R.

See Corollary 4.7 in [7]. However, no estimate of β is given.
The main objective of this paper is to provide an explicit exponent β. More

precisely, we prove the following theorem.

Theorem 1.1. Suppose p>n≥2, that u is an extremal of (1.1) satisfying prop-
erties (1)–(4) above and

β <−1
3 + 2

3(p−1) +

√(
−1

3 + 2
3(p−1)

)2

+ 1
3 .

Then there is C1=C1(β, p, n) such that

|u(x)| ≤C1|x|−β ,

for all |x|≥1.

As a corollary, we obtain the corresponding decay for the gradient.

Corollary 1.2. Under the assumptions of Theorem 1.1, there is C2=C2(β, p, n)
such that

|∇u(x)| ≤C2|x|−β−1,

for all |x|≥2.

Remark 1.3. A couple of remarks:
1. By (2) above the conclusion of Theorem 1.1 is valid also for |x|≤1. However,

the same is not true for Corollary 1.2. Indeed, by [6, Proposition 2.8] |∇u(x)|
becomes unbounded as x→±en.

2. In dimension one, the extremal satisfying (1)–(4) is explicitly given by

u(x)=

⎧⎪⎨
⎪⎩
−1 for x≤−1,
x for x∈(−1, 1),
1 for x≥1.

Therefore, the assumption n≥2 is necessary in Theorem 1.1. However, the bound
in Corollary 1.2 is trivially true when n=1.
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Although it is of intrinsic interest to further understand the extremal functions
of Morrey’s inequality, our motivation for the results in this short note stem from
a particular application. Namely, in [5] we address the existence of minimizers in a
certain variational problem and an estimate for the decay of Morrey extremals and
their gradients entered as a key technical ingredient.

1.1. Known results

The asymptotic behavior at infinity for solutions of PDEs has been studied
before. See for instance [12] where it is proved that bounded p-harmonic functions
in exterior domains has a limit at infinity. Related results can also be found in [10],
[3] and [4].

1.2. Plan of the paper

In Section 2, we discuss notation, definitions and certain prerequisites for this
paper. This is followed by Section 3, where Aronsson’s p-harmonic functions ob-
tained through separation of variables are discussed. In Section 4, we study the
singularities of functions that are p-harmonic in punctured domains. Finally, we
prove our main results in Section 5.
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2. Preliminaries

Throughout the paper we work in R
n with p>n≥2 and we will denote the

exponent appearing in Theorem 1.1 by

βp :=−1
3 + 2

3(p−1) +

√(
−1

3 + 2
3(p−1)

)2
+ 1

3 .
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We will need a few results regarding p-harmonic functions. The following
assertion is contained in Theorem 1.1 and Remark 1.6 in [10].

Theorem 2.1. Suppose that |u|≤1 in B1\{0}, u∈W 1,p
loc (B1\{0}) and that

−Δpu=0 in B1\{0}.

Then u∈W 1,p
loc (B1) and there is γ such that

−Δpu= |γ|p−2γδ0 in B1.

The next result is Corollary 2.4 in [7].

Proposition 2.2. Suppose u is bounded and satisfies

−Δpu= cδx0

in R
n for some point x0 and some constant c. Then u is necessarily constant and

c=0.

3. Solutions in the plane by separation of variables

In [1], Aronsson studies p-harmonic functions for p>2 in sectors of R2 which
have the form u(r, φ)=r−ˇf(φ) for ˇ>0(1) and where (r, φ) are polar coordinates.
In Lemma 1 case α) in [1], it is proved that u is p-harmonic in the cone r>0, φ∈I
if and only if

(3.1) g(φ) := (f ′(φ))2+
(

1+ 1
aˇ

)
ˇ

2(f(φ))2 > 0, a= p−1
p−2

and there is a constant C>0 such that

(3.2) [(f ′(φ))2+ˇ
2(f(φ))2]−ˇ =C2|g(φ)|−ˇ−1.

Recall that p>n=2 so a>0. On p. 145 in [1], the following semi-explicit formula
for a solution is given:

φ= θ−a(1+ˇ)
∫ θ

0

1
cos2 θ′+aˇ

dθ′, f =
(

1+ cos2 θ
aˇ

)−ˇ−1
2

cos θ.

In order to see that this implies (3.1) and (3.2), it is sufficient to compute f ′(φ) and
find that

f ′(φ)=ˇ

(
1+ cos2 θ

aˇ

)−ˇ−1
2

sin θ

(1) Note that ˇ here corresponds to −k in Aronsson’s notation and therefore the resulting
equations differ accordingly. Aronsson considers k of arbitrary sign but here only singular solutions
will be important.
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so that

(f ′(φ))2+ˇ
2(f(φ))2 =ˇ

2
(

1+ cos2 θ
aˇ

)−ˇ−1

.

It follows that

g(φ)=ˇ
2
(

1+ cos2 θ
aˇ

)−ˇ

> 0

and that (3.2) holds with C=ˇ
2.

Upon integration, the relation between φ and θ simplifies to

φ= θ−
(

1
ˇ

+1
)
μ arctan (μ tan θ) , μ=

√
aˇ√

aˇ+1
,

for θ∈(−π/2, π/2). This implies that the range of possible φ is I=(φ(π/2), φ(−π/2)),
which is an interval of length

L̃=π

(
μ
(
1+ 1

ˇ

)
−1

)
.

We also note that f is positive when cos θ is positive which is exactly on the inter-
val I. Hence, this defines a positive solution of the p-Laplace equation in a cone
with opening L̃, which is zero on the boundary rays of the cone.

Since we will be interested in solutions in cones with opening π or larger, we
let L̃=πL and obtain

(3.3) L=
√
aˇ√

aˇ+1

(
1+ 1

ˇ

)
−1,

which implies

(3.4) (L+1)2 = (ˇ+1)2

ˇ
2+ ˇ

a

.

Upon recalling that a=(p−1)/(p−2), it is clear that L is strictly decreasing in p.
It is not hard to see that if L=1, (3.4) gives ˇ=βp. This corresponds to a half
plane solution. Here we observe that βp decreases to its limit 1/3 as p→∞, hence
βp>1/3 for all p>2. In addition, differentiating (3.3) gives

dL

dˇ
=

√
a(ˇ(1−2a)−1)
2ˇ 3

2 (aˇ+1) 3
2

< 0.

Therefore, L is strictly decreasing in ˇ. Hence, for δ>0 there is a one to one
correspondence between L=1+δ and the corresponding power ˇ(δ)<βp. Moreover,
ˇ(δ)→βp as δ→0. Upon renaming δ, we may summarize our conclusions as:

For any power β<βp, there is a δ>0 and a p-harmonic function u=r−βf(φ) in
the cone r>0, φ∈(−π

2 −δ, π
2 +δ) which is positive for φ∈(−π

2 −δ, π
2 +δ) and satisfies

u(r,−π
2 −δ)=u(r, π

2 +δ)=0.
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4. Slow decay implies boundedness

In this section, we prove that certain global solutions of the p-Laplace equation
cannot blow up at the origin if they blow up too slowly.

Proposition 4.1. Suppose u≥0, Δpu=0 in R
n∩{xn>0}, u(x)=0 for xn=0

except possibly at the origin, |u(x)|≤1 for |x|≥1 and that

|u(x)| ≤ |x|−β ,

for |x|≤1 where β<βp. Then |u(x)|≤1 for all x 	=0.

Proof. Take τ>0 so that β+τ<βp. From the discussion in Section 3, it follows
that there is a solution w of the form

w(r, φ)= r−β−τf(φ)

valid in the cone r>0, φ∈(−π
2 −δ, π

2 +δ) for some δ>0. Here the polar coordinates
are chosen in the xn−1xn-plane so that φ=±π/2 corresponds to xn=0 and φ=0
corresponds to the positive xn-axis. Moreover, f(φ)>0 for φ∈(−π

2 −δ, π
2 +δ). This

means in particular that that rβ+τw(r, φ)>cf>0 in B1∩{xn≥0}\{0}. If we are
in dimension three or more, we extend this solution trivially to be a solution in
R

n∩{xn≥0}. Thus,

w(x1, ..., xn)= (x2
n−1+x2

n)−β/2−τ/2f(φ)≥ |x|−β−τf(φ).

The idea is to use w as a base for a barrier that will force u to be bounded.
To see this, let v=1+εw for ε>0. We now wish to compare u with v in

B1\Bρ∩{xn≥0}. Take ρ=ρ(ε)∈(0, 1) such that ρ−β≤εcfρ
−β−τ . On ∂B1∩{xn>0}

we have v≥1≥u, on ∂Bρ∩{xn≥0} we have

|u(x)| ≤ |ρ|−β ≤ εcfρ
−β−τ ≤ εw≤ v

and on B1\Bρ∩{xn=0} we have v≥0=u. The comparison principle implies u≤v in
B1\Bρ. Moreover, since ρ−β≤εcfρ

−β−τ , we trivially have u≤|x|−β≤εcf |x|−β−τ≤v

in Bρ\{0}. We conclude that u≤v in B1\{0}. This inequality does not depend on
ε so by letting ε→0, we obtain u≤1 in B1\{0} and the proof is complete. �

5. Proof of the main theorem

Proposition 5.1. Assume Δpu=0 in R
n\B1, |u(x)|≤1 for |x|≥1, u≥0 for

xn≥0 and that u is antisymmetric with respect to the xn-variable. Then for each

β<βp, there is a constant C=C(n, p, β) such that

sup
|x|≥r

|u(x)| ≤Cr−β , r≥ 1.
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We prove the proposition by proving the lemma below.

Lemma 5.2. Assume the hypotheses of Proposition 5.1. Then for each β<βp,

there is a constant C=C(n, p, β)>0 such that for all r≥1 at least one of the follow-

ing properties hold:

1. Sr :=sup|x|≥r |u(x)|≤Cr−β ,

2. There is a k≥1 such that 2−kr≥1 and Sr≤2−kβS2−kr.

We first explain how Proposition 5.1 follows from this lemma.

Proof of Proposition 5.1. If alternative (1) of Lemma 5.2 holds for all r≥1,
then we are done. If not, we pick an r for which (1) fails so that, by alternative (2),

Sr ≤ 2−k1βS2−k1r,

for some integer k1 with 2−k1r≥1. If (1) holds for 2−k1r, then

Sr ≤ 2−k1βS2−k1r ≤ 2−k1βC(2−k1r)−β =Cr−β

and again we are done. If not, we continue with

S2−k1r ≤ 2−k2βS2−k22−k1r,

where 2−k22−k1r≥1. Iterating this as long as alternative (1) fails, we obtain

Sr ≤ 2−knβ ...2−k1βS2−kn ...2−k1r =2−(k1+...+kn)βS2−k1−...−knr,

where 2−k1−...−knr≥1. Since every kj≥1, the procedure must stop after a finite
number of steps (depending r), say after n steps. Then alternative (1) holds for the
radius 2−k1−...−knr and so, finally,

Sr ≤ 2−(k1+...+kn)βS2−k1−...−knr ≤ 2−(k1+...+kn)βC(2−k1−...−knr)−β ≤Cr−β .

This proves the claim. �

Proof of Lemma 5.2. We assume towards a contradiction that the statement
is false. Then, for each j=1, 2, 3, ..., we may find rj≥1 such that

1. Srj≥jr−β
j ,

2. Srj≥2−kβS2−krj , for all k≥1 such that 2−krj≥1.
Note that the point 1) above forces rj→∞, since u is bounded. Define

vj(x)= u(rjx)
Srj

.

Setting Sr(vj):=sup|x|≥r |vj(x)|, it follows that vj satisfies
(a) S1(vj)=1,
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(b) S2−k(vj)≤2kβ , for all k such that 2−krj≥1,
(c) Δpvj=0 in R

n\B 1
rj

.
Using local estimates for the p-Laplace equation, we may therefore extract a subse-
quence converging locally uniformly in R

n\{0} to a function v. We also note that
by Corollary 4.2 in [7], we know that

S1(vj)= sup
|x|≥1

vj = sup
|x|=1

vj .

Therefore, the local uniform convergence assures that v satisfies
(a’) sup|x|=1 v=1,
(b’) S2−k(v)≤2kβ , for all k≥1,
(c’) Δpv=0 in R

n\{0}.
We also note that since each vj is antisymmetric with respect to the xn-variable
and non-negative in {xn≥0}, so is the limit v. By Proposition 4.1, |v(x)|≤1 for all
x 	=0. We can then apply Theorem 2.1 combined with Proposition 2.2 and conclude
that v has to be identically zero. This contradicts (a’) above. �

The proof of Theorem 1.1 is now immediate.

Proof of Theorem 1.1. As mentioned in the introduction, up to translation,
rotation and dilatation, any extremal function u is antisymmetric with respect to
the xn-variable, positive in R

n∩{xn>0}, p-harmonic outside B1 and satisfies |u|≤1.
Therefore, Proposition 5.1 applies and the proof is complete. �

From this and interior estimates for the p-Laplace equation, Corollary 1.2 fol-
lows.

Proof of Corollary 1.2. Take x such that |x|=R≥2 and β<βp. Then Theo-
rem 1.1 implies

sup
BR/4(x)

|u| ≤CR−β .

Since R≥2, BR/4(x)∩B1=∅ so that u is p-harmonic in BR/4(x). By interior gra-
dient estimates (cf. [2], [11] or [13])

sup
BR/8(x)

|∇u| ≤CR−1 sup
BR/4(x)

|u(x)| ≤CR−β−1

and in particular
|∇u(x)| ≤CR−β−1,

which completes the proof of Corollary 1.2. �
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