Decay of extremals of Morrey's inequality

Ryan Hynd, Simon Larson and Erik Lindgren

Abstract. We study the decay (at infinity) of extremals of Morrey's inequality in \mathbb{R}^n . These are functions satisfying

$$\sup_{x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{1 - \frac{n}{p}}} = C(p, n) \|\nabla u\|_{L^{p}(\mathbb{R}^{n})},$$

where p > n and C(p, n) is the optimal constant in Morrey's inequality. We prove that if $n \ge 2$ then any extremal has a power decay of order β for any

$$\beta < -\frac{1}{3} + \frac{2}{3(p-1)} + \sqrt{\left(-\frac{1}{3} + \frac{2}{3(p-1)}\right)^2 + \frac{1}{3}}.$$

1. Introduction

Morrey's classical inequality in \mathbb{R}^n states that for p > n, there is a constant C = C(p, n) such that

$$(1.1) \qquad [u]_{C^{0,1-\frac{n}{p}}(\mathbb{R}^n)} = \sup_{x \neq y} \frac{|u(x) - u(y)|}{|x-y|^{1-\frac{n}{p}}} \le C(p,n) \left(\int_{\mathbb{R}^n} |\nabla u|^p \, dx \right)^{\frac{1}{p}},$$

for all functions whose first order partial derivatives belong to $L^p(\mathbb{R}^n)$. In a series of papers (cf. [7]–[9]), Hynd and Seuffert study this inequality and prove that there is a smallest constant C>0 such that (1.1) holds and that there are extremals of this inequality. An extremal is a function for which equality is attained in (1.1). They also prove that up to translation, rotation, dilatation and multiplication by a constant, any extremal function u satisfies

1. $-\Delta_p u = c(\delta_{e_n} - \delta_{-e_n})$ in \mathbb{R}^n for a constant c > 0,

Key words and phrases: Morrey's inequality, decay at infinity, the p-Laplace equation. 2010 Mathematics Subject Classification: 35B65, 35J70.

2. $|u| \leq 1, u(e_n) = 1, u(-e_n) = -1,$

3. u is antisymmetric with respect to the x_n -variable,

4. *u* is positive in $\mathbb{R}^n \cap \{x_n > 0\}$.

See Theorem 2.4 and Propositions 3.1, 3.4 and 3.5 in [9]. Here $\Delta_p u := \nabla \cdot (|\nabla u|^{p-2} \nabla u)$ is the *p*-Laplace operator. In addition to this, they study the behavior at infinity of extremals in dimensions $n \ge 2$ and prove that there is $\beta > 0$ and C > 0 such that

(1.2)
$$\sup_{|x| \ge R} |u| \le CR^{-\beta}, \quad \text{for all } R.$$

See Corollary 4.7 in [7]. However, no estimate of β is given.

The main objective of this paper is to provide an explicit exponent β . More precisely, we prove the following theorem.

Theorem 1.1. Suppose $p > n \ge 2$, that u is an extremal of (1.1) satisfying properties (1)–(4) above and

$$\beta < -\frac{1}{3} + \frac{2}{3(p-1)} + \sqrt{\left(-\frac{1}{3} + \frac{2}{3(p-1)}\right)^2 + \frac{1}{3}}.$$

Then there is $C_1 = C_1(\beta, p, n)$ such that

$$|u(x)| \le C_1 |x|^{-\beta},$$

for all $|x| \ge 1$.

As a corollary, we obtain the corresponding decay for the gradient.

Corollary 1.2. Under the assumptions of Theorem 1.1, there is $C_2 = C_2(\beta, p, n)$ such that

$$|\nabla u(x)| \le C_2 |x|^{-\beta - 1}.$$

for all $|x| \ge 2$.

Remark 1.3. A couple of remarks:

1. By (2) above the conclusion of Theorem 1.1 is valid also for $|x| \leq 1$. However, the same is not true for Corollary 1.2. Indeed, by [6, Proposition 2.8] $|\nabla u(x)|$ becomes unbounded as $x \to \pm e_n$.

2. In dimension one, the extremal satisfying (1)-(4) is explicitly given by

$$u(x) = \begin{cases} -1 & \text{for } x \le -1, \\ x & \text{for } x \in (-1, 1) \\ 1 & \text{for } x \ge 1. \end{cases}$$

Therefore, the assumption $n \ge 2$ is necessary in Theorem 1.1. However, the bound in Corollary 1.2 is trivially true when n=1.

Although it is of intrinsic interest to further understand the extremal functions of Morrey's inequality, our motivation for the results in this short note stem from a particular application. Namely, in [5] we address the existence of minimizers in a certain variational problem and an estimate for the decay of Morrey extremals and their gradients entered as a key technical ingredient.

1.1. Known results

The asymptotic behavior at infinity for solutions of PDEs has been studied before. See for instance [12] where it is proved that bounded p-harmonic functions in exterior domains has a limit at infinity. Related results can also be found in [10], [3] and [4].

1.2. Plan of the paper

In Section 2, we discuss notation, definitions and certain prerequisites for this paper. This is followed by Section 3, where Aronsson's *p*-harmonic functions obtained through separation of variables are discussed. In Section 4, we study the singularities of functions that are *p*-harmonic in punctured domains. Finally, we prove our main results in Section 5.

Acknowledgements. We wish to thank Peter Lindqvist, who drew our attention to Aronsson's paper [1].

R. H. was supported by an American Mathematical Society Claytor-Gilmer Fellowship. E. L. has been supported by the Swedish Research Council, grant no. 2023-03471, 2017-03736 and 2016-03639. S. L. was supported by Knut and Alice Wallenberg Foundation, grants KAW 2021.0193 and KAW 2017.0295, and the Swedish Research Council, grant no. 2023-03985.

Part of this material is based upon work supported by the Swedish Research Council under grant no. 2016-06596 while all three authors were participating in the research program "Geometric Aspects of Nonlinear Partial Differential Equations", at Institut Mittag-Leffler in Djursholm, Sweden, during the fall of 2022.

2. Preliminaries

Throughout the paper we work in \mathbb{R}^n with $p > n \ge 2$ and we will denote the exponent appearing in Theorem 1.1 by

$$\beta_p := -\frac{1}{3} + \frac{2}{3(p-1)} + \sqrt{\left(-\frac{1}{3} + \frac{2}{3(p-1)}\right)^2 + \frac{1}{3}}.$$

We will need a few results regarding p-harmonic functions. The following assertion is contained in Theorem 1.1 and Remark 1.6 in [10].

Theorem 2.1. Suppose that $|u| \leq 1$ in $B_1 \setminus \{0\}$, $u \in W_{loc}^{1,p}(B_1 \setminus \{0\})$ and that

 $-\Delta_p u = 0$ in $B_1 \setminus \{0\}$.

Then $u \in W^{1,p}_{loc}(B_1)$ and there is γ such that

$$-\Delta_p u = |\gamma|^{p-2} \gamma \delta_0 \quad in \ B_1.$$

The next result is Corollary 2.4 in [7].

Proposition 2.2. Suppose *u* is bounded and satisfies

$$-\Delta_p u = c \delta_{x_0}$$

in \mathbb{R}^n for some point x_0 and some constant c. Then u is necessarily constant and c=0.

3. Solutions in the plane by separation of variables

In [1], Aronsson studies *p*-harmonic functions for p>2 in sectors of \mathbb{R}^2 which have the form $u(r,\phi)=r^{-\varkappa}f(\phi)$ for $\varkappa>0(^1)$ and where (r,ϕ) are polar coordinates. In Lemma 1 case α) in [1], it is proved that *u* is *p*-harmonic in the cone $r>0, \phi \in I$ if and only if

(3.1)
$$g(\phi) := (f'(\phi))^2 + \left(1 + \frac{1}{a\varkappa}\right)\varkappa^2 (f(\phi))^2 > 0, \quad a = \frac{p-1}{p-2}$$

and there is a constant C > 0 such that

(3.2)
$$[(f'(\phi))^2 + \varkappa^2 (f(\phi))^2]^{-\varkappa} = C^2 |g(\phi)|^{-\varkappa - 1}$$

Recall that p > n=2 so a > 0. On p. 145 in [1], the following semi-explicit formula for a solution is given:

$$\phi = \theta - a(1 + \varkappa) \int_0^\theta \frac{1}{\cos^2 \theta' + a\varkappa} d\theta', \quad f = \left(1 + \frac{\cos^2 \theta}{a\varkappa}\right)^{\frac{-\varkappa - 1}{2}} \cos \theta$$

In order to see that this implies (3.1) and (3.2), it is sufficient to compute $f'(\phi)$ and find that

$$f'(\phi) = \varkappa \left(1 + \frac{\cos^2 \theta}{a\varkappa}\right)^{\frac{\gamma}{2}} \sin \theta$$

 $[\]binom{1}{k}$ Note that \varkappa here corresponds to -k in Aronsson's notation and therefore the resulting equations differ accordingly. Aronsson considers k of arbitrary sign but here only singular solutions will be important.

so that

$$(f'(\phi))^2 + \varkappa^2 (f(\phi))^2 = \varkappa^2 \left(1 + \frac{\cos^2 \theta}{a\varkappa}\right)^{-\varkappa - 1}$$

It follows that

$$g(\phi) = \varkappa^2 \left(1 + \frac{\cos^2 \theta}{a\varkappa} \right)^{-\varkappa} > 0$$

and that (3.2) holds with $C = \varkappa^2$.

Upon integration, the relation between ϕ and θ simplifies to

$$\phi = \theta - \left(\frac{1}{\varkappa} + 1\right) \mu \arctan\left(\mu \tan \theta\right), \quad \mu = \frac{\sqrt{a\varkappa}}{\sqrt{a\varkappa + 1}}$$

for $\theta \in (-\pi/2, \pi/2)$. This implies that the range of possible ϕ is $I = (\phi(\pi/2), \phi(-\pi/2))$, which is an interval of length

$$\tilde{L} = \pi \left(\mu \left(1 + \frac{1}{\varkappa} \right) - 1 \right).$$

We also note that f is positive when $\cos \theta$ is positive which is exactly on the interval I. Hence, this defines a positive solution of the *p*-Laplace equation in a cone with opening \tilde{L} , which is zero on the boundary rays of the cone.

Since we will be interested in solutions in cones with opening π or larger, we let $\tilde{L}=\pi L$ and obtain

(3.3)
$$L = \frac{\sqrt{a\varkappa}}{\sqrt{a\varkappa + 1}} \left(1 + \frac{1}{\varkappa} \right) - 1,$$

which implies

(3.4)
$$(L+1)^2 = \frac{(\varkappa+1)^2}{\varkappa^2 + \frac{\varkappa}{a}}.$$

Upon recalling that a=(p-1)/(p-2), it is clear that L is strictly decreasing in p. It is not hard to see that if L=1, (3.4) gives $\varkappa=\beta_p$. This corresponds to a half plane solution. Here we observe that β_p decreases to its limit 1/3 as $p\to\infty$, hence $\beta_p>1/3$ for all p>2. In addition, differentiating (3.3) gives

$$\frac{dL}{d\varkappa} = \frac{\sqrt{a}(\varkappa(1-2a)-1)}{2\varkappa^{\frac{3}{2}}(a\varkappa+1)^{\frac{3}{2}}} < 0.$$

Therefore, L is strictly decreasing in \varkappa . Hence, for $\delta > 0$ there is a one to one correspondence between $L=1+\delta$ and the corresponding power $\varkappa(\delta) < \beta_p$. Moreover, $\varkappa(\delta) \rightarrow \beta_p$ as $\delta \rightarrow 0$. Upon renaming δ , we may summarize our conclusions as:

For any power $\beta < \beta_p$, there is a $\delta > 0$ and a *p*-harmonic function $u = r^{-\beta} f(\phi)$ in the cone r > 0, $\phi \in (-\frac{\pi}{2} - \delta, \frac{\pi}{2} + \delta)$ which is positive for $\phi \in (-\frac{\pi}{2} - \delta, \frac{\pi}{2} + \delta)$ and satisfies $u(r, -\frac{\pi}{2} - \delta) = u(r, \frac{\pi}{2} + \delta) = 0$.

4. Slow decay implies boundedness

In this section, we prove that certain global solutions of the *p*-Laplace equation cannot blow up at the origin if they blow up too slowly.

Proposition 4.1. Suppose $u \ge 0$, $\Delta_p u = 0$ in $\mathbb{R}^n \cap \{x_n > 0\}$, u(x) = 0 for $x_n = 0$ except possibly at the origin, $|u(x)| \le 1$ for $|x| \ge 1$ and that

$$|u(x)| \le |x|^{-\beta}$$

for $|x| \leq 1$ where $\beta < \beta_p$. Then $|u(x)| \leq 1$ for all $x \neq 0$.

Proof. Take $\tau > 0$ so that $\beta + \tau < \beta_p$. From the discussion in Section 3, it follows that there is a solution w of the form

$$w(r,\phi) = r^{-\beta-\tau} f(\phi)$$

valid in the cone r>0, $\phi \in (-\frac{\pi}{2}-\delta, \frac{\pi}{2}+\delta)$ for some $\delta>0$. Here the polar coordinates are chosen in the $x_{n-1}x_n$ -plane so that $\phi=\pm\pi/2$ corresponds to $x_n=0$ and $\phi=0$ corresponds to the positive x_n -axis. Moreover, $f(\phi)>0$ for $\phi \in (-\frac{\pi}{2}-\delta, \frac{\pi}{2}+\delta)$. This means in particular that that $r^{\beta+\tau}w(r,\phi)>c_f>0$ in $B_1 \cap \{x_n\geq 0\}\setminus\{0\}$. If we are in dimension three or more, we extend this solution trivially to be a solution in $\mathbb{R}^n \cap \{x_n\geq 0\}$. Thus,

$$w(x_1, ..., x_n) = (x_{n-1}^2 + x_n^2)^{-\beta/2 - \tau/2} f(\phi) \ge |x|^{-\beta - \tau} f(\phi).$$

The idea is to use w as a base for a barrier that will force u to be bounded.

To see this, let $v=1+\varepsilon w$ for $\varepsilon >0$. We now wish to compare u with v in $B_1 \setminus B_\rho \cap \{x_n \ge 0\}$. Take $\rho = \rho(\varepsilon) \in (0,1)$ such that $\rho^{-\beta} \le \varepsilon c_f \rho^{-\beta-\tau}$. On $\partial B_1 \cap \{x_n > 0\}$ we have $v \ge 1 \ge u$, on $\partial B_\rho \cap \{x_n \ge 0\}$ we have

$$|u(x)| \le |\rho|^{-\beta} \le \varepsilon c_f \rho^{-\beta-\tau} \le \varepsilon w \le v$$

and on $B_1 \setminus B_{\rho} \cap \{x_n = 0\}$ we have $v \ge 0 = u$. The comparison principle implies $u \le v$ in $B_1 \setminus B_{\rho}$. Moreover, since $\rho^{-\beta} \le \varepsilon c_f \rho^{-\beta-\tau}$, we trivially have $u \le |x|^{-\beta} \le \varepsilon c_f |x|^{-\beta-\tau} \le v$ in $B_{\rho} \setminus \{0\}$. We conclude that $u \le v$ in $B_1 \setminus \{0\}$. This inequality does not depend on ε so by letting $\varepsilon \to 0$, we obtain $u \le 1$ in $B_1 \setminus \{0\}$ and the proof is complete. \Box

5. Proof of the main theorem

Proposition 5.1. Assume $\Delta_p u=0$ in $\mathbb{R}^n \setminus \overline{B}_1$, $|u(x)| \leq 1$ for $|x| \geq 1$, $u \geq 0$ for $x_n \geq 0$ and that u is antisymmetric with respect to the x_n -variable. Then for each $\beta < \beta_p$, there is a constant $C = C(n, p, \beta)$ such that

$$\sup_{|x|\ge r} |u(x)| \le Cr^{-\beta}, \quad r \ge 1.$$

We prove the proposition by proving the lemma below.

Lemma 5.2. Assume the hypotheses of Proposition 5.1. Then for each $\beta < \beta_p$, there is a constant $C = C(n, p, \beta) > 0$ such that for all r > 1 at least one of the following properties hold:

1.
$$S_r := \sup_{|x| > r} |u(x)| \le Cr^{-\beta}$$
,

2. There is a $k \ge 1$ such that $2^{-k}r \ge 1$ and $S_r \le 2^{-k\beta}S_{2^{-k}r}$.

We first explain how Proposition 5.1 follows from this lemma.

Proof of Proposition 5.1. If alternative (1) of Lemma 5.2 holds for all $r \ge 1$, then we are done. If not, we pick an r for which (1) fails so that, by alternative (2),

$$S_r \le 2^{-k_1\beta} S_{2^{-k_1}r}$$

for some integer k_1 with $2^{-k_1}r \ge 1$. If (1) holds for $2^{-k_1}r$, then

$$S_r \le 2^{-k_1\beta} S_{2^{-k_1}r} \le 2^{-k_1\beta} C (2^{-k_1}r)^{-\beta} = Cr^{-\beta}$$

and again we are done. If not, we continue with

$$S_{2^{-k_1}r} \le 2^{-k_2\beta} S_{2^{-k_2}2^{-k_1}r}$$

where $2^{-k_2}2^{-k_1}r \ge 1$. Iterating this as long as alternative (1) fails, we obtain

$$S_r \le 2^{-k_n\beta} \dots 2^{-k_1\beta} S_{2^{-k_n} \dots 2^{-k_1}r} = 2^{-(k_1 + \dots + k_n)\beta} S_{2^{-k_1} \dots - k_n r}$$

where $2^{-k_1-\ldots-k_n}r \ge 1$. Since every $k_i \ge 1$, the procedure must stop after a finite number of steps (depending r), say after n steps. Then alternative (1) holds for the radius $2^{-k_1-\ldots-k_n}r$ and so, finally,

 $S_r < 2^{-(k_1 + \ldots + k_n)\beta} S_{2^{-k_1} - \ldots - k_n r} < 2^{-(k_1 + \ldots + k_n)\beta} C (2^{-k_1 - \ldots - k_n} r)^{-\beta} < Cr^{-\beta}.$

This proves the claim. \Box

Proof of Lemma 5.2. We assume towards a contradiction that the statement is false. Then, for each j=1,2,3,..., we may find $r_j \ge 1$ such that

1. $S_{r_j} \ge j r_j^{-\beta}$, 2. $S_{r_j} \ge 2^{-k\beta} S_{2^{-k}r_j}$, for all $k \ge 1$ such that $2^{-k} r_j \ge 1$.

Note that the point 1) above forces $r_i \rightarrow \infty$, since u is bounded. Define

$$v_j(x) = \frac{u(r_j x)}{S_{r_j}}.$$

Setting $S_r(v_j) := \sup_{|x| > r} |v_j(x)|$, it follows that v_j satisfies (a) $S_1(v_i) = 1$,

(b)
$$S_{2^{-k}}(v_j) \leq 2^{k\beta}$$
, for all k such that $2^{-k}r_j \geq 1$,
(c) $\Delta_p v_j = 0$ in $\mathbb{R}^n \setminus \overline{B}_{\frac{1}{r_j}}$.

Using local estimates for the *p*-Laplace equation, we may therefore extract a subsequence converging locally uniformly in $\mathbb{R}^n \setminus \{0\}$ to a function v. We also note that by Corollary 4.2 in [7], we know that

$$S_1(v_j) = \sup_{|x| \ge 1} v_j = \sup_{|x|=1} v_j.$$

Therefore, the local uniform convergence assures that v satisfies

(a')
$$\sup_{|x|=1} v=1,$$

(b') $S_{2^{-k}}(v) \le 2^{k\beta}$, for all $k \ge 1$
(c') $\Delta_p v=0$ in $\mathbb{R}^n \setminus \{0\}.$

We also note that since each v_j is antisymmetric with respect to the x_n -variable and non-negative in $\{x_n \ge 0\}$, so is the limit v. By Proposition 4.1, $|v(x)| \le 1$ for all $x \ne 0$. We can then apply Theorem 2.1 combined with Proposition 2.2 and conclude that v has to be identically zero. This contradicts (a') above. \Box

The proof of Theorem 1.1 is now immediate.

Proof of Theorem 1.1. As mentioned in the introduction, up to translation, rotation and dilatation, any extremal function u is antisymmetric with respect to the x_n -variable, positive in $\mathbb{R}^n \cap \{x_n > 0\}$, *p*-harmonic outside \overline{B}_1 and satisfies $|u| \leq 1$. Therefore, Proposition 5.1 applies and the proof is complete. \Box

From this and interior estimates for the p-Laplace equation, Corollary 1.2 follows.

Proof of Corollary 1.2. Take x such that $|x|=R\geq 2$ and $\beta < \beta_p$. Then Theorem 1.1 implies

$$\sup_{B_{R/4}(x)} |u| \le CR^{-\beta}.$$

Since $R \ge 2$, $B_{R/4}(x) \cap B_1 = \emptyset$ so that u is p-harmonic in $B_{R/4}(x)$. By interior gradient estimates (cf. [2], [11] or [13])

$$\sup_{B_{R/8}(x)} |\nabla u| \le CR^{-1} \sup_{B_{R/4}(x)} |u(x)| \le CR^{-\beta - 1}$$

and in particular

 $|\nabla u(x)| \le CR^{-\beta - 1},$

which completes the proof of Corollary 1.2. \Box

References

- 1. ARONSSON, G., Construction of singular solutions to the *p*-harmonic equation and its limit equation for $p=\infty$, Manuscripta Math. **56**:2 (1986), 135–158.
- EVANS, L. C., A new proof of local C^{1,α} regularity for solutions of certain degenerate elliptic p.d.e, J. Differ. Equ. 45:3 (1982), 356–373.
- FRAAS, M. and PINCHOVER, Y., Positive Liouville theorems and asymptotic behavior for p-Laplacian type elliptic equations with a Fuchsian potential, *Confluentes Math.* 3:2 (2011), 291–323.
- FRAAS, M. and PINCHOVER, Y., Isolated singularities of positive solutions of p-Laplacian type equations in ℝ^d, J. Differ. Equ. 254:3 (2013), 1097–1119.
- HYND, R., LARSON, S., and LINDGREN, E., On a Hardy-Morrey inequality, arXiv preprint (2024), arXiv:2401.05781.
- HYND, R. and LINDGREN, E., Extremal functions for Morrey's inequality in convex domains, Math. Ann. 375:3–4 (2019), 1721–1743.
- HYND, R. and SEUFFERT, F., Asymptotic flatness of Morrey extremals, *Calc. Var.* Partial Differential Equations 59:5 (2020), Paper No. 159, 24.
- HYND, R. and SEUFFERT, F., On the symmetry and monotonicity of Morrey extremals, Commun. Pure Appl. Anal. 19:11 (2020), 5285–5303.
- HYND, R. and SEUFFERT, F., Extremal functions for Morrey's inequality, Arch. Ration. Mech. Anal. 241:2 (2021), 903–945.
- KICHENASSAMY, S. and VÉRON, L., Singular solutions of the *p*-Laplace equation, Math. Ann. 275:4 (1986), 599–615.
- LEWIS, J. L., Regularity of the derivatives of solutions to certain degenerate elliptic equations, *Indiana Univ. Math. J.* **32**:6 (1983), 849–858.
- SERRIN, J., Singularities of solutions of nonlinear equations, in *Proc. Sympos. Appl. Math.* XVII, pp. 68–88, Am. Math. Soc., Providence, R.I., 1965.
- URAL'CEVA, N. N., Degenerate quasilinear elliptic systems, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968), 184–222.

Ryan Hynd Department of Mathematics University of Pennsylvania 209 South 33rd Street Philadelphia PA US-19104-6395 U.S.A. rhynd@math.upenn.edu Simon Larson Mathematical Sciences Chalmers University of Technology & The University of Gothenburg SE-412 96, Gothenburg Sweden larsons@chalmers.se

Erik Lindgren Department of Mathematics KTH – Royal Institute of Technology SE-100 44, Stockholm Sweden eriklin@math.kth.se

Received June 6, 2023