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A formula to evaluate type A webs and link
polynomials

Abel Lacabanne, Daniel Tubbenhauer and Pedro Vaz

Abstract. We give a closed formula to evaluate exterior webs (also called MOY webs) and
the associated Reshetikhin–Turaev link polynomials.
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1. Introduction

The Reshetikhin–Turaev invariants of links [RT91] provide one of the most
important family of link invariants in quantum topology and its ramifications.

In this note we focus on the subfamily of these invariants given by coloring the
strands of links with exterior powers of the vector representation of quantum sln or
quantum gln. We show that this family of polynomials can be computed by a closed
formula that takes as input only combinatorial data associated to a fixed colored
link diagram and root theoretic data associated to the type A Dynkin diagram. The
formula works for all links, all exterior colorings, and all ranks n.

Key words and phrases: webs and spiders, link polynomials, categorical skew Howe duality,
web algebras, KLR algebras.
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Let us stress that, by its very nature, the closed formula we give is a Weyl-
character-type formula: On the one hand, it is general, completely algorithmic and
might reveal abstract properties of the family of exterior colored link polynomials.
But on the other hand, the formula does not necessarily give an efficient way to
compute these invariants, at least not without massaging it a bit.

The diagrammatic incarnation of this family of link invariants is given by (exte-
rior sln or gln) webs as shown in many works, see e.g. [RTW32], [Kup96], [MOY98]
or [CKM14]. In fact, the aforementioned formula is an application of a closed eval-
uation formula for webs that we will also state and prove. To use this formula one
does not need to know any combinatorics of webs or tableaux; one, in fact, does not
even need to know webs. Moreover, another application of this formula is an easy
to check criterion for webs to represent dual canonical basis elements.

The exposition in this note, including the statement of our main results, is
mostly self-contained and explicit. For example, we included Python based code,
cf. Remark 1.1 below, that can do computations using, for example, the online cal-
culator of SageMath. The main proofs, that are not necessary to understand the rest
of the paper, however use techniques from categorification as we elaborate on now.

In breakthrough work Hu–Shi [HS21] found a closed formula for the dimen-
sion of the cyclotomic KLR algebra of any symmetrizable Kac–Moody type by
using combinatorics of Fock spaces. Even more remarkable, their formula is a
Weyl-character-type formula that can be computed without any prior knowledge of
cyclotomic KLR algebras. A consequence of categorical skew Howe duality is that
cyclotomic KLR algebras of type A and webs (web algebras to be precise – skew
Howe duality itself it not enough to make the connection) are essentially the same
object, see e.g. the pioneering works [BS11a], [BS10] and [BS11b] for the sl2 version
of this result. See also [MPT14] and [Tub14] for the sl3 version, and [Mac14] and
[Tub20] for the general version of this relationship.

In this paper we put both together and obtain the aforementioned closed for-
mula for web evaluations and the computation of link polynomials.

Remark 1.1. The main formula in (4.3) is easy to compute via a machine, and
so is its adjustment to the case of the link polynomials from (5.5). The reader may
find Python code for SageMath that can do the calculations here [MT22]. (The
second link in [MT22] has “klrdim-webevaluation.py” which is the version used for
this paper. The two main examples Example 4.5 and Example 5.7 are included in
that file. This code is also commented at the end of the source file.)

Remark 1.2. To not distract the reader’s attention, we postpone all proofs to
Section 6. This has the advantage that we can formulate the main formulas without
any reference to categorical skew Howe duality or KLR algebras.
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2. A reminder on webs

Fix n∈Z≥1. We will now recall the description of (exterior gln) webs from
[CKM14] using the exposition from [LTV22] and [LT21]. Background on monoidal
categories given by generators-relations can be found in e.g. [TV17], and background
on monoidal categories related to our setting can be found in e.g. [EGNO15].

We start with our reading and other conventions:

Notation 2.1. All categories that we use are strict, and we read diagrams from
bottom to top and left to right. The illustration

(1 ¨h g) ¨v (f ¨h 1)= ¨v ¨v

¨h

¨h

...

...
...

...

f

g
=

...

......

...

f g = ¨v¨v

¨h

¨h

...

...
...

...

g

f

=(f ¨h 1) ¨v (1 ¨h g),

summarizes our reading conventions. The identity on an object X is denoted by 1X .
The webs we will use below are certain labeled and oriented graphs. The labels

and orientations arise in a predetermined way from few choices. Using this we tend
to omit many of the labels and orientations.

Although the edges of webs are labeled with a∈Z≥0, we will allow labels a∈Z
in formulas: by convention, the webs with negative labels are zero altogether.

We write 1 for the monoidal unit and (−)∗ for the duality in a pivotal category.
For webs 1 is the empty word and (−)∗ is changing upward to downward orientations
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for objects, extended to monoidal products using (X ¨hY )∗=Y ∗
¨hX

∗, and turning
pictures by 180 degrees for morphisms.

Let q be a generic parameter. For a∈Z and b∈Z≥0 we let [0]q=0, [0]q!=1=[ a
0
]
q
, [a]q=−[−a]q for a<0 and otherwise

[a]q = qa−1+qa−3+...+q−a+3+q−a+1, [b]q! = [b]q[b−1]q...[1]q,[
a

b

]
q

= [a]q[a−1]q...[a−b+1]q
[b]q!

.

The web categories we study are:

Definition 2.2. The (exterior gln) web category Wqgln is the pivotal Z[q, q−1]-
linear category with ¨h-generating objects ↑k and ↓k, for k∈Z≥0, of categorical
dimension

[
n
k

]
q

and ↓k=(↑k)∗.
We further assume that Wqgln has a braid group action on upwards objects,

meaning morphisms depicted

over :

l

l

k

k

: ↑k¨h↑l−→↑l¨h↑k, under :

k

k

l

l

: ↑k¨h↑l−→↑l¨h↑k

for each simple braid group generator that satisfy the braid relations. We call these
(k, l)-crossings (overcrossings and undercrossings). In these and similar pictures we
tend to place the label under or over edges.

Finally, the ¨v-¨h-generating morphisms are the ones coming from the pivotal
structure and

k l

k+l

: ↑k+l−→↑k¨h↑l,

k l

k+l

: ↓k+l−→↓k¨h↓l,

k l

k+l

: ↑k¨h↑l−→↑k+l,

k l

k+l

: ↓k¨h↓l−→↓k+l .

The relations imposed on Wqgln are isotopies, the exterior relation, associa-
tivity, coassociativity, digon removal, and dumbbell-crossing relation together with
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invertibility of the left mates of the (k, l)-overcrossings: we take the quotient by the
¨v-¨h-ideal generated by isotopies, invertibility and

>n

>n

=0,

k l m

k+l+m

=

k l m

k+l+m

,

k l m

k+l+m

=

k l m

k+l+m

, k l

k+l

k+l

=
[
k+l

k

]
q

·

k+l

k+l

,

k

r

l

s

=(−1)kl
∑

k−r=a−b

(−q)(k−a)(l−b) ·
ba

k

r

l

s

=(−1)kl
∑

k−r=a−b

(−q)−(k−a)(l−b) ·
a b

k

r

l

s

,

together with their horizontally mirrored duals.

Remark 2.3. The final relation in Definition 2.2 is also known as the Schur
relation. The non-quantum version comes from translating webs to the setting in
Green’s landmark book on the Schur algebra [Gr80], hence the name. In [LT21,
Section 5] it is shown that this relation implies the more well-known crossing for-
mula that we will use in (5.2) below. (Strictly speaking [LT21, Section 5] deals with
symmetric webs, but the proof given therein works, mutatis mutandis, for exterior
webs.)

Notation 2.4.
(a) We also write k for ↑k and −k for ↓k, where k∈Z≥0. In this notation a

general object of Wqgln is of the form �k=(k1, ..., kr)∈Zr for some r∈Z≥0.
(b) A web is a ¨v-¨h-composition of the generating morphisms, i.e. not a

Z[q, q−1]-linear combination.
(c) There is no harm in thinking of webs as topological objects, meaning as

labeled oriented graphs embedded in two-space. We will sometimes use this to
simplify drawings.
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(d) The edges labeled n play a special role and we will illustrate them as

n = n , n = n .

We call them phantom edges. They should be thought of as nonexisting.

It follows from the defining relations that the phantom edge calculus is essen-
tially trivial, i.e.:

Lemma 2.5. We have

n =1,

n

nn

n

=

nn

n n

, k n−k

n

n

=

n

n

k ,

n

n

k

k

=

n

n

k

k

.

There are more relations of a similar flavor which we omit to illustrate.

Motivated by Lemma 2.5, we call webs consisting of only phantom edges trivial.

Remark 2.6. We will stay with Wqgln, which are webs for gln, in this paper.
We however stress that all results are valid for the respective sln version, thus,
including the Temperley–Lieb calculus [RTW32], Kuperberg’s sl3 spiders [Kup96]
and Cautis–Kamnitzer–Morrison’s sln webs [CKM14]. The (well-known) translation
between these two pictures is a systematic identification of the form ↑k∼=↓n−k. This,
representation theoretically, corresponds to the fact that

∧k
C

n is dual to
∧n−k

C
n

as an sln-module, but not as a gln-module.

It will turn out to be useful to only allow upwards (pointing) webs:

Definition 2.7. Let W↑
qgln⊂Wqgln be the full subcategory monoidally gener-

ated by {↑k |k∈Z≥0}.

We call webs in W↑
qgln upwards webs. By definition, webs in W↑

qgln have
upwards pointing boundary only, but can, a priori, have downwards oriented edges
away from the boundary. One can show that W↑

qgln has morphism spaces spanned
by webs with all edges pointing upwards, but we will not need this fact.
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3. F-forms of webs

Let αi=(0, ..., 0, 1,−1, 0, ..., 0), the ith simple root, with the one in the ith
entry.

Definition 3.1. In this definition we work in W↑
qgln only. For all a, i∈Z≥0 we

define the ath F-operator F
(a)
i to be the operator that takes 1�k, with �k∈Zl

≥0, and
returns 1�k−aαi

, and we define the ath E-operator E(a)
i to be the operator that takes

1�k, with �k∈Zl
≥0, and returns 1�k+aαi

given by

1�k−aαi
F

(a)
i 1�k =

ki+1

ki−a

ki

ki+1+a

, 1�k+aαi
E

(a)
i 1�k =

ki+1

ki+a

ki

ki+1−a

,

and by the identity outside of these pictures. The associated webs are called ladder
webs.

We will simplify notation using e.g. 1�k−aαi
F

(a)
i 1�k=F

(a)
i 1�k=1�k−aαi

F
(a)
i . More-

over, for all k∈{1, ..., n} we use ladders to define

n

n

k

k

=

n

n

k

k

,

n

n

k

k

=

n

n

k

k

,

⎛
⎜⎜⎝note that

n

n

n

n

=

n

n

n

n
⎞
⎟⎟⎠.

We call these webs and all their mates phantom crossings. The following lemma
allows us to use phantom crossings essentially without cost. Note that these are
not the (n, k)-crossings coming from the braid group action on Wqgln, and in the
picture above the strands “cross virtually”. See (6.1) for the precise relation between
the various crossings.

Lemma 3.2. The phantom crossings satisfy all colored Reidemeister moves.

Definition 3.3. We call all operations of the form

k n−k

n

�−→

1

k k

,

and all of its mates and mirrors forgetting phantom edges. These operations can
be successively applied to webs and will relabel and reorient them as part of these
operations.
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Recall from Notation 2.4 that we think of webs as labeled oriented graphs. We
say two such graphs are equivalent up to forgetting phantom edges if one can be
obtained from the other by forgetting any finite number of phantom edges (including
the relabeling and reorientation).

One can show that equivalence up to forgetting phantom edges defines an
equivalence relation on webs. By definition, webs are compositions of the generators
of Wqgln, and we therefore can define:

Definition 3.4. An upwards-form of a web w is a web U(w) in W↑
qgln that is

equivalent to w up to forgetting phantom edges.

Example 3.5. Let n=3. The web w

w=
2 11

=

2 11

�U(w)=

3

1 11

,

has the illustrated upwards-form. ♦
Lemma 3.6. Every web has at least one upwards-form.

Definition 3.7. An F-form F (w)=F
(ar)
ik

...F
(a1)
i1

1�k of an upwards-pointing web
w is a string of F -operators such that the graphs of w and F (w) are the same as
labeled oriented graphs.

In general, an F-form of a web w is an F-form for any upwards-form U(w).

Definition 3.7 is best understood by example:

Example 3.8. For n=3, an F-form for w as below is:

w=

3

1 11

, F (w)=F1F2F11(3,0,0) =

0 03

11 1

F1

F2

F1

.

Here and throughout, the horizontal slices are a visual aid only. Note that F-forms
are not unique and F3F1F2F11(3,0,0,0) would be another F-form of w. ♦
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We call objects of W↑
qgln of the form (n, ..., n, 0, ..., 0)=(n�, 0, ..., 0) a level.

Lemma 3.9. Every web has at least one F-form in HomW↑
qgln

(Λ,�k) for some

level Λ.

Definition 3.10. Let I={i(a)|i∈Z≥1, a∈Z≥0}. Fix an F-form F (w)=
F

(ar)
ir

...F
(a1)
i1

1Λ of w. The residue sequence for a web w and its F-form is the
tuple rw=(i(a1)

1 , ..., i
(ar)
r )∈Ir.

Note the reversed reading conventions when going from F (w) to its residue
sequence.

4. Evaluation of webs

Let � be the operation on webs that flips them upside down and reverses orien-
tations. We now define a pairing on HomWqgln

(1,�k), which we call the evaluation
pairing:

Definition 4.1. Given two webs u,w∈HomWqgln
(1,�k) we let (u,w)∈

EndWqgln
(1) be the element given by (u,w)=w�

¨vu, and we then extend this
Z[q, q−1]-linearly to all of HomWqgln

(1,�k).

Our main goal is to give a closed formula for (u,w). To this end, we need some
preparation.

Definition 4.2. We define the following.
(a) Assume that we have an F-form F (u)=F

(ar)
ir

...F
(a1)
i1

1Λ of level Λ=(n�, 0,
..., 0) that ends at �k=(k1, ..., km). For ru=(i(a1)

1 , ..., i
(ar)
r ) we use the exploded se-

quence

ru =(i1, ..., i1︸ ︷︷ ︸
a1 times

, ..., ir, ..., ir︸ ︷︷ ︸
ar times

) of length r= a1+...+ar.

We also let [ru]q!=[a1]q!...[ar]q!. We will use qd

[ru]q ![rw]q ! which we call scaling, where
d=d(�k)=−1

2
(
n(n−1)�−

∑m
i=1 ki(ki−1)

)
is a shift.

(b) We let Sr=Aut({1, ..., r}) denote the symmetric group whose unit we de-
note by e. For ru, rw∈Ir we let Srw

ru
={σ∈Sr|σ �ru=rw} be the set of possible

crossings where σ �ru is the permutation of the entries of ru determined by σ.
(c) Recall the simple roots αi and let 〈αi, αj〉=aij with be the usual Cartan

pairing (so aii=2, aij=−1 for |i−j|=1 and aij=0 else) which we will use as indi-
cated. Let J<t

σ ={1≤j<t|σ(j)<σ(t)}. We define the following number of that we
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think as counting weights from previous steps:

NΛ(σ, rw, t)=
〈
Λ−

∑
j∈J<t

σ

α(rw)j , α(rw)t

〉
.

We also write N(σ, t)=NΛ(σ, rw, t) for short.
(d) We write Xσ=

∏r
t=1[NΛ(σ, ru, t)]qqN

Λ(e,ru,t)−1. We let

χ(u,w)= qd

[ru]q ![rw]q ! ·
∑

σ∈Srw
ru

Xσ.(4.3)

We encourage the reader to compare (4.3) to [HS21, Theorem 1.1]. The setting
of [HS21] looks quite different from ours, but we will see in Section 6 why this
comparison makes sense.

Theorem 4.4. For webs u,w∈HomWqgln
(1,�k) we have that χ(u,w) is inde-

pendent of all choices involved, and

(u,w)=χ(u,w)∈Z≥0[q, q−1].

Example 4.5. Readers are encouraged to refer to the SageMath code provided
in Remark 1.1 for further insight.

(a) Let n=2. Let u=w∈HomWqgln

(
1, (−1, 1)

)
be, so that (u, u)=[2]q:

u=
1 1

, (u, u)=u�
¨v u= =

[
2
1

]
q

= [2]q.

As illustrated below, an F-form of u is F (u)=F11(2,0), and an F-form of u�
¨vu

is F (u�
¨vu)=F1F11(2,0). We will also use the trivial web with F-form F (∅)=

F
(2)
1 1(2,0).

F (u)=

0

1

2

1

F1 , F (u�
¨v u)=

02

0 2

F1

F1

, F (∅)=

0

0

2

2

F
(2)
1 .

The residue sequences from left to right are (1), (1, 1) and (1(2)), and in all cases
Λ=(2, 0), and �=1, while �k=(1, 1) for F (u) and �k=(0, 2) for the other two cases.
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The main formula can be applied to either the pair (u, u) or to (∅, u�
¨vu),

giving the same result. That is, for (u, u) we have r=1, Srw
ru

={e} and

σ= e : Xσ = [2]qq︸︷︷︸
[N(e,1)]qqN(e,1)−1

=1+q2.

Moreover, d=−1, no explosion was needed and scaling by q−1 gives χ(u, u)=[2]q.
For (∅, u�

¨vu) we have r=2, Srw
ru

={e, (1, 2)} and

σ= e : Xσ =0, σ=(1, 2) : Xσ = [2]qq︸︷︷︸
[N((1,2),1)]qqN(e,1)−1

[N((1,2),2)]qqN(e,2)−1︷ ︸︸ ︷
[2]qq−1 = [2]2q.

This time we need to scale by [2]−1
q since we exploded (1(2)) to (1, 1) during this

computation and d=0. The result is the same.
(b) Let n=3. We consider the following two webs u,w∈HomWqgln

(
1, (−1, 1,

−1, 1)
)
:

u=
1 1 1 1

, w=
1 111

.

We, of course, immediately get

(u,w)=w�
¨v u= =

[
3
1

]
q

= [3]q.

We get the same result from the main formula as follows. First, F -forms of u and
w are

F (u)=

0 03 3

12 2 1

F2

F3

F
(2)
2

F1

, F (w)=

0 03 3

2 21 1

F2

F3

F1

F
(2)
2

.

Here Λ=(32, 0, 0) and �=2. Using the associated residue sequences (2, 3, 2(2), 1) and
(2, 3, 1, 2(2)) we get the same result: Firstly, the exploded sequences are (2, 3, 2, 2, 1)
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and (2, 3, 1, 2, 2) so we remember that we have to multiply in the end by q−4[2]−2
q .

We compute

Srw
ru

= {(3, 4, 5), (1, 4)(3, 5), (1, 5, 3, 4), (3, 5), (1, 4, 5, 3), (1, 5, 3)}

where we use the usual notation for permutations. The six relevant summands are
then

σ 	=(1, 4, 5, 3) : Xσ =0, σ=(1, 4, 5, 3) : Xσ = q4[2]2q[3]q =(1+q2)2(1+q2+q4).

Thus, scaling by q−4[2]−2
q gives the desired result. Here we explode twice, so we get

[2]−2
q and d=−4.

As in (a), we could also use an F-form for w�
¨vu, e.g. (2, 3, 2(2), 1, 2, 1(2), 3(2),

2(2)), which we pair with the trivial web (2(3), 3(3), 1(3), 2(3)). Applying the formula
for the exploded residue sequences (2, 3, 2, 2, 1, 2, 1, 1, 3, 3, 2, 2) and (2, 2, 2, 3, 3, 3, 1,
1, 1, 2, 2, 2) gives the same result.

For completeness, let (n�, 0, ..., 0) have � symbols n and m−� symbols 0. In
general a residue sequence of the trivial web see as a web in HomWqgln

(
(n�, 0, ..., 0),

(0, ..., 0, n�)
)

is given by the residue sequence (�(n), ..., (m−1)(n), (�−1)(n), ..., (m−
2)(n), ...). ♦

Due to their relation to invariant tensors, the space HomWqgln
(1,�k) has an

important basis known as Lusztig–Kashiwara’s dual canonical basis. (For details
see e.g. [KK99] or [Tub20, Section 4.1.5].) We can thus ask whether a fixed w∈
HomWqgln

(1,�k) corresponds to a dual canonical basis element, and Theorem 4.4
gives a complete answer that can be checked using the main formula:

Proposition 4.6. A w∈HomWqgln
(1,�k) is dual canonical if and only if

q−dχ(w,w)∈1+qZ≥0[q].

5. Evaluation of link polynomials

In order to compute link polynomials using F-forms we first need to explain how
to interpret crossings. To this end, note that the category Wqgln has no generating
sideways or downwards crossings as extra generators. However, these crossings can
be obtained as compositions of upwards-pointing crossings and the generators of
Wqgln. For example:

k

kl

l

=

k

kl

l

.
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We consider framed oriented colored links L�c in R
3, whose components are

colored by �c∈Zr
≥0 where r∈Z≥0 is the number of components. We associate F-forms

to their diagrams D�c:

Definition 5.1. Given an oriented link diagram D�c. An F-form of D�c is the
linear combinations of webs obtained by:

(a) Choosing a Morse positioning (in terms of the ¨v-¨h generators, including
upwards-pointing crossings) of D�c;

(b) Replace all (k, l)-crossings by

l

l

k

k

=(−1)kl
∑

b−a=k−l

(−q)k−b

k

l

l

k

b

a

,

k

k

l

l

=(−1)kl
∑

b−a=k−l

(−q)−k+b

k

l

l

k

b

a

,

(5.2)

and obtain a linear combinations of webs a1w1+...+asws where ai∈Z[q, q−1];
(c) Replace all wi by a choice of F-form F (wi);
(d) The associated F-form of D�c is F (D�c)=a1F (w1)+...+asF (ws).

Lemma 5.3. Every colored link diagram has at least one F-form.

Definition 5.4. Let L�c be a framed oriented colored link and let F (D�c)=
a1F (w1)+...+asF (ws) be any F-form of any of its diagrams. We define:

χ(L�c)=
s∑

i=1
aiχ(wi)∈Z[q, q−1].(5.5)

Remark 5.6. For the reader who wants to work with links and not framed
links: One can easily verify that a k-colored Reidemeister I move gives the scalars
q±(k(−k+n+1)) (plus for the overcrossing and minus for the undercrossing). This in
turn determines how the invariant in Definition 5.4 changes under framing changes.

Example 5.7. This example can also be found in the SageMath code as in
Remark 1.1.
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Let n=2 and let H(1,1) denote the (1, 1)-colored Hopf link coming from the
braid word with two positive crossings. The reader may convince themselves that
an F-form of the standard diagram D(1,1) of H(1,1) is

F (D(1,1))=F4F5F3F4(q2F2F3F1F2−qF2F3F2F1−qF3F2F1F2

+F3F2F2F1)F4F3F5F4F2F3F1F21(2,2,0,0,0,0),

which we compare to the trivial web with residue sequence (2(2), 3(2), 4(2), 5(2), 1(2),

2(2), 3(2), 4(2)). Using the main formula from Theorem 4.4 we get

(∅, H(1,1))= q2(q+q−1)2−2q(q+q−1)+(q+q−1)2 = q−1[4]q,

which is the expected result up to a power of q. (The precise power depends on the
conventions one wants to compare the above to.) ♦

Theorem 5.8. The Laurent polynomial χ(L�c) is well-defined, i.e. it is an in-

variant of L�c and independent of all choices involved. Moreover, up to potentially

adjusting conventions, this invariant agrees with the Reshetikhin–Turaev exterior

colored gln link invariant.

Remark 5.9. The reader who wants to work with sln instead of gln needs
to shift the Laurent polynomial χ(L�c) in Theorem 5.8 by q1/n to match e.g. the
Reshetikhin–Turaev exterior colored sln link invariant in [CKM14, Corollary 6.2.3].

6. The proofs

We now give all the proofs, sometimes collected into one proof.

Proof of “The phantom calculus is trivial, i.e. Lemma 2.5 and Lemma 3.2”.
(Part a.) All of the relations displayed in Lemma 2.5 follow directly from the defi-
nitions except the right-hand equation for which we use [LT21, Lemma 2A.14].

(Part b.) It follows from (the exterior version of) [LT21, Section 5] that

n

n

k

k

=(−1)nk+kq−k ·

k

k

n

n

=(−1)nk+kqk ·

n

n

k

k

,(6.1)

and similarly for the other phantom crossings. (In the above picture note the
difference between the honest (n, k)-crossings and the phantom crossings.) As a
consequence of e.g. (the exterior version of) [LT21, Section 2], the honest (k, l)-
crossings satisfy the Reidemeister relations, with Reidemeister I only up to the
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scalar q±(k(−k+n+1)) (here k=l), and the other defining relations of the colored
tangle category (see e.g. for an uncolored list of these relations). Thus, the statement
of Lemma 3.2 follows from (6.1). �

Proof of “F-forms exist, i.e. Lemma 3.6, Lemma 3.9 and Lemma 5.3”. (Part
a.) That every web, more precisely any expression in the ¨v-¨h generators, has an
upwards-form can be seen inductively: Let h∈Z≥0 denote the number of Morse
points. If h=0 and the web we start with is already upwards-pointing, then there
is nothing to show. If the starting web is downwards pointing, then we can just
reverse all orientations. The analog for h=1 is also easily verified. So assume h>1.
Pick any Morse point and perform either of

1

k k

�−→

k n−k

n

,

1

kk

�−→

kn−k

n

,

1

k k

�−→

kn−k

n

,

1

kk

�−→

k n−k

n

(6.2)

once, if h is odd, or twice (at two different Morse points), if h is even. Using phantom
crossings we connected the dangling phantom strands in those pictures to anywhere
point at the bottom and top, respectively. Relabeling and reorienting the result
gives a legal web with smaller h by the combinatorics of oriented plane trivalent
graphs (we can ignore the precise positions of the phantom edges by Lemma 3.2),
so the claim of Lemma 3.6 follows.

(Part b.) This can be proven by using Lemma 3.6 and [Tub20, Lemma 4.9].
(Part c.) Lemma 5.3 follows directly from Lemma 3.9 via the Skein relations

(5.2). �

Proof of “The formulas work, i.e. Theorem 4.4 and Theorem 5.8”. (Part a.)
In the proof below we will use various statements about gln web algebras, all of
which, more or less explicitly, can be found in [Mac14] or [Tub20], using a matrix
factorization description.

For u,w∈HomWqgln
(1,�k) let W (u,w) denote the associated free Z[q, q−1]-

module summand of the gln web algebra, see [Tub20, Section 3.3.4] for details.
More precisely, W (u,w) is the idempotent truncation of the gln web algebra ob-
tained by using the two webs u and w. By the construction of the gln web algebra
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via gln foams or gln matrix factorizations, respectively, and the universal construc-
tion, we have that (u,w)=qdrankZ[q,q−1]

(
W (u,w)

)
(the graded rank) and we will

use this throughout. (This graded rank formula can be obtained in many ways.
The paper [RoWa20] gives a self-contained summary how the universal construc-
tion applied to gln foams gives a categorification of the MOY calculus and thus the
formula (u,w)=qdrankZ[q,q−1]

(
W (u,w)

)
follows.) Here the shift by qd comes simply

from the desire to have the unit of the gln web algebra sitting in degree zero, which
corresponds to using Gaussians (e.g. 1+q2) instead of quantum numbers.

Let us first assume that we have u,w∈HomW↑
qgln

(Λ,�k) for some level Λ with
fixed F-forms. The result in [Tub20, Theorem 5.16] identifies W (u,w) as an idem-
potent truncation of a thick version of the cyclotomic KLR algebra of type AZ and
level Λ. The idempotent truncation is exactly given by the images of the F-forms
of u,w under the categorified skew Howe duality in terms of the gln web algebra,
see e.g. [Tub20, Section 3.3]. The thickening, as explained in [Tub20, Section 3.3]
is just the KLR diagram version of the usual thick calculus from [KLMS12], and it
is easy to see that explosion in this case corresponds to isomorphisms on both sides
of categorified skew Howe duality. As explained in [Tub20, Section 5] these various
isomorphism patched together provide the factors [ru]q! and [rw]q! in the formula
from (4.3). Otherwise, (4.3) is the type AZ version of [HS21, Theorem A], so we
can use [Tub20, Theorem 5.16] to push it over to the gln web algebra.

It remains to argue that choosing different F-forms does not change the re-
sult. If F (u) and F (u)′ are two F-forms for u that are equal as topological webs
and similarly F (w) and F (w)′ are two F-forms for u that are equal as topological
webs, then (F (u), F (w))=(F (u)′, F (w)′) using the topological invariance of the gln

web algebra. By the previous point we further know that (F (u), F (w))=χ(u,w)
and (F (u)′, F (w)′)=χ(u,w)′, with the prime indicating that we use the ingredients
coming from F (w) and F (w)′ in χ(u,w)′. Thus, χ(u,w)=χ(u,w)′ which is what
we wanted to show.

We next claim that (u,w) stays the same under the moves in (6.2) and the
consequent reorientation. Indeed, there is a bijection of the bases on either side
since the counting of flows (another way to index rankZ[q,q−1]

(
W (u,w)

)
) comes out

to be the same. To see this, recall that a flow is a labeling of the edges of thickness
k with a k element subset of {1, ..., n} such that locally e.g.

A B

A∪B

,A,B⊂{1, ..., n},
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holds. Then we first note that changing the orientation does not change the number
of flows. The operations in (6.2) also do not change the flow, so the claim follows.

Finally, we need to argue that the rank of the gln web algebra does not change
when using phantom edges and crossings freely. To this end, note that Lemma 3.2
implies that webs seen as objects in three space do not change under the usage of
phantom crossings. In particular, the evaluation formula that gives (u,w) does not
actually see them at all.

(Part b.) By Theorem 4.4 we have that the formula in (4.3) matches the
evaluation on webs. The latter, by [MOY98, Theorem 5.1] (strictly speaking we
use different conventions but the arguments of [MOY98, Theorem 5.1] still apply
in our conventions), is known to give a link invariant. That this invariant is, up to
conventions again, the Reshetikhin–Turaev polynomial of interest follows then from
[CKM14, Corollary 6.2.3]. �

Proof of “The dual canonical webs, i.e. Proposition 4.6”. Directly from Theo-
rem 4.4 and [Tub20, Theorem 4.19]. �
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