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Embedded eigenvalues for asymptotically
periodic ODE systems

Sara Maad Sasane and Wilhelm Treschow

Abstract. We investigate the persistance of embedded eigenvalues under perturbations of
a certain self-adjoint Schrödinger-type differential operator in L2(R;Rn), with an asymptotically
periodic potential. The studied perturbations are small and belong to a certain Banach space with
a specified decay rate, in particular, a weighted space of continuous matrix valued functions. Our
main result is that the set of perturbations for which the embedded eigenvalue persists forms a
smooth manifold with a specified co-dimension. This is done using tools from Floquet theory, basic
Banach space calculus, exponential dichotomies and their roughness properties, and Lyapunov-
Schmidt reduction. A second result is provided, where under an extra assumption, it can be proved
that the first result holds even when the space of perturbations is replaced by a much smaller space,
as long as it contains a minimal subspace. In the end, as a way of showing that the investigated
setting exists, a concrete example is presented. The example itself relates to a problem from
quantum mechanics and represents a system of electrons in an infinite one-dimensional crystal.

1. Introduction

1.1. Background

It is well known that eigenvalues separated from the rest of the spectrum per-
sist under small perturbations [9, p. 213]. On the other hand, eigenvalues embedded
in the continuous spectrum behave very differently. Such eigenvalues typically dis-
appear after adding an arbitrary small perturbation [1]. The study of embedded
eigenvalues are relevant to problems from physics. In quantum mechanics for ex-
ample, eigenvalues represent energy states of the underlying system, and if these
eigenvalues are embedded in the continuous spectrum, they might be very sensi-
tive to small perturbations of the potential [11]. Embedded eigenvalues and their
existence and persistence have previously been studied in [6] and [10].
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The goal of this paper is to study a perturbation problem of a self-adjoint
operator on L2(R;Rn), involving an asymptotically periodic potential, which has
an embedded eigenvalue of multiplicity 1. We prove that the set of perturbations
for which the embedded eigenvalue persists forms a Banach manifold in the Banach
space of perturbations. We also specify its co-dimension. This is a generalization of
the results of the article [11], where the problem was studied in the asymptotically
constant case.

1.2. Problem setup

Consider the operator

(1.1) L=− d2

dx2 +A(x),

on the Hilbert space L2(R;Rn), where A:R→R
n×n is a continuous and symmet-

ric matrix-valued function, and is commonly referred to as the potential. Addi-
tionally, the matrix A(x) is assumed to be asymptotically periodic, meaning that
there exists a matrix-valued function Ap(x) and a corresponding p>0 such that
Ap(x+p)=Ap(x) for x∈R, and |A(x)−Ap(x)|→0 as |x|→∞, where |·| denotes the
finite dimensional max-norm.

The eigenvalue equation for the operator L is

(1.2) Lu=λu.

The scalar λ∈C is said to be an eigenvalue of L if it satisfies (1.2) for some non-
trivial eigenfunction u∈L2(R;Rn). Or, equivalently, λ∈C is said to be an eigenvalue
of L if ker(L−λI) is non-trivial. In that case we say that λ∈σp(L), where σp(L) is
called the point spectrum of L.

The continous spectrum σc(L) of L consists of all λ∈C such that the resolvent
operator Rλ=(L−λI)−1 exists as an unbounded operator, and domRλ is not closed.
Since L is self-adjoint, its spectrum, σ(L), is a subset of the real line and σ(L)=
σp(L)∪σc(L) [3, p. 37], [2, p. 90]. Note that with these definitions, σp(L) and σc(L)
may not be disjoint.

For further characterization of the spectrum of a self-adjoint operator, see [2,
p. 93].

An embedded eigenvalue, λ0, is an eigenvalue which also belongs to the con-
tinuous spectrum, i.e., λ0∈σp(L)∩σc(L).

For the type of operators that we consider, it is known that the continuous
spectrum consists of the set of λ∈R for which there exist polynomially bounded
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solutions of the eigenvalue problem (1.2), that does not belong to L2(R;Rn) [13].
These solutions are referred to as generalized eigenfunctions.

We want to analyze the persistence of the embedded eigenvalue λ0 when a
small perturbation B, which decays to zero with a certain decay rate, is added to
the potential A. Therefore we consider the perturbed operator LB=L+B, with B

in a certain Banach space, given by

(L+B)u=−u′′+[A(x)+B(x)]u,

and wish to study the set of small perturbations for which the embedded eigenvalue
λ0 persists. By persistence we mean that there is an eigenvalue of the perturbed
operator close to the original eigenvalue.

1.3. Main result

For β>1, we define the Banach space

Xβ={B ∈C(R,Rn×n);B(x)T=B(x) ∀x∈R and ‖B‖Xβ
=sup

x∈R

|B(x)|(1+|x|)β<∞}.

The perturbed eigenvalue equation is

(1.3) −u′′+(A(x)+B(x))u=λu, B ∈Xβ .

This can be written as a system of first order ODEs, taking u=u1 and u′=u2,
obtaining

(1.4) U ′ =A(x;λ,B)U,

where U=(u1,u2)T ∈R2n and

A(x;λ,B)=
[

0 I

A(x)+B(x)−λI 0

]
.

We make the following assumptions.

Assumption 1.1. We assume that ‖A−Ap‖Xβ
<∞, for some β>1.

Assumption 1.2. We assume that λ0 is a simple eigenvalue of L and that 1 is
not an eigenvalue of Φ(p), where Φ(x) is the fundamental matrix solution of the
first order system of linear ODEs with coefficient matrix[

0 I

Ap(x)−λ0I 0

]
,

i.e., the matrix solution of the system satisfying Φ(0)=I.
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Assumptions 1.1 and 1.2 are standing assumptions throughout the paper.
We denote by 2m the number of eigenvalues of the monodromy matrix of

the system, M=Φ(p), with modulus 1, counted with multiplicity, with Φ(x) as in
Assumption 1.2. In Section 2 we see that 2m is indeed an even number and m an
integer.

In Section 5 we provide an example to show that these assumptions can be
met, so that the investigated setting exists.

We are now ready to state our main results.

Theorem 1.3. Let λ0 be an eigenvalue of the unperturbed operator L. Assume

that Assumption 1.1 and Assumption 1.2 holds. Further, let

Sε = {B ∈Xβ |∃λ∈ (λ0−ε, λ0+ε); such that λ is an eigenvalue of L+B}.

Then there exists an ε>0 and a neighbourhood U of 0∈Xβ , such that Sε∩U is a

manifold of codimension 2m in Xβ .

Consider now the operator L in (1.1), under the additional assumption that A
is a diagonal matrix. In this special case, we want to study the perturbed operator
L+B, with perturbations B belonging to a subspace Yβ⊂Xβ containing a certain
minimal subspace Tβ defined below. As A is diagonal and the embedded eigenvalue
λ0 of the unperturbed operator is simple by assumption, only one of the entries of
u∗ is nonzero. Indeed, as A is diagonal, the eigenvalue equation (1.2) decouples,
and there exists exactly one entry uj of the eigenfunction u∗ with j∈{1, ..., n} such
that −u′′

j +ajjuj=λ0uj and uj 
=0.
To simplify notation, we assume without loss of generality that j=1. Then we

define the minimal subspace Tβ as the subspace of Xβ for which bii=0 for i=1, ..., n
and bij=0 unless i=1 or j=1. Hence, Tβ⊂Xβ is the set of matrices of the type

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 b12 ... ... b1n
b12 0 0 ... 0
... 0

...
... ... ...

b1n 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Assumption 1.4. We assume that the matrix A is diagonal and that, without
loss of generality, the index for which uj 
=0 is j=1. We assume also that the
perturbation B is on the special form with zeros on the diagonal.

Assumption 1.4 is not a standing assumption and will be assumed only when
explicitly stated.



Embedded eigenvalues for asymptotically periodic ODE systems 107

Theorem 1.5. Let λ0 be an eigenvalue of the unperturbed operator L. Assume

that Assumption 1.1, Assumption 1.2 and 1.4 holds. Further, let

Tε = {B ∈Yβ |∃λ∈ (λ0−ε, λ0+ε); such that λ is an eigenvalue of L+B}.

Then there exists an ε>0 and a neighbourhood U of 0∈Yβ , such that Tε∩U is a

manifold of codimension 2m in Yβ .

Theorem 1.5 says that in the special case where A is diagonal, the conclusion
of Theorem 1.3 holds even when the space of perturbations is replaced by a much
smaller space than Xβ , as long as it contains the specified minimal subspace, Tβ .

These theorems gives us the desired result in form of a manifold of perturbations
which do not remove the embedded eigenvalue when added to the original operator.
The methods we use combine those in [11] with methods from Floquet theory.

2. Preliminary results

This section contains results about the asymptotic behaviour of solutions of
our system, as well as a description of how to transform our system to a setting
more similar to the one in [11].

2.1. System at infinity

Since A(x)−Ap(x)→0 and B(x)→0 as |x|→∞, by replacing the coefficient
matrix by the periodic background potential, we obtain the system at infinity

(2.1) U ′ =Ap(x;λ)U,

with
Ap(x;λ)=

[
0 I

Ap(x)−λI 0

]
.

Clearly, Ap(x;λ) is periodic with period p.
We can now decompose our original coefficient matrix, A(x;λ,B), into two, one

with the system at infinity matrix, and one perturbation matrix, and write (1.4) as

(2.2) U ′ =(Ap(x;λ0)+L(x;λ,B))U,

where
L(x;λ,B)=

[
0 0

A(x)−Ap(x)+B(x)+(λ0−λ)I 0

]
is considered a perturbation.

We now recall a famous theorem by Floquet.
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Theorem 2.1. (Floquet’s theorem)Let C(x) be a continuous periodic matrix-

valued function with period p, and let Φ(x) be the fundamental matrix of the system

y′ =C(x)y.

Then there exists a non-singular continuously differentiable matrix-valued function

G(x) with period p, and a constant, possibly complex, matrix R such that

Φ(x)=G(x)eRx, for all x∈R.

For a proof, see [14, p. 92].
The system at infinity (2.1), clearly satisfies Floquet’s theorem with a periodic

and continuously differentiable matrix G(x;λ) and a (spatially) constant matrix
R(λ). From here on, we will write G(x) instead of G(x;λ). By using the change of
coordinates V =G(x)−1U we get, if U is a solution of (2.2), that

G′(x)V +G(x)V ′ =(G(x)V )′ =(Ap(x)+L(x))G(x)V,

for every x∈R, where λ and B have been suppressed. This implies that

V ′ =G(x)−1
((

Ap(x)+L(x)
)
G(x)−G′(x)

)
V.

Using Floquet’s theorem however, we obtain

Φ′(x)=G′(x)eRx+G(x)ReRx,

giving that

G′(x)=Φ′(x)e−Rx−G(x)R=Ap(x)Φ(x)e−Rx−G(x)R.

And so, we obtain, without suppression of λ and B,

V ′ =G(x)−1
(
Ap(x;λ0)G(x)+L(x;λ,B)G(x)−Ap(x;λ0)G(x)+G(x)R(λ0)

)
V

=
(
R(λ0)+G(x)−1L(x;λ,B)G(x)

)
V, for every x∈R.

Thus, the transformed system becomes

(2.3) V ′ =(R(λ0)+S(x;λ,B))V,

where S(x;λ,B)=G(x)−1L(x;λ,B)G(x). The matrices G(x) and G(x)−1 are clearly
bounded since they are continuous and periodic. Hence, when λ=λ0, we have
S(x;λ0, B)→0 as |x|→∞. Thus, the transformed system at infinity, i.e., the trans-
formed version of (2.1), can now be expressed as

(2.4) V ′ =R(λ)V.
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Lemma 2.2. The eigenvalues μ(λ) of the monodromy matrix M(λ) of (2.1)
and ω(λ) of the coefficient matrix R(λ), for the transformed system at infinity (2.4),
satisfy the relation

epω(λ) =μ(λ).

Proof. From the proof of Floquet’s theorem we have that the monodromy ma-
trix satisfies M=eRp, and so, the result follow by the spectral mapping theorem. �

Note therefore that Assumption 1.2, i.e., that 1 /∈σ(M(λ0)), is equivalent to
the assumption that 2πik/p /∈σ(R(λ0)) for k∈Z.

Lemma 2.3. If μ(λ)=epω(λ) is an eigenvalue of the monodromy matrix M(λ)
of (2.1), then μ̂(λ)=e−pω(λ) is also an eigenvalue of M(λ). In particular, |μ̂(λ)|=

1
|μ(λ)| .

Proof. This follows immediately from Theorem 3 in [7], after setting ω=iν. �

Since M is a real matrix, it follows that non-real eigenvalues and corresponding
eigenvectors come in complex conjugate pairs. This, together with the fact that
detM=1 (see Theorem 1 in [7]) and Lemma 2.3 implies that the multiplicities of
μ and μ̂ are the same. In particular, this means that the number, 2m, of purely
imaginary eigenvalues of R(λ), i.e., the number of eigenvalues of the monodromy
matrix with modulus 1, is an even number.

Let
αmin(λ)= min

ω∈σ(R(λ))
Re(ω) �=0

|Re(ω)|> 0.

Let Xu, Xs and Xc be the span of eigenfunctions corresponding to the real
part of the eigenvalues being positive, negative and 0 respectively. Further let Pu,
P s and P c be the spectral projections onto Xu, Xs and Xc.

2.2. Exponential dichotomies

Exponential dichotomies is a tool, originally introduced by Oskar Perron in
[12], used to investigate the stability properties and asymptotic behaviour of non-
autonomous differential equations [5]. In this paper, we use it in order to prove
exponential decay of eigenfunctions, which is needed for our main result.

Definition 2.4. Let J be an unbounded interval on R. An ODE system U ′=
C(x)U is said to possess an exponential dichotomy on J if there exist constants
K>0, ˇs<0<ˇ

u and a family of projections P (x0), with x0∈J , such that:
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• For any x∈R and U∈RN , there exists a unique solution Φs(x, x0)U of the
system defined for x≥x0, x, x0∈J such that

Φs(x0, x0)U =P (x0)U and ‖Φs(x, x0)U‖≤Keˇ
s(x−x0)‖U‖.

• For any x∈R and U∈RN , there exists a unique solution Φu(x, x0)U of the
system defined for x≤x0, x, x0∈J such that

Φu(x0, x0)U =
(
I−P (x0)

)
U and ‖Φu(x, x0)U‖≤Keˇ

u(x−x0)‖U‖.

• The solutions Φs(x, x0)U and Φu(x, x0)U satisfy

Φs(x, x0)U ∈RanP (x) for all x≥x0, x, x0 ∈J

Φu(x, x0)U ∈ kerP (x) for all x≤x0, x, x0 ∈J.

Φs and Φu are often called evolution operators (defined for x≥x0 and x≤x0
respectively).

In order for our system (2.4) to possess an exponential dichotomy, we must
introduce a shift, ±η, such that none of the eigenvalues of the matrix R(λ0)±ηI

are purely imaginary.

Lemma 2.5. Suppose that η∈(0, αmin). Then the systems V ′=(R(λ0)+ηI)V
and V ′=(R(λ0)−ηI)V each possess exponential dichotomies on R, with ˇ

s=
−αmin+η, ˇu=η and ˇ

s=−η, ˇu=αmin−η respectively.

The proof follows directly from Lemma 3.1 in [11]. Note in particular that
since the shifted systems both possess exponential dichotomies on R, it must follow
that they also have it on R+ and R−.

The following theorem will be applied to a shifted version of the the full system
(2.3).

Theorem 2.6. (Roughness theorem)
(i) If U ′=C(x)U possesses an exponential dichotomy on R+ with rates ˇ

s<

0<ˇ
u and constant K>0 as in the definition, and if for some T>0, |D(x)|<δ for

all x≥T , where δ∈(0,min(−ˇ
s,ˇu)/2K), then the perturbed system U ′=(C(x)+

D(x))U also possesses an exponential dichotomy on R+ with rates ˜̌s=ˇ
s+2Kδ<0,˜̌u=ˇ

u−2Kδ>0 and some constant K̃>0.
(ii) If U ′=C(x)U possesses an exponential dichotomy on R− with rates ˇ

s<

0<ˇ
u and constant K>0 as in the definition, and if for some T>0, |D(x)|<δ for

all x≤−T , where δ∈(0,min(−ˇ
s,ˇu)/2K), then the perturbed system U ′=(C(x)+

D(x))U also possesses an exponential dichotomy on R− with rates ˜̌s=ˇ
s+2Kδ<0,˜̌u=ˇ

u−2Kδ>0 and some constant K̃>0.
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For a proof, see [11].

Lemma 2.7. Let η∈(0, αmin) and let ε>0 be arbitrary. Then there exists a

δ>0 such that if

|λ−λ0|+sup
x∈R

|B(x)|<δ,

then the systems

(2.5) V ′
± =(R(λ0)±ηI+S(x;λ,B))V±,

possess exponential dichotomies on R+ and R−, respectively.

(i) For the case of V+, the system has an exponential dichotomy on R+ with

rates ˇ
s=−αmin+η+ε, ˇu=η−ε.

(ii) For the case of V−, the system has an exponential dichotomy on R− with

rates ˇ
s=−η+ε, ˇu=αmin−η−ε.

For V+ on R+, we denote the projections by P s(·;λ,B), and we let P cu(·;λ,B)=
I−P s(·;λ,B). We denote the corresponding evolution operators on R+ by
Ψs(x, x0;λ,B) and Ψcu(x, x0;λ,B), respectively.

For V− on R−, we denote the projections by P cs(·;λ,B), and we let Pu(·;λ,B)=
I−P cs(·;λ,B). We denote the corresponding evolution operators on R− by
Ψcs(x, x0;λ,B) and Ψu(x, x0;λ,B), respectively.

Proof. The result follows directly from Lemma 2.5 and Lemma 2.6. �

Using the implicit function theorem, one can prove that the solutions of (2.3)
are smooth in (λ,B).

Lemma 2.8. The projections P s(·;λ,B), P cu(·;λ,B), P cs(·;λ,B), Pu(·;λ,B)
and the corresponding evolution operators Ψs(·, ·;λ,B), Ψcu(·, ·;λ,B), Ψcs(·, ·;λ,B)
and Ψu(·, ·;λ,B) depend smoothly on the parameters λ and B in a neighbourhood

of (λ,B)∈R×Xβ.

For a proof, see [11].
Using Lemma 2.7, we define the evolution operators for (2.5) in the following

way:
On R+ we will use the evolution operators Φs and Φcu defined by

Φs(x, x0;λ,B)= e−η(x−x0)Ψs(x, x0;λ,B),

Φcu(x, x0;λ,B)= e−η(x−x0)Ψcu(x, x0;λ,B).

On R− we will use the evolution operators Φcs and Φu defined by

Φcs(x, x0;λ,B)= eη(x−x0)Ψcs(x, x0;λ,B),

Φu(x, x0;λ,B)= eη(x−x0)Ψu(x, x0;λ,B).
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3. Exponential decay of eigenfunctions

The aim of this section is to prove the exponential decay of eigenfunctions,
using the same ideas as in [11], with minor differences, to account for our slightly
different scenario. In preparation, we would like to remind the reader to keep in
mind the previously made Assumptions 1.1 and 1.2.

Lemma 3.1. Let V be a solution of (2.3).

(i) If V is bounded on R+, then for every T≥0, there exists a V s
0 ∈Xs and a

V c
0 ∈Xc such that for all x≥T

V (x)= eR(x−T )V s
0 +eRxV c

0 +
∫ x

T

eR(x−ξ)P s(ξ;λ,B)S(ξ;λ0, B)V (ξ) dξ

−
∫ ∞

x

eR(x−ξ)P cu(ξ;λ,B)S(ξ;λ0, B)V (ξ) dξ,

where Xc=Xc(λ), Xs=Xs(λ) are the span of the eigenvectors of R=R(λ) corre-

sponding to the purely imaginary eigenvalues and eigenvalues with real negative part

of R(λ), respectively.
(ii) If V bounded on R−, then for every T≥0, there exists a Uu

0 ∈Xu and U c
0∈

Xc such that for all x≤−T

V (x)= eR(x+T )Uu
0 +eRxV c

0 −
∫ −T

x

eR(x−ξ)Pu(ξ;λ,B)S(ξ;λ0, B)V (ξ) dξ

+
∫ x

−∞
eR(x−ξ)P cu(ξ;λ,B)S(ξ;λ0, B)V (ξ) dξ,

where Xc=Xc(λ), Xu=Xu(λ) are the span of the eigenvectors of R=R(λ) corre-

sponding to the purely imaginary eigenvalues and eigenvalues with real positive part

of R(λ), respectively.

Proof. We begin with the full ODE and project using P s, P c and Pu as in [11]:

P i(x;λ,B)V ′(x)=RP i(x;λ,B)V (x)+P i(x;λ,B)S(x;λ0, B)V (x)

for i∈{s, c, u}.
The variation of parameters formula yields

P i(x;λ,B)V (x) = eR(x−x0)P i(x0;λ,B)V (x0)(3.1)

+
∫ x

x0

eR(x−ξ)P i(ξ;λ,B)S(ξ;λ0, B)V (ξ)dξ.
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Since |V (x)| is bounded as x→∞, it follows that P i(x;λ,B)V (x) must also all be
bounded. Consider the equation for Pu(x;λ,B)V (x) in (3.1), and let x0→∞. Since
Pu(x0;λ,B)V (x0) is bounded, it follows that

Pu(x;λ,B)V (x)=−
∫ ∞

x

eR(x−ξ)Pu(ξ;λ,B)S(ξ;λ0, B)V (ξ)dξ.

For i=c we have that the integral in (3.1) converges as x0→∞. The argument
follows: Since ‖eR(λ)x0P c(x0;λ,B)‖ is bounded for x0∈R, and since

S(ξ;λ0, B)V (ξ)=G(ξ)−1L(ξ;λ0, B)G(ξ)V (ξ)=G(ξ)−1L(ξ;λ0, B)U(ξ),

we get that S(ξ;λ0, B)V (ξ)=G(ξ)−1[ 0
(A(ξ)−Ap(ξ)+B(ξ))U1

]
. This implies that

|S(ξ;λ0, B)V (ξ)|= |G(ξ)−1L(ξ;λ0, B)G(ξ)V (ξ)|
≤ |G(ξ)−1︸ ︷︷ ︸

≤C1

|·|(A(ξ)−Ap(ξ)+B(ξ))U1(ξ)|

≤C1(1+ξ)β(1+ξ)−β ·|(A(ξ)−Ap(ξ)+B(ξ))U1(ξ)|

≤C1(1+ξ)−β |U(ξ)| sup
ξ∈R

(
(1+ξ)β |A(ξ)−Ap(ξ)+B(ξ)|

)
=C1(1+ξ)−β‖A−Ap+B‖Xβ |G(ξ)V (ξ)|
≤C1(1+ξ)−β‖A−Ap+B‖Xβ |G(ξ)|︸ ︷︷ ︸

≤C2

·|V (ξ)|

≤C(1+ξ)−β‖A−Ap+B‖Xβ |V (ξ)|.

Here C=C1C2, where C1=supξ∈R
|G(ξ)−1| and C2=supξ∈R

|G(ξ)|. This is because
G(x) is invertible for all x∈R and is continuous and periodic, so G(ξ) and G(ξ)−1

attain a global maximum. Thus

(3.2)
∫ ∞

x

|S(ξ;λ0, B)V (ξ)| dξ

≤C(‖A−Ap‖Xβ +‖B‖Xβ ) sup
ξ≥x

|V (ξ)|
∫ ∞

x

(1+ξ)−β dξ

≤C
1

β−1(‖A−Ap‖Xβ +‖B‖Xβ )‖V ‖∞
1

(1+x)β−1 .

For the first term of P c(x;λ,B)V (x), we have that the limit

lim
x0→∞

e−Rx0P c(x0;λ,B)V (x0)=V c
0
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exists. This follows from the fact that the left-hand side of the equation does not
depend on x0 and the integral is convergent. Hence

P c(x;λ,B)V (x)= eRxV c
0 −

∫ ∞

x

eR(x−ξ)P c(ξ;λ,B)S(ξ;λ0, B)V (ξ) dξ.

For the last case, P s(x;λ,B)V (x), we pick x0=T≥0, which for x≥T gives us
that

V (x) =P s(x;λ,B)V (x)+P c(x;λ,B)V (x)+Pu(x;λ,B)V (x)

= eR(x−T )V s
0 +eRxV c

0 +
∫ x

T

eR(x−ξ)P s(ξ;λ,B)S(ξ;λ0, B)V (ξ)dξ

−
∫ ∞

x

eR(x−ξ)P cu(ξ;λ,B)S(ξ;λ0, B)V (ξ)dξ,

where V s
0 =P s(T ;λ,B)V (T ).

The proof of (ii) follows similarly. �

With the help of Lemma 3.1 above, we can actually prove that any eigenfunc-
tion of the perturbed operator, LB , decays exponentially.

Lemma 3.2. Let λ be an eigenvalue of the perturbed operator LB , and assume

that Assumption 1.1 and Assumption 1.2 hold. Further, let u∈L2(R;Rn) be the

corresponding eigenfunction, and ̂̌∈(0, αmin(λ)). Denote by V the solution of (2.3)

corresponding to u. Then, there exists a positive constant K such that

|V (x)| ≤Ke−̂̌|x| for all x∈R.

Given Lemma 3.1, the proof of Lemma 3.2 is completely similar to that of
Lemma 4.2 in [11].

4. Lyapunov-Schmidt reduction

In this section we provide some further results, until we can finally prove the
main theorem.

Let u∗ be the eigenfunction to the unperturbed eigenvalue equation Lu∗=λ0u∗.
We shall assume that u∗ is normalized, i.e., that 〈u∗,u∗〉L2 =1. We further denote
U∗=(u∗,u′

∗)T and V∗=G(x)−1U∗.
We define the stable and unstable subspaces Es

+ and Eu
− respectively. They

consist of initial conditions for which the unperturbed system decays exponentially
for increasing and decreasing values of x respectively, and are defined as

(4.1)
Es

+ = {V ∈R
2n; P s(T ;λ0, 0)V =V },

Eu
− = {V ∈R

2n; Pu(−T ;λ0, 0)V =V }.
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We further define the mapping ι:Es
+×Eu

−×R×Xβ→R
2n by

(4.2) ι(V s
0 , V

u
0 ;λ,B)=Φ(0, T ;λ,B)P s(T ;λ,B)V s

0

−Φ(0,−T ;λ,B)Pu(−T ;λ,B)V u
0 .

Here, Φ(x, x0) are the standard state-transition matrices defined through the fun-
damental matrix solution by Φ(x, x0)=Φ(x)Φ(x0)−1.

Lemma 4.1. Let λ be such that 1 /∈σ(M), where M is the monodromy matrix

of the unperturbed system at infinity. Further, let δ>0 be such that Lemma 2.7 holds.

Then λ is an eigenvalue of LB if and only if there exists V s
0 ∈Es

+ and V u
0 ∈Eu

− with

(V s
0 , V

u
0 ) 
=0 such that

(4.3) ι(V s
0 , V

u
0 ;λ,B)= 0.

Proof. Let us first assume that (4.3) is fulfilled. Then it follows that

Φ(0, T ;λ,B)P s(T ;λ,B)V s
0 =Φ(0,−T ;λ,B)Pu(−T ;λ,B)V u

0 ,

and so the solutions to the system with initial value

V (0)=Φ(0, T ;λ,B)P s(T ;λ,B)V s
0 =Φ(0,−T ;λ,B)Pu(−T ;λ,B)V u

0

decays exponentially as |x|→∞. Then λ has to be an eigenvalue of the perturbed
operator LB , and the corresponding eigenfunction is the first component of U(x)=
G(x)V (x).

On the other hand, if we assume that λ is an eigenvalue of LB, then by
Lemma 3.2, there is a solution U(x) of the system (1.4), and hence a solution
V (x)=G(x)−1U(x) of the system (2.3), which decays exponentially as |x|→∞.

Pick
V s

0 =P s(T ;λ0, 0)V (T )∈Es
+,

V u
0 =Pu(−T ;λ0, 0)V (−T )∈Eu

−.

Since we have that P s(T ;λ,B)P s(T ;λ0, 0)=P s(T ;λ,B) from the proof of the
roughness theorem, together with definition of exponential dichotomies, we get that

Φ(0, T ;λ,B)P s(T ;λ,B)V s
0 =V (0)=Φ(0,−T ;λ,B)Pu(−T ;λ,B)V u

0 ,

at which point we are done. �

Note that, for any (V s
0 , V

u
0 )∈Es

+×Eu
−, we have

ι(V s
0 , V

u
0 ;λ0, 0)=Φ(0, T ;λ0, 0)V s

0 −Φ(0,−T ;λ0, 0)V u
0 .

Hence, Ran ι(·, ·, λ0, 0)=Φ(0, T ;λ0, 0)Es
++Φ(0,−T ;λ0, 0)Eu

−.
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Lemma 4.2. We have that

codim(Φ(0, T ;λ0, 0)Es
++Φ(0,−T ;λ0, 0)Eu

−)= 2m+1.

Proof. The number of eigenvalues of R(λ0) with non-zero real part is 2(n−
m) since n−m=dimXs=dimXu. As dimXs=dimEs

+ and dimXu=dimEu
−, we

obtain

dim(Φ(0, T ;λ0, 0)Es
++Φ(0,−T ;λ0, 0)Eu

−)
=dim(Es

+)+dim(Eu
−)−dim(Φ(0, T ;λ0, 0)Es

+∩Φ(0,−T ;λ0, 0)Eu
−)

= 2(n−m)−1,

and so,

codim(Φ(0, T ;λ0, 0)Es
++Φ(0,−T ;λ0, 0)Eu

−)= 2n−2n+2m+1 =2m+1. �

Let Q be a projection in R
2n onto Ran ι(·, ·;λ0, 0)=Φ(0, T ;λ0, 0)Es

++
Φ(0,−T ;λ0, 0)Eu

−. Then we can write (4.3) as

(4.4)
Qι(V s

0 , V
u
0 , λ,B)= 0,

(I−Q)ι(V s
0 , V

u
0 , λ,B)= 0.

It follows from Lemma 4.2 that

dim(kerQ)= codim(Φ(0, T ;λ0, 0)Es
++Φ(0,−T ;λ0, 0)Eu

−)= 2m+1.

We use Lyaounov-Schmidt reduction to solve (4.3), i.e., we solve the first equa-
tion of (4.4) for V s

0 and V u
0 in terms of (λ,B) using the implicit function theorem,

and then substitute the solution V s
0 =V s

0 (λ,B) and V u
0 =V u

0 (λ,B) into the second
equation of (4.4) and solve this equation, again using the implicit function theorem,
reducing everything to functions of B. In order to get a unique solution we need
to add another condition which fixes this solution amongst infinitely many, in a
one-dimensional subspace of solutions.

Lemma 4.3. Let D be a subspace of Es
+×Eu

− such that span{(V∗(T ), V∗(−T ))}
+D=Es

+×Eu
− and D∩span{(V∗(T ), V∗(−T ))}={0}. Then for (λ,B) close to

(λ0, 0), the first equation of (4.4), has a unique solution

(V s
0 , V

u
0 )= (V s

0 (λ,B), V u
0 (λ,B)),

such that (V s
0 , V

u
0 )−(V∗(T ), V∗(−T ))∈D.

Proof. The proof is completely similar to that of Lemma 5.3 in [11], and will
thus be omitted. �
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By the integral formula derived in the proof of the roughness theorem [5, p. 30],
we obtain

Φ(0, T ;λ,B)P s(T ;λ,B)=Φ(0, T ;λ0, 0)P s(T ;λ0, 0)

−
∫ T

0
Φ(0, ξ;λ0, 0)P s(ξ;λ0, 0)N (ξ;λ,B)Φ(ξ, T ;λ,B)P s(T ;λ,B)dξ

−
∫ ∞

0
Φ(0, ξ)Pu(ξ;λ0, 0)N (ξ;λ,B)Φ(ξ, T ;λ,B)P s(T ;λ,B)dξ,

where N (ξ;λ,B)=G(ξ)−1N(ξ;λ,B)G(ξ), and

N(ξ;λ,B)=
[

0 0
B(ξ)−(λ−λ0)I 0

]
.

Similarly, we have

Φ(0,−T ;λ,B)Pu(−T ;λ,B)=Φ(0,−T ;λ0, 0)Pu(−T ;λ0, 0)

+
∫ 0

−T

Φ(0, ξ)Pu(ξ;λ0, 0)N (ξ;λ,B)Φ(ξ,−T ;λ,B)Pu(−T ;λ,B)dξ

+
∫ 0

−∞
Φ(0, ξ)P s(ξ, λ0, 0)N (ξ;λ,B)Φ(ξ,−T ;λ,B)Pu(−T ;λ,B)dξ.

Combining these two with (4.2) yields

ι(V s
0 , V

u
0 ;λ,B)=Φ(0, T ;λ0, 0)V s

0 −Φ(0,−T ;λ0, 0)V u
0

−
∫ T

0
Φ(0, ξ)P s(ξ;λ0, 0)N (ξ;λ,B)Φ(ξ, T ;λ,B)P s(T ;λ,B)V s

0 dξ

−
∫ ∞

0
Φ(0, ξ)Pu(ξ;λ0, 0)N (ξ;λ,B)Φ(ξ, T ;λ,B)P s(T ;λ,B)V s

0 dξ

−
∫ 0

−T

Φ(0, ξ)Pu(ξ;λ0, 0)N (ξ;λ,B)Φ(ξ,−T ;λ,B)Pu(−T ;λ,B)V u
0 dξ

−
∫ 0

−∞
Φ(0, ξ)P s(ξ;λ0, 0)N (ξ;λ,B)Φ(ξ,−T ;λ,B)Pu(−T ;λ,B)V u

0 dξ.

To solve the second equation of (4.4), we define the map F :R×Xβ→kerQ by

(4.5) F (λ,B)= ι(V s
0 (λ,B), V u

0 (λ,B);λ,B)= (I−Q)ι(V s
0 (λ,B), V u

0 (λ,B);λ,B).

Solving F (λ,B)=0 is then equivalent to solving (4.4).
In order to do that, we define the adjoint equation for λ=λ0 and B=0

(4.6) W ′ =−(R(λ0)+S(x;λ0, 0))∗W.
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Furthermore, Ψ(x)=(Φ(x)∗)−1 is the fundamental matrix for the adjoint equa-
tion (4.6), which can be verified by direct calculations. For details, see [4, p. 70].
This system clearly possesses exponential dichotomies on R+ and R−, by the same
reasons as (2.3), i.e., using that the corresponding system at infinity possesses ex-
ponential dichotomies and then applying the roughness theorem. The exponential
dichotomies are denoted by Ψs(x, x0), Ψcu(x, x0) and Ψu(x, x0), Ψcs(x, x0) respec-
tively. They are related to the exponential dichotomies of the unperturbed system
in (2.3), with λ=λ0 and B=0, in the following way

Ψs(x, x0)=Φcu(x0, x)∗, Ψcu(x, x0)=Φs(x0, x)∗,
Ψcs(x, x0)=Φu(x0, x)∗, Ψu(x, x0)=Φcs(x0, x)∗.

The adjoint equation for (2.2) is

Z ′ =−(Ap(x, λ0)+L(x;λ0, 0))∗Z.

A solution of this equation is Z∗=U⊥
∗ =(−u′

∗,u∗)T , where U∗=(u∗,u′
∗) is the

solution of the original equation, (1.4). In fact, by direct calculations, it is clear
that V ⊥

∗ =W∗=G(x)∗Z∗ solves (4.6).
Further, since

d

dx
〈V,W 〉=0,

it follows that
〈V,W 〉=C,

for some constant C. In particular, for V =V∗ and W=V ⊥
∗ at x=0, we have that

〈V∗(0), V ⊥
∗ (0)〉= 〈U∗(0), U⊥

∗ (0)〉=0.

It follows that 〈V∗, V
⊥
∗ 〉=0 for all x∈R. Clearly, since V ⊥

∗ =G(x)∗U⊥
∗ , V ⊥

∗ decays
exponentially as |x|→∞.

For V s∈Es
+ and V u∈Eu

− it holds that

d

dx
〈V ⊥

∗ (x),Φs(x, T )V s〉= d

dx
〈Ψs(x, T )V ⊥

∗ (T ),Φs(x, T )V s〉〉=0,

d

dx
〈V ⊥

∗ (x),Φu(x,−T )V u〉= d

dx
〈Ψu(x, T )V ⊥

∗ (T ),Φu(x,−T )V u〉〉=0,

which follows by definition through direct calculations. Thus, 〈V ⊥
∗ ,Φs(x, T )V s〉 and

〈V ⊥
∗ ,Φu(x,−T )V u〉 are both constant. Moreover, since Φs(x, T )V s→0 as x→∞,

Φu(x,−T )V u→0 as x→−∞ and V ⊥
∗ is bounded on R, we obtain

〈V ⊥
∗ (0),Φs(0, T )V s+Φu(0,−T )V u〉=0.
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Hence, for every x∈R, we have

〈V ⊥
∗ (x),Φs(x, T )V s+Φu(x,−T )V u〉=0,

and for any V ∈R2n

(4.7) 〈V ⊥
∗ (0), QV 〉= 〈Q∗V ⊥

∗ (0), V 〉=0,

from which it follows that V ⊥
∗ (0)∈kerQ∗.

Lemma 4.4. The equation 〈V ⊥
∗ (0), F (λ,B)〉=0 defines a smooth function

λ(B) in a neighbourhood of B=0 such that λ(0)=λ0. Also, for any B∈Xβ

λ′(0)B =−
∫ ∞

−∞
〈u∗(x), B(x)u∗(x)〉 dx.

Proof. Define F∗(λ,B)=〈V ⊥
∗ (0), F (λ,B)〉. We want to solve the equation

F∗(λ,B)=0. Using equation (4.5), we get that
F∗(λ,B)

=−
∫ T

0
〈V ⊥

∗ (0),Φ(0, ξ;λ0, 0)P s(ξ;λ0, 0)N (ξ;λ,B)Φ(ξ, T ;λ,B)P s(T ;λ,B)V s
0 (λ,B)〉 dξ

−
∫ 0

−T
〈V ⊥

∗ (0),Φ(0, ξ;λ0, 0)Pu(ξ;λ0, 0)N (ξ;λ,B)Φ(ξ,−T ;λ,B)P s(−T ;λ,B)V u
0 (λ,B)〉 dξ

−
∫ ∞

0
〈V ⊥

∗ (0),Φ(0, ξ;λ0, 0)(I−P s(ξ;λ0, 0))N (ξ;λ,B)Φ(ξ, T ;λ,B)P s(T ;λ,B)V s
0 (λ,B)〉 dξ

−
∫ 0

−∞
〈V ⊥

∗ (0),Φ(0, ξ;λ0, 0)(I−Pu(ξ;λ0, 0))N (ξ;λ,B)Φ(ξ,−T ;λ,B)Pu(−T ;λ,B)V u
0 (λ,B)〉 dξ.

By Lemma 2.8, F∗ is a smooth function of λ and B in a neighbourhood of
(λ0, 0), with F∗(λ0, 0)=0. Since N (ξ;λ0, 0)=0 for all ξ∈R it follows, after differen-
tiating at (λ0, 0) with respect to λ, that
∂F∗
∂λ

(λ0, 0)

=−
∫ T

0

〈
V ⊥
∗ (0),Φ(0, ξ;λ0, 0)P s(ξ;λ0, 0)

∂N
∂λ

(ξ)Φ(ξ, T ;λ0, 0)P s(T ;λ0, 0)V s
0 (λ0, 0)

〉
dξ

−
∫ 0

−T

〈
V ⊥
∗ (0),Φ(0, ξ;λ0, 0)Pu(ξ;λ0, 0)

∂N
∂λ

(ξ)Φ(ξ,−T ;λ0, 0)P s(−T ;λ0, 0)V u
0 (λ0, 0)

〉
dξ

−
∫ ∞

0

〈
V ⊥
∗ (0),Φ(0, ξ;λ0, 0)(I−P s(ξ;λ0, 0))

∂N
∂λ

(ξ)Φ(ξ, T ;λ0, 0)P s(T ;λ0, 0)V s
0 (λ0, 0)

〉
dξ

−
∫ 0

−∞

〈
V ⊥
∗ (0),Φ(0, ξ;λ0, 0)(I−Pu(ξ;λ0, 0))

∂N
∂λ

(ξ)Φ(ξ,−T ;λ0, 0)Pu(−T ;λ0, 0)V u
0 (λ0, 0)

〉
dξ,

where
∂N
∂λ

(ξ)=G(ξ)−1
[

0 0
−I 0

]
G(ξ).
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The first two integrals above are zero due to (4.7). Hence

∂F∗
∂λ

(λ0, B)=−
∫ ∞

0

〈
V ⊥
∗ (ξ), ∂N

∂λ
(ξ)V∗(ξ)

〉
dξ

−
∫ 0

−∞

〈
V ⊥
∗ (ξ), ∂N

∂λ
(ξ)V∗(ξ)

〉
dξ

=−
∫ ∞

−∞

〈
V ⊥
∗ (ξ), ∂N

∂λ
(ξ)V∗(ξ)

〉
dξ

=−
∫ ∞

−∞

〈
G(ξ)∗U⊥

∗ (ξ), G(ξ)−1 ∂N

∂λ
G(ξ)G(ξ)−1U∗(ξ)

〉
dξ

=−
∫ ∞

−∞

〈
U⊥
∗ (ξ), ∂N

∂λ
U∗(ξ)

〉
dξ =

∫ ∞

−∞
|u∗(ξ)|2 dξ =1.

(4.8)

Differentiating using the chain rule yields

λ′(0)B =−(∂λF∗(λ0, 0))−1(∂BF∗(λ0, 0))B.

By (4.8), and similar arguments for ∂BF∗(λ0, 0), it follows that

λ′(0)B = ∂BF∗(λ0, 0)B =−
∫ ∞

−∞
〈u∗(x), B(x)u∗(x)〉,

which was the assertion. �

To prove Theorem 1.3, we need the following result.

Lemma 4.5. Let v:R→R
n be a continuous function. If for every B∈Xβ∫

R

〈v(ξ), B(ξ)u∗(ξ)〉 dx=0,

then v=0, where u∗ is the eigenfunction corresponding to the embedded eigenvalue

λ0 of the unperturbed operator L from (1.1).

Proof. See Lemma 5.5 in [11], where it is shown that the assertion follows from
the fundamental lemma of calculus of variations. �

In order to be able to prove Theorem 1.5 however, we will need a slightly
different result.

Lemma 4.6. Assume that Assumption 1.4 holds. Let v:R→R
n be a con-

tinuous function, and let u∗ be the eigenfunction corresponding to the embedded

eigenvalue λ0 of the unperturbed operator L from (1.1). If for every B∈Yβ∫
R

〈v(ξ), B(ξ)u∗(ξ)〉 dx=0,

then vj=0 for all j 
=1.
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Proof. Straightforward computation then yields

〈v(ξ), Bu∗(ξ)〉=
∑
i �=1

bi1(ξ)vi(ξ)u∗1(ξ),

We pick a B∈Yβ such that for some specific k 
=1, we have b1k(ξ)=bk1(ξ) 
=0,
and all other entries are equal to zero, where b1k smooth and compactly supported.
Then ∫

R

〈v(ξ), B(ξ)u∗(ξ)〉 dx=
∫
R

b1k(ξ)vk(ξ)u∗1(ξ)dξ =0.

By the fundamental lemma of calculus of variations it follows that

(4.9) vk(ξ)u∗1(ξ)= 0,

and with the same reasoning as in the proof of Lemma 4.5 in [11], it follows that
vk(ξ)=0 for all ξ∈R. Since k 
=1 was picked arbitrarily, the result follows that vk=0
for all k 
=1. �

Proof of Theorem 1.3. Since dim(kerQ∗)=dim(kerQ)=2m+1, and we know
that V ⊥

∗ (0)∈kerQ∗, we define Wk(0)∈R2n for k=1, ..., 2m such that {Wk(0); k=
1, ..., 2m}∪{V ⊥

∗ (0)} is a basis for kerQ∗. Let Wk be the solution of the adjoint
unperturbed system with initial value Wk(0). Further, define Fk :Xβ→R by

Fk(B)= 〈Wk(0), F (λ(B), B)〉, k=1, ..., 2m,

with F as in (4.5). All Fk are clearly smooth, since F is by Lemma 2.8. If
Fk(B)=0 for some B∈Xβ for all k=1, ..., 2m, then F (λ(B), B)=0 since {Wk(0); k=
1, ..., 2m}∪{V ⊥

∗ (0)} is a basis for kerQ∗. The converse clearly holds as well.
Now, to show that there is a 2m-dimensional manifold of perturbations B

defined by the equations Fk(B)=0, k=1, ..., 2m, we start by defining

V (x,B)=
{

Φ(x, T ;λ(B), B)V s
0 (λ(B), B) for x≥0,

Φ(x,−T ;λ(B), B)V u
0 (λ(B), B) for x<0,

giving that

Fk(B)=−
∫ T

0
〈Wk(0),Φ(0, ξ;λ0, 0)P s(ξ;λ0, 0)N (ξ, λ,B)V (ξ,B)〉 dξ

−
∫ 0

−T

〈Wk(0),Φ(0, ξ;λ0, 0)Pu(ξ;λ0, 0)N (ξ, λ,B)V (ξ,B)〉 dξ

−
∫ ∞

0
〈Wk(0),Φ(0, ξ;λ0, 0)(I−P s(ξ;λ0, 0))N (ξ, λ,B)V (ξ,B)〉 dξ

−
∫ 0

−∞
〈Wk(0),Φ(0, ξ;λ0, 0)(I−Pu(ξ;λ0, 0))N (ξ, λ,B)V (ξ,B)〉 dξ.
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Since Wk(0)=(I−Q∗)Wk(0), the first two terms above are 0. Hence

Fk(B) =−
∫ ∞

−∞
〈Wk(0),Φ(0, ξ;λ0, 0)N (ξ;B)V (ξ,B)〉 dξ

=−
∫ ∞

−∞
〈Wk(ξ),N (ξ;λ,B)V (ξ,B)〉 dξ

=−
∫ ∞

−∞
〈G(ξ)∗Zk(ξ), G(ξ)−1N(ξ;λ,B)G(ξ)G(ξ)−1U(ξ,B)〉 dξ

=−
∫ ∞

−∞
〈Zk(ξ), N(ξ;λ,B)U(ξ,B)〉 dξ

=−
∫ ∞

−∞
〈zk(ξ), (B−(λ(B)−λ0)I)u(ξ;B)〉 dξ,

where Zk=(−z′k, zk)T and u(ξ,B) is the vector comprised of the first n components
of U(ξ,B).

Next, we wish to prove that F ′
k(0), k=1, ..., 2m are linearly independent. Using

Lemma 4.3 and Lemma 4.4, we get that

F ′
k(0)B =−

∫ ∞

−∞
〈zk(ξ), (B(ξ)−λ′(0)B)u∗(ξ)〉 dξ

=−
∫ ∞

−∞
〈zk, B(ξ)u∗(ξ)〉 dξ

−
∫ ∞

−∞
〈u∗(ξ), B(ξ)u∗(ξ)〉 dξ

∫ ∞

−∞
〈zk(ξ),u∗(ξ)〉 dξ.

(4.10)

Let αk∈R for all k=1, ..., 2m be such that for every B∈Xβ,

2m∑
k=1

αkF
′
k(0)B =0.

Then, setting

α0 =
∫ ∞

−∞
〈z(ξ),u∗(ξ)〉 dξ,

where

z(ξ)=
2m∑
k=1

αkzk(ξ),

we arrive at ∫ ∞

−∞
〈z(ξ)+α0u∗(ξ), B(ξ)u∗(ξ)〉 dξ =0.
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Applying Lemma 4.5 with v=z+α0u∗ yields

α0u∗(ξ)+
2m∑
k=1

αkzk(ξ)= 0 for all ξ ∈R.

Clearly, it also holds for all ξ∈R that

α0u′
∗(ξ)+

2m∑
k=1

αkz′k(ξ)= 0.

In particular, for ξ=0 and combining the above two equations, we get that

α0U
⊥
∗ (0)+

2m∑
k=1

αkZk(0)= 0.

But since we know that {Wk(0); k=1, ..., 2m}∪{V ⊥
∗ (0)}={Zk(0); k=1, ..., 2m}∪

{U⊥
∗ (0)} is a basis for kerQ∗, we must have that αk=0 for all k=0, ..., 2m. And so

F ′
k(0) are linearly independent.

Now, we consider the decomposition Xβ=kerF ′(0)⊕Ξ, where F (B)=(
F1(B), ..., F2m(B)

)T and Ξ has dimension 2m. Then any B∈Xβ can be expressed
uniquely as the sum B=B1+B2, where B1∈kerF ′(0) and B2∈Ξ.

Now we define the function f :kerF ′(0)×Ξ→R
2m by f(B1, B2)=F (B1+B2)=

F (B). This is clearly smooth since F is. Differentiating using the chain rule
gives us that ∂Bif(B1, B2)Bi=F

′(B1+B2)Bi which implies that ker ∂B1f(0, 0)=
kerF ′(0) and ker ∂B2f(0, 0)={0}. Next, we use the implicit function theorem so
that f(B1, B2)=0 defines B2 as a smooth function of B1 in a neighbourhood of
B1=0, B2=0. We denote this function by g :U⊂kerF ′(0)→Ξ, where U is a neigh-
bourhood of 0∈kerF ′(0). Then g(B1)=B2 if and only if f(B1, B2)=0, or equiva-
lently, if and only if F (B)=0. Further, let ζ :U⊂kerF ′(0)→kerF ′(0)×Ξ be defined
by B1 �→(B1, f(B1)). The map is clearly smooth and injective, and thus invertible
onto its image, ζ(U).

Defining G(x, y)=y−ζ(x), we can apply the implicit function theorem again on
the equation G(x, y)=0, giving the smooth function h(x)=y, defined locally. This
must then be ζ−1, and we are done. �

Proof of Theorem 1.5. We follow the proof of Theorem 1.3 until equation (4.10).
Recall that Assumption 1.4 holds, and so u∗ is non-zero only in the first entry. Then
we can choose the corresponding initial conditions such that all zk is orthogonal to
u∗, making all zk, and therefore z, zero at all entries except the first. This results
in the equation ∫ ∞

−∞
〈z(ξ), B(ξ)u∗(ξ)〉 dξ =0.
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By Lemma 4.6 it now follows that z=0. By the same arguments as in the proof of
Theorem 1.3 (with α0=0 by the ortogonality), we may conclude that αk=0 for all
k=1, ..., 2m. And so, the result follows. �

5. An example

This section serves to conclude the paper by providing an example of the in-
vestigated problem.

Example 5.1. Let
Vp(x) = 2 cos(2x).

This eigenvalue equation for the corresponding operator then becomes the famous
Mathieu equation

u′′+
(
λ−2q cos(2x)

)
u=0,

with q=1. It is known that periodic Schrödinger operators have a non-empty and
purely continuous spectrum with a certain band structure [8]. We choose λ0 from
one of these bands, such that it belongs to the spectrum of the operator

Lp =− d2

dx2 +Vp.

Now let
Vc(x)= 1− 2

cosh2(x)
+λ0.

Then u1(x)=1/ cosh(x) is an eigenfunction of the operator

Lc =− d2

dx2 +Vc,

with corresponding eigenvalue λ0.
We choose our coefficient matrix of the form

A(x)=
[
Vc(x) 0

0 Vp(x)

]
.

This means that λ0 is a simple embedded eigenvalue of L=− d2

dx2 +A, with cor-
responding eigenfunction (u1, 0)T . The matrix A is clearly asymptotically periodic,
with

Ap(x)=
[
1+λ0 0

0 2 cos(2x)

]
.
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Moreover, we have that

‖A−Ap‖Xβ
=2·sup

x∈R

(1+|x|)β
cosh2(x)

<∞, for all β > 1.

Thus, Assumptions 1.1 and 1.2 are fulfilled. For z1 and z2 we choose some gener-
alized eigenfunctions

z1(x)=
[

0
z1(x)

]
and z2(x)=

[
0

z2(x)

]
.

Since

B =
[
b11(x) b12(x)
b12(x) b22(x)

]
and the fact that

〈zk(ξ), B(ξ)u∗(ξ)〉=
[
0 zk(ξ)

] [b11(ξ) b12(ξ)
b12(ξ) b22(ξ)

] [
u1(ξ)

0

]
= b12(ξ)zk(ξ)u1(ξ),

we have that
F ′
k(0)B =

∫ ∞

−∞
b12(ξ)zk(ξ)u1(ξ) for k=1, 2.

Hence, the manifold M is tangent to the subspace of perturbations B∈Xβ

such that the off-diagonal elements are orthogonal to zk(x)uk(x). This follows since
M is described in a neighbourhood of B=0 by the equations Fk(B)=0, and that
the eigenvalue can only persist if B∈M .
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