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Characters and spin characters of alternating
and symmetric groups determined by values on

l′-classes

Eoghan McDowell

Abstract. This paper identifies all pairs of ordinary irreducible characters of the alternating
group which agree on conjugacy classes of elements of order not divisible by a fixed integer l,
for l �=3. We do likewise for spin characters of the symmetric and alternating groups. We find
that the only such characters are the conjugate or associate pairs labelled by partitions with a
certain parameter divisible by l. When l is prime, this implies that the rows of the l-modular
decomposition matrix are distinct except for the rows labelled by these pairs. When l=3 we
exhibit many additional examples of such pairs of characters.

1. Introduction

Does knowing its values on l′-classes suffice to identify an ordinary irreducible
character of a group G? Here, an l′-class means a conjugacy class of elements of
order not divisible by a positive integer l�2. The answer is certainly “no” if l is
prime and G is an l-group, since the only l′-class is the identity; on the other hand,
if G is a symmetric group and l>2 then the answer is “yes”: Wildon showed that
all irreducible characters of the symmetric group are uniquely determined by their
values on l′-classes when l>2 [Wil08, Corollary 2.1.3].

In this paper we resolve this question for the alternating group, and for the
spin characters of the symmetric and alternating groups, when l �=3.

When l is prime, answering this question gives us information about the mod-
ular representation theory of G. Indeed, for ordinary irreducible characters χ and
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ψ of a group G, it is straightforward to show (see the proof of Corollary 1.4) that
the following are equivalent:
(i) χ and ψ agree on the l′-classes of G;
(ii) the rows of the l-modular decomposition matrix of G labelled by χ and ψ are

equal.
This second property says that the l-modular reductions of the representations af-
fording χ and ψ have the same multiset of composition factors (that is, the same
Brauer character; for an account of decomposition numbers and Brauer characters,
see for example [Web16, Chapter 10]). Thus we obtain as a corollary to our main
theorems a classification of repeated rows in the decomposition matrices of the alter-
nating group when l �=3, and of the double covers of the symmetric and alternating
groups when l �∈{2, 3}.

1.1. Main theorems

Our first main theorem concerns the alternating group An; see §2.1 for the
labelling of its characters. The case of l=2 is due to [Wil08, Theorem 3.2.1].

Theorem 1.1. Let l �=3.
If l is even, irreducible characters of An are uniquely determined by their values

on l′-classes.

If l is odd, a conjugate pair of characters of An labelled by a self-conjugate

partition with a principal hook length divisible by l agree on l′-classes; all other

irreducible characters of An are uniquely determined by their values on l′-classes.

Our next main theorems concern spin characters. The projective representation
theory of the symmetric and alternating groups Sn and An is controlled by the linear
representation theory of their double covers S̃n and Ãn; characters of a double cover
which are not lifts from the original group are those which send the central element
of order 2 to −I, and are called spin characters (or projective characters or negative
characters). Note that there is a choice of two double covers of Sn, but our results
hold for either choice; see §2.2 for a justification of this, as well as for the explicit
presentation we will use and the labelling of its characters.

Theorem 1.2. Let l �=3. An associate pair of spin characters of S̃n labelled

by an odd partition with a part divisible by l agree on l′-classes; all other irreducible

spin characters of S̃n are uniquely determined by their values on l′-classes.

Theorem 1.3. Let l �=3. A conjugate pair of spin characters of Ãn labelled by

an even partition with a part divisible by l agree on l′-classes; all other irreducible

spin characters of Ãn are uniquely determined by their values on l′-classes.
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When l=2, the unique determination stated in Theorems 1.2 and 1.3 relies
on the character being known to be spin: there are spin and non-spin characters
which agree on 2′-classes (see §1.3 below). If l �=2, however, no spin character agrees
with a non-spin character on l′-classes, since they disagree on the central element
of order 2. Thus, together with Theorem 1.1 and [Wil08, Corollary 2.1.3], these
theorems completely classify pairs of irreducible characters of S̃n and Ãn which
agree on l′-classes for l �∈{2, 3}.

Our results have the following interpretation in terms of decomposition matri-
ces.

Corollary 1.4. Let p be prime. With the exceptions of the repeated rows

labelled by the pairs of characters agreeing on p′-classes described in Theorems 1.1

to 1.3, there are no repeated rows in the decomposition matrices of An when p �=3,
nor in the decomposition matrices of S̃n and Ãn when p �∈{2, 3}.

Proof. We argue as in [Wil08, §3]. Let D be the decomposition matrix, B the
Brauer character table, and X the ordinary character table restricted to p′-elements
(for any finite group). Note that DB=X and that B is invertible. This implies
that equal rows in D correspond to equal rows in X (which are precisely characters
agreeing on p′-classes): if the rows of D labelled by ordinary characters χ and ψ

are equal, and g is any p′-element of the group, then

χ(g)=
∑
ϕ

Dχ,ϕϕ(g)=
∑
ϕ

Dψ,ϕϕ(g)=ψ(g)

where the sums are over all Brauer characters ϕ of the group; similarly for the
converse by writing D=XB−1. �

In all three of our main theorems, the infinite family of pairs of characters
agreeing on l′-classes can be identified immediately:

• for a self-conjugate partition λ, the conjugate characters χλ+ and χλ− of An

differ only on the split class of cycle type consisting of the principal hook
lengths of λ;

• for an odd partition λ with distinct parts, the spin character 〈λ〉 of S̃n and its
associate differ only on the split class labelled by λ;

• for an even partition λ with distinct parts, the restriction to Ãn of the spin
character 〈λ〉 decomposes as a sum of two conjugate characters which differ
only on the split class labelled by λ.

The force of the theorems is that no other pairs of characters agree on the l′-classes.
This is false, however, for l=3. That is, there are pairs of characters which agree

on the 3′-classes – and hence there are repeated rows in the 3-modular decomposition
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matrix – in addition to the conjugate and associate pairs identified above. For An,
we identify two infinite families of such pairs (Theorem 6.1), and remark on a
striking similarity with known characters of An with equal vanishing sets. For S̃n

and Ãn, we record all such pairs for n�14 (Proposition 6.3).
To prove our main theorems, we consider the subalgebra of the centre of the

group algebra generated by the l′-class sums, and use central characters to determine
the genuine characters. This is the technique used by Wildon in [Wil08] for the
symmetric group. Unlike for the symmetric group, in our cases it is not possible
to generate the entire centre; nevertheless we show we can generate enough to
distinguish characters up to conjugacy or associates.

This paper is structured as follows. We recall background on the character
theory of symmetric and alternating groups and their double covers in §2. We
prove a sufficient condition for a pair of characters of a normal subgroup to be
conjugate in §3, and prove the conjugacy class sum generation results required to
use this condition in §4. We deduce our main theorems in §5. We exhibit characters
agreeing on 3′-classes in §6.

1.2. Remarks on the size of a set needed to determine a character

For each group in consideration, as n grows, the number of l′-classes grows
exponentially, but the proportion of l′-classes amongst all conjugacy classes decays
exponentially. These facts can be deduced from the numbers and proportions for
Sn (see [HR18, (1.36)] and [Hag71, Corollary 4.2]), noting that the numbers of
classes and l′-classes for the related groups are bounded linearly in terms of those
for Sn. (More precisely, [Hag71] asymptotically enumerates the partitions with no
part repeated l or more times; this is equal to the number of partitions with no part
divisible by l by Glaisher’s Theorem (see for example [Jam78, Chapter 10]). This is
an upper bound on the number of l′-classes of Sn, attained when l is a prime power;
for a lower bound, consider the number of q′-classes for q a prime power factor of l.)

Our theorems therefore say that characters are determined (with the specified
exceptions) by their values on a small proportion of classes. In fact, the proof of
Theorem 4.4 requires only l′-classes of cycle type having at most four parts greater
than 1, and so the characters are determined by their values on this restricted set
of l′-classes, of size O(n4).

Nevertheless, we can determine characters by their values on smaller sets of
classes if we remove the l′ restriction. As noted in [Wil08], for the symmetric group
Sn, the values on cycles – a set of size n – suffice to determine a character: the class
sums of the cycles generate the centre of the group algebra [Kra66], and arguing
as in §3 gives the claim. An analogous argument shows that for the alternating
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group An, the values on cycles (of odd length) and values on products of two cycles
of even length – a set of size O(n2) – suffice to determine a character. For the
double covers Ãn and S̃n, it can be shown that class sums of preimages of cycles of
odd length together with all non-split even classes generate enough of the centre of
the group algebra to determine characters up to associates or conjugacy; since spin
characters vanish on non-split classes, this implies that values on one of each of the
split classes of cycles of odd length – a set of size �n

2 � – suffice to determine a spin
character up to associates or conjugacy.

A related endeavour of Chow and Paulhus [CP21] gives an algorithm to de-
termine a character of the symmetric group from its values on a set of size O(n)
– although they require more values than just those on the cycles, they explic-
itly construct the indexing partition from these character values without requiring
knowledge of the full character table.

1.3. Remarks on spin characters modulo 2

Although Theorems 1.2 and 1.3 rule out two spin characters agreeing on 2′-
classes (except for the specified associate or conjugate pairs), there do exist spin
characters which agree with a non-spin character on the 2′-classes. That is, although
there are no repeated rows in the 2-modular decomposition matrices of S̃n and Ãn

with both rows labelled by spin characters, there are repeated rows with one row
labelled by a spin character and the other by a non-spin character. For example,
when n=5 the spin character 〈(4, 1)〉 agrees with the non-spin character χ(3,12) on 2′-
classes [ATLAS, p. 2], and the corresponding rows of the decomposition matrix are
equal [Fay18, p. 885]. (There are also repeated rows in the 2-modular decomposition
matrix of S̃n labelled by conjugate pairs of partitions, i.e. the repeated rows in the
decomposition matrix of Sn classified by [Wil08, Theorem 1.1.1(ii)].)

In fact, there exist infinitely many pairs of spin and non-spin characters which
agree on 2′-classes, and moreover whose affording representations are isomorphic
after reduction modulo 2. (Here the 2-modular reduction of a representation of
S̃n is viewed as a representation of Sn, as is possible because the image of the
central element of order 2 is trivial modulo 2). Indeed, consider λ=(k, k−1, ..., 1)
with k�2, the 2-core partition of n= 1

2k(k+1). Then χλ is the only ordinary irre-
ducible character of Sn lying in its own 2-block, and hence its 2-modular reduction
remains irreducible and is the only irreducible 2-modular character in that block.
It is known that, for μ a strict partition, the spin character 〈μ〉 lies in the same
2-block as χdblreg(μ), where dblreg(μ) denotes the 2-regularisation of the double of
μ, and furthermore χdblreg(μ) occurs as a composition factor of 〈μ〉 with multiplicity
2�m0(μ)/2� where m0(μ) denotes the number of even parts of μ [BO97, Theorem 5.2].
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Pick μ=(2k−1, 2k−5, ..., 7, 3) or μ=(2k−1, 2k−5, ..., 5, 1); it is easily verified that
dblreg(μ)=λ and 2�m0(μ)/2�=1, and hence the 2-modular reductions of the rep-
resentations affording 〈μ〉 and χλ are isomorphic. Similar reasoning establishes
isomorphisms between spin and non-spin representations in the 2-block of weight 1.
Nevertheless, not all such coincidences arise in this way (such as the example when
n=5 in the previous paragraph).

2. (Spin) characters of symmetric and alternating groups

2.1. Symmetric and alternating groups and their characters

Here we state well-known results on the character theory of the symmetric and
alternating groups; for a complete account, see, for example, [JK84, Chapter 2].

The ordinary irreducible characters of Sn are indexed by partitions of n, and
we denote the character corresponding to λ as χλ. If λ �=λ′, then χλ↓An

=χλ′↓An

is an irreducible character of An. If λ=λ′, then χλ↓An
splits into a conjugate pair

of irreducible characters of An denoted χλ± (the signs can be assigned arbitrarily).
Moreover, we obtain a complete irredundant set of ordinary irreducible characters
of An in this way.

We denote by Cλ the Sn-conjugacy class of permutations of cycle type λ. The
Sn-conjugacy classes which split in An are precisely those of cycle type with distinct
parts all of which are odd; for λ with distinct parts all odd, we denote the resulting
An-conjugacy classes by C±

λ (the signs can be assigned arbitrarily).
A principal hook length of a partition refers to a hook length of a box on the

main diagonal in the Young diagram of the partition. For λ self-conjugate, the
principal hook lengths of λ are distinct odd integers; write diag(λ) for the partition
whose parts are the principal hook lengths of λ. The pair of characters of An labelled
by a self-conjugate partition λ differ only on the split class of cycle type diag(λ),
from which we deduce the infinite family of characters agreeing on l′-classes stated
in Theorem 1.1.

2.2. Double covers and spin characters

Here we state elementary results on the projective representation theory of the
symmetric and alternating groups; for a complete account, see, for example, [HH92].

A projective representation of a group G is a group homomorphism G→PGL(V )
for some V . There is a correspondence between projective representations of G and
linear representations of a central extension of G by its Schur multiplier. When n�4
the Schur multiplier of the alternating and symmetric groups are cyclic of order 2
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(except for n∈{6, 7} for the alternating group), so it suffices to consider the linear
representations of their double covers.

We use the double cover S̃n described in [HH92, pp. 18–19], which has gener-
ators z, t1, ..., tn−1 subject to the relations

z2 =1; t2j = z; (tjtj+1)3 = z;
tjtk = ztktj for |j−k|> 1.

There is a projection map θ : S̃n→Sn with kernel {1, z}. Define the sign map
S̃n→{±1} by composition of the usual sign map with θ; its kernel is Ãn, a double
cover of the alternating group.

The image of z under a representation of S̃n or Ãn is ±I; if it is I, then the
representation corresponds to a linear representation of Sn or An; if it is −I, then
the representation is called spin and it corresponds to a projective representation
of Sn or An which is not linear. Since the linear representations of Sn and An are
already described, we are interested in the spin representations of S̃n and Ãn.

There is another choice of double cover of Sn (though not for An – both covers of
Sn yield isomorphic covers of An) [HH92, pp. 22–23]. However, the spin characters
of one double cover can be obtained from the other by multiplying the values on
S̃n\Ãn by i [ATLAS, §6.7], and hence the choice of double cover makes no difference
to the determination of the character by its values.

For each strict partition (that is, partition with distinct parts) λ of n, there
is a spin ordinary irreducible character 〈λ〉 of S̃n. Each character of S̃n has an
associate, denoted −a, which takes values of opposite sign on odd elements. We call
a partition even or odd according to whether permutations of that cycle type are
even or odd. If λ is odd, then 〈λ〉�=〈λ〉a, and 〈λ〉↓

˜An
=〈λ〉a↓

˜An
is irreducible and

self-conjugate. If λ is even, then 〈λ〉=〈λ〉a, and 〈λ〉↓
˜An

splits into a conjugate pair
of irreducible characters of Ãn denoted 〈λ〉± (the signs can be assigned arbitrarily).
We obtain complete irredundant sets of ordinary irreducible spin characters of S̃n

and Ãn in this way.
Write C̃ for the preimage in S̃n of an Sn-conjugacy class C. Say elements of

C̃λ are of cycle type λ. The set C̃λ is either itself an S̃n-conjugacy class, or splits
into two S̃n-conjugacy class. Splitting occurs if and only if λ has all parts odd or
λ is odd with all parts distinct; in these cases, write C̃(1)

λ and C̃(z)
λ for the resulting

S̃n-conjugacy classes (the labels can be assigned arbitrarily). The S̃n-conjugacy
classes which split in Ãn are precisely those of cycle type with all parts odd or all
parts distinct (which includes all classes which split from Sn to S̃n); if C is such a
S̃n-conjugacy class, we denote the resulting Ãn-conjugacy classes C± (the signs can
be assigned arbitrarily).
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An associate pair of irreducible spin characters of S̃n, or a conjugate pair of
irreducible spin characters of Ãn, differ only on the split class of cycle type equal to
the labelling partition [HH92, Theorem 8.7]. From this fact we deduce the infinite
families of characters agreeing on l′-classes stated in Theorems 1.2 and 1.3.

An irreducible spin character of S̃n or Ãn necessarily vanishes except on the
classes of cycle type with all parts odd or of cycle type equal to the partition which
labels the character [HH92, Theorem 8.7]. In particular, if l is even, a pair of
irreducible spin characters of S̃n and Ãn which agree on l′-classes can differ only on
the classes of cycle type the partitions labelling the characters; if the characters are
not conjugate or associate (that is, not labelled by the same partition), then on each
of these classes at least one of the pair vanishes, contradicting their orthogonality.
This yields the cases of Theorems 1.2 and 1.3 where l is even.

3. Character values and conjugacy of characters

Let G be a finite group. Given a conjugacy class C, let sC∈Z(QG) denote the
class sum, and given a character χ we write χ(C) for the value χ(g) for any g∈C.
More generally, if D is a union of conjugacy classes of G, write sD=

∑
C⊆D sC for the

sum of the constituent class sums, and χ(D)=
∑

C⊆D χ(C) for the sum of character
values on each constituent class.

Suppose G has a normal subgroup H. Recall that any G-conjugacy class is
either disjoint from H, or is a union of H-conjugacy classes of equal size. The aim
of this section is to prove a sufficient condition on the values of a pair of characters
of H for the characters to be G-conjugate (Proposition 3.4).

3.1. Central characters

The following is the key lemma which allows us to deduce further relations
between character values from a given set. This argument was used by Wildon in
[Wil08], though he considers only the case where the unions are single classes.

Lemma 3.1. Let χ and ψ be irreducible characters of G of equal degree. Let

U be a set of unions of G-conjugacy classes, such that all classes in a given union

are of the same size. Suppose that χ(D)=ψ(D) for all D∈U . If E is a union

of G-conjugacy classes of equal size such that sE lies in the algebra generated by

{sD |D∈U}, then χ(E)=ψ(E).

To prove this lemma, we use central characters. A central character of a group
G is a Q-algebra homomorphism Z(QG)→C (this is sometimes defined with other
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fields in place of Q or C, but for our purposes this suffices). Given an irreducible
character χ of G, there is a corresponding central character ωχ which sends an
element α∈Z(QG) to the scalar by which α acts on the representation afforded by
χ; thus on a conjugacy class sum sC the central character ωχ is defined by

ωχ(sC)= |C|χ(C)
χ(1) .

Proof of Lemma 3.1. Write d for the common value χ(1)=ψ(1). Let ωχ, ωψ

denote the central characters corresponding to χ and ψ respectively. If D∈U is a
union of conjugacy classes of size m, we have

ωχ(sD)= m

d
χ(D)= m

d
ψ(D)=ωψ(sD),

so ωχ and ωψ agree on {sD |D∈U} and hence on the algebra that set generates.
Suppose E is a union of G-conjugacy class of equal size r such that sE lies in that
algebra. Then

χ(E)= d

r
ωχ(sE)= d

r
ωψ(sE)=ψ(E). �

3.2. Distinguishing characters up to conjugates

Lemma 3.2. Let χ be a character of H.

(i) Let C be a G-conjugacy class contained in H, and let k be the number of

H-conjugacy classes into which C splits. Then

χ↑G(C)= |G :H|
k

χ(C).

(ii) Let stabG(χ) denote the stabiliser of χ under the conjugation action of G, and

let ∼ denote the equivalence relation of G-conjugacy of characters. Then

χ↑G↓H = |stabG(χ) :H|
∑
ψ∼χ

ψ.

Proof. The expression χ↑G(g)= 1
|H|

∑
x∈G χ(x−1gx) for g∈H yields both parts

routinely (for the first part, break up the sum over cosets of the centraliser of g in
G and use that the H-conjugacy classes into which C splits are of equal size |C|/k;
for the second part, break up the sum over cosets of the stabiliser of χ in G). �

Lemma 3.3. Let χ, ψ be irreducible characters of H. The following are equiv-

alent:

(i) χ(C)=ψ(C) for every G-conjugacy class C contained in H;
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(ii) χ↑G=ψ↑G;
(iii) χ and ψ are G-conjugate.

Proof. Note characters induced from a normal subgroup are zero off that sub-
group. Then the equivalence of (i) and (ii) follows from Lemma 3.2(i), and the
equivalence of (ii) and (iii) follows from Lemma 3.2(ii). �

Proposition 3.4. Let U be a set of unions of H-conjugacy classes, such that

all classes in a given union are of the same size. Suppose the subalgebra of Z(QH)
generated by {sD |D∈U} contains all the sums of G-conjugacy classes contained

in H. If χ and ψ are irreducible characters of H of equal degree such that χ(D)=
ψ(D) for all D∈U , then χ and ψ are G-conjugate.

Proof. Combine Lemmas 3.1 and 3.3. �

4. Generation of the centre of the group algebra

The aim of this section is to prove, working in Z(QAn), that the even Sn-
conjugacy l′-class sums generate all the even Sn-conjugacy class sums, and likewise
with S̃n and Ãn in place of Sn and An (requiring l odd in this case).

For any group G, the centre of the group algebra Z(QG) has linear basis the
set of conjugacy class sums. Furthermore, if H is a normal subgroup of G and C1,
C2 are G-conjugacy classes in H, then the product sC1sC2 can be written uniquely
as a positive integral linear combination of sums of G-conjugacy classes in H.

4.1. Centre of the group algebra of the alternating group

We will induct on the following statistic.

Definition 4.1. The support of a partition λ, denoted supp(λ), is the number
of non-fixed points of a permutation of cycle type λ.

That is, the support of λ is the sum of the parts of λ strictly greater than 1.
Throughout this section, for convenience we omit writing the parts of a parti-

tion which are equal to 1, and allow a partition of any integer m�n to be viewed
as a partition of n by appending 1s as necessary. Again for convenience, we do
not necessarily write the parts of a partition in decreasing order. These abuses of
notation are acceptable here as they do not alter which conjugacy class of Sn is
determined via cycle type.

Write sλ=sCλ
for the sum of the class Cλ of permutations of cycle type λ. Given

partitions λ, μ, ν, we say ν is involved in the product sλsμ if sν appears with nonzero

item:sum_of_char_values
item:induced_chars
item:value_as_sum_over_classes
item:induced_chars
item:G-conjugate
item:value_as_sum_over_conjugates
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(hence positive integer) coefficient in the product (when written with respect to the
Sn-conjugacy class basis). This occurs if and only if there exist permutations σ, τ, ρ
of cycle types λ, μ, ν such that στ=ρ.

Given partitions λ and μ, let λ
μ denote the partition consisting of all the parts
of λ and μ (parts strictly greater than 1 only, arranged in decreasing order). The
following simple fact concerning multiplication of class sums was used by Kramer
to show that the set {s(i) |1�i�n} generates Z(QSn) [Kra66].

Lemma 4.2. Let λ, μ be partitions such that supp(λ)+supp(μ)�n. The

unique partition of support greater than or equal to supp(λ)+supp(μ) which is in-

volved in the product sλsμ is λ
μ.

Proof. Suppose σ, τ are permutations of cycle type λ, μ respectively. In order
for the product στ to have at least supp(λ)+supp(μ) non-fixed points, the non-
fixed points of σ and τ must be disjoint, in which case σ and τ commute and the
product στ has cycle type λ
μ. Indeed such permutations exist given supp(λ)+
supp(μ)�n. �

We require a stronger version of Lemma 4.2 in the case of multiplying by a
cycle.

Lemma 4.3. Let λ be a partition with m parts (all strictly greater than 1),
and let r>1 be a positive integer such that supp(λ)+r�n.

(i) The unique partition of support supp(λ)+r involved in the product sλs(r) is

λ
(r).
(ii) The partitions of support supp(λ)+r−1 involved in the product sλs(r) are (up

to reordering parts) precisely those of the form (λ1, ..., λi−1, λi+r−1, λi+1, ...,

λm) for some 1�i�m.

(iii) A partition of support supp(λ)+r−2 involved in the product sλs(r) either has

m+1 parts strictly greater than 1, or is (up to reordering parts) of the form

(λ1, ..., λi−1, λi+λj+r−2, λi+1, ..., λj−1, λj+1, ..., λm) for some 1�i<j�m.

Proof. The first part is a special case of Lemma 4.2. For the second part,
observe that the product of two non-identity permutations has exactly one fewer
non-fixed point than the sum of their numbers of non-fixed points if and only if the
two permutations have exactly one non-fixed point in common. The product of a λi-
cycle and r-cycle with exactly one non-fixed point in common is a (λi+r−1)-cycle,
yielding the specified form.

For the third part, observe that if the product of two non-identity permutations
has exactly two fewer non-fixed points than the sum of their numbers of non-fixed
points, then the two permutations have exactly two non-fixed point in common
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(though not conversely). If an r-cycle has two non-fixed points in common with
a λi-cycle, then either their product has cycle type (a, b) with a+b=λi+r−2 and
we are in the case of having m+1 parts strictly greater than 1, or the product is a
(λi+r−3)-cycle and we do not obtain a permutation of the specified support; if an
r-cycle has one non-fixed point in common with a λi-cycle and one non-fixed point
in common with a disjoint λj-cycle, the product is an (λi+λj+r−2)-cycle and we
are in the case of the form specified. �

Theorem 4.4. Let l�4 and n�l. The subalgebra of Z(QAn) generated by the

even Sn-conjugacy l′-class sums contains all even Sn-conjugacy class sums.

Proof. Let Z be the subalgebra generated by the even Sn-conjugacy l′-class
sums. We aim to show sλ∈Z for all even partitions λ by induction on supp(λ)
(primarily) and n−λ1 (secondarily). The cases 0�supp(λ)�3 are trivial. Suppose
supp(λ)�4, and suppose we have shown that sμ∈Z for all even partitions μ of
support strictly less than λ and for all partitions μ of support equal to λ with
μ1>λ1.

The order of an element of Sn is the lowest common multiple of the numbers
in its cycle type. Thus if l does not divide the lowest common multiple of the parts
of λ, the claim holds trivially. Otherwise, let q�3 be a prime power dividing l, and
note that q divides at least one part of λ.

We consider three cases depending on the number and parity of the parts of λ
(following our convention on omitting parts equal to 1).

λ has at least three parts; or λ has exactly two parts, both odd
We can write λ=μ
ν where μ and ν are nonempty even partitions with sup-

port strictly less than supp(λ). Then sμsν∈Z by the inductive hypothesis, and by
Lemma 4.2 the only partition of support at least supp(λ) involved in the product
sμsν is λ. Using the inductive hypothesis again, all summands except sλ lie in Z,
and hence so does sλ.

For the remaining two cases, choose a positive odd integer j such that j �≡0
and j �≡1 (mod q), and such that j<a for every part a of λ which is divisible by q.
If q>3, then j=3 suits; if q=3, then j=5 suits (noting that in the remaining two
cases λ has either one odd part greater than 4, or two even parts).

λ has exactly one part, necessarily odd
Write λ=(a), where a is odd and divisible by q. The partitions (a−j+1) and

(j) are even and have support strictly less than supp(λ), so s(a−j+1)s(j)∈Z by the
inductive hypothesis. By Lemma 4.3, the only partitions involved in this product of
support at least supp(λ) are λ and (a−j+1, j). Since a−j+1 and j are not divisible
by q, we have s(a−j+1,j)∈Z trivially, and hence (using the inductive hypothesis
again) we conclude sλ∈Z.
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λ has exactly two parts, both even
Write λ=(a, b), where a and b are even and at least one is divisible by q.

Suppose a�b. We consider four cases depending on the residues of a and b modulo q.
˝ a≡0, b �≡0,1 (mod q)
Since a �≡b, we have a>b. The product s(b,b)s(a−b+1) lies in Z by the induc-

tive hypothesis. Other than λ, the only partition of support at least supp(λ) in-
volved in the product is (b, b, a−b+1). This partition has no part divisible by q, so
s(b,b,a−b+1)∈Z, and hence sλ∈Z.

˝ a≡0, b≡1 (mod q)
The product s(a−j+1,b)s(j) lies in Z by the inductive hypothesis. Other than

λ, the only partitions of support at least supp(λ) involved in the product are
(a−j+1, b+j−1) and (a−j+1, b, j). Neither of these partitions has a part divisi-
ble by q, so the corresponding class sums lie in Z, and thus sλ∈Z.

˝ a �≡0, b≡0 (mod q)
The product s(a,b−j+1)s(j) lies in Z by the inductive hypothesis. Other than

λ, the only partitions of support at least supp(λ) involved in this product are
(a, b−j+1, j) and (a+j−1, b−j+1). The former partition has no part divisible by
q, so s(a,b−j+1,j)∈Z; the latter has support equal to that of λ but greater first part,
so s(a+j−1,b−j+1)∈Z by the inductive hypothesis. Thus sλ∈Z.

˝ a≡b≡0 (mod q)
As in the previous case, the product s(a,b−j+1)s(j) lies in Z by the inductive

hypothesis, and other than λ the only partitions of support at least supp(λ) involved
in the product are (a+j−1, b−j+1) and (a, b−j+1, j). The former has no part
divisible by q, so to deduce sλ∈Z it suffices to show s(a,b−j+1,j)∈Z.

The product s(b−j+1,b−j+1,j)s(a−b+j) lies in Z by the inductive hypothesis.
Other than the partition of interest (a, b−j+1, j), by Lemma 4.3 the only partitions
of support at least supp(λ) involved in the product are

(b−j+1, b−j+1, j, a−b+j),
(b−j+1, b−j+1, a−b+2j−1),

(a+b−j, j),
(a+j−1, b−j+1),

or are of support equal to supp(λ) and have three parts greater than 1. Parti-
tions of support supp(λ) with three (or more) parts greater than 1 have already
been shown to lie in Z during the first case of the inductive step, while three
of the four listed partitions have no part divisible by q. It now suffices to show
s(b−j+1,b−j+1,a−b+2j−1)∈Z.

The product s(b−j+1,b−j+1)s(a−b+2j−1) lies in Z by the inductive hypothe-
sis. Other than (b−j+1, b−j+1, a−b+2j−1), the only partition of support at least
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supp(λ) involved in this product is (a+j−1, b−j+1). This partition has no part
divisible by q, so its class sum lies in Z, and thus s(b−j+1,b−j+1,a−b+2j−1)∈Z. �

4.2. Centre of the group algebra of the double cover

Working now with S̃n and Ãn, the classes which split from Sn to S̃n require
further attention. Recall that θ : S̃n→Sn denotes the projection map; that C̃λ

denotes the preimage of Cλ under θ; and that for λ even, C̃λ splits if and only if λ has
all parts odd, in which case its components are denoted C̃(1)

λ and C̃(z)
λ . Let s̃λ denote

the sum of C̃λ, and if C̃λ splits let s̃ (1)
λ and s̃

(z)
λ denote the sums of the components.

Lemma 4.5. Let a, b�2, let ρ=(1 2 ... a+b−1)∈Sn, and let σ, τ∈Sn be a-

and b-cycles such that στ=ρ. Then there exists k∈Z such that ρkσρ−k=(1 2 ... a)
and ρkτρ−k=(a a+1 ... a+b−1).

Proof. All non-fixed points of the relevant permutations are in the range 1 to
a+b−1, so write integers modulo a+b−1. The permutations σ and τ have a unique
common non-fixed point; call it r. Then for 1�i<b, we have that τ i(r) is fixed by
σ, and so τ i(r)=στ i(r)=ρτ i−1(r)=τ i−1(r)+1. Thus

τ =(r r+1 ... r+b−1)= ρr−a(a a+1 ... a+b−1)ρa−r

and, since σ=ρτ−1, hence

σ= ρr−a
(
ρ(a a+b−1 a+b−2 ... a+1)

)
ρa−r = ρr−a(1 2 ... a)ρa−r. �

Lemma 4.6. Let λ, μ, ν be partitions with all parts odd such that supp(ν)�
supp(λ)+supp(μ)−1. All elements of S̃n of cycle type ν appearing in the product

s̃
(1)
λ s̃

(1)
μ are conjugate in S̃n.

Proof. Suppose g, g′∈C̃(1)
λ and h, h′∈C̃(1)

μ are such that gh and g′h′ are of cycle
type ν. We must show that gh is conjugate to g′h′. Since an element of a conjugacy
class appears in a product of class sums if and only if all the elements of that class
do (and since an element x of a split class is not conjugate to zx) we may assume
furthermore that θ(gh)=θ(g′h′) (that is, that g′h′∈{gh, zgh}).

Our strategy is to show that θ(g), θ(g′) and θ(h), θ(h′) are conjugate by the
same conjugating element of Sn. Supposing this is done, then there exists x∈S̃n

such that θ(x−1gx)=θ(g′) and θ(x−1hx)=θ(h′); since g, g′ and h, h′ are conjugate
in S̃n, this implies x−1gx=g′ and x−1hx=h′ and hence g′h′=x−1ghx as required.
There are two cases depending on the support of ν, which determines the number
of non-fixed points that θ(g) and θ(h) (and θ(g′) and θ(h′)) have in common.
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If supp(ν)=supp(λ)+supp(μ), there are no non-fixed points in common. Then
the factorisations θ(g)θ(h) and θ(g′)θ(h′) are both decompositions of θ(gh)=θ(g′h′)
into disjoint cycles. Such a decomposition is unique up to reordering, so θ(g) and
θ(g′) are conjugate by a permutation defined as follows: for each cycle in θ(g) but
not θ(g′) (hence in θ(h′) but not θ(h)), choose a cycle of the same length in θ(g′)
but not θ(g) (hence in θ(h) but not θ(h′)), and swap the entries of these cycles
(respecting the cyclic ordering). Furthermore, θ(h) and θ(h′) are conjugate by the
inverse of this permutation. But the permutation described is a product of disjoint
transpositions, so is its own inverse.

If supp(ν)=supp(λ)+supp(μ)−1, there is exactly one non-fixed point in com-
mon. Let a, b be the lengths of the cycles in θ(g), θ(h) containing this non-fixed
point. Without loss of generality, suppose these cycles are (1 2 ...a) and
(a a+1 ... a+b−1), whose product is ρ=(1 2 ... a+b−1). Let σ and τ be the
a- and b-cycles in θ(g′) and θ(h′) whose product is an (a+b−1)-cycle π. Since
θ(gh)=θ(g′h′), either π=ρ or π and ρ are disjoint. If π=ρ, apply Lemma 4.5 to find
a permutation by which σ and τ are conjugate to (1 2 ... a) and (a a+1 ... a+b−1),
and which fixes integers greater than a+b−1. If π and ρ are disjoint, consider
the product of disjoint transpositions swapping the entries of π and ρ (respecting
the cyclic ordering). In either case, θ(g′) and θ(h′) are conjugate by the chosen
permutation to θ(g) and θ(h) respectively, as required. �

Theorem 4.7. Let l�5 be odd and let n�l. The subalgebra of Z(QÃn) gen-

erated by the even S̃n-conjugacy l′-class sums contains all even S̃n-conjugacy class

sums.

Proof. The order of an element of S̃n is either the same as or twice that of its
image in Sn. Thus for l odd, an S̃n-class is l′ if and only if its image in Sn is (but
this can be false for l even).

With this in mind, the proof of the theorem (with the restriction to l odd) is
essentially the same as that of Theorem 4.4, replacing all Sn-conjugacy class sums
with S̃n-conjugacy class sums. The only addition is to use Lemma 4.6 in the steps
where λ has all parts odd, in order to deduce that we obtain the split class sums. �

5. Proofs of the main theorems

We now deduce our main theorems. The first main theorem is that irreducible
characters of An are uniquely determined by their values on l′-classes except for
the pairs labelled by self-conjugate partitions with a principal hook length divisible
by l. The case l=2 is covered by [Wil08, Theorem 3.2.1]; the following proof deals
with the case l�4.
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Proof of Theorem 1.1. Suppose that χ and ψ are irreducible characters of An

which agree on the l′-classes of An. Let U be the set of even l′-classes of Sn. By
Theorem 4.4, the algebra generated by {sD |D∈U} contains all even Sn-conjugacy
class sums. By hypothesis, χ(D)=ψ(D) for all D∈U . Thus by Proposition 3.4, χ
and ψ are Sn-conjugate. The Sn-conjugate characters of An are precisely the pairs
(χλ+

, χλ−), where λ=λ′, and these characters agree on l′-classes if and only if λ has
a principal hook length divisible by l (which is necessarily odd). �

Another consequence of Theorem 4.4 is a sufficient condition in terms of char-
acter values for two partitions to be conjugate. It is elementary that partition
conjugacy can be determined by examining character values on all even classes; it
is sufficient to examine the (even) 2′-classes by [Wil08, Corollary 2.2.4]. We obtain
the following analogue for integers at least 4.

Corollary 5.1. Let l�4. Let λ and μ be distinct partitions of n. The char-

acters χλ and χμ agree on all even l′-classes of Sn if and only if λ and μ are

conjugate.

Proof. Suppose χλ and χμ agree on all even l′-classes of Sn. Letting U be the
set of even l′-classes of Sn and using Lemma 3.1 and Theorem 4.4, we have that
χλ and χμ agree on all even classes of Sn. Irreducible characters of Sn with equal
restriction to An are precisely those labelled by conjugate partitions, so λ and μ are
conjugate. The converse is elementary. �

Moving on to S̃n and Ãn, we deduce that irreducible spin characters are deter-
mined by their values on l′-classes, with the exception of associate or conjugate pairs
labelled by a partition with a part divisible by l. The case of l even is immediate,
as noted in §2. The following proofs hold for odd l�5.

Proof of Theorem 1.2. Suppose that χ and ψ are irreducible spin characters of
S̃n which agree on the l′-classes of S̃n. Let U be the set of even l′-classes of S̃n. By
Theorem 4.7, the algebra generated by {sD |D∈U} contains all even S̃n-conjugacy
class sums. By hypothesis, χ(D)=ψ(D) for all D∈U . Thus by Lemma 3.1, χ and
ψ agree on all even S̃n-conjugacy classes; that is, χ↓

˜An
=ψ↓

˜An
. Spin characters of

S̃n with equal restriction to Ãn are precisely the associate pairs (〈λ〉, 〈λ〉a), where
λ is an odd partition with distinct parts, and these characters agree on l′-classes if
and only if λ has a part divisible by l. �

Proof of Theorem 1.3. Suppose that χ and ψ are irreducible spin characters of
Ãn which agree on the l′-classes of Ãn. Let U be the set of even l′-classes of S̃n. By
Theorem 4.7, the algebra generated by {sD |D∈U} contains all even S̃n-conjugacy
class sums. By hypothesis, χ(D)=ψ(D) for all D∈U . Thus by Proposition 3.4, χ
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and ψ are S̃n-conjugate. The S̃n-conjugate characters of Ãn are precisely the pairs
(〈λ〉+, 〈λ〉−), where λ is even, and these characters agree on l′-classes if and only if
λ has a part divisible by l. �

6. Characters agreeing on 3′-classes

In addition to the conjugate pairs identified in the introduction, two more
infinite families of characters of An agreeing on 3′-classes are given by the following
theorem. A computer search by Mark Wildon has shown that, other than the Sn-
conjugate pairs labelled by partitions with a principal hook length divisible by 3,
these are the only characters of An agreeing on 3′-classes for n�33.

Theorem 6.1. Let n�3 and let ν be a self-conjugate partition of n−3.
(i) Suppose ν is 3-core. Let λ be the partition of n obtained by adding a 3-hook

to the first row of λ (so that λ′ is the partition obtained by adding a 3-hook to

the first column of λ), and let μ be the self-conjugate partition of n obtained by

adding a principal 3-hook to ν. Then χλ↓An
, χμ+

and χμ−
agree on 3′-classes

(ii) Suppose ν has a unique 3-hook (necessarily on the diagonal). Let λ, λ′, μ and

μ′ be the four partitions of n which can be obtained from ν by adding a 3-hook.
Then χλ↓An

and χμ↓An
agree on 3′-classes.

There is at most one ν satisfying each of the hypotheses for each n.

Proof. [Jam78, Theorem 21.7] states that if ν is a partition of n−r, then the
generalised character

∑
λ(−1)iχλ vanishes on all classes except those containing

an r-cycle, where the sum is over all partitions λ obtained from ν by adding an
r-hook, and i is the leg length of the added hook. In case (i), then, we have
equality χλ+χλ′ =χμ on 3′-classes; in case (ii), we have equality χλ+χλ′ =χμ+χμ′

on 3′-classes (the fact that partitions with exactly zero or one 3-hooks have exactly
three or four addable 3-hooks is clear from interpreting partitions on the 3-abacus).
Restricting to An gives the result. �

Remark 6.2. If λ and μ are partitions as in Theorem 6.1 and are of 3-weight 1
or 2, then the characters of An labelled by λ and μ vanish on the same conjugacy
classes. This can be shown using [GLLV22, Theorem 3.9] – which extends [Jam78,
Theorem 21.7] to give the values of the considered generalised character on all classes
– whilst observing that at least one of λ and μ have a unique 3-hook.

A conjecture of Christine Bessenrodt, reported by Chris Bowman [Bow22, Con-
jecture 7], asserts that these are the only non-conjugate pairs of characters of An

that have equal vanishing sets (with three exceptions:
n=15: (8, 3, 2, 12) and (5, 42, 12);
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n=16: (8, 32, 12) and (52, 4, 12);
n=23: (8, 5, 42, 2) and (7, 6, 42, 2);

these pairs have equal vanishing sets but have 3-weight 5). Indeed, the partitions
λ and μ described in Theorem 6.1 have equal 3-cores and (up to conjugacy) have
3-quotients ((1),∅,∅) and (∅, (1),∅) in case (i), and ((1), (rr),∅) and (∅, (r+
1, rr−1),∅) for some r�1 in case (ii); this description, restricting in case (ii) to
r=1, coincides with that of [Bow22, Conjecture 7].

Thus in all known cases a non-conjugate pair which have equal vanishing sets
also agree on 3′-classes (including the three exceptional pairs above, which fall into
case (ii) in Theorem 6.1; in general the pairs in case (ii) having 3-weight exceeding
2 do not have equal vanishing sets). This suggests an intriguing connection between
3′-classes and vanishing sets for characters of An.

Below we record the characters of S̃n and Ãn which agree on 3′-classes for
n�14, identified using the character tables in [HH92].

Proposition 6.3.
(i) The following sets of spin characters of S̃n agree on 3′-classes:

n= 5: 〈5〉 and 〈3, 2〉;
n= 6: 〈6〉 and 〈3, 2, 1〉;
n= 7: 〈6, 1〉 and 〈4, 3〉;
n= 8: 〈7, 1〉 and 〈4, 3, 1〉; 〈6, 2〉 and 〈5, 3〉;
n=10: 〈8, 2〉 and 〈5, 3, 2〉; 〈8, 2〉 and 〈5, 3, 2〉;
n=11: 〈7, 3, 1〉 and 〈6, 4, 1〉;
n=12: 〈9, 3〉 and 〈6, 3, 2, 1〉;
n=13: 〈9, 3, 1〉 and 〈6, 4, 3〉; 〈8, 3, 2〉 and 〈6, 5, 2〉;
n=14: 〈9, 3, 2〉, 〈8, 3, 2, 1〉 and 〈6, 5, 3〉.
The only other sets of spin characters of S̃n agreeing on 3′-classes for n�14
are the associate pairs labelled by odd partitions with a part divisible by 3, and
those obtained from the above by replacing characters with their associates.

(ii) The following sets of spin characters of Ãn agree on 3′-classes.
n=12: 〈5, 4, 3〉↓

˜An
, 〈9, 3〉± and 〈6, 3, 2, 1〉±;

n=13: 〈7, 3, 2, 1〉↓
˜An
, 〈9, 3, 1〉± and 〈6, 4, 3〉±.

The only other sets of spin characters of Ãn agreeing on 3′-classes for n�14
are the conjugate pairs labelled by even partitions with a part divisible by 3,
and those obtained from the list for S̃n by restriction.
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