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Highest waves for fractional Korteweg–De Vries
and Degasperis–Procesi equations

Magnus C. Ørke

Abstract. We study traveling waves for a class of fractional Korteweg–De Vries and
fractional Degasperis–Procesi equations with a parametrized Fourier multiplier operator of order
−s∈(−1, 0). For both equations there exist local analytic bifurcation branches emanating from
a curve of constant solutions, consisting of smooth, even and periodic traveling waves. The local
branches extend to global solution curves. In the limit we find a highest, cusped traveling-wave
solution and prove its optimal s-Hölder regularity, attained in the cusp.

1. Introduction

We consider a class of fractional Korteweg–De Vries (fKdV) equations of the
form

(1.1) ut+uux+
(
Λ−su

)
x

=0, s∈ (0, 1),

and a class of fractional Degasperis–Procesi (fDP) equations similarly given by

(1.2) ut+uux+ 3
2
(
Λ−su2)

x
=0, s∈ (0, 1),

where u(t, x) is a real-valued function, and the operator Λ−s is a Fourier multiplier
defined as

Λ−s : f �−→F−1(〈ξ〉−sf̂(ξ)
)
, 〈ξ〉−s =

(
1+ξ2)− s

2 ,

in the sense of distributions (see (2.1) for our normalization of the Fourier trans-
form). The nonlocal term Λ−su can equivalently be characterized as a convolution
Ks∗u, with kernel

Ks(x)=F−1(〈ξ〉−s
)
(x)= 1

2π

∫
R

〈ξ〉−seixξ dξ.
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Inserting the traveling wave assumption u(x, t)=ϕ(x−μt) in the fKdV equation
(1.1) and integrating, we obtain

(1.3) −μϕ+ 1
2ϕ

2+Λ−sϕ=0.

The right-hand side of (1.3) is assumed to be zero without loss of generality, due to
the Galilean transformation

ϕ �−→ϕ+γ, μ �−→μ+γ,

with γ chosen such that γ(1−μ− 1
2γ) cancels the possible constant of integration.

Similarly, the traveling-wave assumption for the fDP equation yields

(1.4) −μϕ+ 1
2ϕ

2+ 3
2Λ−sϕ2 =ˇ,

but here it is not possible to obtain zero on the right-hand side while at the same
time preserving the structure of the equation. Therefore, we work with an arbitrary
real constant ˇ on the right-hand side in (1.4).

When referring to a traveling-wave solution to the fKdV (resp. fDP) equation,
we mean a real-valued continuous and bounded function ϕ satisfying the equation
(1.3) (resp. (1.4)) on R.

1.1. Main results

The goal of this paper is to characterize and prove existence of even and periodic
traveling-wave solutions for the fKdV and the fDP equation. In particular, we shall
see that traveling-wave solutions are cusped if the amplitude is equal to the wave
speed μ. We call such solutions highest traveling waves, and our main results deal
with their existence and regularity:

Theorem 1.1. Let s∈(0, 1) and P∈(0,∞). Then there exists an s-Hölder

continuous, P -periodic function ϕ, along with a number μ∈(0, 1), such that ϕ is a

highest traveling-wave solution to the steady fKdV equation (1.3) with wave speed μ.

The solution ϕ is even, strictly increasing and smooth on (−P/2, 0), with ϕ(0)=μ

and

μ−ϕ(x)� |x|s

uniformly for |x|�1.
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Theorem 1.1 shows that there is a direct relationship between the order −s of
the dispersion in the equation and the Hölder regularity of exponent s of the highest
wave. This result is new, and expands upon the results from [10] for the Whitham
equation

(1.5) ut+uux+LWux =0, LW : f �−→F−1(√tanh ξ/ξ f̂(ξ)
)
,

where the authors prove that there exist periodic highest traveling-wave solutions,
which are cusped with exact 1/2-Hölder regularity at crests — corresponding to the
order −1/2 of the dispersion in the equation. Our results thereby establish a broader
picture of traveling waves for scalar, one-dimensional equations of the form (1.5)
with weak inhomogeneous dispersive operators.

Using the same approach, we obtain the following result for the fDP equation.

Theorem 1.2. Let s∈(0, 1) and ˇ>0. For small enough periods 0<P�
2π/

√
32/s−1, there exists an s-Hölder continuous, P -periodic function ϕ, along

with a number μ>
√
ˇ, such that ϕ is a highest traveling-wave solution to the steady

fDP equation (1.4) with wave-speed μ. The solution ϕ is even, strictly increasing

and smooth on (−P/2, 0), with ϕ(0)=μ and

μ−ϕ(x)� |x|s

uniformly for |x|�1.

This development is also new, demonstrating the same kind of connection be-
tween the order of the dispersion and the regularity of highest waves, even in the
case when the nonlocal operator Λ−s acts on a quadratic term in ϕ. It is not obvi-
ous that such a result should hold for the fDP equation, since the balance between
dispersion and nonlinear effects is changed compared to the fKdV equation — in
fact, that highest waves only exist for sufficiently small periods can be seen as a
by-product of this adjusted balance.

Remark 1.3. Throughout, X�Y means that there is a positive constant C such
that the inequality X≤CY holds. The relation X�Y �X is denoted by X�Y .
Writing X�Y signifies that X is “much smaller than” Y , or equivalently, that
X≤cY some small positive constant c.

1.2. Background

The present work stands in the context of several recent studies of nonlocal
scalar models for surface water waves. An important example is the Witham equa-
tion (1.5), which was introduced in [22] by combining the structure of the KdV
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equation with the exact linear dispersion relation of gravity water waves. The
model was motivated by physical considerations: as remarked by G. B. Whitham
[23, p. 476], nonlinear shallow water equations which neglect dispersion allow wave
breaking but not traveling waves, while on the other hand the KdV equation allows
traveling waves but not wave breaking. The dispersion in the Whitham equation
is much weaker than that of the KdV equation, promoting a wider array of wave-
phenomena than captured by either model on its own. Both wave-breaking [15]
and traveling waves [10], [21] have been proved for the Whitham equation, and as
mentioned above, it was shown in [10] that there are highest periodic traveling-wave
solutions which are exactly 1/2-Hölder regular in the cusp. It was furthermore con-
jectured in [10] that such solutions are convex between cusps and behave exactly
like ϕ(x)=μ−

√
π
2 |x|

1
2 +o(x) (in the normalization of (1.5)); we refer to [9], [12] for

results in this direction.
The fKdV and fDP equations can be seen as a toy models that we use to

investigate the connection between the order of the operator Λ−s and the precise
regularity of cusps of highest traveling waves. A partial result in this direction, for a
class of generalized Whitham equations with a parametrized inhomogeneous symbol
on the form (tanh(ξ)/ξ)s of order in (−1, 0), is presented in [1]. The fKdV equation
with a homogeneous symbol of order in (−1, 0) and a generalized nonlinearity has
been studied in [14], where it is proved that the equation admits highest cusped
traveling waves with Hölder regularity given exactly by the order of the dispersion.
We point out that the symbol (1+ξ2)−s/2 considered in this paper is inhomogeneous,
and that we here take a different direction of generalization: instead of a generalized
nonlinear (local) term we consider the case when the nonlocal operator Λ−s acts
on a nonlinear term u2, thereby broadening the analysis to fractional equations of
Degasperis-Procesi type.

The steady fKdV equation (1.3) with a parameter s>1 has been studied in
[16], where highest periodic traveling waves with Lipschitz regularity at crests were
proved to exist. In [4] the authors consider the homogeneous counterpart of the
fKdV equation with s>1, and analogous results are obtained. Dispersion of order
corresponding to s=1 has been considered in [11] for a dispersive shallow water wave
model; it was shown that highest cusped traveling waves of log-Lipschitz regularity
exist.

The (local) Degasperis–Procesi equation was first studied in [8], and is known
to permit peaked traveling-wave solutions with Lipschitz regularity [17]. A nonlo-
cal formulation of the equation was studied in [2], where the existence of highest
periodic traveling waves of Lipschitz regularity at crests was proved.
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1.3. Outline

In Section 2 we recall properties of the Fourier multiplier Λ−s and its corre-
sponding convolution kernel Ks. Section 3 treats the steady fKdV equation, first
with a study of regularity of solutions and then existence by means of global analytic
bifurcation. Our main contribution here is Theorem 3.7, where we prove that high-
est traveling waves for the fKdV equation with a parameter s are precisely s-Hölder
regular at cusps. In Section 4 we study regularity and existence for the steady fDP
equation using the same framework. The main difficulty here is dealing with the
nonlocal and nonlinear term Λ−sϕ2. It turns out that this can be circumvented by
rewriting the equation such that the nonlocal term is linear in ϕ, but with a slightly
different structure in terms of the wave speed μ, resulting in analogous regularity
results but a different bifurcation pattern.

2. Preliminaries

We introduce conventions and study the nonlocal operators present in the fKdV
and fDP equations. First, we show that the operator Λ−s is a smoothing operator
on the scale of Hölder–Zygmund spaces, and present properties of the convolution
kernel Ks. Second, we derive and study an additional Fourier multiplier operator
Λ̃−s defined by the symbol m(ξ)=4(3+〈ξ〉s)−1.

2.1. The operator Λ−s

The Fourier transform is denoted by F and defined on the Schwartz space S(R)
of rapidly decreasing smooth functions on R. It extends to the space of tempered
distributions S ′(R) via duality. Our normalization is

(2.1) (Ff)(ξ)=
∫
R

f(x)e−ixξ dx

for f∈S(R), meaning that (F−1f)(x)= 1
2π (Ff)(−x). We sometimes write f̂ for

the Fourier transform of f
Let BUC(R) denote the space of uniformly continuous and bounded func-

tions over R normed by ‖f‖∞=supx∈R |f(x)|, and let BUCk(R) be the space of
k times uniformly continuous differentiable and bounded functions with the norm
‖f‖Ck(R)=

∑k
m=0 ‖f (m)‖∞. We use the convention that �α and {α} denote the

integer and fractional part of the real number α>0, with 0<{α}≤1 imposed. The
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space of α-Hölder continuous functions on R with α∈(0, 1) is defined as

C0,α(R)=
{
f ∈BUC(R) ; [f ]C0,α(R) <∞

}
, [f ]C0,α(R) = sup

x,y∈R

x�=y

|f(x)−f(y)|
|x−y|α .

Moreover, using the second-order difference(
Δ2

hf
)
(x)=

(
Δh(Δhf)

)
(x)= f(x+2h)−2f(x+h)+f(x),

we define for every α>0 the Zygmund (sometimes called Hölder-Besov) space

Cα(R)=
{
f ∈C�α�(R) ; [f ]Cα(R) <∞

}
, [f ]Cα(R) = sup

0 �=h∈R

‖Δ2
hf

(�α�)‖C0(R)

|h|{α} .

Then C�α�,{α}(R) and Cα(R) are the spaces of �α-times continuously differentiable
bounded functions on R with Hölder and Zygmund exponent {α}, respectively (see
[20] for details on how these spaces are defined). By [20, Theorem 1.2.2] the Hölder
space C�s�,{s} and the Zygmund space Cs coincide for non-integer exponent s, in the
sense of equivalent norms. In this context we sometimes refer to Hölder-Zygmund
spaces, and the two are used interchangeably when there is no confusion.

By smoothing, we mean increasing the Hölder-Zygmund exponent. One can
verify that ∣∣Dk

ξ

(
1+ξ2)− s

2
∣∣�k

(
1+|ξ|

)−s−k

for all k∈N0 (here, N0 is the set of nonnegative integers). It follows as a special
case of [3, Proposition 2.78] that the operator Λ−s is a linear and bounded map

(2.2) Λ−s : L∞(R)−→C0,s(R) and Λ−s : Cα(R)−→ Cα+s(R)

for every α>0 and s∈(0, 1).
The following characterization of the kernel Ks is a version of [13, Proposi-

tion 1.2.5].

Lemma 2.1. Let s∈(0, 1). Then
(i) Ks has the representation

Ks(x)= 1√
4πΓ( s2 )

∫ ∞

0
e−t− x2

4t t
s−3
2 dt,

(ii) Ks is even, strictly positive and smooth on R\{0},
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(iii) there exist constants Cs and C ′
s such that{

Ks(x)�se
−|x| |x|≥1,

Ks(x)=Cs|x|s−1+Hs(x) |x|<1,

where Hs(x)=C ′
s+O(|x|s+1) with∣∣H ′

s(x)
∣∣=O

(
|x|s

)
and

∣∣H ′′
s (x)

∣∣=O
(
|x|s−1).

Furthermore, it turns out that Ks is a completely monotone function. Recall
that a smooth function g : (0,∞)→R is said to be completely monotone if

(2.3) (−1)ng(n)(λ)≥ 0

for all n∈N0 and λ>0. This definition naturally extends to even functions which are
smooth on R\{0}. The proof of the following proposition is based on [10, Section 2],
while a more detailed account of completely monotone functions and related topics
can be found in [18].

Proposition 2.2. For any s∈(0, 1), the kernel Ks is completely monotone. In

particular, it is strictly decreasing and strictly convex on (0,∞).

Proof. Let h : (0,∞)→[0,∞) be defined as h(λ)=(1+λ)−1. We claim that
h is a Stieltjes function, meaning that it can be written in terms of the integral
representation

h(λ)= a

λ
+b+

∫
(0,∞)

1
λ+t

dσ(t), with
∫

(0,∞)

1
1+t

dσ(t)<∞

for the Borel measure σ on (0,∞) and a, b nonnegative constants. By [18, Corollary
7.4], if g is a strictly positive function on (0,∞), then g is Stieltjes if and only if

lim
λ↘0

g(λ)∈ [0,∞]

and g has an analytic extension to C\(−∞, 0] with

Im(z) Im
(
g(z)

)
≤ 0.

It is easy to verify that this is the case for the function h:

Im(ζ) Im
(
h(ζ)

)
=− Im(ζ)2

(1+Re(ζ))2+Im(ζ)2 ≤ 0

for every C\(−∞, 0]. Hence, h is Stieltjes. Even more, by [10, Lemma 2.12] this
means that ms/2 is Stieltjes for every s∈(0, 1).
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Now we invoke [10, Proposition 2.20], which states that if f : R→R and
g : (0,∞)→R are two functions satisfying f(ξ)=g(ξ2) for all ξ �=0, then f is the
Fourier transform of an even, integrable, and completely monotone function if and
only if g is Stieltjes with

lim
λ↘0

g(λ)<∞ and lim
λ→∞

g(λ)= 0.

This holds in our case, since we have shown that hs/2 is Stieltjes and that

lim
λ↘0

hs/2(λ)= 1 and lim
λ→∞

hs/2(λ)= 0

for every choice of s∈(0, 1). But hs/2(ξ2)=〈ξ〉−s is the Fourier transform of Ks,
meaning that Ks is completely monotone.

It remains to prove that Ks is strictly decreasing and strictly convex on (0,∞).
But according to [18, Remark 1.5], if g is not identically constant, then (2.3) holds
with strict inequality for every λ and every n∈N0. �

Towards studying periodic solutions of the fKdV equation, we now define the
periodic convolution kernel

KP,s(x)=
∑
n∈Z

Ks(x+nP ),

motivated by the observation

(
Λ−sf

)
(x)= (Ks∗f)(x)=

∫
R

Ks(x−y)f(y) dy=
∫ P/2

−P/2
KP,s(x−y)f(y) dy

for every P -periodic smooth function f . Owing to Lemma 2.1, one has

(2.4) KP,s(x)�P,s |x|s−1 for |x|� 1.

The previous discussion on Ks implies that KP,s has the following properties (see
[10, Remark 3.4] for a proof).

Lemma 2.3. The periodic kernel KP,s is even, P -periodic and strictly increas-

ing on (−P/2, 0).

Having established these properties of Ks and KP,s, the two subsequent lemmas
follow by the same arguments as in [10, Lemma 3.5, Lemma 3.6].

Lemma 2.4. Let s∈(0, 1). If f, g∈BUC(R) with f≥g and f(x0)>g(x0) for

some x0, then

Λ−sf >Λ−sg.



Fractional Korteweg–De Vries and Degasperis–Procesi equations 161

Lemma 2.5. Let s∈(0, 1) and P∈(0,∞]. Assume that f is an odd, P -periodic

and continuous function with f≥0 on (−P/2, 0) and f(x0)>0 for some x0∈(−P/2, 0).
Then

Λ−sf > 0

on (−P/2, 0).

2.2. The operator Λ̃−s

We derive a version of the steady fDP equation where the nonlocal operator
acts on a linear term in ϕ. Taking the Fourier transform of the equation yields

1
2
(
1+3〈·〉−s

)
F

(
ϕ2)=μF (ϕ)+ˇδ0,

in distributional sense. Since 1+3〈ξ〉−s smooth and nonzero, this can be reformu-
lated to

1
2F

(
ϕ2)= 1

1+3〈·〉−s

(
μF (ϕ)+ˇδ0

)
=μF (ϕ)− 3

4μm(·)F (ϕ)+ 1
4ˇδ0,

where we have defined
m(ξ)= 4

3+〈ξ〉s .

Let Λ̃−s be the Fourier multiplier defined by m. Applying the inverse Fourier
transform we arrive at

(2.5) −μϕ+ 1
2ϕ

2+ 3
4μΛ̃−sϕ= 1

4ˇ,

which with our assumptions on ϕ may be understood in the strong, pointwise sense
and is equivalent to the steady fDP equation.

Note that Λ̃−s is a smoothing operator of order −s (in the sense of (2.2)).
Indeed, using Faà di Bruno’s formula it can be shown that |m(k)(ξ)|�k (1+|ξ|)−s−k

for every k∈N0, and the claim follows again due to [3, Proposition 2.78].
As before, the operator Λ̃−s can be written as a convolution with kernel and

periodic kernel

K̃s(x)=F−1(m(ξ)
)
(x) and K̃P,s(x)=

∑
n∈Z

K̃s(x+nP ).

Since m(ξ) is smooth and all derivatives are integrable, we infer that K̃s is smooth
outside the origin and has rapidly decaying derivatives.

Lemma 2.6. Let s∈(0, 1). Then
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(i) K̃s is even, nonnegative and integrable with ‖K̃s‖L1(R)=1,
(ii) K̃P,s is even, strictly increasing and smooth on (−P/2, 0), and

(2.6) K̃P,s �P,s |x|s−1 for |x|� 1.

Proof. First we claim that the function

m
(√

|ξ|
)
= 4

3+(1+|ξ|)s/2

is completely monotone on (0,∞). Indeed, it is a composition of functions
g(y)=4(3+y)−1 and f(ξ)=(1+ξ)s/2, and one can check that f is a Bernstein func-
tion ([18, Definition 3.1]) and g is completely monotone, so by [18, Theorem 3.7]
we conclude that m(

√
|ξ|) is completely monotone.

(i) Clearly K̃s is even and real since m(ξ) is even and real. Next, recall the
following two results due to Schoenberg and Bochner, respectively [18]. Firstly,
a function g : [0,∞)→R continuous at zero is completely monotone if and only
if g(|·|2) is positive definite on R

d for all d∈N. Secondly, a function f : Rd→C

is continuous and positive definite if and only if it is the Fourier transform of a
finite nonnegative Borel measure on Rd. This allows us to conclude that m(ξ)
is positive definite and consequently the Fourier transform of a finite nonnegative
Borel measure. So K̃s is integrable and nonnegative with

‖K̃s‖L1(R) =
∫
R

K̃s(x) dx=
(
F−1F (m)

)
(0)=m(0)= 1.

(ii) It follows immediately from [5, Theorem 2.5] that since m(
√

|·|) is a com-
pletely monotone function and m has the smoothing property, the periodic kernel is
even, strictly increasing and smooth on (−P/2, 0). Let us assume first that s>1/2,
and write

(2.7) m(ξ)= 4〈ξ〉−s−12 〈ξ〉−2s

1+3〈ξ〉−s
.

Taking the inverse Fourier transform and using Lemma 2.1 for the first term and
that the second term is integrable, we obtain∣∣F−1(m)(x)

∣∣�s |x|s−1 for |x|� 1.

Similarly, for any s∈(0, 1) we can continue the expansion (2.7) and write m(ξ) as a
finite sum

m(ξ)= 4
N−1∑
n=1

(−3)n−1〈ξ〉−ns+4(−3)N−1 〈ξ〉−Ns

1+3〈ξ〉−s
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with N−1≤1/s<N . Then the last term is integrable and we infer again by Lem-
ma 2.1 that the singularity |x|s−1 dominates for small |x| (if (N−1)s=1 then the
inverse Fourier transform gives a log-term—see [13, Proposition 1.2.5]—but the
conclusion still holds). �

Lemma 2.6 implies in particular that Λ̃−s is monotone in the same ways as Λ−s:

Lemma 2.7. Let s∈(0, 1). If f and g are continuous and bounded functions

on R with f≥g and f(x0)>g(x0) for some x0, then

Λ̃−sf > Λ̃−sg.

Lemma 2.8. Let s∈(0, 1) and assume that f is an odd, P -periodic and con-

tinuous function with f≥0 on (−P/2, 0) and f(x0)>0 for some x0∈(−P/2, 0). Then
on (−P/2, 0) it holds (

Λ̃−sf
)
(x)> 0.

3. The fKdV equation

In this section we prove existence of highest periodic traveling waves for the
steady fKdV equation (1.3) with parameter s∈(0, 1) considered fixed throughout. In
Section 3.1 we recover information about the magnitude and the sign of derivatives
of solutions that satisfy certain periodicity and parity conditions. In Section 3.2
it is proved that all solutions which have an amplitude strictly smaller than the
wave-speed μ are smooth, and that solutions which attain the maximal amplitude
μ are precisely s-Hölder continuous. Finally, existence of solutions by means of
bifurcation is proved in Section 3.3.

We follow [10] regarding organization and methods. The main difference is
that we here consider the parametrized operator Λ−s, thereby obtaining a new
relationship between the order of dispersion and the regularity of highest waves.
Some results are stated for a period P∈(0,∞], where we adopt the convention that
P=∞ is the solitary case. The interval [−P/2, P/2] with coinciding endpoints is
denoted by SP .

3.1. Traveling-wave solutions

We begin with a proposition giving bounds for the minima and maxima of
solutions. Recall that by a solution ϕ we mean a real-valued continuous and bounded
function satisfying the equation (1.3) on R. Note that

Λ−sc=Ks∗c= c‖Ks‖L1 = c
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for every constant c∈R and every s∈(0, 1), so we have Λ−sϕ≥Λ−s minϕ=minϕ

and Λ−sϕ≤Λ−s max=ϕmaxϕ. Inserting this in the steady fKdV equation gives
the following.

Proposition 3.1. If ϕ is a solution to the steady fKdV equation, then{
2(μ−1)≤minϕ≤ 0≤maxϕ or ϕ≡ 2(μ−1) if μ≤ 1,
0≤minϕ≤ 2(μ−1)≤maxϕ or ϕ≡ 0 if μ> 1.

Any smooth, P -periodic function f can be written as a uniformly convergent
Fourier series

f(x)=
∑
k∈Z

f̂ke
i 2πk

P x, with f̂k = 1
P

∫ P/2

−P/2
f(x)e−i 2πk

P x dx.

Fourier multipliers act on periodic functions by multiplying the Fourier coefficients
of the function with the symbol of the operator. Precisely, the formula

Λ−sf =
∑
k∈Z

〈
2πk
P

〉−s

f̂ke
i 2πk

P x

is valid for any f∈S(SP ) and extends to S ′ by duality. Thus, integrating the
equation ϕ2=2μϕ−2Λ−sϕ over SP we find that ϕ∈L2(SP ) if ϕ is integrable on SP :

Lemma 3.2. Let P<∞. Then every solution ϕ∈L1(SP ) to the steady fKdV

equation belongs to L2(SP ), with

‖ϕ‖2
L2(SP ) =2(μ−1)

∫
SP

ϕdx.

If a solution satisfies ϕ(x0)=0 at some point x0, then evaluating the equation
yields (Λ−sϕ)(x0)=0. Therefore, the solution ϕ must either be identically equal to
zero or it must change sign in x0.

Lemma 3.3. Let P<∞. Every P -periodic, nonconstant and even solution ϕ∈
BUC1(R) to the steady fKdV equation which is nondecreasing on (−P/2, 0) satisfies

ϕ′ > 0 and ϕ<μ

on (−P/2, 0). If in addition ϕ∈BUC2(R), then ϕ′′(0)<0 and ϕ′′(±P/2)>0.
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Proof. Differentiating the steady fKdV equation yields

(μ−ϕ)ϕ′ =Λ−sϕ′ > 0,

where the last inequality holds on (−P/2, 0) due to Lemma 2.5. We conclude that
ϕ′>0 and ϕ<μ on (−P/2, 0).

Now assume that ϕ∈BUC2(R). Differentiating twice and evaluating in zero
we get (

μ−ϕ(0)
)
ϕ′′(0)=

(
Λ−sϕ′′)(0)= 2

∫ P/2

0
KP,s(y)ϕ′′(y) dy,

since ϕ′(0)=0 by evenness and differentiability of ϕ, and because KP,s and ϕ′′ are
even functions. Then for ε>0 is is possible to write∫ P/2

0
KP,s(y)ϕ′′(y) dy

=
∫ ε

0
KP,s(y)ϕ′′(y) dy+

∫ P/2

ε

KP,s(y)ϕ′′(y) dy

=
∫ ε

0
KP,s(y)ϕ′′(y) dy+

[
KP,s(y)ϕ′(y)

]P/2
y=ε

−
∫ P/2

ε

K ′
P,s(y)ϕ′(y) dy

(recall that KP,s is smooth outside of the origin). The first term vanishes when
ε↘0, because

lim
ε↘0

∣∣∣∣∫ ε

0
KP,s(y)ϕ′′(y) dy

∣∣∣∣� ‖ϕ′′‖C(R) lim
ε↘0

∫ ε

0
|y|s−1 dy=0,

where we have used (2.4) for the period kernel. The second term must also vanish in
the limit, since ϕ′(P/2)=0, and since ϕ′(ε)�ε due to ϕ′(0)=0 and ϕ′∈BUC1(R).
The last term is negative for each ε>0, since we have proved both ϕ′>0 and K ′

P,s>0
on (−P/2, 0). Hence, it is decreasing as ε↘0 and so passing to the limit we arrive
at (

μ−ϕ(0)
)
ϕ′′(0)=−2 lim

ε↘0

∫ P/2

ε

K ′
P,s(y)ϕ′(y) dy < 0.

That is, ϕ′′(0)<0 provided ϕ<μ. Arguing similarly as above, one has

(
μ−ϕ(P/2)

)
ϕ′′(P/2)=2

(∫ P/2−ε

0
+
∫ P/2

P/2−ε

)
KP,s(P/2+y)ϕ′′(y) dy,

where the second term vanishes when ε↘0. The first term can be integrated by
parts, and passing to the limit we obtain(

μ−ϕ(P/2)
)
ϕ′′(P/2)=−2 lim

ε↘0

∫ P/2−ε

0
K ′

P,s(P/2+y)ϕ′(y) dy > 0,
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on account of K ′
P,s being P -periodic and strictly positive on (−P/2, 0), and ϕ′ strictly

negative on (0, P/2). Hence, ϕ′′(P/2)>0, and by evenness also ϕ′′(−P/2)>0. �

The previous lemma does not hold without the assumption of differentiability.
Supposing instead that ϕ≤μ, one can check that an argument analogous to that of
[10, Lemma 5.2] implies the following.

Lemma 3.4. Let P∈(0,∞]. Assume that ϕ is an even, P -periodic and non-

constant solution to the steady fKdV equation which is nondecreasing on (−P/2, 0)
with ϕ≤μ. Then ϕ is strictly increasing on (−P/2, 0).

3.2. Regularity of solutions

Writing the fKdV equation in the form

(3.1) ϕ=μ−
√

μ2−2Λ−sϕ,

a bootstrapping argument along the lines of [10, Theorem 5.1], using that the oper-
ator Λ−s is linear and bounded from L∞(R) to Cs(R) and from Cα(R) to Cα+s(R),
can be used to prove that ϕ is smooth wherever it is strictly below the maximal
wave-height:

Lemma 3.5. Let ϕ≤μ be a solution to the steady fKdV equation. Then ϕ is

smooth on every open set where ϕ<μ.

Thus, solutions ϕ satisfying the assumptions of Lemma 3.4 are smooth except
possibly in x=0, where smoothness may break down provided that ϕ(0)=μ. As
the next lemma shows, such solutions are not continuously differentiable in x=0;
in fact, they can be at most s-Hölder regular, where s is the dispersion parameter
appearing in Λ−s.

Proposition 3.6. Let P∈(0,∞]. Assume that ϕ is an even, P -periodic and

nonconstant solution to the steady fKdV equation which is nondecreasing on (−P/2, 0)
with ϕ≤μ. Then

(3.2) μ−ϕ(x)� |x|s

uniformly for |x|�1. Moreover, if P<∞ then

(3.3) μ−ϕ(−P/2)� 1.
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Proof. Assume first that P<∞, and note that for every h∈(0, P/2) we have the
formula

(3.4)
(
Λ−sϕ

)
(x+h)−

(
Λ−sϕ

)
(x−h)

=
∫ 0

−P/2

(
KP,s(x−y)−KP,s(x+y)

)(
ϕ(y+h)−ϕ(y−h)

)
dy.

Since ϕ is smooth except possibly in x=0, one has for x∈(−P/2, 0) that(
μ−ϕ(x)

)
ϕ′(x) =

(
Λ−sϕ

)′(x)

= lim
h→0

((Λ−sϕ)(x+h)−(Λ−sϕ)(x−h))
2h

≥ lim inf
h→0

1
2h

∫ 0

−P/2

(
KP,s(x−y)−KP,s(x+y)

)(
ϕ(y+h)−ϕ(y−h)

)
dy

≥
∫ 0

−P/2

(
KP,s(x−y)−KP,s(x+y)

)
ϕ′(y) dy,

where we used the formula (3.4) in the third step and differentiation under the
integral is justified by Fatou’s lemma. Fix x0∈(−P/2, 0) and let x∈(x0

2 , x0
4 ). Then,

with z∈[−P/2, x], we have

(3.5)
(
μ−ϕ(z)

)
ϕ′(x)≥

(
μ−ϕ(x)

)
ϕ′(x)

≥
∫ 0

−P/2

(
KP,s(x−y)−KP,s(x+y)

)
ϕ′(y) dy

≥
∫ x0/4

x0/2

(
KP,s(x−y)−KP,s(x+y)

)
ϕ′(y) dy,

since the integrand is strictly positive. Letting

CP =min
{
KP,s(x−y)−KP,s(x+y) ; x, y ∈

(
x0

2 ,
x0

4

)}
> 0,

we have (
μ−ϕ(−P/2)

)
ϕ′(x)≥CP

(
ϕ

(
x0

4

)
−ϕ

(
x0

2

))
.

Integrating over (x0
2 , x0

4 ) and dividing by the difference ϕ(x0/4)−ϕ(x0/2) we obtain(
μ−ϕ

(
−P

2

))
≥ 1

4CP |x0|

and thus (3.3) by choosing x0=−P/4, say.
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Towards proving (3.2), note that by the mean value theorem and (2.4) we have

KP,s(x−y)−KP,s(x+y)≥−2yK ′
P,s(x0)� |x0|s−1

uniformly over x, y∈(x0/2, x0/4) with |x0|�1. Inserting the above in (3.5) yields(
μ−ϕ(z)

)
ϕ′(x)� |x0|s−1(ϕ(x0/4)−ϕ(x0/2)

)
.

Integrating this inequality over (x0/2, x0/4) with respect to x, dividing by the (pos-
itive) difference (ϕ(x0/4)−ϕ(x0/2), and setting z=x0, we obtain

(μ−ϕ(x0)� (x0/4−x0/2)|x0|s−1 � |x0|s,

uniformly for |x0|�1. The estimate (3.2) now follows by evenness of ϕ. Moreover,
(3.2) holds in the solitary case P=∞ as well, since the estimate can be chosen
uniformly for large P , and in the limit one can use the same properties for Ks. �

Proposition 3.6 provides an upper bound for the regularity of solutions which
attains the value μ from below in x=0. In Theorem 3.7 we prove that solutions
are at least globally s-Hölder regular, with the precise regularity attained in x=0
in the case ϕ(0)=μ.

Theorem 3.7. Let P∈(0,∞], and let ϕ≤μ be an even and nonconstant so-

lution to the steady fKdV equation which is nondecreasing on (−P/2, 0) and with

ϕ(0)=μ. Then ϕ∈C0,s(R). Moreover,

(3.6) μ−ϕ(x)� |x|s

uniformly for |x|�1.

Proof. We show first that the solution ϕ is α-Hölder continuous in 0 for every
α<s. Taking the difference between the steady fKdV equation evaluated in two
points x and y, we obtain the formula

(3.7)
(
2μ−ϕ(y)−ϕ(x)

)(
ϕ(y)−ϕ(x)

)
=2

((
Λ−sϕ

)
(y)−

(
Λ−sϕ

)
(x)

)
,

and using that ϕ(0)=μ this can be written as

(3.8)

(
μ−ϕ(x)

)2 =2
((

Λ−sϕ
)
(0)−

(
Λ−sϕ

)
(x)

)
=
∫
R

(
Ks(x+y)+Ks(x−y)−2Ks(y)

)(
ϕ(0)−ϕ(y)

)
dy.

Owing to Lemma 2.1 the kernel Ks may be split into singular and regular parts
according to

(3.9) Ks(x)=Cs|x|s−1+Js(x),
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where Js(x) is continuously differentiable with

(3.10)
∣∣J ′

s(x)
∣∣� (

1+|x|
)s−2

and furthermore

(3.11)
{
|J ′′

s (x)|=O
(
|x|s−1) |x|< 1,

|J ′′
s (x)|� (1+|x|)s−3 |x| ≥ 1.

Note that by the mean value theorem,∣∣Js(y+x)−Js(y)
∣∣≤ |x|

∫ 1

0

∣∣J ′
s(y+tx)

∣∣ dt= |x|R1
x(y)

where R1
x(y) denotes the integral part. Similarly, we have

∣∣Js(y+x)+Js(y−x)−2Js(y)
∣∣≤ |x|2

∫ 1

0

∫ 1

0
2t
∣∣J ′′

s (y−tx+2rtx)
∣∣ dr dt= |x|2R2

x(y).

We insert (3.9) in (3.8) and estimate each part. For the singular term one has

(3.12) Cs

∫
R

∣∣|x+y|s−1+|x−y|s−1−2|y|s−1∣∣(ϕ(0)−ϕ(y)
)
dy

≤ 2Cs‖ϕ‖L∞ |x|s
∫
R

∣∣|1+t|s−1+|1−t|s−1−2|t|s−1∣∣ dt� |x|s,

where we have used that the integral in the last step converges for every s∈(0, 1)
since the integrand is O(|t|s−3) as |t|→∞. The regular part can be estimated by

(3.13)
∫
R

∣∣Js(x+y)+Js(x−y)−2Js(y)
∣∣(ϕ(0)−ϕ(y)

)
dy

� ‖ϕ‖L∞ |x|2
∫
R

R2
x(y) dy� |x|2,

where the integral of R2
x(y) is uniformly bounded for |x|�1 in view of (3.11).

Inserting (3.12) and (3.13) in (3.8) yields (μ−ϕ(x))2�|x|s. This implies that ϕ is
at least s

2 -Hölder continuous in x=0. Using this information, the term ϕ(0)−ϕ(y)
can now be bounded from above by |y| s2 in (3.12), giving s/2+s

2 -Hölder continuity
of ϕ in x=0 in the same way. Iterating this argument proves that ϕ is α-Hölder
regular in x=0 for every α<s.

We show s-Hölder regularity in x=0. To this end, we claim that there is a
constant C which is independent of α such that∫

R

∣∣Ks(x+y)+Ks(x−y)−2Ks(y)
∣∣|y|α dy≤C|x|2α
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for all |x|≤1 and all 0≤α≤s. Indeed, for the singular part we have

Cs

∫
R

∣∣|x+y|s−1+|x−y|s−1+2|y|s−1∣∣|y|α dy

=Cs|x|s+α

∫
R

∣∣|1+t|s−1+|1−t|s−1−2|t|s−1∣∣|t|α dt� |x|s+α ≤ |x|2α,

uniformly for α∈[0, s], where in the last step it was used that |x|≤1. Moreover, the
regular part of the kernel can be bounded according to∫

R

∣∣Js(x+y)+Js(x−y)−2Js(y)
∣∣|y|α dy≤ |x|2

∫
R

R2
x(y)|y|α dy� |x|2,

and for |x|≤1 we have |x|2≤|x|2α. It was shown above that ϕ is α-Hölder continuous
in the origin for every α∈[0, s). Hence,(

ϕ(0)−ϕ(x)
)2 =

∫
R

(
Ks(x+y)+Ks(x−y)−2Ks(y)

)(
ϕ(0)−ϕ(y)

)
dy

≤ [ϕ]C0,α
0

∫
R

∣∣Ks(x+y)+Ks(x−y)−2Ks(y)
∣∣|y|α dy

� [ϕ]C0,α
0

|x|2α,

where
[ϕ]C0,α

0 (R) = sup
h∈R

h�=0

|ϕ(h)−ϕ(0)|
|h|α .

Dividing by |x|2α and passing to supremum yields [ϕ]C0,α
0

�1 uniformly over α∈
[0, s). We let α↗s, and combined with (3.2) this proves (3.6).

As in [10], to prove global α-Hölder regularity for some α∈(0, 1) it suffices to
show that

sup
0<h<|x|<δ

|ϕ(x+h)−ϕ(x−h)|
hα

<∞

for some δ>0 (recall that ϕ(x+y)−ϕ(x−y) is symmetric in x and y and ϕ is
smooth outside of the origin). We proceed to show that ϕ∈C0,α(R) for every α<s.
So assume that 0<h<x<δ for some δ�1, where x can be taken positive without
loss of generality. Since(

ϕ(x+h)−ϕ(x−h)
)2(3.14)

≤
∣∣(2μ−ϕ(x+h)−ϕ(x−h)

)(
ϕ(x+h)−ϕ(x−h)

)∣∣
=2

∣∣(Λ−sϕ
)
(x+h)−

(
Λ−sϕ

)
(x−h)

∣∣,
and Λ−s maps L∞ to C0,s and Cα to Cα+s, we obtain that ϕ is at least α-Hölder
regular for every α<s if s≤1/2 and α=1/2 if s>1/2. Consequently, for s>1/2 we
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need to pass the threshold α=1/2 in the iteration procedure of (3.14). So assume
that s>1/2 and that ϕ∈C0,α with α+s>1. Note that for a function f∈C1,β with
β∈(0, 1) and f ′(0)=0, one has∣∣f(x)−f(y)

∣∣= |x−y|
∣∣f ′(ζ)−f ′(0)

∣∣� |x−y||ζ|β

for some ζ∈(x, y). Hence,∣∣(Λ−sϕ
)
(x+h)−

(
Λ−sϕ

)
(x−h)

∣∣�h|ζ|{α+s},

with ζ∈(x−h, x+h) and {α+s} being the fractional part of α+s. Inserting this in
(3.14) yields

(3.15)
∣∣ϕ(x+h)−ϕ(x−h)

∣∣� h|ζ|{α+s}

2μ−ϕ(x+h)−ϕ(x−h)

� h|x+h|{α+s}

|x+h|s+|x−h|s

�h|x+h|α−1,

where we have used the estimate (3.2) from Proposition 3.6 in the second step, and
in the last step that {α+s}−s=α−1. Now we interpolate between (3.15) and the
exact s-Hölder regularity in the origin. Precisely, with σ∈(0, 1) one has

|ϕ(x+h)−ϕ(x−h)|
hσ

≤ |ϕ(x+h)−ϕ(x−h)|σ
hσ

∣∣μ−ϕ(x+h)
∣∣1−σ

� |x+h|σ(α−1)+(1−σ)s.

This is bounded whenever
σ≤ s

1+s−α
,

and we choose the interpolation parameter σ such that equality holds. Hence,∣∣ϕ(x+h)−ϕ(x−h)
∣∣�h

s
1+s−α .

Iterating this argument, one obtains in each step for ϕ∈C0,α that ϕ is s
1+s−α -Hölder

regular. The regularity is therefore increased in each iteration and tending to s,
proving ϕ∈C0,α(R) for every α<s.

We now prove ϕ∈C0,s(R). To this end, note that the difference in the right-
hand side of (3.7) can also be written as

(
Λ−sϕ

)
(x+h)−

(
Λ−sϕ

)
(x−h)=

∫ 0

−∞

(
Ks(y+h)−Ks(y−h)

)
(ϕ(y−x)−ϕ(y+x) dy.

(3.16)



172 Magnus C. Ørke

Let 0<h<x<δ for some δ�1. Since

2μ−ϕ(x+h)−ϕ(x−h)≥μ−ϕ(x+h)≥μ−ϕ(x),

we have with (3.7) and (3.16) that(
μ−ϕ(x)

)∣∣ϕ(x+h)−ϕ(x−h)
∣∣(3.17)

≤ 2
∫ 0

−∞

∣∣Ks(y+h)−Ks(y−h)
∣∣∣∣ϕ(y−x)−ϕ(y+x)

∣∣ dy.
To estimate the factor |ϕ(y−x)−ϕ(y+x)|, we interpolate between the global C0,α-
regularity (for α<s) and the sharp C0,s-regularity in x=0. That is, between

(3.18)
∣∣ϕ(y−x)−ϕ(y+x)

∣∣� ‖ϕ‖C0,α min
(
xα, |y|α

)
for every choice of α∈(0, s), and∣∣ϕ(y−x)−ϕ(y+x)

∣∣≤ ∣∣μ−ϕ(y−x)
∣∣+∣∣μ−ϕ(y+x)

∣∣(3.19)
� [ϕ]C0,s

0
max

(
xs, |y|s

)
.

Interpolation of (3.18) and (3.19) over a parameter η gives

(3.20)
∣∣ϕ(y−x)−ϕ(y+x)

∣∣� ‖ϕ‖ηC0,α min(x, |y|)αη max(x, |y|)s(1−η),

with (α, η)∈(0, s)×[0, 1]. The integral in the right-hand side of (3.17) can be split
in the singular and regular parts of the kernel Ks. Inserting (3.20) in the integral
with the singular term yields

Cs

∫ 0

−∞

∣∣|y+h|s−1−|y−h|s−1∣∣∣∣ϕ(y−x)−ϕ(y+x)
∣∣ dy(3.21)

� ‖ϕ‖ηC0,α

∫ 0

−∞

∣∣|y+h|s−1−|y−h|s−1∣∣min(x, |y|)αη max(x, |y|)s(1−η) dy

= ‖ϕ‖ηC0,αx
αη

∫ −x

−∞

∣∣|y+h|s−1−|y−h|s−1∣∣|y|s(1−η) dy

+‖ϕ‖ηC0,αx
s(1−η)

∫ 0

−x

∣∣|y+h|s−1−|y−h|s−1∣∣|y|αη dy
= ‖ϕ‖ηC0,αx

αηhs+s(1−η)
∫ − x

h

−∞

∣∣|t+1|s−1−|t−1|s−1∣∣|t|s(1−η) dt

+‖ϕ‖ηC0,αx
s(1−η)hs+αη

∫ 0

− x
h

∣∣|t+1|s−1−|t−1|s−1∣∣|t|αη dt.
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For the integrand in the second last line we have the identity∣∣|t+1|s−1−|t−1|s−1∣∣� |t|s−2

for large t. Thus, we need to choose η such that s−2+s(1−η)<−1 for convergence.
But this is possible for every s∈(0, 1) by requiring η>2− 1

s . For the integral in the
last line, one can show by the mean value theorem and a direct calculation that∫ 0

−z

∣∣|t+1|s−1−|t−1|s−1∣∣|t|αη dt� 1+zs−1+αη

for z>0 whenever s−2+αη �=−1 (a case which can always be avoided by choosing
η �=(1−s)/α). Using this with z=x/h, we find

xs(1−η)hs+αη

∫ 0

− x
h

∣∣|t+1|s−1−|t−1|s−1∣∣|t|αη dt
�xαη+s(1−η)hs

(
h

x

)αη(
1+

(
x

h

)s−1+αη)
=xαη+s(1−η)hs

((
h

x

)αη
+
(
h

x

)1−s)
�xαη+s(1−η)hs,

uniformly for 0<h<x. We conclude that

Cs

∫ 0

−∞

∣∣|y+h|s−1−|y−h|s−1∣∣∣∣ϕ(y−x)−ϕ(y+x)
∣∣ dy� ‖ϕ‖ηC0,αx

αη+s(1−η)hs

uniformly for 0<h<x, with η>2−1/s. For the regular part of the kernel, it is
enough to use the estimate∣∣ϕ(y−x)−ϕ(y+x)

∣∣� ‖ϕ‖ηC0,α min(x, |y|)αη‖ϕ‖1−η
L∞ � ‖ϕ‖ηC0,αx

αη

instead of (3.20). Indeed, inserting this in (3.17) for the regular part gives

∫ 0

−∞

∣∣Js(y+h)−Js(y−h)
∣∣∣∣ϕ(y−x)−ϕ(y+x)

∣∣ dy� ‖ϕ‖ηC0,αhx
αη

∫ 0

−∞
R1

h(y) dy,

(3.22)

where the last integral converges due to (3.10). Observe that

hxαη =xαη+s(1−η)h
s(1−η)

xs(1−η)h
1−s(1−η) <xαη+s(1−η)hs

for 0<h<x<1, since we have made the choice of η>2−1/s. Thus, combining (3.21)
and (3.22) with (3.17) yields(

μ−ϕ(x)
)∣∣ϕ(x+h)−ϕ(x−h)

∣∣� ‖ϕ‖ηC0,αx
αη+s(1−η)hs,
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with no hidden dependence of α in the inequality. This means that(
μ−ϕ(x)

xαη+s(1−η)

)(
|ϕ(x+h)−ϕ(x−h)|

hs

)
� ‖ϕ‖ηC0,α ,

uniformly for α∈(0, s). Since μ−ϕ(x)�|x|s for x�1 by Proposition 3.6 and h<x,
this can be reduced to

|ϕ(x+h)−ϕ(x−h)|
hs−η(s−α) � ‖ϕ‖ηC0,α .

Splitting the estimate over η we arrive at(
|ϕ(x+h)−ϕ(x−h)|

hα

)η( |ϕ(x+h)−ϕ(x−h)|
hs

)1−η

� ‖ϕ‖ηC0,α ,

which finally proves

sup
0<h<x<δ

(
|ϕ(x+h)−ϕ(x−h)|

hα

)1−η

� 1

uniformly for α∈(0, s) with max(0, 2−1/s)<η<1 fixed. This justifies letting α↗s,
thereby proving global s-Hölder regularity of the solution ϕ. �

3.3. Bifurcation to a highest wave

For β∈(s, 1) and P<∞, define the function

F : (ϕ, μ) �−→μϕ− 1
2ϕ

2−Λ−sϕ

mapping C0,β
even(SP )×R to C0,β

even(SP ). At any point (ϕ, μ) the Fréchet derivative is
given by

(3.23) ∂ϕF [ϕ, μ] = (μ−ϕ) id−Λ−s,

where id denotes the identity operator. Solutions to the equation

(3.24) F (ϕ, μ)= 0

coincide with solutions to the steady fKdV equation, now with the additional re-
quirement of evenness, P -periodicity and β-Hölder continuity of ϕ. There are ex-
actly two curves of constant solutions, namely

ϕ≡ 0 and ϕ≡ 2(μ−1).

The following proposition is an application of an analytic Crandall–Rabinowitz
theorem, giving existence of local bifurcation branches around the trivial solution
curve (0, μ) of (3.24).
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Proposition 3.8. For any period P<∞ and k∈N there exists μ∗
P,k=〈2πk

P 〉−s

and a local analytic curve

RP,k =
{(

ϕP,k(t), μP,k(t)
)
; t∈ (−ε, ε) and

(
ϕP,k(0), μP,k(0)

)
=
(
0, μ∗

P,k

)}
in C0,β

even(SP )×R that bifurcates from the trivial solution curve of (3.24) in (0, μ∗
P,k),

such that F (ϕP,k(t), μP,k(t))=0 for all t∈(−ε, ε).
Together with the transcritical bifurcation of constant solutions 2(μ−1), the

curves RP,k constitute all nonzero solutions to (3.24) in C0,β
even(SP )×R in a neigh-

borhood of the trivial solution curve.

Proof. We check the assumptions of [6, Theorem 8.3.1]. The Fréchet derivative
of F on the trivial curve is

∂ϕF [0, μ] =μ id−Λ−s.

The operator Λ−s is a compact automorphism on C0,β
even(SP ) owing to the compact

embedding

(3.25) Cβ+s(SP ) ↪↪−→ Cβ(SP )

for s>0 and any finite P>0 (see e.g [19, A.39]). As a result of the Fredholm alterna-
tive, this implies that ∂ϕF [0, μ] is a Fredholm operator of index zero. Furthermore,
∂ϕF [0, μ∗

P,k] maps the basis function ϕ∗
P,k=cos(2πk

P x) of C0,β
even(SP ) to zero while all

others are multiplied by a positive constant. Hence, the dimension of the kernel
and the codimension of the image of ∂ϕF [0, μ∗

P,k] is 1. Next, we have

ker
(
∂ϕF

[
0, μ∗

P,k

])
=
{
τϕ∗

P,k ; τ ∈R
}

and ∂2
ϕμF

[
0, μ∗

P,k

](
1, ϕ∗

P,k

)
=ϕ∗

P,k.

This means that the transversality condition holds, that is

∂2
μϕF

[
0, μ∗

P,k

](
1, ϕ∗

P,k

)
�∈ im

(
∂ϕF

[
0, μ∗

P,k

])
.

This shows that the assumptions of [6, Theorem 8.3.1] are satisfied, and we con-
clude that local bifurcation occurs and that the curves RP,k are analytic since F is
analytic.

Since the kernel of ∂ϕF [0, μ] is trivial for all μ �=μ∗
P,k with μ �=1, it follows from

the implicit function theorem that the trivial solution curve is otherwise locally
unique. �

Hereafter we consider only the first bifurcation point (0, μ∗
P,1) and the cor-

responding one-dimensional basis ϕ∗
P,1=cos(2π

P x) for ker ∂ϕF [0, μ∗
P,1]. To simplify

notation, let (ϕ(t), μ(t)) denote the curve RP,1 from Proposition 3.8, emanating
from the point (0, μ∗

P,1).
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In the analytic setting, we may expand (ϕ(t)), μ(t) around t=0 as

(3.26) ϕ(t)=
∞∑

n=1
ϕnt

n, μ(t)=
∞∑

n=0
μ2nt

2n,

corresponding to the Lyapunov-Schmidt reduction [6], where we have used μ(t)=
μ(−t) (see [10]). Then μ0=μ∗

P,1=〈2π
P 〉−s and ϕ1(x)=cos(2π

P x). Furthermore, one
can check that

ϕ2(x)=− 1
4(1−〈2π

P 〉−s)
− 1

4(〈4π
P 〉−s−〈2π

P 〉−s)
cos

(
4π
P

x

)
.

and
μ2 = 1

4(〈2π
P 〉−s−1)

+ 1
8(〈2π

P 〉−s−〈4π
P 〉−s)

.

In the direction of global bifurcation, we define the sets

U =
{
(ϕ, μ)∈C0,β

even(SP )×R ; ϕ<μ
}

and S =
{
(ϕ, μ)∈U ; F (ϕ, μ)= 0

}
,

and let S1 denote the ϕ-component of S.

Proposition 3.9. The local bifurcation branch t �→(ϕ(t), μ(t)) extends to a

global continuous curve R={(ϕ(t), μ(t)) ; t∈[0,∞)}⊂U , and one of the following

alternatives holds.

(i) ‖(ϕ(t), μ(t))‖C0,β×R→∞ as t→∞,

(ii) dist(R, ∂U)=0,
(iii) R is a closed loop of finite period. That is, there exists T>0 such that

R=
{(

ϕ(t), μ(t)
)
; 0≤ t≤T

}
,

where (ϕ(T ), μ(T ))=(0, μ∗
P,1).

Proof. We check the assumptions of [6, Theorem 9.1.1] (see also [7, Theorem 6]
for comments on the condition μ̇ �≡0 around t=0 which we do not use here). Firstly,
note that the operator ∂ϕF [ϕ, μ] given in (3.23) is Fredholm of index zero for every
(ϕ, μ)∈U . Indeed, (μ−ϕ) id is a linear homeomorphism on C0,β

even(SP ) for ϕ<μ, and
Λ−s is compact, so the claim follows from [6, Theorem 2.7.6].

Secondly, every closed and bounded subset of S is compact: if K is a closed and
bounded subset of S, then K1={ϕ ; (ϕ, μ)∈K} is a bounded subset of Cβ+s

even(SP )
due to (3.1). In view of the compact embedding (3.25) we see that K1 is relatively
compact in C0,β

even(SP ). But K is closed by assumption, so it is compact. Since we
have already proved the existence of local bifurcation in Proposition 3.8, we are
done. �
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Towards invoking [6, Theorem 9.2.2] and the exclusion of alternative (iii), let
the closed cone K be defined as

(3.27) K=
{
ϕ∈C0,β

even(SP ) ; ϕ is nondecreasing on (−P/2, 0)
}
.

Then we have the following.

Proposition 3.10. The first component ϕ(t) of the global bifurcation curve

R belongs to K\{0} for all t>0, and alternative (iii) in Proposition 3.9 does not

occur.

Proof. We claim that in S1, every nonconstant function ϕ in R1∩K lies in
the interior of K. Such a solution ϕ must be smooth with ϕ′>0 on (−P/2, 0) and
furthermore ϕ′′(0)<0 and ϕ′′(−P/2)>0, by Lemma 3.5 and Lemma 3.3. Now if
ψ∈S1 with ‖ϕ−ψ‖C0,β<δ for some δ>0, then ‖ϕ−ψ‖C2<δ̃ where δ̃ can be made
arbitrarily small at the expense of δ. This means that ψ′>0 on some closed subset
[a, b] of (−P/2, 0). Suppose that ψ′≤0 on (b, 0). Then ψ′(0)<ψ′(x)≤0 for x∈(b, 0),
since ψ′′(0)<0. But this contradicts the evenness of ψ. With an analogous argument
on (−P/2, a), we arrive at ψ′≥0 on (−P/2, 0). Thus, ψ∈K, and ϕ belongs to the
interior of K. Together with Lemma 3.2 this suffices to exclude the alternative (iii)
(see also [10, Theorem 6.7] for a more detailed explanation why the transcritical
bifurcation 2(μ−1) does not cause problems here). �

Lemma 3.11. Any sequence of solutions (ϕn, μn)n∈N⊂S to the steady fKdV

equation with bounded (μn)n∈N converges uniformly along a subsequence to a solu-

tion (ϕ, μ).

Proof. It follows directly from the equation that

‖ϕ‖2
L∞(R) ≤ 2‖μϕ‖L∞(R)+2‖Λ−sϕ‖L∞(R) ≤ 2(|μ|+1)‖ϕ‖L∞(R)

so (ϕn)n is bounded provided (μn)n is bounded. Furthermore, the sequence
(Λ−sϕn)n is uniformly equicontinuous since Ks is integrable and continuous outside
of zero. Then due to Arzela–Ascoli, the sequence (Λ−sϕn)n has a uniformly con-
vergent subsequence. Uniform convergence ensures that the limit is also a solution
of the equation. �

We are now in the position to conclude that a highest traveling-wave solution
to the steady fKdV equation exists at the limit of the bifurcation curve R.

Proof of Theorem 1.1. First we claim that the second component μ(t) of R is
strictly bounded between 0 and 1. Indeed, if ϕ(t) is to cross the line μ=1, then
it would have to vanish by Lemma 3.2, contradicting Proposition 3.10. On the
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Figure 1. (a) Bifurcation branches emanating from the trivial solution curve for μ∈(0, 1), reflected
to μ∈(0, 1) via the Galilean transformation (ϕ, μ) �→(ϕ+2(1−μ), 2−μ). Otherwise the lines con-
sisting of constant solutions are locally unique. Local branches extend to global curves, and a
highest, cusped traveling wave with ϕ(0)=μ can be found in the limit. (b)–(c) Numerical example
with P=2π and s=0.5.

other hand, assume that there is a sequence (μn)n with μn→0 as n→0. Then by
Lemma 3.11 there is a uniformly convergent subsequence of (ϕn)n, converging to
some ϕ0, which is also a solution to the steady fKdV equation. But since ϕn<μn

along the bifurcation branch, taking the limit one obtains ϕ0≤0. This means that
maxx ϕ0(x)=0 by Proposition 3.1 and therefore ϕ0≡0. But then

0 = lim
n→∞

(
μn−ϕn(P/2)

)
� 1

owing to Proposition 3.6: a contradiction.
Next, we show that alternative (i) and (ii) from Proposition 3.9 occur simul-

taneously. Assume first that (i) occurs when t→∞. This can only happen if
‖ϕ(t)‖C0,β→∞ since μ is bounded from above. Aiming at a contradiction, sup-
pose that there exists δ>0 with

lim inf
t→∞

inf
x∈R

(
μ(t)−ϕ(t)(x)

)
≥ δ.
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Then using (3.7), we have for every x, y∈R that∣∣ϕ(x)−ϕ(y)
∣∣= 2|(Λ−sϕ)(x)−(Λ−sϕ)(y)|

|2μ−ϕ(x)−ϕ(y)| ≤ |(Λ−sϕ)(x)−(Λ−sϕ)(y)|
δ

.

Starting with bounded ϕ, iteration of Λ−s : L∞→Cs and Λ−s : Cβ→Cβ+s yields
ϕ∈C0,α for some α>β. But now ‖ϕ(t)‖C0,β is bounded, which is a contradiction.

Conversely, suppose (ii) occurs. That is, there exists a sequence (ϕn, μn)n∈N

with ϕ′
n≥0 on (−P/2, 0) and ϕn<μn for all n∈N, and

lim
n→∞

∣∣μn−ϕn(0)
∣∣=0.

Suppose that ϕn remains bounded in C0,β(R). Taking the limit of a subsequence
in C0,β′(R) for s<β′<β, the limit must be exactly s-Hölder regular at the crest
by (3.6), and we arrive at a contradiction to the boundedness of the sequence in
C0,β(R). Thus, both alternative (i) and (ii) in Proposition 3.9 occur, and for every
unbounded sequence (tn)n∈N of positive numbers, there exists a subsequence of
(ϕ(tn), μ(tn))n∈N that converges to a solution (ϕ, μ) to the steady fKdV equation,
with ϕ(0)=μ. The limiting wave is even, P -periodic, strictly increasing on (−P/2, 0)
and exactly s-Hölder continuous at x∈PZ. �

4. The fDP equation

We now turn our attention to the steady fDP equation (1.4) with parameters
s∈(0, 1) and ˇ∈R fixed. In Section 4.1 we prove a priori results about magnitude
and regularity of solutions. Existence is then derived by means of a bifurcation
argument in Section 4.2. We mainly follow the framework which was used for
the fKdV equation above. Inspiration has also been taken from [2]. Details are
sometimes omitted to avoid unnecessary repetition.

4.1. Periodic traveling waves and regularity

There are two constant solutions to the steady fDP equation, given by

γ− = μ−
√

μ2+8ˇ
4 and γ+ = μ+

√
μ2+8ˇ
4 .

Note that if ϕ solves the steady fDP equation with wave-speed μ, then −ϕ(−x) is
a solution to the equation with −μ. So we assume from now on that μ>0. Writing
the fDP equation in the form (2.5) and using that Λ̃−sϕ≥minϕ and Λ̃−sϕ≤maxϕ

with strict inequality for nonconstant solutions, we obtain the following.
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Proposition 4.1. If ϕ is a solution to the steady fDP equation, then

γ− ≤minϕ≤ γ+ ≤maxϕ or ϕ≡ γ−.

The previous proposition shows that if ˇ≤0 then all solutions are nonnegative,
and for ˇ<−μ2

8 there are no real solutions. We now prove a lemma concerning the
nodal properties of solutions to the steady fDP equation.

Lemma 4.2. Let P<∞. Every P -periodic, nonconstant and even solution

ϕ∈BUC1(R) to the steady fDP equation which is nondecreasing on (−P/2, 0) satisfies

ϕ′ > 0 and ϕ<μ

on (−P/2, 0). If in addition ϕ∈BUC2(R), then ϕ′′(0)<0 and ϕ′′(±P/2)>0.

Proof. Under the assumptions above, ϕ′ is odd, nontrivial and nonnegative on
(−P/2, 0). Differentiation of the equation in the form (2.5) leads to

(μ−ϕ)ϕ′ = 3
4μΛ̃−sϕ′ > 0

on (−P/2, 0). Hence, ϕ′>0 and ϕ<μ on (−P/2, 0). Differentiating twice yields

(4.1) (μ−ϕ)ϕ′′ = 3
4μΛ̃−sϕ′′+

(
ϕ′)2,

and proceeding as in the proof of Lemma 3.3 by evaluating (4.1) in x=0 and using
integration by parts and the characterization of K̃P,s from Lemma 2.6, we obtain
ϕ′′(0)<0 and ϕ′′(±P/2)>0. �

We obtain an analogue of Lemma 3.4 by taking the difference of the steady
fDP equation on the form (2.5) evaluated in two points,(

2μ−ϕ(x)−ϕ(y)
)(
ϕ(x)−ϕ(y)

)
= 3

2μ
((

Λ̃−sϕ
)
(x)−

(
Λ̃−sϕ

)
(y)

)
,

and proceeding as in [10, Lemma 5.2].

Lemma 4.3. Let P∈(0,∞]. Assume that ϕ is an even, P -periodic and non-

constant solution to the steady fDP equation which is nondecreasing on (−P/2, 0)
and with ϕ≤μ. Then ϕ is strictly increasing on (−P/2, 0).

We also have an analogue of Lemma 3.5 by bootstrapping via

(4.2) ϕ=μ−
√

μ2+2ˇ−3Λ−sϕ2.

in the scale of Hölder-Zygmund spaces:
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Lemma 4.4. Assume that ϕ≤μ is a solution to the steady fDP equation. Then

ϕ is smooth on every open set where ϕ<μ.

It is clear that traveling waves for the fDP and the fKdV equation share many
features. Solutions which are strictly smaller than the wave speed μ are smooth,
but smoothness may break down when the amplitude approaches μ.

Proposition 4.5. Let P∈(0,∞]. Assume that ϕ is an even, P -periodic and

nonconstant solution to the steady fDP equation which is nondecreasing on (−P/2, 0)
with ϕ≤μ. Then

μ−ϕ(x)�μ|x|s

uniformly for |x|�1. Moreover, if P<∞ then

(4.3) μ−ϕ(x)�μ.

Proof. We work with the steady fDP equation in the form (2.5), assuming first
that P<∞. In the same way as in (3.5), we find

(4.4)
(
μ−ϕ(z)

)
ϕ′(x)≥ 3

4μ
∫ x0/4

x0/2

(
K̃P,s(x−y)−K̃P,s(x+y)

)
ϕ′(y) dy

for x0∈(−P/2, 0), x∈(x0
2 , x0

4 ) and z∈[−P/2, x]. With

CP =min
{
K̃P,s(x−y)−K̃P,s(x+y) ; x, y ∈

(
x0

2 ,
x0

4

)}
> 0

we deduce (
μ−ϕ(z)

)
≥ 3

16CPμ|x0|.

Choosing x0=−P/4 and z∈(−P/2,−P/8) gives (4.3). Next, it suffices to observe that

K̃P,s(x−y)−K̃P,s(x+y)≥−2yK̃ ′
P,s(x0)�P |x0|s−1

by the mean value theorem and (2.6) uniformly over x, y∈(x0/2, x0/4) with |x0|�1.
We insert this is (4.4), whereupon integration over x and setting x=x0 gives

(μ−ϕ(x0)�μ(x0/4−x0/2)|x0|s−1 �μ|x0|s

uniformly for |x0|�1. As before, the estimate can be obtained uniformly for large
P , thereby proving the solitary case P=∞. �
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Theorem 4.6. Let P∈(0,∞], and let ϕ≤μ be an even and nonconstant so-

lution to the steady fDP equation which is nondecreasing on (−P/2, 0) and with

ϕ(0)=μ. Then ϕ∈C0,s(R). Moreover,

μ−ϕ(x)� |x|s

uniformly for |x|�1.

Proof. Since ϕ touches the value μ in the origin we have(
μ−ϕ(x)

)2 =3
(
Λ−sϕ2)(0)−3

(
Λ−sϕ2)(x)

= 3
2

∫
R

(
Ks(x+y)+Ks(x−y)−2Ks(y)

)(
ϕ2(0)−ϕ2(y)

)
dy.

In addition, one has the formula

(4.5)
(
ϕ(x+h)−ϕ(x−h)

)2
≤
∣∣(2μ−ϕ(x+h)−ϕ(x−h)

)(
ϕ(x+h)−ϕ(x−h)

)∣∣
=3

∣∣(Λ−sϕ2)(x+h)−
(
Λ−sϕ2)(x−h)

∣∣
with (

Λ−sϕ2)(x+h)−
(
Λ−sϕ2)(x−h)

=
∫ 0

−∞

(
Ks(y+h)−Ks(y−h)

)(
ϕ2(y−x)−ϕ2(y+x)

)
dy,

Thus, the simple observation∣∣ϕ2(x)−ϕ2(y)
∣∣≤ 2‖ϕ‖L∞

∣∣ϕ(x)−ϕ(y)
∣∣

combined with Proposition 4.5 allows us to prove Theorem 4.6 in the same way as
the proof of Theorem 3.7. �

4.2. Bifurcation to a highest wave

We set β∈(s, 1) and define

G : (ϕ, μ) �−→μϕ− 1
2ϕ

2− 3
2Λ−sϕ2+ˇ,

mapping C0,β
even(SP )×R to C0,β

even(SP ). It is practical to bifurcate from a line of trivial
solutions, so we consider the function

G̃(φ, μ)=G
(
γ+(μ)+φ, μ

)
=
(
μ−γ+(μ)

)
φ− 1

2φ
2− 3

2Λ−sφ2−3γ+(μ)Λ−sφ,
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where γ+(μ) is the largest constant solution to the steady fDP equation. Noncon-
stant periodic solutions have to cross this branch of constant solutions as shown in
Lemma 4.1. Moreover, the Fréchet derivative of G̃ with respect to φ is

(4.6) ∂φG̃[0, μ] =
(
μ−γ+(μ)

)
id−3γ+(μ)Λ−s,

and in order to have bifurcation points along the trivial solution curve of G̃=0 the
kernel of ∂φG̃[0, μ] must be nontrivial. That is, there must exist k∈N such that

(4.7)
〈

2πk
P

〉−s

= 1
3
μ−γ+(μ)
γ+(μ) ,

which is possible only for γ+. Constant ϕ-solutions of the problem G(ϕ, μ)=0
maps one-to-one to trivial φ-solutions of the problem G̃(φ, μ)=0 via the relation
φ=ϕ−γ+(μ). This allows us to prove the following lemma.

Proposition 4.7. Assume that −μ2

8 <ˇ<∞ and P<∞.

(i) If ˇ<0, then for every k∈N with 2πk
P <

√
32/s−1 there exists μ∗

P,k∈
(
√
−8ˇ,∞),

(ii) if ˇ>0, then for every k∈N with 2πk
P >

√
32/s−1 there exists μ∗

P,k∈(
√
ˇ,∞)

such that (γ+(μ∗
P,k), μ∗

P,k) is a bifurcation point for G in each case. Around each

bifurcation point there is a local analytic curve

QP,k =
{(

ϕP,k(t), μP,k(t)
)
; t∈ (−ε, ε)

}
⊂C0,β

even(SP )×R

such that G(ϕP,k(t), μP,k(t))=0 for all t∈(−ε, ε) and ϕP,k(0)=γ+(μ∗
P,k). Further-

more, the curves QP,k constitute all nonconstant solutions of the steady fDP equa-

tion in a neighborhood of the two constant solution curves.

Proof. Since solutions of the problem G(ϕ, μ)=0 map one-to-one to solutions of
G̃(φ, μ)=0, it suffices to establish the existence of local bifurcation curves Q̃P,k of G̃.
We check the assumptions of Crandall-Rabinowitz [6, Theorem 8.3.1]. The Fréchet
derivative of G̃ given by (4.6) is a sum of the scaled identity and the scaled compact
operator Λ−s. As we have seen before, this implies that ∂φG̃[0, μ] is Fredholm of
index zero. The kernel of ∂φG̃[0, μ] is one-dimensional precisely when there exists
a unique μ such that the equation (4.7) is satisfied, that is

2πk
P

=

√(
3 γ(μ)
μ−γ(μ)

)2/s
−1.

The right-hand side of this equation tends to
√

32/s−1 when μ→∞. When ˇ<0,
the right-hand side is always larger than

√
32/s−1, when ˇ>0, the right-hand side
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is always smaller than
√

32/s−1, and equality holds if ˇ=0. Solutions μ to (4.7)
are only possible for the ranges of P and k given in the lemma. For such values of
P and k, solutions μ∗

P,k exist and are unique. Note that when ˇ=0, the function is
constant, and therefore only satisfied for a single value of 2πk

P .
For any (0, μ∗

P,k), the kernel of ∂φG̃[0, μ] is one-dimensional and spanned by
the function φ∗

P,k=cos(2πk
P x). Differentiating ∂φG̃[0, μ∗

P,k] with respect to the bi-
furcation parameter μ, one can check that

∂μφG̃
[
0, μ∗

P,k

](
φ∗
P,k, 1

)
=
(
1−γ′

+
(
μ∗
P,k

))
φ∗
P,k−3γ′

+
(
μ∗
P,k

)
Λ−sφ∗

P,k,

which belongs to the image of ∂φG̃[0, μ∗
P,k] if and only if

γ′
+
(
μ∗
P,k

)
=

γ+(μ∗
P,k)

μ∗
P,k

.

This is not possible provided ˇ �=0, and we conclude that the transversality condition
holds. �

In contrast to the fKdV equation, Proposition 4.7 shows that for given s, local
bifurcation for the fDP equation can only happen if the fraction 2πk

P is either strictly
smaller or strictly larger than

√
32/s−1, depending on the parameter ˇ. That is, we

do not have complete freedom in choosing the period P of solutions. In particular,
for ˇ>0 and small s bifurcation only occurs when P�1.

From this point on we assume ˇ>0 and consider the local bifurcation branch
QP,1 for a fixed period P emanating from the curve (γ+(μ), μ) in μ∗

P,1. It is hence-
forth denoted by (ϕ(t), μ(t)). Furthermore, let

V =
{
(ϕ, μ)∈C0,β

even(SP )×(
√
ˇ,∞) ; ϕ<μ

}
, W =

{
(ϕ, μ)∈V ; G(ϕ, μ)= 0

}
.

The local branch can be parametrized around t=0 in the same way as (3.26), only
now with ϕ0=γ+(μ∗) �=0. Moreover, we find that ϕ1=cos(2π

P x) and furthermore

ϕ2 = 1
3γ+(μ∗)

(
1

m(2π
P )−1

+
1+3m(4π

P )
4(m(2π

P )−m(4π
P ))

cos
(

4π
P

x

))
,

μ2 = 1
3γ+(μ∗)

(1+3m(2π
P )

m(2π
P )−1

+
(1+3m(2π

P ))(1+3m(4π
P ))

8(m(2π
P )−m(4π

P ))

)
.

Proposition 4.8. For any period P<2π/
√

32/s−1 the local bifurcation branch

(ϕ(t), μ(t)) from Proposition 4.7 extends to a global continuous curve Q=
{(ϕ(t), μ(t)) ; t∈[0,∞)}⊂V , and one of the following alternatives holds.

(i) ‖(ϕ(t), μ(t))‖C0,β×R→∞ as t→∞,
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(ii) dist(Q, ∂V )=0,
(iii) Q is a closed loop of finite period.

Proof. Again we verify the assumptions of [6, Theorem 9.1.1]. The operator
∂ϕG[ϕ, μ] is Fredholm of index zero for every (ϕ, μ)∈V . Indeed,

∂ϕG[ϕ, μ] = (μ−φ) id−3Λ−s(φ · );

a sum of the identity and a compact operator. Moreover, any closed and bounded
subset of W is compact, which can be seen from (4.2) in the same way as before. If
we let Ṽ and W̃ denote the transformed sets V and W via ϕ=γ+(μ)+φ, then both
of the above claims hold also for ∂φG̃ in Ṽ and W̃ . �

Recall the definition (3.27) of the cone K comprising functions in C0,β
even(SP )

which are nondecreasing on the half-period (−P/2, 0). By virtue of Lemma 4.2 one
can now prove, in the same way as the proof of Proposition 3.10, that each solution
ϕ∈Q1∩K which is also in W 1 lies in the interior of K. In view of [6, Theorem 9.2.2]
this allows us to derive the following conclusion.

Proposition 4.9. The first component ϕ(t) of the global bifurcation curve Q

belongs to K\{γ+} for all t>0, and alternative (iii) in Proposition 4.8 does not

occur.

If the wave speed μ is bounded along the bifurcation curve, we can find a
limiting solution at the end of the curve:

Lemma 4.10. Any sequence of solutions (ϕn, μn)n∈N⊂W to the steady fDP

equation with bounded (μn)n∈N converges uniformly along a subsequence to a solu-

tion (ϕ, μ).

Proof. Assume that (μn)n is bounded. Since ϕ2>0 we have

‖ϕ‖2
L∞ ≤ 2ˇ+2μ‖ϕ‖L∞ ,

so (ϕn)n is bounded. This implies that (Λ−sϕ2
n)n is uniformly equicontinuous

(Ks is integrable and continuous). So (Λ−sϕn)n has a uniformly convergent sub-
sequence by Arzela–Ascoli, which also gives a uniformly convergent subsequence
for (ϕn)n. �

However, for the fDP equation the global bifurcation curve Q is not necessarily
bounded in μ — alternative (i) could happen in that μ(t)→∞ while ϕ(t)<μ(t) for
all t>0. But for small enough periods, it is possible to exclude this situation.
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Proposition 4.11. For sufficiently small periods P>0, the global bifurcation

curve Q from Proposition (4.8) is bounded from above in μ. That is, there exists a

constant μ>0 such that

sup
t∈[0,∞)

μ(t)≤μ.

Remark 4.12. The requirement of a sufficiently small period for boundedness
in the wave speed, and thereby convergence to a highest wave, is not just a technical
condition — numerical computations indicate that for large values of P (of course
still with P<2π/

√
32/s−1), the curve does not converge to a highest wave but grows

without bound with ϕ(t)<μ(t) for all t>0.

Proof. Let (ϕn, μn)k∈N be a sequence of solutions along the bifurcation curve
Q, and assume by contradiction that μn→∞ as k→∞. Differentiating the fDP
equation for ϕn in the form (2.5) (note that ϕn is smooth), multiplying with ϕ′

n,
taking the absolute value, and integrating over one period gives

(4.8)
∫ P/2

−P/2
|ϕ′

n|2 dx= 1
μn

∫ P/2

−P/2
ϕn|ϕ′

n|2 dx+ 3
4

∫ P/2

−P/2
ϕ′
nΛ̃−sϕ′

n dx.

Using Parseval’s theorem for the integral in the last term, we find

1
P

∫ P/2

−P/2
ϕ′
nΛ̃−sϕ′

ndx=
∑
k∈Z

akm

(
2πk
P

)
ak ≤m

(
2π
P

)∑
k∈Z

|ak|2

=m

(
2π
P

)
1
P

∫ P/2

−P/2
|ϕ′

n|2dx,

where ak are the Fourier coefficients of ϕ′
n, and we have used that a0=0 since ϕ′

n

is odd. From (4.8) we now have

∫ P/2

−P/2
|ϕ′

n|2 dx≤
(

1
μn

max
x∈SP

ϕn+ 3
4m

(
2π
P

))∫ P/2

−P/2
|ϕ′

n|2 dx.

If we can show that the factor in front of the integral on the right-hand side is
strictly smaller than 1 when μn→∞ for sufficiently small P , this inequality implies
ϕ′≡0, and we reach a contradiction to Proposition 4.9. To that end, we recall the
first estimate for Hölder regularity in x=0 from Theorem 4.6; assuming now that
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ϕn(0)<μn, it takes the form(
ϕn(0)−ϕn(x)

)2
≤
(
μn−ϕn(x)

)(
ϕn(0)−ϕn(x)

)
≤
(
2μn−ϕn(0)−ϕn(x)

)(
ϕn(0)−ϕn(x)

)
= 3

2

∫
R

(
Ks(x+y)+Ks(x−y)−2Ks(y)

)(
ϕ2
n(0)−ϕ2

n(y)
)
dy

≤ 3‖ϕn‖2
L∞

∫
R

∣∣Ks(x+y)+Ks(x−y)−2Ks(y)
∣∣ dy

≤C‖ϕn‖2
L∞ |x|s,

where the final constant only depends on s (via the integral of Ks). Note that we
have used than ϕn is even and nondecreasing on (−P/2, 0) in the above calculation,
due to Proposition 4.9. This means that

1
μn

max
x∈SP

ϕn= 1
μn

ϕn(0)≤ 1
μn

ϕn(x)+ 1
μn

∣∣ϕn(0)−ϕn(x)
∣∣≤ 1

μn
ϕn(x)+ C

μn
‖ϕn‖L∞ |x| s2

for x∈SP . But by Proposition 4.1 we know that there is x0∈SP such that ϕn(x0)=
γ+, which implies

1
μn

max
x∈SP

ϕn ≤
γ+

μn
+C

μ
‖ϕn‖L∞ |x0|

s
2 <

1
2 + ˇ

μ2
n

+CP
s
2 ,

where we have used that γ+/μn≤1/2+ˇ/μ2
n and ‖ϕn‖L∞<μ. Consequently, the

factor
1
μn

max
x∈SP

ϕn+ 3
4m

(
2π
P

)
≤ 1

2 + ˇ

μ2
n

+CP
s
2 + 3

4m
(

2π
P

)
is strictly below 1 for sufficiently small P as μn becomes large, concluding the
proof. �

Boundedness of the wave speed in the global bifurcation curve Q=
(ϕ(t), μ(t))t≥0 is the final ingredient which allows us to prove that there are highest
waves for the fDP equation:

Proof of Theorem 1.2. We claim that μ(t) is strictly bounded from below by√
ˇ. By contradiction, assume that there exists a sequence (ϕn, μn)n with μn→

√
ˇ

as n→∞. According to Lemma 4.10 we can find a subsequence (ϕn, μn) that
converges to a solution (ϕ0, μ0). For this subsequence we have

√
ˇ<

μn+
√

μ2
n+8ˇ

4 <maxϕn <μn

owing to Proposition 4.1. Passing to the limit yields maxϕ0=
√
ˇ which in turn gives

max Λ−sϕ2
0=ˇ. Since Λ−s is strictly monotone, this can only happen if ϕ0≡

√
ˇ,
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Figure 2. (a) Bifurcation diagram plotting maxϕ for μ>0 and minϕ for μ<0 in accordance with
the symmetry (ϕ, μ) �→(−ϕ(−·),−μ) for the steady fDP equation. Bifurcation branches emanate
from the curve γ+(μ) for μ>

√
ˇ, and there exist small periods such that local branches extend to

a global curves which converges to a highest, cusped traveling wave with ϕ(0)=μ. The curves of
constant solutions are otherwise locally unique. (b)–(c) Numerical example with s=0.5.

contradicting Proposition 4.5. Combined with Proposition 4.11 this means that for
every unbounded sequence (tn)n∈N of positive numbers, and for sufficiently small
periods, there exists a subsequence of (ϕ(tn), μ(tn))n∈N that converges to a solution
(ϕ, μ) to the steady fDP equation.

Assume now that alternative (i) from Proposition 4.8 occurs but not alterna-
tive (ii). Then bootstrapping (4.5) yields ϕ∈C0,α for some α>β, which is a con-
tradiction. Conversely, assume that alternative (ii) occurs and that ϕ(tn) remains
bounded in C0,β(R). Taking the limit of a subsequence in C0,β′(R) for s<β′<β,
the limit must be exactly s-Hölder regular at the crest by (3.6), and we arrive at a
contradiction to the boundedness of the sequence in C0,β(R). Consequently, both
alternative (i) and (ii) in Proposition 4.8 occur, and the limiting wave ϕ must be
even, P -periodic, strictly increasing on (−P/2, 0), and exactly s-Hölder continuous
at x∈PZ. �
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