# Fluctuations in depth and associated primes of powers of ideals 

Roswitha Rissner and Irena Swanson


#### Abstract

We count the numbers of associated primes of powers of ideals as defined in [2]. We generalize those ideals to monomial ideals $\operatorname{BHH}(m, r, s)$ for $r \geq 2, m, s \geq 1$; we establish partially the associated primes of powers of these ideals, and we establish completely the depth function of quotients by powers of these ideals: the depth function is periodic of period $r$ repeated $m$ times on the initial interval before settling to a constant value. The number of needed variables for these depth functions are lower than those from general constructions in [6].


This paper was motivated by results from Herzog and Hibi [7] and Bandari, Herzog and Hibi [2] that construct monomial ideals $I$ with various properties of the depth function $n \mapsto \operatorname{depth}\left(R / I^{n}\right)$. In particular, Herzog and Hibi [7] constructed for any non-increasing eventually constant sequence $\left\{a_{n}\right\}$ a monomial ideal such that for all integers $n$, $\operatorname{depth}\left(R / I^{n}\right)=a_{n}$. In general, the depth function need not be monotone, as shown by an example in [7]. Bandari, Herzog and Hibi [2] constructed for each positive integer $m$ a monomial ideal $I$ for which the depth function takes on values 0,1 , repeated $m$ times, followed by 0 and then by constant 2 . Thus this function has a global maximum, exactly $m$ strict local maxima and exactly $m+1$ strict local minima. This was the first example of prescribed depth periodicity of period 2 on a segment of the domain. We point out that a later paper, [6], by Hà, Nguyen, Trung and Trung, establishes more generally for any eventually constant $\mathbb{N}_{0}$-valued sequence $\left\{a_{n}\right\}$ the existence of a monomial ideal $Q$ in a polynomial ring $S$ satisfying depth $\left(S / Q^{n}\right)=a_{n}$ for all $n$. This completely determines all depth functions of powers of ideals.

Part of our long-term goal is to shed light similarly on the possible functions $n \mapsto \# \operatorname{Ass}\left(R / I^{n}\right)$ for ideals $I$ in Noetherian rings $R$. Certainly these functions are all positive-integer valued and eventually constant by a result of Brodmann [4]. The second author and Weinstein proved in [11] that for every non-increasing sequence
$\left\{a_{n}\right\}$ of positive integers there exists a family of monomial ideals $I$ such that for all $n$, the number of associated primes of $I^{n}$ is $a_{n}$. For arbitrary (necessarily eventually constant) sequences of positive integers much less is known. If some $a_{n}$ equals 1 , then if we are to vary over monomial ideals it is necessary that all $a_{m}$ for $m \geq n$ also be equal to 1 . If we do not restrict to monomial ideals, then a big jump can occur from $a_{1}$ to $a_{2}$ even if we restrict to prime ideals; a result from [8] proves that $a_{2}$ is not bounded above by any polynomial function in the number of variables in the ring.

We present in Theorem 3.11 the function $n \mapsto \# \operatorname{Ass}\left(R / I^{n}\right)$ for ideals $I$ introduced by Bandari, Herzog and Hibi in [2]. Once we completed the count of all associated primes and observed certain partial periodicity of period 2 , we introduced a more general family of ideals, $\operatorname{BHH}(m, r, s)$ with $r \geq 2, m, s \geq 1$; in this notation, the original Bandari-Herzog-Hibi ideals are $\operatorname{BHH}(m, 2,2)$, and in Theorem 3.11 we count more generally the associated primes of $\operatorname{BHH}(m, 2, s)^{n}$ as:

$$
\left(3-\delta_{1=n}\right)^{m}+\left(\sum_{\ell=0}^{m} \sum_{t=b(\ell)}^{m}\binom{m}{\ell}\binom{\ell}{\ell+t-m}\right)+ \begin{cases}0, & \text { if } n \leq 2 m \text { and } n \text { is even; } \\ 1, & \text { otherwise }\end{cases}
$$

where $b(\ell)=\max \{n-1-\ell, m-\ell\}$ and $\delta_{C}$ equals 1 if the condition $C$ is true and 0 otherwise. In particular, the number of associated primes of $\operatorname{BHH}(m, 2, s)$ is $2^{m}+3^{m}+1$, the number of associated primes of $\operatorname{BHH}(m, 2, s)^{2}$ is $2 \cdot 3^{m}$, and when $n \geq$ $2 m+2$, the number of associated primes of $\operatorname{BHH}(m, 2, s)^{n}$ is $1+3^{m}$. In Theorem 3.13 we prove that the function $n \mapsto \# \operatorname{Ass}\left(R / \operatorname{BHH}(m, 2, s)^{n}\right)$ has exactly $\left\lceil\frac{m-1}{2}\right\rceil$ local maxima. The global maximum $2 \cdot 3^{m}+1$ is achieved exactly at $n=3,5, \ldots, 2\left\lceil\frac{m-1}{2}\right\rceil+$ 1. This function is periodic of period 2 when restricted to $\left[3,2\left\lceil\frac{m-1}{2}\right\rceil+1\right]$.

We present this count of associated primes in two different ways. As a result, Remark 3.12 proves an identity of binomial expressions that we have not found in the literature.

For $r>2$ we completely describe and count all the associated primes that contain one of the special variables $c_{1}, \ldots, c_{s}$ (and hence all), and we give some properties and descriptions of the associated primes that do not contain these special variables. The latter associated primes satisfy persistence, namely that if a prime ideal not containing the special variable is associated to an $n$th power, then it is associated to all higher powers. This persistence is not in general satisfied by the associated primes containing the special variable.

Seidenberg proved in [10, Point 65] that there exists a primitive recursive function $B(n, d)$ such that any ideal $I$ in a polynomial ring in $n$ variables over a field with generators of degree at most $d$ has at most $B(n, d)$ associated primes. Ananyan and Hochster [1] proved that there exists a primitive recursive function $E(g, d)$ such that any ideal $I$ in a polynomial ring over a field with at most $g$ generators of
degrees $d$ or less has at most $E(g, d)$ associated primes. The ideal $\operatorname{BHH}(m, 2,1)$ is in a polynomial ring with $2 m+3$ variables and has $2 m+5$ generators of degrees up to 9 . Its third power has $2 \cdot 3^{m}+1$ associated primes, and by Lemma 1.2 it has at most $\binom{2 m+1}{2}+\binom{2 m+6}{3}$ generators of degrees up to 23 . For large $m$, this number of generators is less than or equal to $2 m^{3}$, showing that for large $m$ and $n$,

$$
\begin{aligned}
B(2 m+3,23) & \geq 2 \cdot 3^{m}+1, \text { i.e., } B(n, 23) \geq 2 \cdot(\sqrt{3})^{n-3}+1 \\
E\left(2 m^{3}, 23\right) & \geq 2 \cdot 3^{m}+1, \text { i.e., } E(n, 23) \geq 2 \cdot 3^{\sqrt[3]{n / 2}}+1
\end{aligned}
$$

Asymptotically, the lower bound here for $B(n, d)$ is stronger than the bound $3^{n / 3}$ in [8], but the lower bound for $E(n, d)$ here is weaker than the bound $3^{\sqrt{2 n}-1}$ in [8].

In Theorem 4.2 we prove that the function $n \mapsto \operatorname{depth}\left(R / \operatorname{BHH}(m, r, s)^{n}\right)$ is periodic of period $r$ when restricted to the interval $[1, \ldots, r m+1]$, that it has exactly $m+1$ local minima, all on that interval and equal to 0 , that all other values on that interval are 1 , and that the only value outside of the interval is $s$. More generally, we show that an $e$-fold splitting of $\operatorname{BHH}(m, r, s)$ gives an ideal $I$ in a ring $A$ such that

$$
\operatorname{depth}\left(\frac{A}{I^{n}}\right)= \begin{cases}e-1, & \text { if } n=r u+1 \text { with } u=0, \ldots, m \\ e, & \text { if } n \leq r m+1 \text { and } n \neq 1 \bmod r \\ s+e-1, & \text { otherwise, i.e., if } n>m r+1\end{cases}
$$

We point out that the construction in [6] by Hà, Nguyen, Trung and Trung of the monomial ideal with the same depth function uses at least $e+4(r m-m)+3 s$ variables, whereas our construction uses $r m+r+s+e-1$. The difference $3 r m-4 m-$ $r+2 s+1=2(r-2) m+(m-1) r+2 s+1$ in the number of variables is always positive since $r \geq 2$ (for periodicity) and $m, s \geq 1$.

Acknowledgement. This research was funded in part by the Austrian Science Fund (FWF) [10.55776/DOC78]. For open access purposes, the author has applied a CC BY public copyright license to any author-accepted manuscript version arising from this submission.

We thank Ram Goel for his contributions to the understanding of associated primes, including for writing a Python program to compute our projected numbers. His work was crucial to helping us correct our initial patterns.

## 1. Generalized Bandari-Herzog-Hibi ideals

Definition 1.1. Let $m, r$ and $s$ be positive integers with $r \geq 2$. Let $c_{1}, \ldots, c_{s}, a_{j}$, $x_{i, j}$ be variables over a field $k$ where $i \in[m]$ and $j \in[r]$. For the sake of notation,
we identify $a_{r+1}=a_{1}, a_{0}=a_{r}, x_{i, r+1}=x_{i, 1}, x_{i, 0}=x_{i, r}$ for all $i$, and more generally, $x_{i, j}=x_{i,(j \bmod r)}$. We define

$$
\begin{aligned}
B_{0}(r) & =\left(a_{j}^{6}, a_{j}^{5} a_{j+1}: j=1, \ldots, r\right), \\
B_{c}(r, s) & =\left(c_{1}, \ldots, c_{s}\right) a_{1}^{4} a_{2}^{4} \cdots a_{r}^{4} ; \\
X(m, r) & =\left(a_{j}^{4} x_{i, j} x_{i, j+1}^{2}: i \in[m], j \in[r]\right), \\
\operatorname{BHH}(m, r, s) & =B_{0}(r)+B_{c}(r, s)+X(m, r) .
\end{aligned}
$$

We call $\mathrm{BHH}(m, r, s)$ the Bandari-Herzog-Hibi ideals. When $s=1$, we write $c=c_{1}$.

When $m, r$ and $s$ are clear, we write these ideals as $B_{0}, B_{c}, X, B$, respectively.
We will refer to elements $a_{j}^{4} x_{i, j} x_{i, j+1}^{2}$ as $h_{i, j}$.
We name these ideals in honor of the Bandari-Herzog-Hibi paper [2] which originated the ideals $\operatorname{BHH}(m, 2,2)$.

Understanding the associated primes of powers of these ideals is important for understanding the depth function of their quotients. For the primary decompositions part, we prove in Theorem 1.4 that it suffices to find the decompositions in case $s=1$. This reduction greatly simplifies the notation and speeds up any concrete calculations of the associated primes and thus the counting.

Lemma 1.2. Let $J_{1}, J_{2}, J_{3}$ be ideals in a ring $R$ such that $\left(J_{1}+J_{2}\right)^{2} \subseteq J_{2}^{2}$. Then for all positive integers $n,\left(J_{1}+J_{2}+J_{3}\right)^{n}=J_{1} J_{3}^{n-1}+\left(J_{2}+J_{3}\right)^{n}$.

Thus with $B=\operatorname{BHH}(m, r, s), B^{n}=B_{c} X^{n-1}+\left(B_{0}+X\right)^{n}=B_{c} B^{n-1}+\left(B_{0}+X\right)^{n}$.
Proof. The first display holds trivially for $n=1$. The equality $\left(J_{1}+J_{2}+J_{3}\right)^{2}=$ $J_{1}^{2}+J_{1} J_{2}+J_{1} J_{3}+J_{2}^{2}+J_{2} J_{3}+J_{3}^{2}=J_{1} J_{3}+J_{2}^{2}+J_{2} J_{3}+J_{3}^{2}=J_{1} J_{3}+\left(J_{2}+J_{3}\right)^{2}$ proves the case $n=2$. Then by induction on $n \geq 2$,

$$
\begin{aligned}
\left(J_{1}+J_{2}+J_{3}\right)^{n} & =\left(J_{1}+J_{2}+J_{3}\right)\left(J_{1}+J_{2}+J_{3}\right)^{n-1} \\
& =\left(J_{1}+J_{2}+J_{3}\right)\left(J_{1} J_{3}^{n-2}+\left(J_{2}+J_{3}\right)^{n-1}\right) \\
& =J_{1}^{2} J_{3}^{n-2}+J_{1}\left(J_{2}+J_{3}\right)^{n-1}+J_{1} J_{2} J_{3}^{n-2}+\left(J_{2}+J_{3}\right)^{n}+J_{1} J_{3}^{n-1} \\
& =J_{1}\left(J_{2}+J_{3}\right)^{n-1}+\left(J_{2}+J_{3}\right)^{n} \\
& =J_{1} \sum_{i=0}^{n-1} J_{2}^{i} J_{3}^{n-1-i}+\left(J_{2}+J_{3}\right)^{n} \\
& =J_{1} J_{3}^{n-1}+\sum_{i=1}^{n-1} J_{1} J_{2}^{i} J_{3}^{n-1-i}+\left(J_{2}+J_{3}\right)^{n} \\
& \subseteq J_{1} J_{3}^{n-1}+\left(J_{2}+J_{3}\right)^{n}
\end{aligned}
$$

Since also the last ideal is contained in the first in this display, the conclusion follows.

The second part follows with $J_{1}=B_{c}, J_{2}=B_{0}$ and $J_{3}=X$, since $J_{1}^{2} \subseteq\left(a_{1}^{6}\right)\left(a_{2}^{6}\right) \subseteq J_{2}^{2}$ and $J_{1} J_{2} \subseteq\left(a_{j}^{6}, a_{j}^{5} a_{j+1}: j \in[r]\right)\left(a_{1}^{4} \cdots a_{r}^{4}\right) \subseteq\left(\left(a_{j}^{5} a_{j+1}\right)^{2},\left(a_{j}^{6}\right)\left(a_{j+1}^{5} a_{j+2}\right): j \in[r]\right) \subseteq J_{2}^{2}$.

Lemma 1.3. Let $I_{1}, I_{2}, I_{3}$ be ideals in a Noetherian ring $A$ such that $\left(I_{1}+\right.$ $\left.I_{2}\right)^{2} \subseteq I_{2}^{2}$ and let $c, c_{1}, \ldots, c_{s}$ be variables over $A$. Then the set of associated primes of $\frac{A\left[c_{1}, \ldots, c_{s}\right]}{\left(\left(c_{1}, \ldots, c_{s}\right) I_{1}+I_{2}+I_{3}\right)^{n}}$ equals

$$
\begin{aligned}
& \left\{\left(P+\left(c_{1}, \ldots, c_{s}\right)\right) A\left[c_{1}, \ldots, c_{s}\right]: P \subseteq A, P+(c) \in \operatorname{Ass}\left(A[c] /\left(c I_{1}+I_{1}+I_{2}\right)^{n}\right)\right\} \\
& \quad \cup\left\{P A\left[c_{1}, \ldots, c_{s}\right]: P \in \operatorname{Ass}\left(A[c] /\left(c I_{1}+I_{1}+I_{2}\right)^{n}\right) \text { and } c \notin P\right\}
\end{aligned}
$$

Proof. Let $\underline{c}$ stand either for the ideal $(c)$ or for the ideal $\left(c_{1}, \ldots, c_{s}\right)$. By Lemma 1.2 and using $J_{1}=\underline{c} I_{1}$ and $J_{2}=I_{2}, J_{3}=I_{3}$, we get that for all positive integers $n,\left(\underline{c} I_{1}+I_{1}+I_{2}\right)^{n}=\underline{c} I_{1} I_{3}^{n-1}+\left(I_{2}+I_{3}\right)^{n}$.

Define $\varphi: A\left[c_{1}, \ldots, c_{s}\right] \rightarrow A[c]$ to be the $A$-algebra homomorphism that takes all $c_{i}$ to $c$ and is the identity on $A$. We impose the $\mathbb{N}^{s}$-grading on $A\left[c_{1}, \ldots, c_{s}\right]$ with $\operatorname{deg}\left(c_{i}\right)=e_{i}$ (the $s$-tuple with 1 in the $i$ th position and 0 elsewhere) and we define the degrees of all other variables to be 0 . Then $\varphi$ is not a graded homomorphism, but it is a surjective spreading as defined in [8, Definition 2.1], and $\left(\left(c_{1}, \ldots, c_{s}\right) I_{1}+I_{2}+I_{3}\right)^{n}=\left(c_{1}, \ldots, c_{s}\right) I_{1} I_{3}^{n-1}+\left(I_{2}+I_{3}\right)^{n}$ is a spreading of $\left(c I_{1}+I_{2}+\right.$ $\left.I_{3}\right)^{n}=c I_{1} I_{3}^{n-1}+\left(I_{2}+I_{3}\right)^{n}$. By [8, Lemma 2.5], the spreading of an irredundant primary decomposition of $c I_{1} I_{3}^{n-1}+\left(J_{2}+J_{3}\right)^{n}$ corresponds to an irredundant primary decomposition of $\left(c_{1}, \ldots, c_{s}\right) I_{1} I_{3}^{n-1}+\left(J_{2}+J_{3}\right)^{n}$; specifically, any associated prime of the former ideal not containing $c$ is associated to the latter ideal and does not contain any $c_{i}$, and furthermore any associated prime of the former ideal that contains $c$ is spread to one unique associated prime of the latter ideal in which the generator $c$ is replaced by the $s$ generators $c_{1}, \ldots, c_{s}$.

The last two lemmas immediately prove that the number of associated primes of $(\mathrm{BHH}(m, r, s))^{n}$ is the same as the number of associated primes of $(\mathrm{BHH}(m, r, 1))^{n}$, via the following formalization:

Theorem 1.4. Set $B=\mathrm{BHH}(m, r, 1)$ and $B(s)=\mathrm{BHH}(m, r, s)$. For every positive integer $n$, the sets of associated primes of $B^{n}$ and of $B(s)^{n}$ are in one-to-one correspondence:
(1) Associated primes of $B^{n}$ not containing $c$ have the same minimal generating sets as their corresponding primes associated to $B(s)^{n}$ that do not contain $c_{1}, \ldots, c_{s}$.
(2) Associated primes of $B^{n}$ that contain $c$ are of the form $P+(c)$ for some monomial prime $P$ in variables $a_{i}, x_{i, j}$ and they correspond to associated primes of $B(s)^{n}$ of the form $P+\left(c_{1}, \ldots, c_{s}\right)$.

## 2. Lemmas

Throughout this section, $B$ stands for $\operatorname{BHH}(m, r, 1)$ and $n$ is a positive integer.
Lemma 2.1. Let $P$ be a prime ideal associated to B. Suppose that for each $j \in[r]$ there exists $i_{j} \in[m]$ such that $x_{i_{j}, j}$ and $x_{i_{j}, j+1}$ are both in $P$. Then $c \in P$. In particular, if $x_{i, 1}, \ldots, x_{i, r} \in P$ for some $i \in[m]$, then $c \in P$.

Proof. By definition of associated primes there exists a monomial $w$ such that $P=(B: w)$ and hence $w \in B: P \subseteq B:\left(x_{i_{j}, j}, x_{i_{j}, j+1}: j \in[r]\right)$. We have

$$
\begin{aligned}
B & :\left(x_{i_{j}, j}, x_{i_{j}, j+1}\right) \\
& =\left(B+\left(a_{j-1}^{4} x_{i_{j}, j-1} x_{i_{j}, j}, a_{j}^{4} x_{i_{j}, j+1}^{2}\right)\right) \cap\left(B+\left(a_{j}^{4} x_{i_{j}, j} x_{i_{j}, j+1}, a_{j+1}^{4} x_{i_{j}, j+2}^{2}\right)\right) \\
& \subseteq B+\left(a_{j-1}^{4}\right)+\left(a_{j}^{4} x_{i_{j}, j} x_{i_{j}, j+1}^{2}, a_{j}^{4} a_{j+1}^{4} x_{i_{j}, j+1}^{2} x_{i_{j}, j+2}^{2}\right) \\
& =B+\left(a_{j-1}^{4}\right),
\end{aligned}
$$

so that

$$
w \in \bigcap_{j=1}^{r}\left(B:\left(x_{i_{j}, j}, x_{i_{j}, j+1}\right)\right) \subseteq \bigcap_{j=1}^{r}\left(B+\left(a_{j-1}^{4}\right)\right)=B+\left(a_{1}^{4} \cdots a_{r}^{4}\right) .
$$

In all cases, $c$ multiplies this intersection into $B$, proving that $c \in P$.
Lemma 2.2. Let $P$ be a prime ideal associated to $B^{n}$ containing some $x_{i, j}$. Write $P=B^{n}$ : $w$ for some monomial $w$.
(1) Then $w \in a_{j-1}^{4} x_{i, j-1} x_{i, j} B^{n-1} \cup a_{j}^{4} x_{i, j+1}^{2} B^{n-1}$.
(2) If $P$ also contains $x_{i, j+1}$, then

$$
\begin{aligned}
& w \in\left(a_{j-1}^{4} x_{i, j-1} x_{i, j} B^{n-1} \cup a_{j}^{4} x_{i, j+1}^{2} B^{n-1}\right) \cap\left(a_{j}^{4} x_{i, j} x_{i, j+1} B^{n-1} \cup a_{j+1}^{4} x_{i, j+2}^{2} B^{n-1}\right) \\
& \cap\left(a_{j-1}^{4} x_{i, j-1} x_{i, j} B^{n-1} \cup a_{j+1}^{4} x_{i, j+2}^{2} B^{n-1}\right) .
\end{aligned}
$$

Proof. (1) Since $B^{n}: w=P$, and by the form of the generators of $B$,

$$
w \in B^{n}: P \subseteq B^{n}: x_{i, j}=B^{n}+\left(a_{j-1}^{4} x_{i, j-1} x_{i, j}, a_{j}^{4} x_{i, j+1}^{2}\right) B^{n-1}
$$

But $w$ cannot be in $B^{n}$ (for otherwise $B^{n}: w=R$ is not a prime ideal), and since $w$ is a monomial, (1) follows.
(2) Now suppose that $P$ contains $x_{i, j}$ and $x_{i, j+1}$. Then by (1), $w \in\left(a_{j-1}^{4} x_{i, j-1} x_{i, j} B^{n-1} \cup a_{j}^{4} x_{i, j+1}^{2} B^{n-1}\right) \cap\left(a_{j}^{4} x_{i, j} x_{i, j+1} B^{n-1} \cup a_{j+1}^{4} x_{i, j+2}^{2} B^{n-1}\right)$.

Suppose for contradiction that

$$
w \notin a_{j-1}^{4} x_{i, j-1} x_{i, j} B^{n-1} \cup a_{j+1}^{4} x_{i, j+2}^{2} B^{n-1} .
$$

Then $w \in a_{j}^{4} x_{i, j+1}^{2} B^{n-1} \cap a_{j}^{4} x_{i, j} x_{i, j+1} B^{n-1}$. So we have proved that with $u=0, w \in$ $B^{u}\left(a_{j}^{4} x_{i, j+1}^{2} B^{n-1-u} \cap a_{j}^{4} x_{i, j} x_{i, j+1} B^{n-1-u}\right)$. We proceed from this:

$$
\begin{aligned}
& w \in B^{u}\left(a_{j}^{4} x_{i, j+1}^{2} B^{n-1-u} \cap a_{j}^{4} x_{i, j} x_{i, j+1} B^{n-1-u}\right) \\
&=B^{u} a_{j}^{4} x_{i, j+1}\left(x_{i, j+1} B^{n-1-u} \cap x_{i, j} B^{n-1-u}\right) \\
&=B^{u} a_{j}^{4} x_{i, j} x_{i, j+1}^{2}\left(\left(B^{n-1-u}: x_{i, j}\right) \cap\left(B^{n-1-u}: x_{i, j+1}\right)\right) \\
& \subseteq B^{u+1}\left(\left(B^{n-1-u}+\left(a_{j-1}^{4} x_{i, j-1} x_{i, j}, a_{j}^{4} x_{i, j+1}^{2}\right) B^{n-2-u}\right)\right. \\
&\left.\quad \cap\left(B^{n-1-u}+\left(a_{j}^{4} x_{i, j} x_{i, j+1}, a_{j+1}^{4} x_{i, j+2}^{2}\right) B^{n-2-u}\right)\right) .
\end{aligned}
$$

But $w \notin B^{n} \cup a_{j-1}^{4} x_{i, j-1} x_{i, j} B^{n-1} \cup a_{j+1}^{4} x_{i, j+2}^{2} B^{n-1}$, so necessarily

$$
w \in B^{u+1}\left(a_{j}^{4} x_{i, j+1}^{2} B^{n-2-u} \cap a_{j}^{4} x_{i, j} x_{i, j+1} B^{n-2-u}\right)
$$

This is the induction step, so when $u=n-2$, we get that

$$
w \in B^{n-1}\left(\left(a_{j}^{4} x_{i, j+1}^{2}\right) \cap\left(a_{j}^{4} x_{i, j} x_{i, j+1}\right)\right)=B^{n-1}\left(a_{j}^{4} x_{i, j} x_{i, j+1}^{2}\right) \subseteq B^{n}
$$

which is a contradiction to $B^{n}: w$ being a prime ideal. This finishes the proof of (2).

Lemma 2.3. Let $P$ be a prime ideal associated to $B^{n}$. Then the following properties hold:
(1) $a_{1}, \ldots, a_{r} \in P$.
(2) If $P$ does not contain $x_{i, 1} x_{i, 2} \cdots x_{i, r}$ for some $i$, then $P=\left(a_{1}, \ldots, a_{r}\right)$.
(3) If $P$ contains some $x_{i, j}$, then there exists $j_{0} \in\{j-1, j\}$ such that $x_{e, j_{0}} x_{e, j_{0}+1} \in P$ for all $e \in[m]$.
(4) If $P$ does not contain $x_{i, j}, x_{i, j+1}$ for some $i \in[m]$ and $j \in[r]$, then $c \notin P$.

Proof. (1) Since $a_{j}^{6} \in B$, it follows that $a_{j}$ must be in every associated prime ideal of $B^{n}$.
(2) Suppose that $x_{i, 1} x_{i, 2} \cdots x_{i, r} \notin P$ for some $i$. Then $P$ is associated to

$$
B^{n}:\left(x_{i, 1} \cdots x_{i, r}\right)^{\infty}=\left(B_{0}+\left(c\left(a_{1} a_{2} \cdots a_{r}\right)^{4}\right)+\left(a_{j}^{4}: j \in[r]\right)\right)^{n}=\left(a_{j}^{4}: j \in[r]\right)^{n},
$$

whose only associated prime is $\left(a_{1}, \ldots, a_{r}\right)$.
(3) follows from Lemma 2.2(1): there exists $j_{0} \in\{j-1, j\}$ such that the witness $w$ for $P$ is in $a_{j_{0}}^{4} B^{n-1}$. Hence for all $e, w x_{e, j_{0}} x_{e, j_{0}+1}^{2} \in B^{n}$.
(4) By assumption, $P$ is associated to

$$
\begin{aligned}
B^{n}:\left(x_{i, j} x_{i, j+1}\right)^{\infty} & =\left(B+\left(a_{j}^{4}, a_{j-1}^{4} x_{i, j-1}, a_{j+1}^{4} x_{i, j+2}^{2}\right)\right)^{n} \\
& =\left(B_{0}+X+\left(a_{j}^{4}, a_{j-1}^{4} x_{i, j-1}, a_{j+1}^{4} x_{i, j+2}^{2}\right)\right)^{n}
\end{aligned}
$$

and $c$ does not appear in any generator of the last ideal. Thus $P$ cannot contain $c$.

## Lemma 2.4.

(1) If $r=2$, then $x_{i, j} a_{1}^{4} a_{2}^{4} h_{i, j} \in B^{2}$.
(2) If $r=2$, then $a_{1}^{4} a_{2}^{4} h_{i, j}^{2} \in B^{3}$.
(3) $x_{i, j+2}^{2} a_{j}^{4} a_{j+1}^{4} h_{i, j} \in B^{2}$.
(4) $a_{j-1}^{4} a_{j}^{4} x_{i, j-1} x_{i, j} h_{i, j} \in B^{2}$.
(5) $x_{i, j} a_{j-2}^{4} a_{j-1}^{4} a_{j}^{4} h_{i, j-2} h_{i, j} \in B^{3}$.
(6) $x_{i, j-1} a_{j-1}^{4} a_{j}^{4} h_{i, j}^{2} \in B^{3}$.
(7) $a_{j-2}^{4} a_{j-1}^{4} a_{j}^{4} h_{i, j-2} h_{i, j}^{2} \in B^{4}$.

Proof. For (1) and (2) we use that $x_{i, j-1}=x_{i, j+1}$ to rewrite

$$
x_{i, j} a_{1}^{4} a_{2}^{4} h_{i, j}=x_{i, j} a_{1}^{4} a_{2}^{4}\left(a_{j}^{4} x_{i, j} x_{i, j+1}^{2}\right) \in\left(a_{j}^{6}\right)\left(a_{j-1}^{4} x_{i, j-1} x_{i, j}^{2}\right) \subseteq B^{2},
$$

and $a_{1}^{4} a_{2}^{4} h_{i, j}^{2}=a_{1}^{4} a_{2}^{4}\left(a_{j}^{4} x_{i, j} x_{i, j+1}^{2}\right)^{2} \in\left(a_{j}^{6}\right)^{2}\left(a_{j-1}^{4} x_{i, j-1} x_{i, j}^{2}\right) \subseteq B^{3}$. Part (3) follows from

$$
x_{i, j+2}^{2} a_{j}^{4} a_{j+1}^{4} h_{i, j}=x_{i, j+2}^{2} a_{j}^{4} a_{j+1}^{4}\left(a_{j}^{4} x_{i, j} x_{i, j+1}^{2}\right) \in\left(a_{j}^{6}\right)\left(a_{j+1}^{4} x_{i, j+1} x_{i, j+2}^{2}\right) \subseteq B^{2},
$$

$\operatorname{part}$ (4) from $a_{j-1}^{4} a_{j}^{4} x_{i, j-1} x_{i, j} h_{i, j}=a_{j-1}^{4} a_{j}^{8} x_{i, j-1} x_{i, j}^{2} x_{i, j+1}^{2} \in\left(a_{j}^{6}\right)\left(a_{j-1}^{4} x_{i, j-1} x_{i, j}^{2}\right) \subseteq B^{2}$, part (5) from

$$
\begin{aligned}
x_{i, j} a_{j-2}^{4} a_{j-1}^{4} a_{j}^{4} h_{i, j-2} h_{i, j} & =x_{i, j} a_{j-2}^{4} a_{j-1}^{4} a_{j}^{4}\left(a_{j-2}^{4} x_{i, j-2} x_{i, j-1}^{2}\right)\left(a_{j}^{4} x_{i, j} x_{i, j+1}^{2}\right) \\
& \in\left(a_{j-2}^{6}\right)\left(a_{j}^{6}\right)\left(a_{j-1}^{4} x_{i, j-1} x_{i, j}^{2}\right) \subseteq B^{3},
\end{aligned}
$$

part (6) from $x_{i, j-1} a_{j-1}^{4} a_{j}^{4} h_{i, j}^{2}=x_{i, j-1} a_{j-1}^{4} a_{j}^{12} x_{i, j}^{2} x_{i, j+1}^{4} \in\left(a_{j}^{6}\right)^{2}\left(h_{i, j-1}\right) \subseteq B^{3}$, and part (7) from

$$
\begin{aligned}
a_{j-2}^{4} a_{j-1}^{4} a_{j}^{4} h_{i, j-2} h_{i, j}^{2} & =a_{j-2}^{8} a_{j-1}^{4} a_{j}^{12} x_{i, j-2} x_{i, j-1}^{2} x_{i, j}^{2} x_{i, j+1}^{4} \\
& \in\left(a_{j-2}^{6}\right)\left(a_{j}^{6}\right)^{2}\left(a_{j-1}^{4} x_{i, j-1} x_{i, j}^{2}\right) \subseteq B^{4} .
\end{aligned}
$$

Corollary 2.5. Let $w=a_{1}^{4} \cdots a_{r}^{4}\left(\prod_{i, j} x_{i, j}^{v_{i, j}}\right)\left(\prod_{i, j} h_{i, j}^{u_{i, j}}\right)$ with $v_{i, j}, u_{i, j}$ non-negative integers such that $\sum_{i, j} u_{i, j}=n-1$.
(1) Suppose that it is possible to rewrite $w$ in the same format but with different $v_{i, j}, u_{i, j}$. Then $w \in B^{n}$.
(2) Suppose that $n>m r+1$ and that $w$ multiplies $\left(x_{i, j}: i \in[m], j \in[r]\right)$ into $B^{n}$. Then $w \in B^{n}$.

Proof. We set $A=a_{1}^{4} \cdots a_{r}^{4}, w_{0}=\prod_{i, j} x_{i, j}^{v_{i, j}}$, and $w_{1}=\prod_{i, j} h_{i, j}^{u_{i, j}}$.
(1) By assumption, there exists a positive $v_{i, j}$ such that $x_{i, j}$ gets incorporated in the rewriting of $w$ either into a new $h_{i, j-1}$ or into a new $h_{i, j}$.

Suppose that $x_{i, j}$ is incorporated into a new $h_{i, j}$. Then $x_{i, j+1}^{2}$ needs to be a factor of $w$. This factor can come either from $u_{i, j}>0$ or from $v_{i, j+1}+u_{i, j+1} \geq 2$. If we use $x_{i, j+1}^{2}$ from $h_{i, j}^{u_{i, j}}$, then our $x_{i, j}$ is not making a new $h_{i, j}$, so necessarily
$v_{i, j+1}+u_{i, j+1} \geq 2$. By definition, Lemma 2.4(4) and (6), $A \cdot x_{i, j} x_{i, j+1}^{2} \in\left(h_{i, j}\right) \subseteq B$, $A \cdot x_{i, j} x_{i, j+1} h_{i, j+1} \in B^{2}, A \cdot x_{i, j} h_{i, j+1}^{2} \in B^{3}$. This proves that $w \in B^{n}$.

Now suppose that $x_{i, j}$ is incorporated into a new $h_{i, j-1}$. Then $x_{i, j-1} x_{i, j}$ needs to be a factor of $w / x_{i, j}$. The $x_{i, j-1}$ factor can come from $v_{i, j-1}>0, u_{i, j-2}>0$ or from $u_{i, j-1}>0$. We can eliminate the option $u_{i, j-1}>0$ as it does not generate a new $h_{i, j-1}$. Similarly, the additional factor $x_{i, j}$ can only be taken from $v_{i, j}>1$ or $u_{i, j}>0$. If $v_{i, j-1}>0$ and $v_{i, j}>1$, then $A \cdot w_{0} \in\left(h_{i, j-1}\right) \subseteq B$ and $w \in B^{n}$. If $v_{i, j-1}>0$ and $u_{i, j}>0$, then $w \in\left(A \cdot x_{i, j-1} x_{i, j} h_{i, j} \cdot \frac{w_{1}}{h_{i, j}}\right) \in B^{n}$ by Lemma 2.4(4). If $u_{i, j-2}>0$ and $v_{i, j}>1$, then $w \in\left(A \cdot x_{i, j}^{2} h_{i, j-2} \cdot \frac{w_{1}}{h_{i, j-2}}\right) \in B^{n}$ by Lemma 2.4(3). Finally, if $u_{i, j-2}>0$ and $u_{i, j}>0$, then $w \in\left(A \cdot x_{i, j} h_{i, j} h_{i, j-2} \cdot \frac{w_{1}}{h_{i, j} h_{i, j-2}}\right) \in B^{n}$ by Lemma 2.4(5).
(2) Since $n-1>m r$, there exists $(i, j)$ such that $u_{i, j} \geq 2$. By assumption, $x_{i, j} w$ and $x_{i, j+1} w$ are both in $B^{n}$. Thus for both variables, the rewriting needs to happen as in (1). As in the proof of (1), one of the following conditions holds for $x_{i, j} w$ :
a) $v_{i, j+1}+u_{i, j+1} \geq 2$,
b) ( $v_{i, j-1}>0$ or $\left.u_{j-2}>0\right)$ and ( $v_{i, j}>0$ or $\left.u_{i, j}>0\right)$;
and one of the following conditions holds for $x_{i, j+1} w$ :
a') $^{\prime} v_{i, j+2}+u_{i, j+2} \geq 2$,
b') $^{\prime}\left(v_{i, j}>0\right.$ or $\left.u_{i, j-1}>0\right)$ and ( $v_{i, j+1}>0$ or $\left.u_{i, j+1}>0\right)$.
If b) holds, then $x_{i, j-1} \mid w_{0}$ or $h_{i, j-2} \mid w_{1}$. It follows that $w \in B^{n}$ since $u_{i, j} \geq 2$ and hence $w \in\left(A \cdot x_{i, j-1} h_{i, j}^{2} \cdot \frac{w_{1}}{h_{i, j}}\right) \in B^{n}$ due to Lemma $2.4(6)$ or $w \in\left(A \cdot h_{i, j-2} h_{i, j}^{2}\right.$. $\left.\frac{w_{1}}{h_{i, j-2} h_{i, j}^{2}}\right) \in B^{n}$ due to Lemma 2.4(7). Similarly, if a') holds, then $x_{i, j+2}^{2} \mid w_{0}$ or $\left(x_{i, j+2} \mid w_{0}\right.$ and $\left.h_{i, j+2} \mid w_{1}\right)$ or $h_{i, j+2}^{2} \mid w_{1}$. Since $h_{i, j} \mid w_{1}$, it follows that $w \in$ $\left(A \cdot x_{i, j+2}^{2} h_{i, j} \cdot \frac{w_{1}}{h_{i, j}}\right) \in B^{n}$ by Lemma $2.4(3)$ or $w \in\left(A \cdot x_{i, j+2} h_{i, j+2} h_{i, j} \cdot \frac{w_{1}}{h_{i, j} h_{i, j+2}}\right) \in B^{n}$ by Lemma 2.4(5) or $w \in\left(A \cdot h_{i, j+2}^{2} h_{i, j} \cdot \frac{w_{1}}{h_{i, j} h_{i, j+2}}\right) \in B^{n}$ by Lemma 2.4(7).

So we may assume that we have conditions a) and b'). If $x_{i, j+1}^{2} \mid w_{0}$ and ( $x_{i, j} \mid w_{0}$ or $\left.h_{i, j-1} \mid w_{1}\right)$, then either $w \in\left(A \cdot x_{i, j} x_{i, j+1}^{2} \cdot w_{1}\right) \in B^{n}$ or $w \in\left(A \cdot h_{i, j-1} x_{i, j+1}^{2} \cdot \frac{w_{1}}{h_{i, j-1}}\right) \in$ $B^{n}$ by Lemma $2.4(3)$. If $x_{i, j+1} \mid w_{0}$ and $h_{i, j+1} \mid w_{1}$ and $\left(x_{i, j} \mid w_{0}\right.$ or $\left.h_{i, j-1} \mid w_{1}\right)$, then $w \in\left(A \cdot x_{i, j} x_{i, j+1} h_{i, j+1} \cdot \frac{w_{1}}{h_{i, j+1}}\right) \in B^{n}$ by Lemma 2.4(4) or $w \in\left(A \cdot x_{i, j+1} h_{i, j-1} h_{i, j+1}\right.$. $\left.\frac{w_{1}}{h_{i, j-1} h_{i, j+1}}\right) \in B^{n}$ by Lemma 2.4(5). Finally, if $h_{i, j+1}^{2} \mid w_{1}$ and $\left(x_{i, j} \mid w_{0}\right.$ or $h_{i, j-1} \mid$ $\left.w_{1}\right)$, then $w \in\left(A \cdot x_{i, j} h_{i, j+1}^{2} \cdot \frac{w_{1}}{h_{i, j+1}^{2_{2}}}\right) \in B^{n}$ by Lemma 2.4(6) or $w \in\left(A \cdot h_{i, j-1} h_{i, j+1}^{2}\right.$. $\left.\frac{w_{1}}{h_{i, j-1} h_{i, j+1}^{2}}\right) \in B^{n}$ by Lemma 2.4(7).

Lemma 2.6. Let $P$ be a prime ideal that contains $c$ and is associated to $B^{n}$. We know that $P=B^{n}: w$ for some monomial $w$. Then
(1) $w=a_{1}^{4} \cdots a_{r}^{4} w_{0}$ for some $w_{0} \in X^{n-1}$.
(2) If $x_{i, j}$ and $x_{i, j+1}$ are in $P$ and $x_{i, j}$ is not a factor of $w$, then $r \geq 3$ and $x_{i, j+3} \in P$.
(3) If $x_{i, j}, x_{i, j+1}, x_{i, j+2} \in P$ and $r \geq 3$, then $x_{i, j}$ is a factor of $w$.
(4) Suppose that $x_{i, j} x_{i, j+1}^{2}$ divides $w_{0}$ and that $x_{i, j+1} \in P$. Then $x_{i, j}^{2}$ divides $w$.
(5) Suppose that $x_{i, 1}^{2} x_{i, 2}^{2} \cdots x_{i, r}^{2}$ divides $w$. Then $n \geq r+1$ and $w_{0}$ is an element of $h_{i, 1} h_{i, 2} \cdots h_{i, r} X^{n-1-r}$.

Proof. Since $c \in P$, we know by Lemma 1.2 that $w \in B^{n}: c=a_{1}^{4} \cdots a_{r}^{4} X^{n-1}+\left(B_{0}+\right.$ $X)^{n}$. Since $w$ is a monomial not in $B^{n}$, necessarily $w \in a_{1}^{4} \cdots a_{r}^{4} X^{n-1}$. This proves (1).

To simplify notation we assume in the rest of the proof that $j=1$.
(2) Suppose that $x_{i, 1}$ does not divide $w_{0}$ (or $w$ ). Then by Lemma $2.2(2), w \in$ $a_{1}^{4} x_{i, 2}^{2} B^{n-2} \cap a_{2}^{4} x_{i, 3}^{2} B^{n-2}$ and so necessarily $r \geq 3$. This means that $w_{0}$ is a multiple of $x_{i, 2}^{2} x_{i, 3}^{2}$. Write $w_{0}=h_{i, 2}^{e} h_{i, 3}^{e^{\prime}} w^{\prime}$ for some non-negative integers $e, e^{\prime}$ and some $w^{\prime} \in$ $X^{n-1-e-e^{\prime}}$. We may take $e$ to be maximal possible, and for the maximal $e$ we choose maximal possible $e^{\prime}$, so that in particular $h_{i, 2}$ and $h_{i, 3}$ are not factors of $w^{\prime}$. By assumption also no $h_{i, 1}, h_{i, r}$ appear in $w^{\prime}$. First suppose that $e=0$. Then by the ( $x_{i, 2}, x_{i, 3}$ )-degree count, $w_{0} \in x_{i, 2} x_{i, 3}^{2} X^{n-1}+x_{i, 2} x_{i, 3} h_{i, 3} X^{n-2}+x_{i, 2} h_{i, 3}^{2} X^{n-3}$, whence by Lemma 2.4, w $\in B^{n}$. So necessarily $e \geq 1$. Hence by Lemma 2.4(3), $x_{i, 4}^{2} w \in B^{n}$, so that $x_{i, 4} \in P$. This proves (2).

We continue with the proof of (3). Recall that we assume that $x_{1, i}$ does not divide $w$. Since $x_{i, 2} w \in B^{n}$, necessarily in the rewriting of $x_{i, 2} w$ as an element of $B^{n}$, $x_{i, 2}$ must combine with $x_{i, 3}^{2}$ into a new $h_{i, 2}$, i.e., $w / h_{i, 2}^{e} \in a_{2}^{4} x_{i, 3}^{2} B^{n-1-e}$. Thus, $x_{i, 2}$ is not a factor of $w_{0} / h_{i, 2}^{e}$ for otherwise $w \in B^{n}$. In addition, $x_{i, 3} w \in B^{n}$ which implies that $x_{i, 3}$ needs to recombine with $w$ into a new element of $B$ which necessarily is $h_{i, 3}$. Thus, $w_{0}$ must have a factor of $x_{i, 4}^{2}$, which comes either as $x_{i, 4}^{2}, x_{i, 4} h_{i, 4}$, or $h_{i, 4}^{2}$. But since the exponent on $h_{i, 2}$ in $w$ is at least 1 , then by Lemma 2.4(3), (5), and (7), w $\in B^{n}$, which is a contradiction, and thus proves (3).
(4) Suppose that $x_{i, 1}^{2}$ does not divide $w_{0}$. By assumption $x_{i, 1} x_{i, 2}^{2}$ is a factor of $w_{0}$, by the ( $x_{i, 1}, x_{i, 2}$ )-degree count, $w_{0} \in h_{i, 1} X^{n-2}+x_{i, 1} x_{i, 2}^{2} X^{n-1}+x_{i, 1} x_{i, 2} h_{i, 2} X^{n-2}+$ $x_{i, 1} h_{i, 2}^{2} X^{n-3}$. If $w_{0}$ is in one of the last three summands, then $w \in B^{n}$ by Definition or Lemma 2.4(4) and (6). So we may assume that $w_{0} \in h_{i, 1} X^{n-2}$. Since $x_{i, 2} w \in B^{n}$, this $x_{i, 2}$ must recombine with $w$ into a new $h_{i, 1}$ or $h_{i, 2}$, but since there are no spare $x_{i, 1}$ in $w$, necessarily $x_{i, 3}^{2}$ is a factor of $w_{0}$. Thus, by the $x_{i, 3}$-degree count, $w_{0} \in x_{i, 3}^{2} h_{i, 1} X^{n-2}+x_{i, 3} h_{i, 1} h_{i, 3} X^{n-3}+h_{i, 1} h_{i, 3}^{2} X^{n-4}+h_{i, 1} h_{i, 2} X^{n-3}$. If $w_{0}$ is in the last summand, then no new $h_{i, 2}$ would be formed. We can, therefore, assume that $w_{0}$ is in the first three summands. But then $w \in B^{n}$ by Lemma 2.4(3), (5), and (7). Thus $x_{i, 1}^{2}$ must be a factor of $w$.
(5) Let $E$ be the largest subset of $[r]$ such that $w_{0} \in\left(\prod_{j \in E} h_{i, j}\right) X^{n-1-|E|}$. If $E$ is empty, then $n=1$ and $w \in a_{j}^{4} x_{i, j} x_{i, j+1}^{2} \subseteq B=B^{n}$, which is a contradiction. Thus $E$ is not empty. By symmetry we may assume that $h_{i, 1}$ is a factor and for contradiction we assume that $h_{i, 2}$ is not a factor. By the $\left(x_{i, 1}, x_{i, 2}\right)$-degree count, $w_{0} \in x_{i, 1} h_{i, 1} X^{n-2}+h_{i, 1}^{2} X^{n-3}+h_{i, r} h_{i, 1} X^{n-3}$. If $r=2$, the last summand is not possi-
ble by assumption and the first two summands make $w$ be in $B^{n}$ by Lemma 2.4(1) and (2), which proves that $r \geq 3$.

If $h_{i, 3}$ is also not a factor of $w_{0}$, then by the $x_{i, 3}$-degree count, $w_{0} \in h_{i, 1} x_{i, 3}^{2} X^{n-2}$, which means that $w \in B^{n}$ by Lemma 2.4(3). This proves that $h_{i, 3}$ must be a factor of $w_{0}$, and consequently that $E$ contains at least every other $h_{i, j}$ as $j$ varies. Now say that $h_{i, 1}, h_{i, 3}$ are factors but $h_{i, 2}$ is not. By the $x_{i, 3}$-degree count again, $w_{0} \in$ $h_{i, 1} x_{i, 3} h_{i, 3} X^{n-3}+h_{i, 1} h_{i, 3}^{2} X^{n-3}$, so that $w \in B^{n}$ by Lemma 2.4(5) and (7). This proves (5).

## 3. G-good primes

The set-up is as in Section 2 with $B=\mathrm{BHH}(m, r, 1)$ and $n$ a positive integer. In this section we characterize all associated primes of powers of $B$ that are g-good. We prove that all associated primes that contain $c$ are g-good, which characterizes and counts all associated primes of powers of $B$ that contain $c$. Theorem 3.11 counts associated primes of any power of $\operatorname{BHH}(m, 2, s)$ and Theorem 3.13 determines the maxima of the numbers of these associated primes. In Proposition 3.10 we prove the persistence property of associated primes of powers not containing $c$.

We think of the $m r$ variables $x_{i, j}$ as appearing in an $m \times r$ matrix. If a monomial prime ideal does not contain all $x_{i, j}$ in some row $i$, then we talk about gaps, and if a prime ideal omits some $k$ consecutive $x_{i, j}$ in a row $i$, we refer to that as a gap of length $k$. Keep in mind that we identify $x_{i, r}$ with $x_{i, 0}$, et cetera, so that the gaps are counted in the round.

Definition 3.1. Let $P$ be a monomial prime ideal containing $\left(a_{1}, \ldots, a_{r}\right)$. We say that $P$ is $\mathbf{g}$-good if it has no gaps of length 2 or larger in any of the rows.

We characterize in this section all associated primes of $B^{n}$ that contain $c$ in terms of g-good primes. The characterization enables a count, see Theorem 3.6. G-good primes also play a role for primes that do not contain $c$; see Theorems 3.8 and 3.9.

Proposition 3.2. Let $P$ be a g-good prime ideal containing c such that for each $i \in[m]$, the set $P \cap\left\{x_{i, 1}, \ldots, x_{i, r}\right\}$ has either $r$ or exactly $r / 2$ elements. (The latter happens only if $r$ is even.) Let $U=\left\{i: x_{i, 1}, \ldots, x_{i, r} \in P\right\}$ and $V=\left\{(i, j): x_{i, j+1} \notin P\right\}$.
(1) Suppose that $n=u r+v+1$, where $u$ and $v$ are any non-negative integers such that $u \leq|U|$ and $v \leq|V|$. Then $P$ is associated to $B^{n}$.
(2) Suppose that $n$ cannot be written as in (1). Then $P$ is not associated to $B^{n}$.

Proof. Observe that $V=\left\{(i, j): x_{i, j} \in P\right.$ and $\left.i \notin U\right\}$.
(1) Let $U_{0}$ be a subset of $U$ of cardinality $u$ and $V_{0}$ a subset of $V$ of cardinality $v$. Let $M$ be a large integer and set

$$
\begin{align*}
w_{0} & =a_{1}^{4} \cdots a_{r}^{4}\left(\prod_{i \in U \backslash U_{0}} \prod_{j=1}^{r} x_{i, j}\right)\left(\prod_{x_{i, j} \notin P} x_{i, j}^{M}\right) \\
w & =w_{0}\left(\prod_{i \in U_{0}} \prod_{j=1}^{r} h_{i, j}\right)\left(\prod_{(i, j) \in V_{0}} h_{i, j}\right) \tag{*}
\end{align*}
$$

Then $w \in B^{u r+v}=B^{n-1}$. We will prove that $P=B^{n}: w$.
Since $a_{j}\left(a_{1}^{4} \cdots a_{r}^{4}\right) \in\left(a_{j}^{5} a_{j+1}\right) \in B_{0} \subseteq B$ and $c\left(a_{1}^{4} \cdots a_{r}^{4}\right) \in B_{c} \subseteq B$ it follows that $\left(a_{1}, \ldots, a_{r}, c\right) \subseteq B^{n}: w$. Suppose that $i \in U_{0}$. Then for all $j \in[r], x_{i, j} \in B^{n}: w$ by Lemma 2.4(1) in case $r=2$ and by Lemma 2.4(5) in case $r>2$. If $i \in U \backslash U_{0}$, then $x_{i, j} w \in x_{i, j}\left(a_{j-1}^{4} x_{i, j-1} x_{i, j}\right) X^{n-1} \subseteq X^{n} \subseteq B^{n}$. Thus $x_{i, j} \in B^{n}: w$ for all $i \in U$ and all $j \in[r]$. If $(i, j) \in V$, then $x_{i, j+1} \notin P$, so that $x_{i, j} w_{0} \in\left(a_{j}^{4} x_{i, j} x_{i, j+1}^{2}\right) \subseteq X$ and thus $x_{i, j} \in B^{n}: w$. This proves that $P \subseteq B^{n}: w$.

To prove that $P=B^{n}: w$ it remains to show that every $x_{i, j} \notin P$ is a non-zerodivisor modulo $B^{n}$. By possibly taking $M$ even larger it suffices to prove that $w \notin B^{n}$. In the given form $w$ is an element of $B^{n-1}$. Any rewriting of $w$ to make it an element of $B^{n}$ has to involve the variables $x_{i, j}$ whose exponents are at least two. The only such $x_{i, j}$ are those not in $P$ and those with $i \in U_{0}$. If $x_{i, j} \notin P$, then $x_{i, j+1}^{2}$ is not a factor of $w$ and either $x_{i, j-1}$ is not a factor of $w$ or else $x_{i, j-1}$ is a factor of $w$ but tied up in $h_{i, j-1}$. Thus there is no possible way of using the rewriting with $x_{i, j}$ not in $P$. If $i \in U_{0}$, then this $i$ contributes to $w$ the factor $a_{1}^{4} \cdots a_{r}^{4} x_{i, 1}^{3} \cdots x_{i, r}^{3} \in B^{r}$, and there is no possible way of rewriting this part to put $w$ into $B^{n}$. Thus $P=B^{n}: w$. It follows that $P$ is associated to $B^{n}$. This finishes the proof of (1).
(2) Let $P$ be associated to $B^{n}$ and suppose for contradiction that $n$ cannot be written as in (1). Then in particular $n>1$. By Lemma 2.6(1), $P=B^{n}: w$, where $w$ is a monomial of the form $a_{1}^{4} \cdots a_{r}^{4} w_{0}$ for some $w_{0} \in X^{n-1}$. The product of all $x_{i, j}$ with $i \in U$ divides $w_{0}$ by Lemma 2.6(2) in case $r=2$ and by Lemma 2.6(3) in case $r>2$. Let $U_{0}$ be the set of all $i \in U$ such that $h_{i, j}$ is a factor of $w_{0}$ for some $j \in[r]$. Let $i \in U_{0}$. Then by Lemma 2.6(4), $x_{i, j}^{2}$ divides $w_{0}$. Since $x_{i, j-1}$ also divides $w_{0}$, then again by Lemma 2.6(4), $x_{i, j-1}^{2}$ divides $w_{0}$. By continuing in this way we get that $\prod_{j=1}^{r} x_{i, j}^{2}$ divides $w_{0}$. Hence by Lemma 2.6(5), $\prod_{j=1}^{r} h_{i, j}$ divides $w_{0}$. By Lemma 2.4(2) and (7), $h_{i, j}^{2}$ is not a factor of $w$ for all such $i, j$. Thus $n-1 \geq\left|U_{0}\right| r$. Let $v=n-1-\left|U_{0}\right| r$. We just proved that $w_{0}$ is a product of the $\left|U_{0}\right| r$ factors $h_{i, j}$ with $(i, j) \in U_{0} \times[r]$ and $v$ factors $h_{i, j}$ with $i \notin U$. By Lemma 2.4(3), necessarily for any such latter factor we have $x_{i, j+2}^{2} \in B^{n}: w=P$. Since $P$ is g-good and the $i$ th row has $r / 2$ elements, necessarily $x_{i, j} \in P$ and $x_{i, j-1}$ is not in $P$. Then by Lemma $2.4(6)$, the squares of
these $h_{i, j}$ do not divide $w$. Thus these $v$ factors are all distinct, which means that $n$ must be written as in (1).

Theorem 3.3. We consider the set $S$ of all $g$-good prime ideals $P$ containing $c$ for which in each row of the matrix $\left[x_{i, j}\right], P$ contains either $r$ or $r / 2$ elements.
(1) If $r$ is odd, then the maximal ideal is the only such prime ideal, and it is associated to $B^{n}$ if and only if $n=u r+1$ for some $u \leq m$.
(2) If $r$ is even, then $S$ contains $3^{m}$ prime ideals.
(a) For each $i \in\{0, \ldots, m\}$ there exist $2^{i}\binom{m}{i}$ prime ideals in $S$ of height $(m+$ 1) $r-i \frac{r}{2}+1$, and these are associated to $B^{n}$ exactly when $n$ equals ur $+v+1$ with $u \in\{0, \ldots, m-i\}$ and $v \in\left\{0, \ldots, i \frac{r}{2}\right\}$.
(b) The number $h(m, r, n)$ of elements of $S$ that are associated to $B^{n}$ equals

$$
\sum_{i=0}^{m} 2^{i}\binom{m}{i} \delta_{(n-1) / r-i / 2 \leq \min \{q, m-i\}}
$$

where $q=\left\lfloor\frac{n-1}{r}\right\rfloor$. For all $n>1+r m, h(m, r, n)=0$.
Proof. (1) is an immediate corollary of Proposition 3.2.
To prove (2), observe that for $i \in[m]$, one of three things happen for $P \in S$ : $P$ contains the full $i$ th row of $\left[x_{i, j}\right], P$ contains $x_{i, j}$ with $j$ odd, and $P$ contains $x_{i, j}$ with $j$ even. Thus the count of elements of $S$ is $3^{m}$. For each $i \in\{0,1, \ldots, m\}$, there are $\binom{m}{i}$ possibilities where exactly $m-i$ of the rows are fully in $P$, and the remaining $i$ rows have two options. All these prime ideals contain also $a_{1}, \ldots, a_{r}, c$, so that their height is $r+1+(m-i) r+i \frac{r}{2}=(m+1) r-i \frac{r}{2}+1$.

According to Proposition 3.2, $P$ is associated to $B^{n}$ if and only if there exist integers $u \in\{0, \ldots, m-i\}$ and $v \in\left\{0, \ldots, i \frac{r}{2}\right\}$ such that $n-1=u r+v$. The rest of (2)(a) is an immediate corollary of Proposition 3.2.

For (2)(b) we need to account which $n$ are possible. Note that $n-1=u r+v \leq$ $(m-i) r+i r / 2 \leq m r$. Thus $h(m, r, n)=0$ if $n-1>m r$. The possible $u$ are $0,1, \ldots, m-$ $i$, if simultaneously $0 \leq v=n-1-u r \leq i r / 2$. Another way of recording this is with $\max \{0,(n-1) / r-i / 2\} \leq u \leq \min \{q, m-i\}$. The assertion in (2)(b) follows because $\min \{q, m-i\} \geq 0$.

Theorem 3.4. Let $P$ be a g-good monomial prime ideal containing c. Suppose that there exists $\left(i_{0}, j_{0}\right) \in[m] \times[r]$ such that $x_{i_{0}, j_{0}-1}, x_{i_{0}, j_{0}} \in P$ and $x_{i_{0}, j_{0}+1} \notin P$. Then $P$ is associated to $B^{n}$ for all $n \geq 1$.

Proof. The assumption on $i_{0}, j_{0}$ forces $r \geq 3$. Let $T_{1}$ be the set of all $x_{i, j}$ not in $P$ and $T_{2}$ the set of all $x_{i, j} \in P$ such that $x_{i, j+1} \in P$. In case $n \geq 3$ we correct $T_{2}$ to
not include $x_{i_{0}, j_{0}-1}$. For any large integer $M$ we set

$$
w_{0}=a_{1}^{4} \cdots a_{r}^{4}\left(\prod_{t \in T_{1}} t^{M}\right)\left(\prod_{t \in T_{2}} t\right), \quad w=w_{0} h_{i_{0}, j_{0}}^{n-1}
$$

Since $\left(a_{1}, \ldots, a_{r}, c\right) a_{1}^{4} \cdots a_{r}^{4} \in B$, it follows that $\left(a_{1}, \ldots, a_{r}, c\right) \subseteq B^{n}: w$. If $x_{i, j} \in P$ and $x_{i, j+1} \notin P$, then $x_{i, j} w \in B^{n}$ since $a_{j}^{4} x_{i, j+1}^{2}$ is a factor of $w_{0}$ and $h_{i, j}=a_{j}^{4} x_{i, j} x_{i, j+1}^{2} \in B$. If $n \geq 3$, then $x_{i_{0}, j_{0}-1} w \in\left(h_{i_{0}, j_{0}-1}\right)\left(a_{j_{0}}^{12}\right)\left(h_{i_{0}, j_{0}}^{n-3}\right) \subseteq B^{1+2+n-3}=B^{n}$. In all other cases, if $x_{i, j}, x_{i, j+1} \in P$, then $x_{i, j} w \in B^{n}$ since $a_{j-1}^{4} x_{i, j-1} x_{i, j}$ is a factor of $w_{0}$ and $h_{i, j-1}=$ $a_{j-1}^{4} x_{i, j-1} x_{i, j}^{2} \in B$. This proves that $P \subseteq B^{n}: w$.

We next prove that $B^{n}: w \subseteq P$, i.e., that no power of a variable in $T_{1}$ is in $B^{n}: w$. By possibly taking $M$ larger it suffices to prove that $w \notin B^{n}$. In the given form $w$ is an element of $B^{n-1}$. Any rewriting of $w$ to make it an element of $B^{n}$ has to involve the variables $x_{i, j}$ whose exponents are at least two. The only such variables are those in $T_{1}$ and additionally $x_{i_{0}, j_{0}}$ if $n-1 \geq 2$. By the g-goodness assumption, the variables in $T_{1}$ do not have consecutive second indices and $T_{2}$ does not contain suitable "predecessors" to form a new $h_{i, j-1}$ with a variable $x_{i, j} \in T_{1}$. So necessarily $n \geq 3$, but then $x_{i_{0}, j_{0}-1}$ is not a factor of $w$ so it is not possible to recombine $x_{i_{0}, j_{0}}^{2}$ with that missing factor and no other rewriting is possible. Thus $w \notin B^{n}$.

Thus $P=B^{n}: w$ so that $P$ is associated to $B^{n}$.
Lemma 3.5. The number of $g$-good primes (either all containing $c$ or none containing c) equals the Lucas number $L_{r}^{m}\left(\right.$ with $\left.L_{1}=1, L_{2}=3, L_{r+2}=L_{r+1}+L_{r}\right)$.

Proof. Note that the number of g-good primes of either type is equal to $L_{r}^{m}$ where $L_{r}$ is their number for the case $m=1$. We will ignore containments of $a_{1}, \ldots, a_{r}$ in this proof.

In case $r=1$, the only g-good prime contains $x_{1,1}$, so $L_{1}$ is 1 . The g-good options in case $r=2$ are $\left(x_{1,1}\right),\left(x_{1,2}\right)$, and $\left(x_{1,1}, x_{1,2}\right)$, so $L_{2}=3$. Let $U_{r}$ be the number of g-good primes that contain $x_{1,1}$ and $x_{1, r}$, and for $r>1$ let $V_{r}$ be the number of g-good primes that contain $x_{1,1}$ and not $x_{1, r}$, and let $\bar{V}_{r}$ be the number of g-good primes that contain $x_{1, r}$ and not $x_{1,1}$. Clearly $\bar{V}_{r}=V_{r}, V_{r}=U_{r-1}$, and $L_{r}=U_{r}+V_{r}+\bar{V}_{r}=U_{r}+2 V_{r}$. But $U_{r+1}=U_{r}+U_{r-1}$ (depending on whether $r-1$ is or is not in the subset), $U_{1}=1, U_{2}=1$, and $U_{3}=2$, which says that $U_{1}, U_{2}, U_{3}, \ldots$ are the usual Fibonacci numbers, and so $V_{2}, V_{3}, V_{4}, \ldots$ are also the usual Fibonacci numbers. Then

$$
\begin{aligned}
L_{r+1}+L_{r} & =U_{r+1}+2 U_{r}+U_{r}+2 U_{r-1}=\left(U_{r+1}+U_{r}\right)+2\left(U_{r}+U_{r-1}\right)=U_{r+2}+2 U_{r+1} \\
& =L_{r+2},
\end{aligned}
$$

and so these numbers are the Lucas numbers.

Theorem 3.6. The number of prime ideals associated to $\mathrm{BHH}(m, r, 1)^{n}$ that contain $c$ is equal to

$$
\begin{cases}L_{r}^{m}-3^{m}+h(m, r, n), & \text { if reven } ; \\ L_{r}^{m}, & \text { if rodd, } n \equiv 1 \bmod r \text { and } n \leq r m+1 \\ L_{r}^{m}-1, & \text { otherwise },\end{cases}
$$

where $L_{r}$ is the rth Lucas number with $L_{1}=1$ and $L_{2}=3$ and $h(m, n, r)$ refers to the number in Theorem 3.3(b).

Proof. By Lemma 2.3(4), every prime ideal associated to $B^{n}$ that contains $c$ must be g-good.

Assume first that $r$ is odd. In this case, according to Theorem 3.3(1), the maximal ideal is associated if and only if $n=u r+1$ for some integer $u \leq m$. Any other one of the $L_{r}^{m}$ possible prime ideals satisfies condition of Theorem 3.4 and is thus associated to $B^{n}$ for all $n$. This proves the theorem for odd $r$ by Lemma 3.5.

Now, assume that $r$ is even. Of the $L_{r}^{m}$ possible prime ideals as accounted for by Lemma 3.5, those for which some row in the matrix $\left[x_{i, j}\right]$ is neither half-full nor full are covered by Theorem 3.4 and are thus associated to all powers of $B$. It remains to count those prime ideals associated to $B^{n}$ for which each row in $\left[x_{i, j}\right]$ is either half- full or full. According to Theorem 3.3(2), there are $3^{m}$ prime ideals with only full and half-full levels, of which $h(m, r, n)$ are associated to $B^{n}$. The theorem follows.

Example 3.7. The following tables of numbers of associated primes of $\operatorname{BHH}(m, r, 1)^{n}$ that contain $c$ are taken from Theorem 3.6 and agree with the calculations $\left({ }^{1}\right)$ by Macaulay2 [5] and Magma [3] of associated primes for low values of $n$.
$r=2$

| $m \backslash n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 2 | 1 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 2 | 9 | 8 | 9 | 4 | 1 | 0 |  |  |  |  |  |  |  |  |
| 3 | 27 | 26 | 27 | 26 | 19 | 6 | 1 | 0 |  |  |  |  |  |  |
| 4 | 81 | 80 | 81 | 80 | 81 | 64 | 33 | 8 | 1 | 0 |  |  |  |  |
| 5 | 243 | 242 | 243 | 242 | 243 | 242 | 211 | 130 | 51 | 10 | 1 | 0 |  |  |
| 6 | 729 | 728 | 729 | 728 | 729 | 728 | 729 | 664 | 473 | 232 | 73 | 12 | 1 | 0 |

${ }^{1}$ ) The program code associated with this paper is available as ancillary file on the arXiv page of this paper (arXiv:2309.15083).
$r=4$

| $m \backslash n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7 | 6 | 6 | 4 | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 2 | 49 | 48 | 48 | 44 | 49 | 44 | 44 | 40 | 41 | 40 | 40 | 40 |
| 3 | 343 | 342 | 342 | 336 | 343 | 342 | 342 | 328 | 335 | 322 | 322 | 316 |
| 4 | 2401 | 2400 | 2400 | 2392 | 2401 | 2400 | 2400 | 2392 | 2401 | 2384 | 2384 | 2344 |
| 5 | 16807 | 16806 | 16806 | 16796 | 16807 | 16806 | 16806 | 16796 | 16807 | 16806 | 16806 | 16764 |

We have finished a characterization of all associated primes of $B^{n}$ that contain $c$.

In contrast, we do not have a complete characterization of the prime ideals associated to $B^{n}$ that do not contain $c$. Of these, we understand the g-good ones well: by Theorem 3.8, the number of such is $L_{r}^{n}$ if $n \geq 2$, but the count is smaller for $n=1$ by Theorem 3.9.

Theorem 3.8. Let $P$ be a g-good monomial prime ideal that does not contain $c$ and let $n \geq 2$. Then $P$ is associated to $B^{n}$. The number of such primes is $L_{r}^{n}$.

Proof. Set

$$
e_{n}= \begin{cases}5 n-5, & \text { if } n=2,3,4 \\ 6 n-9, & \text { if } n \geq 4\end{cases}
$$

Note that

$$
\begin{aligned}
a_{1}^{e_{n}+3} & = \begin{cases}a_{1}^{5 n-2} \in\left(a_{1}^{6}\right)^{n-1} \subseteq B^{n-1}, & \text { if } n=2,3,4 ; \\
a_{1}^{6 n-6} \in\left(a_{1}^{6}\right)^{n-1} \subseteq B^{n-1}, & \text { if } n \geq 4,\end{cases} \\
a_{1}^{e_{n}} a_{2}^{4} & = \begin{cases}a_{1}^{5(n-1)} a_{2}^{4} \in\left(a_{1}^{5} a_{2}\right)^{n-1} \subseteq B^{n-1}, & \text { if } n=2,3,4 ; \\
a_{1}^{6 n-9} a_{2}^{4} \in\left(a_{1}^{5} a_{2}\right)^{4}\left(a_{1}^{6}\right)^{n-5} \subseteq B^{n-1}, & \text { if } n \geq 5,\end{cases} \\
a_{1}^{e_{n}+5} a_{2}^{4} & = \begin{cases}a_{1}^{5 n} a_{2}^{4} \in\left(a_{1}^{5} a_{2}\right)^{n} \subseteq B^{n}, & \text { if } n=2,3,4 ; \\
a_{1}^{6 n-4} a_{2}^{4} \in\left(a_{1}^{5} a_{2}\right)^{4}\left(a_{1}^{6}\right)^{n-4} \subseteq B^{n}, & \text { if } n \geq 4 .\end{cases}
\end{aligned}
$$

With $w_{0}=a_{1}^{e_{n}} a_{1}^{4} \cdots a_{r}^{4}$, we have that

$$
\begin{aligned}
& a_{1} w_{0} \in\left(a_{1}^{e_{n}+5} a_{2}^{4}\right) \subseteq B^{n}, \\
& a_{j} w_{0} \in\left(a_{j}^{5} a_{j+1}\right) a_{1}^{e_{n}+3} \subseteq B^{n} \quad \text { if } j \in\{2, \ldots, r\},
\end{aligned}
$$

so that $\left(a_{1}, \ldots, a_{r}\right) w_{0} \subseteq B^{n}$.
Let $X_{P}$ be the product of powers of the $x_{i, j}$, where

$$
\text { the exponent of } x_{i, j} \text { in } X_{P}= \begin{cases}2, & \text { if } x_{i, j} \notin P ; \\ 1, & \text { if } x_{i, j} \in P \text { and } x_{i, j+1} \in P ; \\ 0, & \text { if } x_{i, j} \in P \text { and } x_{i, j+1} \notin P .\end{cases}
$$

Set $w=c w_{0} X_{P}$. We will prove that $P=B^{n}: w$. We have established that $\left(a_{1}, \ldots, a_{r}\right) w \subseteq B^{n}$. Now let $x_{i, j} \in P$. If $x_{i, j+1} \notin P$, then $x_{i, j+1}^{2}$ divides $X_{P}$, and so

$$
x_{i, j} w \in\left(a_{j}^{4} x_{i, j} x_{i, j+1}^{2}\right) \cdot \begin{cases}a_{1}^{e_{n}} a_{2}^{4}, & \text { if } j=1 \\ a_{1}^{e_{n}+3}, & \text { if } j \neq 1\end{cases}
$$

which is in $B^{n}$. If instead $x_{i, j+1} \in P$, then $x_{i, j-1} x_{i, j}$ divides $X_{P}$, and so

$$
x_{i, j} w \in\left(a_{j-1}^{4} x_{i, j-1} x_{i, j}^{2}\right) \cdot \begin{cases}a_{1}^{e_{n}} a_{2}^{4}, & \text { if } j=2 \\ a_{1}^{e_{n}+3}, & \text { if } j \neq 2\end{cases}
$$

which is again in $B^{n}$. This proves that $P w \subseteq B^{n}$.
To prove that $B^{n}: w \subseteq P$, we need to prove that $z w \notin B^{n}$, where $z$ is a high power of a product of $c$ and all the $x_{i, j}$ that are not in $P$. Any rewriting of $z w$ as an $n$-fold product of elements in $B$ cannot use any generator of $\underline{a}$-degree 4 because $X_{P}$ contains no factors of the form $x_{i, j} x_{i, j+1}^{2}$. Thus the $n$ factors in this rewriting are taken from the following list: $a_{1}^{6}, a_{1}^{5} a_{2}, c a_{1}^{4} \cdots a_{r}^{4}$. If the latter factor appears, then $z w$ would have to be a multiple of $\left(a_{1}^{6}\right)^{n-1} c a_{1}^{4} \cdots a_{r}^{4}$, but the $a_{1}$-degree is then too high. Thus the only possible factors are $a_{1}^{6}$ and $a_{1}^{5} a_{2}$. It is easy to see that this is not possible if $n=2,3$, and for $n \geq 4$, the total degree $e_{n}+8=6 n-1$ of $a_{1}$ and $a_{2}$ in $z w$ would have to be at least $6 n$, which is a contradiction. This finishes the proof that $B^{n}: w=P$, so that $P$ is associated to $B^{n}$.

The number of such primes was determined in Lemma 3.5.
Theorem 3.9. Let $P$ be a g-good monomial prime ideal that does not contain c. Then $P$ is associated to $B$ if and only if there exists $j_{0} \in[r]$ such that for all $i \in[m]$, either $x_{i, j_{0}} \notin P$ or $x_{i, j_{0}+1} \notin P$.

When $r=2$, the number of such $P$ is exactly $2^{m}$.
Proof. By Lemma 2.1, if $P$ is associated then such a $j_{0}$ must exist. Now suppose that $j_{0}$ exists. By possibly replacing $j_{0}$ with $j_{0}+1$ we may assume that there exists $i \in[m]$ such that $x_{i, j_{0}} \notin P$. By re-indexing we may assume that $j_{0}=1$.

Let $X_{P}$ be the product of various powers of the $x_{i, j}$, where

$$
\text { the exponent of } x_{i, j} \text { in } X_{P}= \begin{cases}2, & \text { if } x_{i, j} \notin P ; \\ 1, & \text { if } x_{i, j} \in P \text { and } j=r ; \\ 1, & \text { if } x_{i, j} \in P, j \neq r \text { and } x_{i, j+1} \in P \\ 0, & \text { if } x_{i, j} \in P, j \neq r \text { and } x_{i, j+1} \notin P\end{cases}
$$

and set $w=c a_{r}^{3} \cdot\left(\prod_{j=1}^{r-1} a_{j}^{4}\right) X_{P}$. We will prove that $P=B: w$.

We have that $a_{r} w=\left(c a_{1}^{4} a_{2}^{4} \cdots a_{r}^{4}\right) \subseteq B$, and for $j \in\{1, \ldots, r-1\}$, we have that $a_{j} w \in$ $\left(a_{j}^{5} a_{j+1}\right) \subseteq B$. This proves that $\left(a_{1}, \ldots, a_{r}\right) w \subseteq B$.

Now let $x_{i, j} \in P$. We need to prove that $x_{i, j} w \in B$. If $j=r$, then $x_{i, r-1} x_{i, r}$ divides $X_{P}$ and $a_{r-1}^{4}$ divides $w$. Hence, $x_{i, r} w \in\left(a_{r-1}^{4} x_{i, r-1} x_{i, r}^{2}\right) \subseteq B$. If $j=1$, by the definition of $j_{0}, x_{i, 2}$ is not in $P$. Thus $a_{1}^{4} x_{i, 2}^{2}$ is a factor of $w$, so that $x_{i, 1} w \in$ $\left(a_{1}^{4} x_{i, 1} x_{i, 2}^{2}\right) \subseteq B$. Now let $j \in\{2, \ldots, r-1\}$. We need to prove that $x_{i, j} w \in B$. So necessarily $r>2$. Then $X_{P}$ is a multiple of $x_{i, j+1}^{2}$ if $x_{i, j+1} \notin P$, or else it is a multiple of $x_{i, j-1} x_{i, j}$, so that

$$
x_{i, j} w \in \begin{cases}\left(a_{j}^{4} x_{i, j} x_{i, j+1}^{2}\right) \subseteq B, & \text { if } x_{i, j+1} \notin P \\ \left(a_{j-1}^{4} x_{i, j-1} x_{i, j}^{2}\right) \subseteq B, & \text { if } x_{i, j+1} \in P .\end{cases}
$$

This finishes the proof that $P \subseteq B: w$.
It remains to prove that $B: w \subseteq P$. It suffices to prove that $z w \notin B$, where $z$ is a high power of a product of $c$ with all $x_{i, j}$ that are not in $P$. Since the $a_{r}$-degree of $w$ is 3, the rewriting of $z w$ as an element of $B$ would not use the one generator of $B$ that involves $c$. So $c$ plays no role in this rewriting. If $x_{i, j} \notin P$, then both $x_{i, j-1}$ and $x_{i, j+1}$ must be in $P$. Thus $x_{i, j+1}^{2}$ is not a factor of $z w$ and $x_{i, j-1}$ is a factor of $z w$ exactly if $j-1=r$. In that case, $a_{j-1}^{4}$ is not a factor of $z w$, which means that no rewriting of $z w$ as an element of $B$ can use $a_{j-1}^{4} x_{i, j-1} x_{i, j}^{2}$ or $a_{j}^{4} x_{i, j} x_{i, j+1}^{2}$. Also, no factor of this form already appears in $w$. But then by the consideration of exponents of the $a_{j}$ in $w, z w \notin B$.

We have handled all the g-good prime ideals associated to powers of $B$. There are further associated primes that do not contain $c$. In the rest of this section we prove their persistence property and we completely describe and enumerate them in case $r=2$. Persistence definitely fails on associated primes that do contain $c$.

Proposition 3.10. (Persistence of associated primes) Let $P$ be a prime ideal associated to $B^{n}$ that does not contain $c$. Then $P$ is associated to $B^{n+1}$.

Proof. If $P$ is g-good, then $P$ is associated to all $B^{n+1}$ by Theorem 3.8.
So we may assume that there exists $i \in[m]$ and $j \in[r]$ such that $x_{i, j}, x_{i, j+1} \notin P$. Then $P$ is associated to $B^{n}$ if and only if it is associated to $B^{n}$ after inverting $x_{i, j} x_{i, j+1}$. But then $a_{j}^{4}$ is a minimal generator of $B$, and the only other minimal generator of $B$ (after this inversion) in which $a_{j}$ appears is $a_{j-1}^{5} a_{j}$. Write $P=B^{n}: w$ for some monomial $w$. Then

$$
\begin{aligned}
B^{n+1}: a_{j}^{4} w & =\left(B^{n+1}: a_{j}^{4}\right): w \\
& =\left(B^{n}+a_{j-1}^{5} B^{n}+a_{j-1}^{10} B^{n-1}+a_{j-1}^{15} B^{n-2}+a_{j-1}^{20} B^{n-3}\right): w \\
& =B^{n}: w=P,
\end{aligned}
$$

so that $P$ is associated to $B^{n+1}$ as well.

Theorem 3.11. Let $m, s \geq 1$. The set of associated primes of $\operatorname{BHH}(m, 2, s)^{n}$ is the union $\left\{\left(a_{1}, a_{2}\right)\right\} \cup \bigcup_{i=1}^{m} Q_{c}^{(i)} \cup Q_{1} \cup Q_{2}$ where

$$
\begin{aligned}
Q_{c}^{(i)}= & \{P \mid n=2 u+v+1 \text { with } 0 \leq u \leq m-i, 0 \leq v \leq i \text { and } \\
& P \text { has } i \text { half-full and } m-i \text { full rows }\}, \\
Q_{1}= & \left\{P g \text {-good } \mid c \notin P, n=1, \exists j_{0} \in[r] \forall i \in[m]: x_{i, j_{0}} \notin P \text { or } x_{i, j_{0}+1} \notin P\right\}, \\
Q_{2}= & \{P g \text {-good } \mid c \notin P, n \geq 2\} .
\end{aligned}
$$

The number of associated primes of $\operatorname{BHH}(m, 2, s)^{n}$ is equal to

$$
\left(3-\delta_{1=n}\right)^{m}+1+\sum_{i=0}^{m} 2^{i}\binom{m}{i} \delta_{(n-1-i) / 2 \leq \min \{q, m-i\}},
$$

where $q=\left\lfloor\frac{n-1}{2}\right\rfloor$.
Proof. By Theorem 1.4, the set of associated primes of $\operatorname{BHH}(m, 2, s)^{n}$ is equal to the set of associated primes of $\operatorname{BHH}(m, 2,1)^{n}$. By Theorems 3.6 and 3.3, the set of associated primes of $\operatorname{BHH}(m, 2,1)^{n}$ that contain $c$ equals $\bigcup_{i=1}^{m} Q_{c}^{(i)}$ and its cardinality is $h(m, 2, n)=\sum_{i=0}^{m} 2^{i}\binom{m}{i} \delta_{(n-1-i) / 2 \leq \min \{q, m-i\}}$, where $q=\left\lfloor\frac{n-1}{2}\right\rfloor$.

Let $P$ be associated to $\operatorname{BHH}(m, 2,1)^{n}$ and not contain $c$. If $P$ does not contain $x_{i, 1} x_{i, 2}$, then $P$ is associated to $B^{n}$ if and only if it is associated to $B^{n}:\left(x_{i, 1} x_{i, 2}\right)^{\infty}=$ $\left(a_{1}^{4}, a_{2}^{4}\right)^{n}$, in which case $P$ must be equal to $\left(a_{1}, a_{2}\right)$, which is minimal over $B$ and hence associated to all the powers of $B$.

Thus it remains to consider the associated primes $P$ not containing $c$ that contain $x_{i, 1} x_{i, 2}$ for all $i \in[m]$. Then $P$ must be g-good, and in $Q_{1}$ if $n=1$ by Theorem 3.9 (which has cardinality $2^{m}$ ) and in $Q_{2}$ if $n \geq 2$ by Theorem 3.8 (which has cardinality $3^{m}$ ).

The assertion follows.
Remark 3.12. The number of associated primes of $\operatorname{BHH}(m, 2, s)^{n}$ can also be written as

$$
\left(3-\delta_{1=n}\right)^{m}+\left(\sum_{\ell=0}^{m} \sum_{t=b(\ell)}^{m}\binom{m}{\ell}\binom{\ell}{\ell+t-m}\right)+ \begin{cases}0, & \text { if } n \leq 2 m \text { and } n \text { is even; } \\ 1, & \text { otherwise }\end{cases}
$$

where $b(\ell)=\max \{n-1-\ell, m-\ell\}$. Namely, the first summand in the display plus 1 is the number of associated primes not containing $c$. The maximal ideal is associated to $\mathrm{BHH}(m, 2,1)^{n}$ if and only if $n \leq 2 m+1$ and $n$ is odd. These two counts account for the first and the last summand in the display. It remains to count the non-maximal associated primes $P$ that contain $c$. We know that for all $i \in[m], x_{i, 1} x_{i, 2} \in P$. Let $\ell$ be the number of $x_{i, 1}$ in $P$ and let $t$ be the number of $x_{i, 2}$ in $P$. Necessarily $\ell+t \geq m$.

Also, $\ell+t$ should be at least $2 u+v=n-1$ as in the notation of Theorem 3.3. There are $\binom{m}{\ell}$ ways of choosing $\ell$ of the variables $x_{i, 1}$, after which for the remaining $m-\ell$ rows in the matrix $\left[x_{i, j}\right]$, the elements $x_{i, 2}$ must be in $P$. This leaves $t-(m-\ell)$ variables $x_{i, 2}$ to be chosen from the $\ell$ rows with the $x_{i, 1}$. This justifies the middle summand in the display.

We just proved the following combinatorial identity:

$$
\begin{aligned}
& \sum_{i=0}^{m} 2^{i}\binom{m}{i} \delta_{n-1 \leq \min \{2 q+i, 2 m-i\}} \\
& \quad=\sum_{\ell=0}^{m} \sum_{t=b(\ell)}^{m}\binom{m}{\ell}\binom{\ell}{\ell+t-m}+ \begin{cases}-1, & \text { if } n \leq 2 m \text { and } n \text { is even; } \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

where $b(\ell)=\max \{n-1-\ell, m-\ell\}$.
Theorem 3.13. For $m \geq 1$, the function $\phi$ taking $n \mapsto \# \operatorname{Ass}\left(R / \operatorname{BHH}(m, 2, s)^{n}\right)$ has exactly $\left\lceil\frac{m-1}{2}\right\rceil$ local maxima. The local maxima occur at $n=3,5, \ldots, 2\left\lceil\frac{m-1}{2}\right\rceil+1$, and they are all equal to the global maximum $2 \cdot 3^{m}+1$.

Proof. We refer to the three summands in the display in Remark 3.12 as $\phi_{1}, \phi_{2}, \phi_{3}$ (in the given order). Observe that $\phi_{1}$ is constant for $n \geq 2$, that $\phi_{2}$ is zero for all $n \geq 2 m+2$, and that $\phi_{3}$ is constant for $n \geq 2 m+1$. Thus $\phi$ is constant for $n \geq 2 m+2$.

In the range $n=1, \ldots, m+1, \phi_{2}$ equals

$$
\sum_{\ell=0}^{m} \sum_{t=m-\ell}^{m}\binom{m}{\ell}\binom{\ell}{\ell+t-m}=(1+1+1)^{m}=3^{m}
$$

after which it strictly decreases to 0 at $n=2 m+2$. Thus $\phi(1)=2^{m}+3^{m}+1<2 \cdot 3^{m}=$ $\phi(2)<2 \cdot 3^{m}+1=\phi(3)$, and this is equal to $\phi(n)$ for all odd $n \in\{3, \ldots, m+1\}$. In other words, $\phi(n)=\phi(3)$ for all $n=3,5, \ldots, 2\left\lceil\frac{m-1}{2}\right\rceil+1$. This value is strictly larger than $2 \cdot 3^{m}=\phi(4)=\phi(6)=\cdots=\phi\left(2\left\lceil\frac{m-1}{2}\right\rceil\right)$, and is also strictly larger than $\phi\left(2\left\lceil\frac{m-1}{2}\right\rceil+2\right)$.

Furthermore, for $n \in\{m+1, m+2, \ldots, 2 m\}$,

$$
\phi_{2}(n)-\phi_{2}(n+1)=\sum_{\ell=0}^{m}\binom{m}{\ell}\binom{\ell}{\ell+(n-1-\ell)-m}=\sum_{\ell=n-1-m}^{m}\binom{m}{\ell}\binom{\ell}{n-1-m} \geq 2 .
$$

Thus $\phi(n)>\phi(n+1)$ for $n \in\{m+1, m+2, \ldots, 2 m\}$. Finally,

$$
\phi(2 m+1)-\phi(2 m+2)=\sum_{\ell=0}^{m}\binom{m}{\ell}\binom{\ell}{\ell+(2 m+1-1-\ell)-m}=\sum_{\ell=0}^{m}\binom{m}{\ell}\binom{\ell}{m}=1
$$

so that $\phi(n)>\phi(n+1)$ for $n \in\{m+1, m+2, \ldots, 2 m+1\}$. This finishes the proof.

## 4. Depth

The depth of quotients of powers of $\operatorname{BHH}(m, r, s)$ depend on $s$, so in this section we return to arbitrary $s$.

Lemma 4.1. Set $B=\operatorname{BHH}(m, r, s)$. Let $w=a_{1}^{e_{n}} a_{1}^{4} \cdots a_{r}^{4} \prod_{i, j} x_{i, j}$ where $e_{n}$ is defined as in the proof of Theorem 3.8. If $n \geq 2$, then $w \notin B^{n}$ and $w$ multiplies $\left(a_{j}, x_{i, j}: i \in[m], j \in[r]\right)$ (but not $\left.c_{1}, \ldots, c_{s}\right)$ into $\left(B_{0}+X\right)^{n}$.

Let $u_{1}, \ldots, u_{s}$ be linear forms with $u_{j}$ of the form $c_{j}$ minus a linear combination $d_{j}$ in the variables $x_{i, j^{\prime}}$ as $i, j^{\prime}$ vary in $[m]$ and $[r]$, respectively. Then $w \notin B^{n}+$ $\left(u_{1}, \ldots, u_{s}\right)$ and $w\left(a_{j}, x_{i, j}: i \in[m], j \in[r]\right) \in B^{n}+\left(u_{1}, \ldots, u_{s}\right)$.

Proof. The first paragraph is an immediate consequence of the proof of Theorem 3.8.

For the second paragraph, it is still the case that $w$ multiplies the $a_{j}, x_{i, j}$ (but not $c_{1}, \ldots, c_{s}$ ) into the ideal $C=B^{n}+\left(u_{1}, \ldots, u_{s}\right)$. It remains to prove that $w \notin C$. By Lemma 1.2 we can rewrite $C$ as $\left(c_{1}, \ldots, c_{s}\right) a_{1}^{4} \cdots a_{r}^{4} X^{n-1}+\left(B_{0}+X\right)^{n}+\left(u_{1}, \ldots, u_{s}\right)=$ $\left(d_{1}, \ldots, d_{s}\right) a_{1}^{4} \cdots a_{r}^{4} X^{n-1}+\left(B_{0}+X\right)^{n}+\left(u_{1}, \ldots, u_{s}\right)$. Without restriction, we can switch to the polynomial ring where $u_{1}, \ldots, u_{s}$ are variables and, for $1 \leq j \leq s, c_{j}$ are the linear forms in $u_{j}$ and $d_{j}$. Since $u_{1}, \ldots, u_{s}$ do not appear in $w$ or in any minimal generating set of $\left(d_{1}, \ldots, d_{s}\right) a_{1}^{4} \cdots a_{r}^{4} X^{n-1}+\left(B_{0}+X\right)^{n}$, it follows that if $w$ is in $C$, then $w \in\left(d_{1}, \ldots, d_{s}\right) a_{1}^{4} \cdots a_{r}^{4} X^{n-1}+\left(B_{0}+X\right)^{n}$, so that $w$ multiplies $c_{1}, \ldots, c_{s}$ into $B^{n}$, which is a contradiction.

Theorem 4.2. For any positive integers $r, m, s, e$ with $r \geq 2$, there exists an ideal I in a polynomial ring $A$ such that for all positive integers $n$,

$$
\operatorname{depth}\left(\frac{A}{I^{n}}\right)= \begin{cases}e-1, & \text { if } n=r u+1 \text { with } u=0, \ldots, m ; \\ e, & \text { if } n \leq r m+1 \text { and } n \not \equiv 1 \bmod r \\ s+e-1, & \text { otherwise, i.e., if } n>m r+1\end{cases}
$$

In particular, the depth function $n \mapsto \operatorname{depth}\left(A / I^{n}\right)$ has $m+1$ local minima, it is periodic of period $r$ when restricted to the domain $[1, r(m+1)-1]$, and it is constant afterwards.

Proof. Set $B=\operatorname{BHH}(m, r, s)$ in the ambient polynomial ring $R$. Let $A$ be the polynomial ring obtained from $R$ by replacing the variable $c_{1}$ with variables $d_{1}, \ldots, d_{e}$. Let $\varphi: R \rightarrow A$ be the algebra homomorphism taking $c_{1}$ to the product $d_{1} \cdots d_{e}$ and all other variables to themselves. Let $I=\varphi(B) A$. Since $\varphi$ is a free and hence a flat map by [8, Theorem 1.2] (such maps are called splittings there), we have that $\varphi$ takes a free resolution of $R / B^{n}$ to a free resolution of $A / I^{n}$, and it
preserves minimality of the resolution. Thus the projective dimensions of $R / B^{n}$ and $A / I^{n}$ are the same, and by the Auslander-Buchsbaum formula,

$$
\begin{aligned}
\operatorname{depth}\left(A / I^{n}\right) & =\operatorname{dim}(A)-\operatorname{pd}\left(A / I^{n}\right) \\
& =\operatorname{dim}(R)+e-1-\operatorname{pd}\left(R / B^{n}\right) \\
& =\operatorname{dim}(R)+e-1-\left(\operatorname{dim}(R)-\operatorname{depth}\left(R / B^{n}\right)\right) \\
& =\operatorname{depth}\left(R / B^{n}\right)+e-1
\end{aligned}
$$

So it suffices to prove that

$$
\operatorname{depth}\left(\frac{R}{B^{n}}\right)= \begin{cases}0, & \text { if } n=r u+1 \text { with } u=0, \ldots, m \\ 1, & \text { if } n \leq r m+1 \text { and } n \neq 1 \bmod r \\ s, & \text { otherwise, i.e., if } n>m r+1\end{cases}
$$

By Theorems 1.4 and 3.3, the maximal ideal of $R$ is associated to $R / B^{n}$ exactly for the $n$ of the form $r u+1$ with $u=0, \ldots, m$. Thus the depth of $R / B^{n}$ equals 0 exactly for all such $n$.

So we may assume that either $n \not \equiv 1 \bmod r$ or that $n>m r+1$.
No $c_{1}, \ldots, c_{s}$ appear in any generator of a minimal generating set of $B^{n}: c_{1}=$ $\left(B+\left(a_{1}^{4} \cdots a_{r}^{4}\right)\right)^{n}$. This means that $\operatorname{depth}\left(R /\left(B^{n}: c_{1}\right)\right) \geq s$. By Theorem 3.8 (and Theorem 1.4) we then have depth $\left(R /\left(B^{n}: c_{1}\right)\right)=s$. Also, $B^{n}+\left(c_{1}\right)=B(m, r, s-1)^{n}+$ $\left(c_{1}\right)$ with $B(m, r, s-1)$ defined using variables $a_{j}, x_{i, j}$ and $c_{2}, \ldots, c_{s}$ only. When $s=1$, by Lemma 4.1, depth $\left(R /\left(B^{n}+\left(c_{1}\right)\right)\right)$ is 0 for all $n$, and for $s \geq 2$, by induction on $s$, depth $\left(R /\left(B^{n}+\left(c_{1}\right)\right)\right)$ is 1 or $s-1$, depending on $n$. We will use the short exact sequence

$$
\begin{equation*}
0 \longrightarrow \frac{R}{B^{n}: c_{1}} \longrightarrow \frac{R}{B^{n}} \longrightarrow \frac{R}{B^{n}+\left(c_{1}\right)} \longrightarrow 0 \tag{*}
\end{equation*}
$$

This short exact sequence induces a long exact sequence on $\operatorname{Ext}_{R}\left(R / M,{ }_{-}\right)$, where $M$ is the maximal homogeneous ideal of $R$. We use the fact that for any finitely generated $R$-module $U$, depth $(U)=\min \left\{\ell: \operatorname{Ext}_{R}^{\ell}(R / M, U) \neq 0\right\}$.

Let $\ell=\operatorname{depth}\left(R /\left(B^{n}+\left(c_{1}\right)\right)\right.$. By induction on $s$, we have that $\ell=0$ if $s=1$, and otherwise that $\ell=1$ if $n \leq m r+1($ and $n \neq 1 \bmod r)$, and $\ell=s-1$ otherwise, and so since the depth of $R /\left(B^{n}: c_{1}\right)=s$, the relevant part of the long exact sequence equals:

$$
\begin{aligned}
\cdots & \longrightarrow 0 \longrightarrow \operatorname{Ext}_{R}^{\ell}\left(\frac{R}{M}, \frac{R}{B^{n}}\right) \longrightarrow \operatorname{Ext}_{R}^{\ell}\left(\frac{R}{M}, \frac{R}{B^{n}+\left(c_{1}\right)}\right) \longrightarrow \operatorname{Ext}_{R}^{\ell+1}\left(\frac{R}{M}, \frac{R}{B^{n}: c_{1}}\right) \\
& \longrightarrow \cdots .
\end{aligned}
$$

We need to establish that $\operatorname{Ext}_{R}^{\ell}\left(\frac{R}{M}, \frac{R}{B^{n}}\right)$ is non-zero if $n \leq m r+1($ and $n \not \equiv 1 \bmod r)$ and is zero if $n>m r+1$.

First let $n>m r+1$. We need to show that the depth of $R / B^{n}$ is $s$. By the long exact sequence we first prove that $\operatorname{Ext}_{R}^{s-1}\left(\frac{R}{M}, \frac{R}{B^{n}}\right)$ is zero, i.e., that

$$
\operatorname{Ext}_{R}^{s-1}\left(\frac{R}{M}, \frac{R}{B^{n}+\left(c_{1}\right)}\right) \longrightarrow \operatorname{Ext}_{R}^{s}\left(\frac{R}{M}, \frac{R}{B^{n}: c_{1}}\right)
$$

is injective. By faithful flatness we may assume that the base field is infinite. By prime avoidance we can find linear forms $u_{2}, \ldots, u_{s}, u_{1}$ that form a regular sequence modulo $B^{n}: c_{1}$ and for which $u_{2}, \ldots, u_{s}$ is a regular sequence modulo $B^{n}+\left(c_{1}\right)$. Since $a_{1}, \ldots, a_{r}$ are in the radical of $B$, we may assume that the $u_{i}$ are forms in the variables $c_{j}$ and $x_{i, j}$ only. We claim that for $\ell=2, \ldots, s$, we may take $u_{\ell}=c_{\ell}-d_{\ell}$, where $d_{\ell}=\sum_{i, j} \alpha_{\ell, i, j} x_{i, j}$ for some (generic) scalars $\alpha_{\ell, i, j}$. Certainly any such $u_{2}, \ldots, u_{s}, u_{1}$ form a regular sequence modulo $B^{n}: c_{1}$ since $c_{1}, \ldots, c_{s}$ do not appear in any generators of this ideal. Suppose that we have proved for some $\ell \in\{1, \ldots, s-1\}$ that $u_{2}, \ldots, u_{\ell}$ form a regular sequence modulo $B^{n}+\left(c_{1}\right)$. Then

$$
B^{n}+\left(c_{1}, u_{2}, \ldots, u_{\ell}\right)=\left(\left(d_{2}, \ldots, d_{\ell}, c_{\ell+1}, \ldots, c_{s}\right) a_{1}^{4} \cdots a_{r}^{4}+B_{0}+X\right)^{n}+\left(c_{1}, u_{2}, \ldots, u_{\ell}\right)
$$

and since $\left(a_{1}^{4} \cdots a_{r}^{4}\right)^{2} \in B_{0}^{2}$, by Lemma 1.2, modulo the variables $c_{1}, u_{2}, \ldots, u_{\ell}$,

$$
B^{n}=\left(c_{\ell+1}, \ldots, c_{s}\right) a_{1}^{4} \cdots a_{r}^{4} X^{n-1}+\left(\left(d_{2}, \ldots, d_{\ell}\right) a_{1}^{4} \cdots a_{r}^{4}+B_{0}+X\right)^{n}
$$

Thus by Lemma 1.3, each associated prime of $B^{n}+\left(c_{1}, u_{2}, \ldots, u_{\ell}\right)$ either contains all $c_{\ell+1}, \ldots, c_{s}$ or it contains none of them. Thus $c_{\ell+1}-d_{\ell+1}$ for sufficiently general $\alpha_{\ell+1, i, j}$ is a non-zerodivisor modulo $B^{n}+\left(u_{2}, \ldots, u_{\ell}\right)$. This proves the stated forms of $u_{2}, \ldots, u_{s}$ and we may also take $u_{1}=c_{1}$.

By a theorem of Rees (see [9, Lemma 2 (i)]), due to natural isomorphisms, it suffices to prove that the natural map

$$
\operatorname{Hom}_{R}\left(\frac{R}{M}, \frac{R}{B^{n}+\left(c_{1}, u_{2}, \ldots, u_{s}\right)}\right) \longrightarrow \operatorname{Hom}_{R}\left(\frac{R}{M}, \frac{R}{\left(B^{n}: c_{1}\right)+\left(c_{1}, u_{2}, \ldots, u_{s}\right)}\right)
$$

is injective. In other words, we need to show that the natural map $\frac{L_{1}: M}{L_{1}} \rightarrow \frac{L_{2}: M}{L_{2}}$ is injective, where $L_{1}=B^{n}+\left(c_{1}, u_{2}, \ldots, u_{s}\right)$ and $L_{2}=\left(B^{n}: c_{1}\right)+\left(c_{1}, u_{2}, \ldots, u_{s}\right)$. Let $w \in\left(L_{1}: M\right) \cap L_{2}$. We have to prove that $w \in L_{1}$.

By subtracting elements of $L_{1}$ from $w$, by Lemma 1.2, $w \in a_{1}^{4} \cdots a_{r}^{4} X^{n-1}$, and since $\left(a_{1}, \ldots, a_{r}, c_{1}, \ldots, c_{s}\right) a_{1}^{4} \cdots a_{r}^{4} X^{n-1} \subseteq B^{n} \subseteq L_{1}$, we may assume that

$$
w=\sum_{\nu} e_{\nu} a_{1}^{4} \cdots a_{r}^{4}\left(\prod_{i, j} x_{i, j}^{v_{\nu, i, j}}\right)\left(\prod_{i, j} h_{i, j}^{u_{\nu, i, j}}\right)
$$

where for all $\nu, e_{\nu} \in k$ and $\sum_{i, j} u_{\nu, i, j}=n-1$. Since $L_{1}, L_{2}$ are not monomial ideals, $w$ need not be a monomial. Nevertheless, we claim that each $x_{i, j}$ multiplies each
summand in $w$ into $L_{1}$. Proof of the claim: Fix $(i, j)$. We know that $x_{i, j} w \in L_{1}$. This means that in at least one monomial summand $w_{0}$ of $w, x_{i, j}$ must be incorporated into some new factor of $B$ while at the same time possibly breaking up some of the $n-1$ factors that are generators of $B$. Then by Corollary $2.5(1), x_{i, j} w_{0} \in B^{n} \subseteq L_{1}$. Hence $x_{i, j}\left(w-w_{0}\right)$ is also in $L_{1}$, and $w-w_{0}$ has fewer summands in it, which proves the claim for $(i, j)$ by induction on the number of monomial summands in $w$. This proves that every monomial appearing in $w$ is multiplied by ( $x_{i, j}: i \in[m], j \in[r]$ ) into $B^{n}$. Thus by Corollary $2.5(2)$, each monomial appearing in $w$ is in $L_{1}$, so that $w \in L_{1}$. This proves that $\operatorname{Ext}_{R}^{s-1}\left(R / M, R / B^{n}\right)=0$, which means that the depth of $R / B^{n}$ is at least $s$. By the same reasoning as before, there exists a regular sequence $u_{1}, \ldots, u_{s}$ on $R / B^{n}$ of the form $u_{j}=c_{j}-d_{j}$ for some generic linear combinations $d_{1}, \ldots, d_{s}$ in the $x_{i, j}$. Consider the element $w=a_{1}^{e_{n}} a_{1}^{4} \cdots a_{r}^{4} \prod_{i, j} x_{i, j}$, with $e_{n}$ as defined in the proof of Theorem 3.8. By Lemma 4.1, $M w \in B^{n}+\left(u_{1}, \ldots, u_{s}\right)$ and $w \notin B^{n}+$ $\left(u_{1}, \ldots, u_{s}\right)$, so that the depth of $R / B^{n}$ is exactly $s$.

Finally, let $n \leq m r+1$ and $n \not \equiv 1 \bmod r$. We need to prove that the connecting homomorphism in the displayed long exact sequence is not injective. If $s \geq 3$, then $\operatorname{Ext}_{R}^{\ell+1}\left(\frac{R}{M}, \frac{R}{B^{n}: c_{1}}\right)=0$ and we are done. So, let $s \leq 2$. As in in the proof for $n>$ $m r+1$ there exists a linear form $u_{2}=c_{2}-d_{2} \in M$ that is a non-zerodivisor modulo $B^{n}: c_{1}$ and modulo $B^{n}+\left(c_{1}\right)$, and by the same theorem of Rees, due to natural isomorphisms, it suffices to prove that the natural homomorphism $\frac{L_{1}: M}{L_{1}} \rightarrow \frac{L_{2}: M}{L_{2}}$ is not injective, where $L_{1}=B^{n}+\left(c_{1}, u_{2}\right)$ and $L_{2}=\left(B_{n}: c_{1}\right)+\left(c_{1}, u_{2}\right)$. Write $n-2=u r+v$ for some non-negative integers $u, v$ with $v<r$. Since $n \leq m r+1$ and $n \not \equiv 1 \bmod r$, it follows that $u<m$ and $v \not \equiv 0 \bmod r$. Let $w_{h}=h_{1,1} \cdots h_{1, v} \prod_{i>m-u, j} h_{i, j} \in B^{n-2}$, $w_{x}=\prod_{i \leq m-u, j} x_{i, j}, w_{a}=a_{1}^{4} \cdots a_{r-1}^{4} a_{r}^{8} \in B$, and $w=x_{1,1} w_{h} w_{a} w_{x}$. Thus clearly $w \in$ $B^{n-2}\left(a_{r}^{4} x_{1, r} x_{1,1}^{2}\right)\left(a_{1}^{4} \cdots a_{r}^{4}\right) \in L_{2}$. However, $w \notin L_{1}$. We next prove that $M w \subseteq L_{1}$ :

$$
\begin{aligned}
& x_{i, j} w \in \frac{w_{h}}{h_{i, j-2} h_{i, j}} h_{i, j-1}\left(a_{j-2}^{6}\right)\left(a_{j}^{6}\right)\left(h_{1, r}\right) \subseteq\left(B_{0}+X\right)^{n}, \text { if } i>m-u ; \\
& x_{i, j} w \in\left(w_{h}\right)\left(a_{j-1}^{4} x_{i, j-1} x_{i, j}^{2}\right)\left(a_{r}^{6}\right) \subseteq\left(B_{0}+X\right)^{n}, \text { if } j \neq 1 \text { and } i \leq m-u ; \\
& x_{i, 1} w \in\left(w_{h}\right)\left(a_{r}^{4} x_{i, r-1}^{2} x_{i, 1}^{2}\right)\left(a_{r}^{4} x_{1, r-1}^{2} x_{1,1}^{2} \subseteq\left(B_{0}+X\right)^{n}, \text { if } 2 \leq i \leq m-u ;\right. \\
& x_{1,1} w \in\left(c_{2} a_{1}^{4} \cdots a_{r}^{4}\right) w_{h}\left(a_{r}^{4} x_{1, r} x_{1,1}^{2}\right)+\left(u_{2}\right)+\sum_{(i, j) \neq(1,1)} x_{i, j} w \in L_{1} ; \\
& a_{r} w \in\left(w_{h}\right)\left(a_{r}^{5} a_{1}\right)\left(a_{r}^{4} x_{1, r} x_{1,1}^{2}\right) \in L_{1} ; \\
& a_{j} w \in\left(w_{h}\right)\left(a_{j}^{5} a_{j+1}\right)\left(a_{r}^{4} x_{1, r} x_{1,1}^{2}\right) \in L_{1}, \text { if } j \neq 1 .
\end{aligned}
$$

This proves that $w \in\left(L_{1}: M\right) \cap L_{2}$ and $w \notin L_{1}$, which proves that the map $\frac{L_{1}: M}{L_{1}} \rightarrow$ $\frac{L_{2}: M}{L_{2}}$ is not injective. Thus the depth of $R / B^{n}$ is 1 if $n \leq r m+1$ and $n \not \equiv 1 \bmod r$.

## References

1. Ananyan, T. and Hochster, M., Small subalgebras of polynomial rings and Stillman's conjecture, J. Amer. Math. Soc. 33 (2020), 291-309.
2. Bandari, S., Herzog, J. and Hibi, T., Monomial ideals whose depth function has any given number of strict local maxima, Ark. Mat. 52 (2014), 11-19.
3. Bosma, W., Cannon, J. and Playoust, C., The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
4. Brodmann, M., Asymptotic stability of $\operatorname{Ass}\left(M / I^{n} M\right)$, Proc. Amer. Math. Soc. 74 (1979), 16-18.
5. Grayson, D. and Stillman, M., Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2.
6. HÀ, H. T., Nguyen, H. D., Trung, N. V. and Trung, T. N., Depth functions of powers of homogeneous ideals, Proc. Amer. Math. Soc. 149 (2021), 1837-1844.
7. Herzog, J. and Hibi, T., The depth of powers of an ideal, J. Algebra 291 (2005), 534-550.
8. Kim, J. and Swanson, I., Many associated primes of powers of prime ideals, J. Pure Appl. Algebra 223 (2019), 4888-4900.
9. Matsumura, H., Commutative Ring Theory, Cambridge University Press, Cambridge, 1986.
10. Seidenberg, A., Constructions in algebra, Trans. Amer. Math. Soc. 197 (1974), 273-313.
11. Weinstein, S. J. and Swanson, I., Predicted decay ideals, Comm. Algebra 48 (2020), 1089-1098. Published online on 26 October 2019. arXiv:1808.09030.

Roswitha Rissner
Department of Mathematics
University of Klagenfurt
Universitätstrasse 65-67
Klagenfurt
Austria
Roswitha.Rissner@aau.at

Irena Swanson
Department of Mathematics
Purdue University
150 N. University Street
West Lafayette
USA
irena@purdue.edu

Received September 27, 2023
in revised form November 22, 2023

