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Fluctuations in depth and associated primes of
powers of ideals

Roswitha Rissner and Irena Swanson

Abstract. We count the numbers of associated primes of powers of ideals as defined in [2].
We generalize those ideals to monomial ideals BHH(m, r, s) for r≥2, m, s≥1; we establish partially
the associated primes of powers of these ideals, and we establish completely the depth function of
quotients by powers of these ideals: the depth function is periodic of period r repeated m times on
the initial interval before settling to a constant value. The number of needed variables for these
depth functions are lower than those from general constructions in [6].

This paper was motivated by results from Herzog and Hibi [7] and Bandari,
Herzog and Hibi [2] that construct monomial ideals I with various properties of
the depth function n �→depth(R/In). In particular, Herzog and Hibi [7] constructed
for any non-increasing eventually constant sequence {an} a monomial ideal such
that for all integers n, depth(R/In)=an. In general, the depth function need not
be monotone, as shown by an example in [7]. Bandari, Herzog and Hibi [2] con-
structed for each positive integer m a monomial ideal I for which the depth function
takes on values 0, 1, repeated m times, followed by 0 and then by constant 2. Thus
this function has a global maximum, exactly m strict local maxima and exactly
m+1 strict local minima. This was the first example of prescribed depth periodic-
ity of period 2 on a segment of the domain. We point out that a later paper, [6], by
Hà, Nguyen, Trung and Trung, establishes more generally for any eventually con-
stant N0-valued sequence {an} the existence of a monomial ideal Q in a polynomial
ring S satisfying depth(S/Qn)=an for all n. This completely determines all depth
functions of powers of ideals.

Part of our long-term goal is to shed light similarly on the possible functions
n �→#Ass(R/In) for ideals I in Noetherian rings R. Certainly these functions are
all positive-integer valued and eventually constant by a result of Brodmann [4]. The
second author and Weinstein proved in [11] that for every non-increasing sequence
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{an} of positive integers there exists a family of monomial ideals I such that for all n,
the number of associated primes of In is an. For arbitrary (necessarily eventually
constant) sequences of positive integers much less is known. If some an equals 1,
then if we are to vary over monomial ideals it is necessary that all am for m≥n also
be equal to 1. If we do not restrict to monomial ideals, then a big jump can occur
from a1 to a2 even if we restrict to prime ideals; a result from [8] proves that a2 is not
bounded above by any polynomial function in the number of variables in the ring.

We present in Theorem 3.11 the function n �→#Ass(R/In) for ideals I intro-
duced by Bandari, Herzog and Hibi in [2]. Once we completed the count of all as-
sociated primes and observed certain partial periodicity of period 2, we introduced
a more general family of ideals, BHH(m, r, s) with r≥2, m, s≥1; in this notation,
the original Bandari–Herzog–Hibi ideals are BHH(m, 2, 2), and in Theorem 3.11 we
count more generally the associated primes of BHH(m, 2, s)n as:

(3−δ1=n)m+

⎛
⎝ m∑

�=0

m∑
t=b(�)

(
m

�

)(
�

�+t−m

)⎞⎠+
{

0, if n≤2m and n is even;
1, otherwise,

where b(�)=max{n−1−�,m−�} and δC equals 1 if the condition C is true and
0 otherwise. In particular, the number of associated primes of BHH(m, 2, s) is
2m+3m+1, the number of associated primes of BHH(m, 2, s)2 is 2·3m, and when n≥
2m+2, the number of associated primes of BHH(m, 2, s)n is 1+3m. In Theorem 3.13
we prove that the function n �→#Ass(R/BHH(m, 2, s)n) has exactly

⌈
m−1

2
⌉

local
maxima. The global maximum 2·3m+1 is achieved exactly at n=3, 5, ..., 2

⌈
m−1

2
⌉
+

1. This function is periodic of period 2 when restricted to [3, 2
⌈
m−1

2
⌉
+1].

We present this count of associated primes in two different ways. As a result,
Remark 3.12 proves an identity of binomial expressions that we have not found in
the literature.

For r>2 we completely describe and count all the associated primes that con-
tain one of the special variables c1, ..., cs (and hence all), and we give some properties
and descriptions of the associated primes that do not contain these special variables.
The latter associated primes satisfy persistence, namely that if a prime ideal not
containing the special variable is associated to an nth power, then it is associated
to all higher powers. This persistence is not in general satisfied by the associated
primes containing the special variable.

Seidenberg proved in [10, Point 65] that there exists a primitive recursive func-
tion B(n, d) such that any ideal I in a polynomial ring in n variables over a field
with generators of degree at most d has at most B(n, d) associated primes. Ananyan
and Hochster [1] proved that there exists a primitive recursive function E(g, d) such
that any ideal I in a polynomial ring over a field with at most g generators of
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degrees d or less has at most E(g, d) associated primes. The ideal BHH(m, 2, 1) is
in a polynomial ring with 2m+3 variables and has 2m+5 generators of degrees up
to 9. Its third power has 2·3m+1 associated primes, and by Lemma 1.2 it has at
most

(2m+1
2

)
+
(2m+6

3
)

generators of degrees up to 23. For large m, this number of
generators is less than or equal to 2m3, showing that for large m and n,

B(2m+3, 23)≥ 2·3m+1, i.e., B(n, 23)≥ 2·(
√

3)n−3+1,

E(2m3, 23)≥ 2·3m+1, i.e., E(n, 23)≥ 2·3 3√n/2+1.

Asymptotically, the lower bound here for B(n, d) is stronger than the bound 3n/3
in [8], but the lower bound for E(n, d) here is weaker than the bound 3

√
2n−1 in [8].

In Theorem 4.2 we prove that the function n �→depth(R/BHH(m, r, s)n) is pe-
riodic of period r when restricted to the interval [1, ..., rm+1], that it has exactly
m+1 local minima, all on that interval and equal to 0, that all other values on that
interval are 1, and that the only value outside of the interval is s. More generally,
we show that an e-fold splitting of BHH(m, r, s) gives an ideal I in a ring A such
that

depth
(

A

In

)
=

⎧⎪⎨
⎪⎩
e−1, if n=ru+1 with u=0, ...,m;
e, if n≤rm+1 and n �≡1 mod r;
s+e−1, otherwise, i.e., if n>mr+1.

We point out that the construction in [6] by Hà, Nguyen, Trung and Trung of
the monomial ideal with the same depth function uses at least e+4(rm−m)+3s
variables, whereas our construction uses rm+r+s+e−1. The difference 3rm−4m−
r+2s+1=2(r−2)m+(m−1)r+2s+1 in the number of variables is always positive
since r≥2 (for periodicity) and m, s≥1.
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Fund (FWF) [10.55776/DOC78]. For open access purposes, the author has applied
a CC BY public copyright license to any author-accepted manuscript version arising
from this submission.
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1. Generalized Bandari–Herzog–Hibi ideals

Definition 1.1. Let m, r and s be positive integers with r≥2. Let c1, ..., cs, aj ,

xi,j be variables over a field k where i∈[m] and j∈[r]. For the sake of notation,
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we identify ar+1=a1, a0=ar, xi,r+1=xi,1, xi,0=xi,r for all i, and more generally,
xi,j=xi,(j mod r). We define

B0(r) = (a6
j , a

5
jaj+1 : j =1, ..., r),

Bc(r, s) = (c1, ..., cs)a4
1a

4
2 ··· a4

r;
X(m, r) = (a4

jxi,jx
2
i,j+1 : i∈ [m], j ∈ [r]),

BHH(m, r, s) =B0(r)+Bc(r, s)+X(m, r).

We call BHH(m, r, s) the Bandari-Herzog-Hibi ideals. When s=1, we write
c=c1.

When m, r and s are clear, we write these ideals as B0, Bc, X, B, respectively.
We will refer to elements a4

jxi,jx
2
i,j+1 as hi,j .

We name these ideals in honor of the Bandari-Herzog-Hibi paper [2] which
originated the ideals BHH(m, 2, 2).

Understanding the associated primes of powers of these ideals is important for
understanding the depth function of their quotients. For the primary decomposi-
tions part, we prove in Theorem 1.4 that it suffices to find the decompositions in
case s=1. This reduction greatly simplifies the notation and speeds up any concrete
calculations of the associated primes and thus the counting.

Lemma 1.2. Let J1, J2, J3 be ideals in a ring R such that (J1+J2)2⊆J2
2 . Then

for all positive integers n, (J1+J2+J3)n=J1J
n−1
3 +(J2+J3)n.

Thus with B=BHH(m, r, s), Bn=BcX
n−1+(B0+X)n=BcB

n−1+(B0+X)n.

Proof. The first display holds trivially for n=1. The equality (J1+J2+J3)2=
J2

1 +J1J2+J1J3+J2
2 +J2J3+J2

3 =J1J3+J2
2 +J2J3+J2

3 =J1J3+(J2+J3)2 proves
the case n=2. Then by induction on n≥2,

(J1+J2+J3)n =(J1+J2+J3)(J1+J2+J3)n−1

=(J1+J2+J3)
(
J1J

n−2
3 +(J2+J3)n−1)

=J2
1J

n−2
3 +J1(J2+J3)n−1+J1J2J

n−2
3 +(J2+J3)n+J1J

n−1
3

=J1(J2+J3)n−1+(J2+J3)n

=J1

n−1∑
i=0

J i
2J

n−1−i
3 +(J2+J3)n

=J1J
n−1
3 +

n−1∑
i=1

J1J
i
2J

n−1−i
3 +(J2+J3)n

⊆J1J
n−1
3 +(J2+J3)n.
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Since also the last ideal is contained in the first in this display, the conclusion
follows.

The second part follows with J1=Bc, J2=B0 and J3=X, since J2
1 ⊆(a6

1)(a6
2)⊆J2

2
and J1J2⊆(a6

j , a
5
jaj+1 : j∈[r])(a4

1 ···a4
r)⊆((a5

jaj+1)2, (a6
j )(a5

j+1aj+2) : j∈[r])⊆J2
2 . �

Lemma 1.3. Let I1, I2, I3 be ideals in a Noetherian ring A such that (I1+
I2)2⊆I2

2 and let c, c1, ..., cs be variables over A. Then the set of associated primes

of A[c1,...,cs]
((c1,...,cs)I1+I2+I3)n equals

{(P+(c1, ..., cs))A[c1, ..., cs] : P ⊆A,P+(c)∈Ass(A[c]/(cI1+I1+I2)n)}
∪{PA[c1, ..., cs] : P ∈Ass(A[c]/(cI1+I1+I2)n) and c �∈P} .

Proof. Let c stand either for the ideal (c) or for the ideal (c1, ..., cs). By
Lemma 1.2 and using J1=cI1 and J2=I2, J3=I3, we get that for all positive inte-
gers n, (cI1+I1+I2)n=cI1I

n−1
3 +(I2+I3)n.

Define ϕ : A[c1, ..., cs]→A[c] to be the A-algebra homomorphism that takes
all ci to c and is the identity on A. We impose the N

s-grading on A[c1, ..., cs]
with deg(ci)=ei (the s-tuple with 1 in the ith position and 0 elsewhere) and we
define the degrees of all other variables to be 0. Then ϕ is not a graded homo-
morphism, but it is a surjective spreading as defined in [8, Definition 2.1], and
((c1, ..., cs)I1+I2+I3)n=(c1, ..., cs)I1In−1

3 +(I2+I3)n is a spreading of (cI1+I2+
I3)n=cI1I

n−1
3 +(I2+I3)n. By [8, Lemma 2.5], the spreading of an irredundant pri-

mary decomposition of cI1In−1
3 +(J2+J3)n corresponds to an irredundant primary

decomposition of (c1, ..., cs)I1In−1
3 +(J2+J3)n; specifically, any associated prime of

the former ideal not containing c is associated to the latter ideal and does not con-
tain any ci, and furthermore any associated prime of the former ideal that contains
c is spread to one unique associated prime of the latter ideal in which the generator
c is replaced by the s generators c1, ..., cs. �

The last two lemmas immediately prove that the number of associated primes of
(BHH(m, r, s))n is the same as the number of associated primes of (BHH(m, r, 1))n,
via the following formalization:

Theorem 1.4. Set B=BHH(m, r, 1) and B(s)=BHH(m, r, s). For every pos-

itive integer n, the sets of associated primes of Bn and of B(s)n are in one-to-one

correspondence:

(1) Associated primes of Bn not containing c have the same minimal generating

sets as their corresponding primes associated to B(s)n that do not contain c1, ..., cs.

(2) Associated primes of Bn that contain c are of the form P+(c) for some

monomial prime P in variables ai, xi,j and they correspond to associated primes of

B(s)n of the form P+(c1, ..., cs). �
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2. Lemmas

Throughout this section, B stands for BHH(m, r, 1) and n is a positive integer.

Lemma 2.1. Let P be a prime ideal associated to B. Suppose that for each

j∈[r] there exists ij∈[m] such that xij ,j and xij ,j+1 are both in P . Then c∈P . In

particular, if xi,1, ..., xi,r∈P for some i∈[m], then c∈P .

Proof. By definition of associated primes there exists a monomial w such that
P=(B :w) and hence w∈B :P⊆B :(xij ,j , xij ,j+1 : j∈[r]). We have

B : (xij ,j , xij ,j+1)
= (B+(a4

j−1xij ,j−1xij ,j , a
4
jx

2
ij ,j+1))∩(B+(a4

jxij ,jxij ,j+1, a
4
j+1x

2
ij ,j+2))

⊆B+(a4
j−1)+(a4

jxij ,jx
2
ij ,j+1, a

4
ja

4
j+1x

2
ij ,j+1x

2
ij ,j+2)

=B+(a4
j−1),

so that

w∈
r⋂

j=1
(B : (xij ,j , xij ,j+1))⊆

r⋂
j=1

(B+(a4
j−1))=B+(a4

1 ··· a4
r).

In all cases, c multiplies this intersection into B, proving that c∈P . �

Lemma 2.2. Let P be a prime ideal associated to Bn containing some xi,j .

Write P=Bn :w for some monomial w.

(1) Then w∈a4
j−1xi,j−1xi,jB

n−1∪a4
jx

2
i,j+1B

n−1.

(2) If P also contains xi,j+1, then

w∈
(
a4
j−1xi,j−1xi,jB

n−1∪a4
jx

2
i,j+1B

n−1)∩(a4
jxi,jxi,j+1B

n−1∪a4
j+1x

2
i,j+2B

n−1)
∩
(
a4
j−1xi,j−1xi,jB

n−1∪a4
j+1x

2
i,j+2B

n−1) .
Proof. (1) Since Bn :w=P , and by the form of the generators of B,

w∈Bn :P ⊆Bn :xi,j =Bn+(a4
j−1xi,j−1xi,j , a

4
jx

2
i,j+1)Bn−1.

But w cannot be in Bn (for otherwise Bn :w=R is not a prime ideal), and since w

is a monomial, (1) follows.
(2) Now suppose that P contains xi,j and xi,j+1. Then by (1),

w∈
(
a4
j−1xi,j−1xi,jB

n−1∪a4
jx

2
i,j+1B

n−1)∩(a4
jxi,jxi,j+1B

n−1∪a4
j+1x

2
i,j+2B

n−1) .
Suppose for contradiction that

w �∈ a4
j−1xi,j−1xi,jB

n−1∪a4
j+1x

2
i,j+2B

n−1.
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Then w∈a4
jx

2
i,j+1B

n−1∩a4
jxi,jxi,j+1B

n−1. So we have proved that with u=0, w∈
Bu(a4

jx
2
i,j+1B

n−1−u∩a4
jxi,jxi,j+1B

n−1−u). We proceed from this:

w∈Bu(a4
jx

2
i,j+1B

n−1−u∩a4
jxi,jxi,j+1B

n−1−u)
=Bua4

jxi,j+1
(
xi,j+1B

n−1−u∩xi,jB
n−1−u

)
=Bua4

jxi,jx
2
i,j+1

(
(Bn−1−u :xi,j)∩(Bn−1−u :xi,j+1)

)
⊆Bu+1 ((Bn−1−u+(a4

j−1xi,j−1xi,j , a
4
jx

2
i,j+1)Bn−2−u)

∩(Bn−1−u+(a4
jxi,jxi,j+1, a

4
j+1x

2
i,j+2)Bn−2−u)

)
.

But w �∈Bn∪a4
j−1xi,j−1xi,jB

n−1∪a4
j+1x

2
i,j+2B

n−1, so necessarily

w∈Bu+1(a4
jx

2
i,j+1B

n−2−u∩a4
jxi,jxi,j+1B

n−2−u).

This is the induction step, so when u=n−2, we get that

w∈Bn−1((a4
jx

2
i,j+1)∩(a4

jxi,jxi,j+1))=Bn−1(a4
jxi,jx

2
i,j+1)⊆Bn,

which is a contradiction to Bn :w being a prime ideal. This finishes the proof
of (2). �

Lemma 2.3. Let P be a prime ideal associated to Bn. Then the following

properties hold:

(1) a1, ..., ar∈P .

(2) If P does not contain xi,1xi,2 ···xi,r for some i, then P=(a1, ..., ar).
(3) If P contains some xi,j , then there exists j0∈{j−1, j} such that

xe,j0xe,j0+1∈P for all e∈[m].
(4) If P does not contain xi,j , xi,j+1 for some i∈[m] and j∈[r], then c �∈P .

Proof. (1) Since a6
j∈B, it follows that aj must be in every associated prime

ideal of Bn.
(2) Suppose that xi,1xi,2 ···xi,r �∈P for some i. Then P is associated to

Bn : (xi,1 ··· xi,r)∞ =
(
B0+(c(a1a2 ··· ar)4)+(a4

j : j ∈ [r])
)n =(a4

j : j ∈ [r])n,

whose only associated prime is (a1, ..., ar).
(3) follows from Lemma 2.2(1): there exists j0∈{j−1, j} such that the witness

w for P is in a4
j0
Bn−1. Hence for all e, wxe,j0x

2
e,j0+1∈Bn.

(4) By assumption, P is associated to

Bn : (xi,jxi,j+1)∞ =
(
B+(a4

j , a
4
j−1xi,j−1, a

4
j+1x

2
i,j+2)

)n
=
(
B0+X+(a4

j , a
4
j−1xi,j−1, a

4
j+1x

2
i,j+2)

)n
,

and c does not appear in any generator of the last ideal. Thus P cannot
contain c. �
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Lemma 2.4.
(1) If r=2, then xi,ja

4
1a

4
2hi,j∈B2.

(2) If r=2, then a4
1a

4
2h

2
i,j∈B3.

(3) x2
i,j+2a

4
ja

4
j+1hi,j∈B2.

(4) a4
j−1a

4
jxi,j−1xi,jhi,j∈B2.

(5) xi,ja
4
j−2a

4
j−1a

4
jhi,j−2hi,j∈B3.

(6) xi,j−1a
4
j−1a

4
jh

2
i,j∈B3.

(7) a4
j−2a

4
j−1a

4
jhi,j−2h

2
i,j∈B4.

Proof. For (1) and (2) we use that xi,j−1=xi,j+1 to rewrite

xi,ja
4
1a

4
2hi,j =xi,ja

4
1a

4
2
(
a4
jxi,jx

2
i,j+1

)
∈ (a6

j )(a4
j−1xi,j−1x

2
i,j)⊆B2,

and a4
1a

4
2h

2
i,j=a4

1a
4
2(a4

jxi,jx
2
i,j+1)2∈(a6

j )2(a4
j−1xi,j−1x

2
i,j)⊆B3. Part (3) follows from

x2
i,j+2a

4
ja

4
j+1hi,j =x2

i,j+2a
4
ja

4
j+1(a4

jxi,jx
2
i,j+1)∈ (a6

j )(a4
j+1xi,j+1x

2
i,j+2)⊆B2,

part (4) from a4
j−1a

4
jxi,j−1xi,jhi,j=a4

j−1a
8
jxi,j−1x

2
i,jx

2
i,j+1∈(a6

j)(a4
j−1xi,j−1x

2
i,j)⊆B2,

part (5) from

xi,ja
4
j−2a

4
j−1a

4
jhi,j−2hi,j =xi,ja

4
j−2a

4
j−1a

4
j

(
a4
j−2xi,j−2x

2
i,j−1

) (
a4
jxi,jx

2
i,j+1

)
∈ (a6

j−2)(a6
j )

(
a4
j−1xi,j−1x

2
i,j

)
⊆B3,

part (6) from xi,j−1a
4
j−1a

4
jh

2
i,j=xi,j−1a

4
j−1a

12
j x2

i,jx
4
i,j+1∈(a6

j )2(hi,j−1)⊆B3, and
part (7) from

a4
j−2a

4
j−1a

4
jhi,j−2h

2
i,j = a8

j−2a
4
j−1a

12
j xi,j−2x

2
i,j−1x

2
i,jx

4
i,j+1

∈ (a6
j−2)(a6

j )2(a4
j−1xi,j−1x

2
i,j)⊆B4. �

Corollary 2.5. Let w=a4
1 ···a4

r(
∏

i,j x
vi,j
i,j )(

∏
i,j h

ui,j

i,j ) with vi,j , ui,j non-nega-

tive integers such that
∑

i,j ui,j=n−1.
(1) Suppose that it is possible to rewrite w in the same format but with different

vi,j , ui,j . Then w∈Bn.

(2) Suppose that n>mr+1 and that w multiplies (xi,j : i∈[m], j∈[r]) into Bn.

Then w∈Bn.

Proof. We set A=a4
1 ···a4

r, w0=
∏

i,j x
vi,j
i,j , and w1=

∏
i,j h

ui,j

i,j .
(1) By assumption, there exists a positive vi,j such that xi,j gets incorporated

in the rewriting of w either into a new hi,j−1 or into a new hi,j .
Suppose that xi,j is incorporated into a new hi,j . Then x2

i,j+1 needs to be
a factor of w. This factor can come either from ui,j>0 or from vi,j+1+ui,j+1≥2.
If we use x2

i,j+1 from h
ui,j

i,j , then our xi,j is not making a new hi,j , so necessarily
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vi,j+1+ui,j+1≥2. By definition, Lemma 2.4(4) and (6), A·xi,jx
2
i,j+1∈(hi,j)⊆B,

A·xi,jxi,j+1hi,j+1∈B2, A·xi,jh
2
i,j+1∈B3. This proves that w∈Bn.

Now suppose that xi,j is incorporated into a new hi,j−1. Then xi,j−1xi,j needs
to be a factor of w/xi,j . The xi,j−1 factor can come from vi,j−1>0, ui,j−2>0 or
from ui,j−1>0. We can eliminate the option ui,j−1>0 as it does not generate a
new hi,j−1. Similarly, the additional factor xi,j can only be taken from vi,j>1 or
ui,j>0. If vi,j−1>0 and vi,j>1, then A·w0∈(hi,j−1)⊆B and w∈Bn. If vi,j−1>0
and ui,j>0, then w∈(A·xi,j−1xi,jhi,j · w1

hi,j
)∈Bn by Lemma 2.4(4). If ui,j−2>0 and

vi,j>1, then w∈(A·x2
i,jhi,j−2 · w1

hi,j−2
)∈Bn by Lemma 2.4(3). Finally, if ui,j−2>0

and ui,j>0, then w∈(A·xi,jhi,jhi,j−2 · w1
hi,jhi,j−2

)∈Bn by Lemma 2.4(5).
(2) Since n−1>mr, there exists (i, j) such that ui,j≥2. By assumption, xi,jw

and xi,j+1w are both in Bn. Thus for both variables, the rewriting needs to happen
as in (1). As in the proof of (1), one of the following conditions holds for xi,jw:

a) vi,j+1+ui,j+1≥2,
b) (vi,j−1>0 or uj−2>0) and (vi,j>0 or ui,j>0);

and one of the following conditions holds for xi,j+1w:
a’) vi,j+2+ui,j+2≥2,
b’) (vi,j>0 or ui,j−1>0) and (vi,j+1>0 or ui,j+1>0).

If b) holds, then xi,j−1 |w0 or hi,j−2 |w1. It follows that w∈Bn since ui,j≥2 and
hence w∈(A·xi,j−1h

2
i,j · w1

h2
i,j

)∈Bn due to Lemma 2.4(6) or w∈(A·hi,j−2h
2
i,j ·

w1
hi,j−2h2

i,j
)∈Bn due to Lemma 2.4(7). Similarly, if a’) holds, then x2

i,j+2 |w0 or
(xi,j+2 |w0 and hi,j+2 |w1) or h2

i,j+2 |w1. Since hi,j |w1, it follows that w∈
(A·x2

i,j+2hi,j · w1
hi,j

)∈Bn by Lemma 2.4(3) or w∈(A·xi,j+2hi,j+2hi,j · w1
hi,jhi,j+2

)∈Bn

by Lemma 2.4(5) or w∈(A·h2
i,j+2hi,j · w1

hi,jh2
i,j+2

)∈Bn by Lemma 2.4(7).
So we may assume that we have conditions a) and b’). If x2

i,j+1 |w0 and (xi,j |w0
or hi,j−1 |w1), then either w∈(A·xi,jx

2
i,j+1 ·w1)∈Bn or w∈(A·hi,j−1x

2
i,j+1 · w1

hi,j−1
)∈

Bn by Lemma 2.4(3). If xi,j+1 |w0 and hi,j+1 |w1 and (xi,j |w0 or hi,j−1 |w1), then
w∈(A·xi,jxi,j+1hi,j+1 · w1

hi,j+1
)∈Bn by Lemma 2.4(4) or w∈(A·xi,j+1hi,j−1hi,j+1 ·

w1
hi,j−1hi,j+1

)∈Bn by Lemma 2.4(5). Finally, if h2
i,j+1 |w1 and (xi,j |w0 or hi,j−1 |

w1), then w∈(A·xi,jh
2
i,j+1 · w1

h2
i,j+1

)∈Bn by Lemma 2.4(6) or w∈(A·hi,j−1h
2
i,j+1 ·

w1
hi,j−1h2

i,j+1
)∈Bn by Lemma 2.4(7). �

Lemma 2.6. Let P be a prime ideal that contains c and is associated to Bn.

We know that P=Bn :w for some monomial w. Then

(1) w=a4
1 ···a4

rw0 for some w0∈Xn−1.

(2) If xi,j and xi,j+1 are in P and xi,j is not a factor of w, then r≥3 and

xi,j+3∈P .

(3) If xi,j , xi,j+1, xi,j+2∈P and r≥3, then xi,j is a factor of w.
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(4) Suppose that xi,jx
2
i,j+1 divides w0 and that xi,j+1∈P . Then x2

i,j divides w.

(5) Suppose that x2
i,1x

2
i,2 ···x2

i,r divides w. Then n≥r+1 and w0 is an element

of hi,1hi,2 ···hi,rX
n−1−r.

Proof. Since c∈P , we know by Lemma 1.2 that w∈Bn :c=a4
1 ···a4

rX
n−1+(B0+

X)n. Since w is a monomial not in Bn, necessarily w∈a4
1 ···a4

rX
n−1. This proves (1).

To simplify notation we assume in the rest of the proof that j=1.
(2) Suppose that xi,1 does not divide w0 (or w). Then by Lemma 2.2(2), w∈

a4
1x

2
i,2B

n−2∩a4
2x

2
i,3B

n−2 and so necessarily r≥3. This means that w0 is a multiple
of x2

i,2x
2
i,3. Write w0=he

i,2h
e′

i,3w
′ for some non-negative integers e, e′ and some w′∈

Xn−1−e−e′ . We may take e to be maximal possible, and for the maximal e we
choose maximal possible e′, so that in particular hi,2 and hi,3 are not factors of w′.
By assumption also no hi,1, hi,r appear in w′. First suppose that e=0. Then
by the (xi,2, xi,3)-degree count, w0∈xi,2x

2
i,3X

n−1+xi,2xi,3hi,3X
n−2+xi,2h

2
i,3X

n−3,
whence by Lemma 2.4, w∈Bn. So necessarily e≥1. Hence by Lemma 2.4(3),
x2
i,4w∈Bn, so that xi,4∈P . This proves (2).

We continue with the proof of (3). Recall that we assume that x1,i does not
divide w. Since xi,2w∈Bn, necessarily in the rewriting of xi,2w as an element of Bn,
xi,2 must combine with x2

i,3 into a new hi,2, i.e., w/he
i,2∈a4

2x
2
i,3B

n−1−e. Thus, xi,2 is
not a factor of w0/h

e
i,2 for otherwise w∈Bn. In addition, xi,3w∈Bn which implies

that xi,3 needs to recombine with w into a new element of B which necessarily
is hi,3. Thus, w0 must have a factor of x2

i,4, which comes either as x2
i,4, xi,4hi,4,

or h2
i,4. But since the exponent on hi,2 in w is at least 1, then by Lemma 2.4(3),

(5), and (7), w∈Bn, which is a contradiction, and thus proves (3).
(4) Suppose that x2

i,1 does not divide w0. By assumption xi,1x
2
i,2 is a factor of

w0, by the (xi,1, xi,2)-degree count, w0∈hi,1X
n−2+xi,1x

2
i,2X

n−1+xi,1xi,2hi,2X
n−2+

xi,1h
2
i,2X

n−3. If w0 is in one of the last three summands, then w∈Bn by Definition
or Lemma 2.4(4) and (6). So we may assume that w0∈hi,1X

n−2. Since xi,2w∈Bn,
this xi,2 must recombine with w into a new hi,1 or hi,2, but since there are no
spare xi,1 in w, necessarily x2

i,3 is a factor of w0. Thus, by the xi,3-degree count,
w0∈x2

i,3hi,1X
n−2+xi,3hi,1hi,3X

n−3+hi,1h
2
i,3X

n−4+hi,1hi,2X
n−3. If w0 is in the

last summand, then no new hi,2 would be formed. We can, therefore, assume that
w0 is in the first three summands. But then w∈Bn by Lemma 2.4(3), (5), and (7).
Thus x2

i,1 must be a factor of w.
(5) Let E be the largest subset of [r] such that w0∈(

∏
j∈E hi,j)Xn−1−|E|. If

E is empty, then n=1 and w∈a4
jxi,jx

2
i,j+1⊆B=Bn, which is a contradiction. Thus

E is not empty. By symmetry we may assume that hi,1 is a factor and for con-
tradiction we assume that hi,2 is not a factor. By the (xi,1, xi,2)-degree count,
w0∈xi,1hi,1X

n−2+h2
i,1X

n−3+hi,rhi,1X
n−3. If r=2, the last summand is not possi-
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ble by assumption and the first two summands make w be in Bn by Lemma 2.4(1)
and (2), which proves that r≥3.

If hi,3 is also not a factor of w0, then by the xi,3-degree count, w0∈hi,1x
2
i,3X

n−2,
which means that w∈Bn by Lemma 2.4(3). This proves that hi,3 must be a factor
of w0, and consequently that E contains at least every other hi,j as j varies. Now
say that hi,1, hi,3 are factors but hi,2 is not. By the xi,3-degree count again, w0∈
hi,1xi,3hi,3X

n−3+hi,1h
2
i,3X

n−3, so that w∈Bn by Lemma 2.4(5) and (7). This
proves (5). �

3. G-good primes

The set-up is as in Section 2 with B=BHH(m, r, 1) and n a positive integer.
In this section we characterize all associated primes of powers of B that are g-good.
We prove that all associated primes that contain c are g-good, which characterizes
and counts all associated primes of powers of B that contain c. Theorem 3.11 counts
associated primes of any power of BHH(m, 2, s) and Theorem 3.13 determines the
maxima of the numbers of these associated primes. In Proposition 3.10 we prove
the persistence property of associated primes of powers not containing c.

We think of the mr variables xi,j as appearing in an m×r matrix. If a monomial
prime ideal does not contain all xi,j in some row i, then we talk about gaps, and if
a prime ideal omits some k consecutive xi,j in a row i, we refer to that as a gap of
length k. Keep in mind that we identify xi,r with xi,0, et cetera, so that the gaps
are counted in the round.

Definition 3.1. Let P be a monomial prime ideal containing (a1, ..., ar). We
say that P is g-good if it has no gaps of length 2 or larger in any of the rows.

We characterize in this section all associated primes of Bn that contain c in
terms of g-good primes. The characterization enables a count, see Theorem 3.6.
G-good primes also play a role for primes that do not contain c; see Theorems 3.8
and 3.9.

Proposition 3.2. Let P be a g-good prime ideal containing c such that for each

i∈[m], the set P∩{xi,1, ..., xi,r} has either r or exactly r/2 elements. (The latter

happens only if r is even.) Let U={i : xi,1, ..., xi,r∈P} and V ={(i, j) : xi,j+1 �∈P}.
(1) Suppose that n=ur+v+1, where u and v are any non-negative integers

such that u≤|U | and v≤|V |. Then P is associated to Bn.

(2) Suppose that n cannot be written as in (1). Then P is not associated to Bn.

Proof. Observe that V ={(i, j) : xi,j∈P and i �∈U}.
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(1) Let U0 be a subset of U of cardinality u and V0 a subset of V of cardinality v.
Let M be a large integer and set

w0 = a4
1 ··· a4

r

( ∏
i∈U\U0

r∏
j=1

xi,j

)( ∏
xi,j �∈P

xM
i,j

)
,

w=w0

(∏
i∈U0

r∏
j=1

hi,j

)( ∏
(i,j)∈V0

hi,j

)
.

(*)

Then w∈Bur+v=Bn−1. We will prove that P=Bn :w.
Since aj(a4

1 ···a4
r)∈(a5

jaj+1)∈B0⊆B and c(a4
1 ···a4

r)∈Bc⊆B it follows that
(a1, ..., ar, c)⊆Bn :w. Suppose that i∈U0. Then for all j∈[r], xi,j∈Bn :w by Lem-
ma 2.4(1) in case r=2 and by Lemma 2.4(5) in case r>2. If i∈U \U0, then
xi,jw∈xi,j(a4

j−1xi,j−1xi,j)Xn−1⊆Xn⊆Bn. Thus xi,j∈Bn :w for all i∈U and all
j∈[r]. If (i, j)∈V , then xi,j+1 �∈P , so that xi,jw0∈(a4

jxi,jx
2
i,j+1)⊆X and thus

xi,j∈Bn :w. This proves that P⊆Bn :w.
To prove that P=Bn :w it remains to show that every xi,j �∈P is a non-zero-

divisor modulo Bn. By possibly taking M even larger it suffices to prove that
w �∈Bn. In the given form w is an element of Bn−1. Any rewriting of w to make it
an element of Bn has to involve the variables xi,j whose exponents are at least two.
The only such xi,j are those not in P and those with i∈U0. If xi,j �∈P , then x2

i,j+1 is
not a factor of w and either xi,j−1 is not a factor of w or else xi,j−1 is a factor of w
but tied up in hi,j−1. Thus there is no possible way of using the rewriting with xi,j

not in P . If i∈U0, then this i contributes to w the factor a4
1 ···a4

rx
3
i,1 ···x3

i,r∈Br, and
there is no possible way of rewriting this part to put w into Bn. Thus P=Bn :w.
It follows that P is associated to Bn. This finishes the proof of (1).

(2) Let P be associated to Bn and suppose for contradiction that n cannot be
written as in (1). Then in particular n>1. By Lemma 2.6(1), P=Bn :w, where w is
a monomial of the form a4

1 ···a4
rw0 for some w0∈Xn−1. The product of all xi,j with

i∈U divides w0 by Lemma 2.6(2) in case r=2 and by Lemma 2.6(3) in case r>2.
Let U0 be the set of all i∈U such that hi,j is a factor of w0 for some j∈[r]. Let i∈U0.
Then by Lemma 2.6(4), x2

i,j divides w0. Since xi,j−1 also divides w0, then again by
Lemma 2.6(4), x2

i,j−1 divides w0. By continuing in this way we get that
∏r

j=1 x
2
i,j

divides w0. Hence by Lemma 2.6(5),
∏r

j=1 hi,j divides w0. By Lemma 2.4(2) and
(7), h2

i,j is not a factor of w for all such i, j. Thus n−1≥|U0|r. Let v=n−1−|U0|r.
We just proved that w0 is a product of the |U0|r factors hi,j with (i, j)∈U0×[r] and
v factors hi,j with i �∈U . By Lemma 2.4(3), necessarily for any such latter factor
we have x2

i,j+2∈Bn :w=P . Since P is g-good and the ith row has r/2 elements,
necessarily xi,j∈P and xi,j−1 is not in P . Then by Lemma 2.4(6), the squares of
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these hi,j do not divide w. Thus these v factors are all distinct, which means that
n must be written as in (1). �

Theorem 3.3. We consider the set S of all g-good prime ideals P containing c

for which in each row of the matrix [xi,j ], P contains either r or r/2 elements.

(1) If r is odd, then the maximal ideal is the only such prime ideal, and it is

associated to Bn if and only if n=ur+1 for some u≤m.

(2) If r is even, then S contains 3m prime ideals.

(a) For each i∈{0, ...,m} there exist 2i
(
m
i

)
prime ideals in S of height (m+

1)r−i r2 +1, and these are associated to Bn exactly when n equals ur+v+1 with

u∈{0, ...,m−i} and v∈{0, ..., i r2}.
(b) The number h(m, r, n) of elements of S that are associated to Bn equals

m∑
i=0

2i
(
m

i

)
δ(n−1)/r−i/2≤min{q,m−i},

where q=�n−1
r . For all n>1+rm, h(m, r, n)=0.

Proof. (1) is an immediate corollary of Proposition 3.2.
To prove (2), observe that for i∈[m], one of three things happen for P∈S:

P contains the full ith row of [xi,j ], P contains xi,j with j odd, and P contains
xi,j with j even. Thus the count of elements of S is 3m. For each i∈{0, 1, ...,m},
there are

(
m
i

)
possibilities where exactly m−i of the rows are fully in P , and the

remaining i rows have two options. All these prime ideals contain also a1, ..., ar, c,
so that their height is r+1+(m−i)r+i r2 =(m+1)r−i r2 +1.

According to Proposition 3.2, P is associated to Bn if and only if there exist
integers u∈{0, ...,m−i} and v∈{0, ..., i r2} such that n−1=ur+v. The rest of (2)(a)
is an immediate corollary of Proposition 3.2.

For (2)(b) we need to account which n are possible. Note that n−1=ur+v≤
(m−i)r+ir/2≤mr. Thus h(m, r, n)=0 if n−1>mr. The possible u are 0, 1, ...,m−
i, if simultaneously 0≤v=n−1−ur≤ir/2. Another way of recording this is with
max{0, (n−1)/r−i/2}≤u≤min{q,m−i}. The assertion in (2)(b) follows because
min{q,m−i}≥0. �

Theorem 3.4. Let P be a g-good monomial prime ideal containing c. Suppose

that there exists (i0, j0)∈[m]×[r] such that xi0,j0−1, xi0,j0∈P and xi0,j0+1 �∈P . Then

P is associated to Bn for all n≥1.

Proof. The assumption on i0, j0 forces r≥3. Let T1 be the set of all xi,j not in
P and T2 the set of all xi,j∈P such that xi,j+1∈P . In case n≥3 we correct T2 to
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not include xi0,j0−1. For any large integer M we set

w0 = a4
1 ··· a4

r

(∏
t∈T1

tM

)(∏
t∈T2

t

)
, w=w0h

n−1
i0,j0

.

Since (a1, ..., ar, c)a4
1 ···a4

r∈B, it follows that (a1, ..., ar, c)⊆Bn :w. If xi,j∈P and
xi,j+1 �∈P , then xi,jw∈Bn since a4

jx
2
i,j+1 is a factor of w0 and hi,j=a4

jxi,jx
2
i,j+1∈B.

If n≥3, then xi0,j0−1w∈(hi0,j0−1)(a12
j0

)(hn−3
i0,j0

)⊆B1+2+n−3=Bn. In all other cases,
if xi,j , xi,j+1∈P , then xi,jw∈Bn since a4

j−1xi,j−1xi,j is a factor of w0 and hi,j−1=
a4
j−1xi,j−1x

2
i,j∈B. This proves that P⊆Bn :w.

We next prove that Bn :w⊆P , i.e., that no power of a variable in T1 is in Bn :w.
By possibly taking M larger it suffices to prove that w �∈Bn. In the given form w

is an element of Bn−1. Any rewriting of w to make it an element of Bn has to
involve the variables xi,j whose exponents are at least two. The only such variables
are those in T1 and additionally xi0,j0 if n−1≥2. By the g-goodness assumption,
the variables in T1 do not have consecutive second indices and T2 does not contain
suitable “predecessors” to form a new hi,j−1 with a variable xi,j∈T1. So necessarily
n≥3, but then xi0,j0−1 is not a factor of w so it is not possible to recombine x2

i0,j0

with that missing factor and no other rewriting is possible. Thus w �∈Bn.
Thus P=Bn :w so that P is associated to Bn. �

Lemma 3.5. The number of g-good primes (either all containing c or none

containing c) equals the Lucas number Lm
r (with L1=1, L2=3, Lr+2=Lr+1+Lr).

Proof. Note that the number of g-good primes of either type is equal to Lm
r

where Lr is their number for the case m=1. We will ignore containments of a1, ..., ar
in this proof.

In case r=1, the only g-good prime contains x1,1, so L1 is 1. The g-good
options in case r=2 are (x1,1), (x1,2), and (x1,1, x1,2), so L2=3. Let Ur be the
number of g-good primes that contain x1,1 and x1,r, and for r>1 let Vr be the
number of g-good primes that contain x1,1 and not x1,r, and let V r be the number
of g-good primes that contain x1,r and not x1,1. Clearly V r=Vr, Vr=Ur−1, and
Lr=Ur+Vr+V r=Ur+2Vr. But Ur+1=Ur+Ur−1 (depending on whether r−1 is or
is not in the subset), U1=1, U2=1, and U3=2, which says that U1, U2, U3, ... are the
usual Fibonacci numbers, and so V2, V3, V4, ... are also the usual Fibonacci numbers.
Then

Lr+1+Lr =Ur+1+2Ur+Ur+2Ur−1 =(Ur+1+Ur)+2(Ur+Ur−1)=Ur+2+2Ur+1

=Lr+2,

and so these numbers are the Lucas numbers. �
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Theorem 3.6. The number of prime ideals associated to BHH(m, r, 1)n that

contain c is equal to⎧⎪⎨
⎪⎩
Lm
r −3m+h(m, r, n), if reven;

Lm
r , if rodd, n≡1 mod r and n≤rm+1;

Lm
r −1, otherwise,

where Lr is the rth Lucas number with L1=1 and L2=3 and h(m,n, r) refers to the

number in Theorem 3.3(b).

Proof. By Lemma 2.3(4), every prime ideal associated to Bn that contains c

must be g-good.
Assume first that r is odd. In this case, according to Theorem 3.3(1), the

maximal ideal is associated if and only if n=ur+1 for some integer u≤m. Any
other one of the Lm

r possible prime ideals satisfies condition of Theorem 3.4 and is
thus associated to Bn for all n. This proves the theorem for odd r by Lemma 3.5.

Now, assume that r is even. Of the Lm
r possible prime ideals as accounted

for by Lemma 3.5, those for which some row in the matrix [xi,j ] is neither half-full
nor full are covered by Theorem 3.4 and are thus associated to all powers of B. It
remains to count those prime ideals associated to Bn for which each row in [xi,j ]
is either half- full or full. According to Theorem 3.3(2), there are 3m prime ideals
with only full and half-full levels, of which h(m, r, n) are associated to Bn. The
theorem follows. �

Example 3.7. The following tables of numbers of associated primes of
BHH(m, r, 1)n that contain c are taken from Theorem 3.6 and agree with the calcu-
lations(1) by Macaulay2 [5] and Magma [3] of associated primes for low values of n.

r=2
m\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3 2 1 0 0 0
2 9 8 9 4 1 0
3 27 26 27 26 19 6 1 0
4 81 80 81 80 81 64 33 8 1 0
5 243 242 243 242 243 242 211 130 51 10 1 0
6 729 728 729 728 729 728 729 664 473 232 73 12 1 0

(1) The program code associated with this paper is available as ancillary file on the arXiv
page of this paper (arXiv:2309.15083).
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r=4
m\n 1 2 3 4 5 6 7 8 9 10 11 12

1 7 6 6 4 5 4 4 4 4 4 4 4
2 49 48 48 44 49 44 44 40 41 40 40 40
3 343 342 342 336 343 342 342 328 335 322 322 316
4 2401 2400 2400 2392 2401 2400 2400 2392 2401 2384 2384 2344
5 16807 16806 16806 16796 16807 16806 16806 16796 16807 16806 16806 16764

We have finished a characterization of all associated primes of Bn that con-
tain c.

In contrast, we do not have a complete characterization of the prime ideals
associated to Bn that do not contain c. Of these, we understand the g-good ones
well: by Theorem 3.8, the number of such is Ln

r if n≥2, but the count is smaller for
n=1 by Theorem 3.9.

Theorem 3.8. Let P be a g-good monomial prime ideal that does not contain c

and let n≥2. Then P is associated to Bn. The number of such primes is Ln
r .

Proof. Set

en =
{

5n−5, if n=2, 3, 4;
6n−9, if n≥4.

Note that

aen+3
1 =

{
a5n−2
1 ∈(a6

1)n−1⊆Bn−1, if n=2, 3, 4;
a6n−6
1 ∈(a6

1)n−1⊆Bn−1, if n≥4,

aen1 a4
2 =

{
a
5(n−1)
1 a4

2∈(a5
1a2)n−1⊆Bn−1, if n=2, 3, 4;

a6n−9
1 a4

2∈(a5
1a2)4(a6

1)n−5⊆Bn−1, if n≥5,

aen+5
1 a4

2 =
{
a5n
1 a4

2∈(a5
1a2)n⊆Bn, if n=2, 3, 4;

a6n−4
1 a4

2∈(a5
1a2)4(a6

1)n−4⊆Bn, if n≥4.

With w0=aen1 a4
1 ···a4

r, we have that

a1w0 ∈ (aen+5
1 a4

2)⊆Bn,

ajw0 ∈ (a5
jaj+1)aen+3

1 ⊆Bn if j∈{2, ..., r},

so that (a1, ..., ar)w0⊆Bn.
Let XP be the product of powers of the xi,j , where

the exponent of xi,j in XP =

⎧⎪⎨
⎪⎩

2, if xi,j �∈P ;
1, if xi,j∈P and xi,j+1∈P ;
0, if xi,j∈P and xi,j+1 �∈P.
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Set w=cw0XP . We will prove that P=Bn :w. We have established that
(a1, ..., ar)w⊆Bn. Now let xi,j∈P . If xi,j+1 �∈P , then x2

i,j+1 divides XP , and so

xi,jw∈ (a4
jxi,jx

2
i,j+1)·

{
aen1 a4

2, if j=1;
aen+3
1 , if j �=1,

which is in Bn. If instead xi,j+1∈P , then xi,j−1xi,j divides XP , and so

xi,jw∈ (a4
j−1xi,j−1x

2
i,j)·

{
aen1 a4

2, if j=2;
aen+3
1 , if j �=2,

which is again in Bn. This proves that Pw⊆Bn.
To prove that Bn :w⊆P , we need to prove that zw �∈Bn, where z is a high

power of a product of c and all the xi,j that are not in P . Any rewriting of zw as an
n-fold product of elements in B cannot use any generator of a-degree 4 because XP

contains no factors of the form xi,jx
2
i,j+1. Thus the n factors in this rewriting are

taken from the following list: a6
1, a

5
1a2, ca

4
1 ···a4

r. If the latter factor appears, then
zw would have to be a multiple of (a6

1)n−1ca4
1 ···a4

r, but the a1-degree is then too
high. Thus the only possible factors are a6

1 and a5
1a2. It is easy to see that this is

not possible if n=2, 3, and for n≥4, the total degree en+8=6n−1 of a1 and a2 in
zw would have to be at least 6n, which is a contradiction. This finishes the proof
that Bn :w=P , so that P is associated to Bn.

The number of such primes was determined in Lemma 3.5. �

Theorem 3.9. Let P be a g-good monomial prime ideal that does not contain c.

Then P is associated to B if and only if there exists j0∈[r] such that for all i∈[m],
either xi,j0 �∈P or xi,j0+1 �∈P .

When r=2, the number of such P is exactly 2m.

Proof. By Lemma 2.1, if P is associated then such a j0 must exist. Now suppose
that j0 exists. By possibly replacing j0 with j0+1 we may assume that there exists
i∈[m] such that xi,j0 �∈P . By re-indexing we may assume that j0=1.

Let XP be the product of various powers of the xi,j , where

the exponent of xi,j in XP =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2, if xi,j �∈P ;
1, if xi,j∈P and j=r;
1, if xi,j∈P , j �=r and xi,j+1∈P ;
0, if xi,j∈P , j �=r and xi,j+1 �∈P ,

and set w=ca3
r ·(

∏r−1
j=1 a

4
j )XP . We will prove that P=B :w.
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We have that arw=(ca4
1a

4
2 ···a4

r)⊆B, and for j∈{1, ..., r−1}, we have that ajw∈
(a5

jaj+1)⊆B. This proves that (a1, ..., ar)w⊆B.
Now let xi,j∈P . We need to prove that xi,jw∈B. If j=r, then xi,r−1xi,r

divides XP and a4
r−1 divides w. Hence, xi,rw∈(a4

r−1xi,r−1x
2
i,r)⊆B. If j=1, by

the definition of j0, xi,2 is not in P . Thus a4
1x

2
i,2 is a factor of w, so that xi,1w∈

(a4
1xi,1x

2
i,2)⊆B. Now let j∈{2, ..., r−1}. We need to prove that xi,jw∈B. So

necessarily r>2. Then XP is a multiple of x2
i,j+1 if xi,j+1 �∈P , or else it is a multiple

of xi,j−1xi,j , so that

xi,jw∈
{

(a4
jxi,jx

2
i,j+1)⊆B, if xi,j+1 �∈P ;

(a4
j−1xi,j−1x

2
i,j)⊆B, if xi,j+1∈P.

This finishes the proof that P⊆B :w.
It remains to prove that B :w⊆P . It suffices to prove that zw �∈B, where z is a

high power of a product of c with all xi,j that are not in P . Since the ar-degree of
w is 3, the rewriting of zw as an element of B would not use the one generator of
B that involves c. So c plays no role in this rewriting. If xi,j �∈P , then both xi,j−1
and xi,j+1 must be in P . Thus x2

i,j+1 is not a factor of zw and xi,j−1 is a factor
of zw exactly if j−1=r. In that case, a4

j−1 is not a factor of zw, which means
that no rewriting of zw as an element of B can use a4

j−1xi,j−1x
2
i,j or a4

jxi,jx
2
i,j+1.

Also, no factor of this form already appears in w. But then by the consideration of
exponents of the aj in w, zw �∈B. �

We have handled all the g-good prime ideals associated to powers of B. There
are further associated primes that do not contain c. In the rest of this section we
prove their persistence property and we completely describe and enumerate them
in case r=2. Persistence definitely fails on associated primes that do contain c.

Proposition 3.10. (Persistence of associated primes) Let P be a prime ideal

associated to Bn that does not contain c. Then P is associated to Bn+1.

Proof. If P is g-good, then P is associated to all Bn+1 by Theorem 3.8.
So we may assume that there exists i∈[m] and j∈[r] such that xi,j , xi,j+1 �∈P .

Then P is associated to Bn if and only if it is associated to Bn after inverting
xi,jxi,j+1. But then a4

j is a minimal generator of B, and the only other minimal
generator of B (after this inversion) in which aj appears is a5

j−1aj . Write P=Bn :w
for some monomial w. Then

Bn+1 : a4
jw=(Bn+1 : a4

j ) :w
=(Bn+a5

j−1B
n+a10

j−1B
n−1+a15

j−1B
n−2+a20

j−1B
n−3) :w

=Bn :w=P,

so that P is associated to Bn+1 as well. �
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Theorem 3.11. Let m, s≥1. The set of associated primes of BHH(m, 2, s)n

is the union {(a1, a2)}∪
⋃m

i=1 Q
(i)
c ∪Q1∪Q2 where

Q(i)
c = {P |n=2u+v+1 with 0≤u≤m−i, 0≤ v≤ i and

P has i half-full and m−i full rows},
Q1 = {P g-good | c /∈P, n=1,∃j0 ∈ [r]∀i∈ [m] : xi,j0 /∈P or xi,j0+1 /∈P},
Q2 = {P g-good | c /∈P, n≥ 2}.

The number of associated primes of BHH(m, 2, s)n is equal to

(3−δ1=n)m+1+
m∑
i=0

2i
(
m

i

)
δ(n−1−i)/2≤min{q,m−i},

where q=�n−1
2 .

Proof. By Theorem 1.4, the set of associated primes of BHH(m, 2, s)n is equal
to the set of associated primes of BHH(m, 2, 1)n. By Theorems 3.6 and 3.3, the
set of associated primes of BHH(m, 2, 1)n that contain c equals

⋃m
i=1 Q

(i)
c and its

cardinality is h(m, 2, n)=
∑m

i=0 2i
(
m
i

)
δ(n−1−i)/2≤min{q,m−i}, where q=�n−1

2 .
Let P be associated to BHH(m, 2, 1)n and not contain c. If P does not contain

xi,1xi,2, then P is associated to Bn if and only if it is associated to Bn :(xi,1xi,2)∞=
(a4

1, a
4
2)n, in which case P must be equal to (a1, a2), which is minimal over B and

hence associated to all the powers of B.
Thus it remains to consider the associated primes P not containing c that

contain xi,1xi,2 for all i∈[m]. Then P must be g-good, and in Q1 if n=1 by The-
orem 3.9 (which has cardinality 2m) and in Q2 if n≥2 by Theorem 3.8 (which has
cardinality 3m).

The assertion follows. �

Remark 3.12. The number of associated primes of BHH(m, 2, s)n can also be
written as

(3−δ1=n)m+
(

m∑
�=0

m∑
t=b(�)

(
m

�

)(
�

�+t−m

))
+
{

0, if n≤2m and n is even;
1, otherwise,

where b(�)=max{n−1−�,m−�}. Namely, the first summand in the display plus 1 is
the number of associated primes not containing c. The maximal ideal is associated
to BHH(m, 2, 1)n if and only if n≤2m+1 and n is odd. These two counts account for
the first and the last summand in the display. It remains to count the non-maximal
associated primes P that contain c. We know that for all i∈[m], xi,1xi,2∈P . Let �

be the number of xi,1 in P and let t be the number of xi,2 in P . Necessarily �+t≥m.
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Also, �+t should be at least 2u+v=n−1 as in the notation of Theorem 3.3. There
are

(
m
�

)
ways of choosing � of the variables xi,1, after which for the remaining m−�

rows in the matrix [xi,j ], the elements xi,2 must be in P . This leaves t−(m−�)
variables xi,2 to be chosen from the � rows with the xi,1. This justifies the middle
summand in the display.

We just proved the following combinatorial identity:
m∑
i=0

2i
(
m

i

)
δn−1≤min{2q+i,2m−i}

=
m∑
�=0

m∑
t=b(�)

(
m

�

)(
�

�+t−m

)
+
{
−1, if n≤2m and n is even;
0, otherwise,

where b(�)=max{n−1−�,m−�}.

Theorem 3.13. For m≥1, the function φ taking n �→#Ass(R/BHH(m, 2, s)n)
has exactly

⌈
m−1

2
⌉
local maxima. The local maxima occur at n=3, 5, ..., 2

⌈
m−1

2
⌉
+1,

and they are all equal to the global maximum 2·3m+1.

Proof. We refer to the three summands in the display in Remark 3.12 as
φ1, φ2, φ3 (in the given order). Observe that φ1 is constant for n≥2, that φ2 is
zero for all n≥2m+2, and that φ3 is constant for n≥2m+1. Thus φ is constant for
n≥2m+2.

In the range n=1, ...,m+1, φ2 equals
m∑
�=0

m∑
t=m−�

(
m

�

)(
�

�+t−m

)
=(1+1+1)m =3m,

after which it strictly decreases to 0 at n=2m+2. Thus φ(1)=2m+3m+1<2·3m=
φ(2)<2·3m+1=φ(3), and this is equal to φ(n) for all odd n∈{3, ...,m+1}. In other
words, φ(n)=φ(3) for all n=3, 5, ..., 2

⌈
m−1

2
⌉
+1. This value is strictly larger than

2·3m=φ(4)=φ(6)=···=φ(2
⌈
m−1

2
⌉
), and is also strictly larger than φ(2

⌈
m−1

2
⌉
+2).

Furthermore, for n∈{m+1,m+2, ..., 2m},

φ2(n)−φ2(n+1)=
m∑
�=0

(
m

�

)(
�

�+(n−1−�)−m

)
=

m∑
�=n−1−m

(
m

�

)(
�

n−1−m

)
≥ 2.

Thus φ(n)>φ(n+1) for n∈{m+1,m+2, ..., 2m}. Finally,

φ(2m+1)−φ(2m+2)=
m∑
�=0

(
m

�

)(
�

�+(2m+1−1−�)−m

)
=

m∑
�=0

(
m

�

)(
�

m

)
=1,

so that φ(n)>φ(n+1) for n∈{m+1,m+2, ..., 2m+1}. This finishes the proof. �
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4. Depth

The depth of quotients of powers of BHH(m, r, s) depend on s, so in this section
we return to arbitrary s.

Lemma 4.1. Set B=BHH(m, r, s). Let w=aen1 a4
1 ···a4

r

∏
i,j xi,j where en is

defined as in the proof of Theorem 3.8. If n≥2, then w �∈Bn and w multiplies

(aj , xi,j : i∈[m], j∈[r]) (but not c1, ..., cs) into (B0+X)n.
Let u1, ..., us be linear forms with uj of the form cj minus a linear combination

dj in the variables xi,j′ as i, j′ vary in [m] and [r], respectively. Then w �∈Bn+
(u1, ..., us) and w(aj , xi,j : i∈[m], j∈[r])∈Bn+(u1, ..., us).

Proof. The first paragraph is an immediate consequence of the proof of Theo-
rem 3.8.

For the second paragraph, it is still the case that w multiplies the aj , xi,j (but
not c1, ..., cs) into the ideal C=Bn+(u1, ..., us). It remains to prove that w �∈C. By
Lemma 1.2 we can rewrite C as (c1, ..., cs)a4

1 ···a4
rX

n−1+(B0+X)n+(u1, ..., us) =
(d1, ..., ds)a4

1 ···a4
rX

n−1+(B0+X)n+(u1, ..., us). Without restriction, we can switch
to the polynomial ring where u1, ..., us are variables and, for 1≤j≤s, cj are the
linear forms in uj and dj . Since u1, ..., us do not appear in w or in any minimal
generating set of (d1, ..., ds)a4

1 ···a4
rX

n−1+(B0+X)n, it follows that if w is in C,
then w∈(d1, ..., ds)a4

1 ···a4
rX

n−1+(B0+X)n, so that w multiplies c1, ..., cs into Bn,
which is a contradiction. �

Theorem 4.2. For any positive integers r,m, s, e with r≥2, there exists an

ideal I in a polynomial ring A such that for all positive integers n,

depth
(

A

In

)
=

⎧⎪⎨
⎪⎩
e−1, if n=ru+1 with u=0, ...,m;
e, if n≤rm+1 and n �≡1 mod r;
s+e−1, otherwise, i.e., if n>mr+1.

In particular, the depth function n �→depth(A/In) has m+1 local minima, it is

periodic of period r when restricted to the domain [1, r(m+1)−1], and it is constant

afterwards.

Proof. Set B=BHH(m, r, s) in the ambient polynomial ring R. Let A be
the polynomial ring obtained from R by replacing the variable c1 with variables
d1, ..., de. Let ϕ : R→A be the algebra homomorphism taking c1 to the product
d1 ···de and all other variables to themselves. Let I=ϕ(B)A. Since ϕ is a free and
hence a flat map by [8, Theorem 1.2] (such maps are called splittings there), we
have that ϕ takes a free resolution of R/Bn to a free resolution of A/In, and it
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preserves minimality of the resolution. Thus the projective dimensions of R/Bn

and A/In are the same, and by the Auslander-Buchsbaum formula,

depth(A/In)=dim(A)−pd(A/In)
=dim(R)+e−1−pd(R/Bn)
=dim(R)+e−1−(dim(R)−depth(R/Bn))
=depth(R/Bn)+e−1.

So it suffices to prove that

depth
(

R

Bn

)
=

⎧⎪⎨
⎪⎩

0, if n=ru+1 with u=0, ...,m;
1, if n≤rm+1 and n �≡1 mod r;
s, otherwise, i.e., if n>mr+1.

By Theorems 1.4 and 3.3, the maximal ideal of R is associated to R/Bn exactly for
the n of the form ru+1 with u=0, ...,m. Thus the depth of R/Bn equals 0 exactly
for all such n.

So we may assume that either n �≡1 mod r or that n>mr+1.
No c1, ..., cs appear in any generator of a minimal generating set of Bn :c1=

(B+(a4
1 ···a4

r))n. This means that depth(R/(Bn :c1))≥s. By Theorem 3.8 (and
Theorem 1.4) we then have depth(R/(Bn :c1))=s. Also, Bn+(c1)=B(m, r, s−1)n+
(c1) with B(m, r, s−1) defined using variables aj , xi,j and c2, ..., cs only. When s=1,
by Lemma 4.1, depth(R/(Bn+(c1))) is 0 for all n, and for s≥2, by induction on
s, depth(R/(Bn+(c1))) is 1 or s−1, depending on n. We will use the short exact
sequence

0−→ R

Bn : c1
−→ R

Bn
−→ R

Bn+(c1)
−→ 0.(*)

This short exact sequence induces a long exact sequence on ExtR(R/M,_), where
M is the maximal homogeneous ideal of R. We use the fact that for any finitely
generated R-module U , depth(U)=min{� : Ext�R(R/M,U) �=0}.

Let �=depth(R/(Bn+(c1)). By induction on s, we have that �=0 if s=1, and
otherwise that �=1 if n≤mr+1 (and n �≡1 mod r), and �=s−1 otherwise, and so
since the depth of R/(Bn :c1)=s, the relevant part of the long exact sequence equals:

··· −→ 0−→Ext�R
(

R

M
,
R

Bn

)
−→Ext�R

(
R

M
,

R

Bn+(c1)

)
−→Ext�+1

R

(
R

M
,

R

Bn : c1

)
−→ ··· .

We need to establish that Ext�R
(
R
M , R

Bn

)
is non-zero if n≤mr+1 (and n �≡1 mod r)

and is zero if n>mr+1.
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First let n>mr+1. We need to show that the depth of R/Bn is s. By the long
exact sequence we first prove that Exts−1

R

(
R
M , R

Bn

)
is zero, i.e., that

Exts−1
R

(
R

M
,

R

Bn+(c1)

)
−→ExtsR

(
R

M
,

R

Bn : c1

)

is injective. By faithful flatness we may assume that the base field is infinite. By
prime avoidance we can find linear forms u2, ..., us, u1 that form a regular sequence
modulo Bn :c1 and for which u2, ..., us is a regular sequence modulo Bn+(c1). Since
a1, ..., ar are in the radical of B, we may assume that the ui are forms in the variables
cj and xi,j only. We claim that for �=2, ..., s, we may take u�=c�−d�, where
d�=

∑
i,j α�,i,jxi,j for some (generic) scalars α�,i,j . Certainly any such u2, ..., us, u1

form a regular sequence modulo Bn :c1 since c1, ..., cs do not appear in any generators
of this ideal. Suppose that we have proved for some �∈{1, ..., s−1} that u2, ..., u�

form a regular sequence modulo Bn+(c1). Then

Bn+(c1, u2, ..., u�)=
(
(d2, ..., d�, c�+1, ..., cs)a4

1 ··· a4
r+B0+X

)n+(c1, u2, ..., u�),

and since (a4
1 ···a4

r)2∈B2
0 , by Lemma 1.2, modulo the variables c1, u2, ..., u�,

Bn =(c�+1, ..., cs)a4
1 ··· a4

rX
n−1+

(
(d2, ..., d�)a4

1 ··· a4
r+B0+X

)n
.

Thus by Lemma 1.3, each associated prime of Bn+(c1, u2, ..., u�) either contains
all c�+1, ..., cs or it contains none of them. Thus c�+1−d�+1 for sufficiently general
α�+1,i,j is a non-zerodivisor modulo Bn+(u2, ..., u�). This proves the stated forms
of u2, ..., us and we may also take u1=c1.

By a theorem of Rees (see [9, Lemma 2 (i)]), due to natural isomorphisms, it
suffices to prove that the natural map

HomR

(
R

M
,

R

Bn+(c1, u2, ..., us)

)
−→HomR

(
R

M
,

R

(Bn : c1)+(c1, u2, ..., us)

)

is injective. In other words, we need to show that the natural map L1:M
L1

→ L2:M
L2

is injective, where L1=Bn+(c1, u2, ..., us) and L2=(Bn :c1)+(c1, u2, ..., us). Let
w∈(L1 :M)∩L2. We have to prove that w∈L1.

By subtracting elements of L1 from w, by Lemma 1.2, w∈a4
1 ···a4

rX
n−1, and

since (a1, ..., ar, c1, ..., cs)a4
1 ···a4

rX
n−1⊆Bn⊆L1, we may assume that

w=
∑
ν

eνa
4
1 ··· a4

r

(∏
i,j

x
vν,i,j
i,j

)(∏
i,j

h
uν,i,j

i,j

)
,

where for all ν, eν∈k and
∑

i,j uν,i,j=n−1. Since L1, L2 are not monomial ideals,
w need not be a monomial. Nevertheless, we claim that each xi,j multiplies each
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summand in w into L1. Proof of the claim: Fix (i, j). We know that xi,jw∈L1. This
means that in at least one monomial summand w0 of w, xi,j must be incorporated
into some new factor of B while at the same time possibly breaking up some of the
n−1 factors that are generators of B. Then by Corollary 2.5 (1), xi,jw0∈Bn⊆L1.
Hence xi,j(w−w0) is also in L1, and w−w0 has fewer summands in it, which proves
the claim for (i, j) by induction on the number of monomial summands in w. This
proves that every monomial appearing in w is multiplied by (xi,j : i∈[m], j∈[r])
into Bn. Thus by Corollary 2.5 (2), each monomial appearing in w is in L1, so that
w∈L1. This proves that Exts−1

R (R/M,R/Bn)=0, which means that the depth of
R/Bn is at least s. By the same reasoning as before, there exists a regular sequence
u1, ..., us on R/Bn of the form uj=cj−dj for some generic linear combinations
d1, ..., ds in the xi,j . Consider the element w=aen1 a4

1 ···a4
r

∏
i,j xi,j , with en as defined

in the proof of Theorem 3.8. By Lemma 4.1, Mw∈Bn+(u1, ..., us) and w �∈Bn+
(u1, ..., us), so that the depth of R/Bn is exactly s.

Finally, let n≤mr+1 and n �≡1 mod r. We need to prove that the connecting
homomorphism in the displayed long exact sequence is not injective. If s≥3, then
Ext�+1

R

(
R
M , R

Bn:c1

)
=0 and we are done. So, let s≤2. As in in the proof for n>

mr+1 there exists a linear form u2=c2−d2∈M that is a non-zerodivisor modulo
Bn :c1 and modulo Bn+(c1), and by the same theorem of Rees, due to natural
isomorphisms, it suffices to prove that the natural homomorphism L1:M

L1
→ L2:M

L2
is

not injective, where L1=Bn+(c1, u2) and L2=(Bn :c1)+(c1, u2). Write n−2=ur+v

for some non-negative integers u, v with v<r. Since n≤mr+1 and n �≡1 mod r,
it follows that u<m and v �≡0 mod r. Let wh=h1,1 ···h1,v

∏
i>m−u,j hi,j∈Bn−2,

wx=
∏

i≤m−u,j xi,j , wa=a4
1 ···a4

r−1a
8
r∈B, and w=x1,1whwawx. Thus clearly w∈

Bn−2(a4
rx1,rx

2
1,1)(a4

1 ···a4
r)∈L2. However, w �∈L1. We next prove that Mw⊆L1:

xi,jw∈ wh

hi,j−2hi,j
hi,j−1(a6

j−2)(a6
j )(h1,r)⊆ (B0+X)n, if i>m−u;

xi,jw∈ (wh)(a4
j−1xi,j−1x

2
i,j)(a6

r)⊆ (B0+X)n, if j �=1 and i≤m−u;
xi,1w∈ (wh)(a4

rxi,r−1x
2
i,1)(a4

rx1,r−1x
2
1,1)⊆ (B0+X)n, if 2≤i≤m−u;

x1,1w∈ (c2a4
1 ··· a4

r)wh(a4
rx1,rx

2
1,1)+(u2)+

∑
(i,j) �=(1,1)

xi,jw∈L1;

arw∈ (wh)(a5
ra1)(a4

rx1,rx
2
1,1)∈L1;

ajw∈ (wh)(a5
jaj+1)(a4

rx1,rx
2
1,1)∈L1, if j �=1.

This proves that w∈(L1 :M)∩L2 and w �∈L1, which proves that the map L1:M
L1

→
L2:M
L2

is not injective. Thus the depth of R/Bn is 1 if n≤rm+1 and n �≡1 mod r. �



Fluctuations in depth and associated primes of powers of ideals 215

References
1. Ananyan, T. and Hochster, M., Small subalgebras of polynomial rings and Still-

man’s conjecture, J. Amer. Math. Soc. 33 (2020), 291–309.
2. Bandari, S., Herzog, J. and Hibi, T., Monomial ideals whose depth function has

any given number of strict local maxima, Ark. Mat. 52 (2014), 11–19.
3. Bosma, W., Cannon, J. and Playoust, C., The Magma algebra system. I. The user

language, J. Symbolic Comput. 24 (1997), 235–265.
4. Brodmann, M., Asymptotic stability of Ass(M/InM), Proc. Amer. Math. Soc. 74

(1979), 16–18.
5. Grayson, D. and Stillman, M., Macaulay2, a software system for research in alge-

braic geometry, available at http://www.math.uiuc.edu/Macaulay2.
6. Hà, H. T., Nguyen, H. D., Trung, N. V. and Trung, T. N., Depth functions of

powers of homogeneous ideals, Proc. Amer. Math. Soc. 149 (2021), 1837–1844.
7. Herzog, J. and Hibi, T., The depth of powers of an ideal, J. Algebra 291 (2005),

534–550.
8. Kim, J. and Swanson, I., Many associated primes of powers of prime ideals, J. Pure

Appl. Algebra 223 (2019), 4888–4900.
9. Matsumura, H., Commutative Ring Theory, Cambridge University Press, Cam-

bridge, 1986.
10. Seidenberg, A., Constructions in algebra, Trans. Amer. Math. Soc. 197 (1974),

273–313.
11. Weinstein, S. J. and Swanson, I., Predicted decay ideals, Comm. Algebra 48 (2020),

1089–1098. Published online on 26 October 2019. arXiv:1808.09030.

Roswitha Rissner
Department of Mathematics
University of Klagenfurt
Universitätstrasse 65–67
Klagenfurt
Austria
Roswitha.Rissner@aau.at

Irena Swanson
Department of Mathematics
Purdue University
150 N. University Street
West Lafayette
USA
irena@purdue.edu

Received September 27, 2023
in revised form November 22, 2023

http://www.math.uiuc.edu/Macaulay2
http://arxiv.org/abs/1808.09030
mailto:Roswitha.Rissner@aau.at
mailto:irena@purdue.edu

	Fluctuations in depth and associated primes of powers of ideals
	1 Generalized Bandari–Herzog–Hibi ideals
	2 Lemmas
	3 G-good primes
	4 Depth
	References


