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Abstract 

Higher dimensional generalisations of self-duality conditions and of 
theta angle terms are analysed in Yang-Mills theories. For the the- 
ory on a torus, the torus metric and various antisymmetric tensors are 
viewed as coupling constants related by U-duality, arising from back- 
ground expectation values of supergravity fields for D-brane or matrix 
theories. At certain special points in the moduli space of coupling con- 
stants certain branes or instantons are found to dominate the functional 
integral. The possibility of lifting chiral or supersymmetric theories to 
higher dimensions is discussed. 
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1    Introduction 

Supersymmetric Yang-Mills (SYM) theories in D dimensions play a crucial 
role in the study of D-branes and in the matrix approach to M-theory. The 
dynamics of a Dirichlet p-brane is described by a low-energy effective action 
for the SYM multiplet in D = d + 1 dimensions (obtained by reducing 
from D = 10) which is a Born-Infeld action plus couplings to RR gauge 
fields through a Wess-Zumino term [1,2]. The matrix theory conjecture 
[3,4] relates M-theory compactified on a d torus Td to SYM in D = p + 1 
dimensions on Rxfd where fd is the dual torus [3-14]. For d > 4 the SYM is 
not renormalizable and extra degrees of freedom are needed at high energies, 
but the SYM is still a useful effective description for many purposes. 

In D = 4, the addition of a topological 0-angle term 6F2 to the N = 4 
SYM lagrangian led to an enlargement of the Montonen-Olive duality to 
£X(2,Z), which was the key to many later developments in the study of 
duality. The angle 9 is a coupling constant of the SYM which arises from 
string theory as the expectation value of a certain field. The D-brane action 
for a p brane is a D = p +1 dimensional action including the following terms 
governing the world-volume YM fields 

*/ 

. . . + Co-ar-^ (1.1) 

where 

^ ran — ■Tmn      £>mnh \*-m^) 

Fmn is the YM field strength, r is the integer part of D/2, i?mn is the NS- 
NS 2-form gauge field and the Cm are m-forms arising from the background 
expectation values of RR gauge fields [1]. Similar actions arise in matrix 
theory. From the point of view of the SYM theory, the forms Cm are again 
coupling constants. As will be discussed elsewhere [15], including terms 
such as these is necessary if there is to be an enlargement of the expected 
SL(d,Z) symmetry of SYM on M x Td to the appropriate U-duality group 
for d > 3, as has been found to be the case for d — 3,4,5. The moduli space 
for SYM on M x fd includes the moduli space R x SL(d)/SO(d) of metrics 
on Td, together with the coupling constants arising from constant values 
of the forms Cm, and the U-duality group acts on this space, mixing the 
torus metric with the various anti-symmetric tensor gauge fields [15]. This 
generalises the way that including the 0-angle for d — 3 leads to the U-duality 
group 5L(3, Z) x SX(2, Z); in this case the 0-angle is the SX(2, Z) partner of 
the coupling constant g, or torus volume. More generally, the forms Cm are 
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the U-duality partners of the torus metric, so that it is necessary to include 
such couplings to understand U-duality [8]. 

In SYM and D-brane actions (in planar gauge), there are adjoint-valued 
scalar fields X1 (i — 1,..., 10 — D) taking values in a transverse space. Then 
the general 'topological' term in D dimensions can involve dX, giving terms 

^Tr(yD_2nF
n) (1.3) 

n 

where 

Ym = YJKil...ivDXi\..DX^Zm.v, (1.4) 
v 

where Zm is an m-form on the D-dimensional space and 

DXi = dXi + [A,Xi] (1.5) 

Thus the action is parameterised by space-time forms Zm and by the trans- 
verse forms K. The dimensional reduction of terms proportional to tvFn 

gives terms involving ti[{DX)n~'mFrn] in D = n+m dimensions. Such terms 
can play an important role in SYM and will be discussed further in [15]. 

Our purpose here is to study some of the consequences of including such 
topological terms in the SYM action, and in particular the instantons or 
solitons that dominate the functional integral. While there has been con- 
siderable interest in such terms for special choices of the forms Cm, such 
as the covariantly constant forms on manifolds of special holonomy [16-21], 
our viewpoint here is rather different, as we wish to consider the theory as 
a function of these coupling-tensors, and consider the properties of SYM as 
these vary. The set of coupling constants or moduli of the SYM on some 
space-time M then include the moduli of metrics on M and the forms Cm 

on M (which arise from string background fields, and will usually be taken 
to satisfy the classical field equations). In particular, there can be solitonic 
p-brane solutions of the SYM which couple to the p + 1 form Cp+i and 
which are interpreted as p-branes in the matrix theory; for example, in 5+1 
dimensions, solitons coupling to the 2-form C2 correspond to strings, and 
the matrix model is in fact a (non-critical) string theory [10,12,13], while 
in 6+1 dimensions the matrix theory has membrane excitations [14]. The 
d+1 dimensional SYM corresponding to M-theory on Td then contains d — 4 
branes for of > 4. 

We shall particularly interested in the quadratic YM Lagrangian in D = 
d+1 dimensions involving a 4-th rank tensor Xm7W, 

^ tr FmnFmn + ^™ tr FmnFpq (1.6) 
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which arises from the quadratic terms in (1.1), with X oc *CD-4> This 
depends on the following coupling constants or moduli: the D-dimensional 
metric, the YM coupling g (which can be absorbed into the metric) and 
a 4-form Xrnripq. This is always part of the low-energy limit of the matrix 
theory for M-theory on Td. On a curved space, the second term is topological 
(if, as we shall assume, d * X = 0, so that the action depends only on the 
cohomology class of *X) and gives a generalised 0-angle; a different 0-angle 
arises for each homology 4-cycle [22]. Such terms were considered in the 
context of matrix models in [22]. 

We can generalise this action to allow an X that is not a totally anti- 
symmetric tensor, but is a more general 4-th rank tensor satisfying 

■X-mnpq = ~^-nmpq = ~'&mnqp = -^pqmn (1-« j 

For example, in the D-brane action, including the NS-NS 2-form B gives an 
action (1.6) with Xmnpq = BmnBpq + *Cmnpq + ■•• where *C is the dual of 
the RR D — 4 form potential CD-A- 

It will be important in what follows that the 'topological term' in (1.6) 
can sometimes be real in the Euclidean action, unlike the usual D = 4 
theta-angle term, which is imaginary. The action appearing in the functional 
integral is the Euclidean one resulting from the Wick rotation t -> it. In D = 
4, the Minkowski space term 6 f tr F A F with real 6 becomes i9 f tr F A F 
in Euclidean space, so that 8 is an angle, coupling to the second Chern class. 
In any dimension, the Wick rotation t —>• it is accompanied by At —> —iAt so 
that the electric fields Ei = FQI are rotated Ei -¥ —iEi while the magnetic 
fields Bij = Fij are unchanged, Bij -» Bij. In Minkowski signature, the 
lagrangian (1.6) should be real so that the coupling constants Xmnpq are 
real. On Wick rotating, the action (1.6) becomes 

^ tr (EiE1 + l^Bi^ + ^X**1 tiBijBH + i^X™1 tiEiBu      (1.8) 

Thus the coefficient of E A B becomes imaginary (as for the usual 4-dimen- 
sional 9 angle) while that of B A B remains real. Thus the X0M become 
angular variables (for fixed z,j, k) while the X^kl will not satisfy any pe- 
riodicity conditions in general. We shall be interested in embedding an 
n-dimensional instanton into a d + 1 dimensional Lorentzian space (n < d) 
and the couplings Xrnnvq with purely spatial indices that contribute to the 
instanton action real on Wick rotating. 



C. M. HULL 623 

2    Instantons Satisfying a Generalised Self-duality 
Condition 

Consider configurations satisfying a generalised self-duality equation 

1 
2 Ymnpq-T       — ^-^mn v^*-U 

for some 4-form Y and constant A. These will play an important role when 
X oc Y. The Bianchi identity implies that a configuration satisfying (2.1) 
also satisfies the field equation DmFmn = 0. (Note that this would no longer 
be true if Y were not totally anti-symmetric, and was replaced by a tensor 
with the symmetries (1.7).) In this section we will consider instanton solu- 
tions to (2.1) in Euclidean space, and will embed these in higher dimensional 
Minkowski spaces to obtain brane solutions in the next section. An alterna- 
tive generalisation of the self-dual YM to D > 4 dimensions was proposed 
in [23]. 

Instanton solutions to (2.1) have been studied in the case in which Y is 
invariant under a subgroup SU(ri), G2 or Spin(7) of the Lorentz group in 
flat space, and in the case of manifolds of holonomy SU(n), G2 or Spin(7) 
with the tensor Y covariantly constant. We shall consider here the case of 
flat space-time and constant tensors Y, X. In 4 Euclidean dimensions, Y is 
proportional to the volume-form and solutions satisfying (2.1) (with A given 
by 1 or —1 if Y is conventionally normalised) are self-dual or anti-self-dual 
instantons on iV satisfying (2.1). In 8 Euclidean dimensions, if Y is the 
Spin(7) invariant self-dual 4-form, then there are point-like instantons sat- 
isfying (2.1) [17,18] (with A chosen so that F is projected into the 21 of 
Spin(7)). Similarly, in 7 dimensions, if Y is invariant under G2, there are 
pointlike instantons satisfying (2.1) [18,19]. Finally, in 2m dimensions, if 
Y is invariant under SU(m), then the action is extremised by instantons 
satisfying (2.1). The Yang-Mills field is then a connection of a holomorphic 
vector bundle satisfying the Uhlenbeck-Yau equation, and point-like instan- 
tons are again expected. Similar instantons in 6 dimensions were considered 
in [20]. 

For the Spin(7) and G2 solutions in E8 or M7, the YM action 

JlFf (2.2) 

is infinite because of the slow fall-off of the fields. If however, there are 
similar instanton solutions on a compact space, such as a torus, then it is 
conceivable that the action could be finite in that case. 

The tensors Xmn>pq,Y'rnn>pq can both be regarded as TV x N symmetric 
matrices (iV = D(D — l)/2) whose rows and columns are labelled by index 
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pairs ran, pq respectively. It will be convenient to denote these matrices as 
Xab, Yab respectively, where a, b = 1,..., N. General tensors Xm7W satisfying 
(1.7) will correspond to matrices Xab with N independent eigenvalues, while 
requiring XmTlpq to be totally anti-symmetric imposes constraints on these 
eigenvalues, and in particular that Xa& is traceless. The SO(A)^Spin(7) 
and G2 cases considered above are ones in which Y satisfes a quadratic 
characteristic equation. In general, Y will have N real eigenvalues Aa (not 
necessarily distinct), so that the kinetic term can be written as 

r    N 1 
/ tiY^-2FaFa (2.3) 

after writing Fmn as a D(D—1)/2 dimensional vector and transforming to the 
(orthonormal frame) basis in which the kinetic term becomes g~2 J2a FaFa 

(after a rescaling of g) and in which Yab is diagonal, Y^ = diag(\i,... XN). 

Note that the total anti-symmetry of Ymnpq implies that Y^ is traceless. 
It follows that the kinetic term / F A *F is bounded below by a term 

proportional to the topological term, since, in the basis in which Ya& = 
diag(Xi,... XN), 

tr ^(Fa)2 = trJ2 -!-YabFaFb > -1—tr J^ YabF
aFb (2.4) 

Q> a,o a,o 

implies 

I tr\F\2 > -i- [(*Y) A tr{F A F) (2.5) 
J ^max J 

where Amax is the largest of the eigenvalues Aa. As ^a Aa = 0, the minimum 
eigenvalue is negative, Xmin = —/i, fi > 0, and a similar argument implies 

ftr{FA^F) >-- f(*Y)Atr(FAF) (2.6) 

The first bound is saturated if F satisfies the self-duality condition (2.1) with 
eigenvalue Amax, while the second is saturated if F satisfies the self-duality 
condition (2.1) with eigenvalue Xmin. For any self-dual F satisfying (2.1) for 
some A, the kinetic term is proportional to the topological term 

tr(F A *F) = i(*y) A tr(F A F) (2.7) 
A 

Consider now the action (1.6) with X = 6Y, 

S = 1 tr f dDx F2 + i I dDx 9Ymn™ ti(FmnFpq) (2.8) 
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which becomes 

"/?(? + 0Aa   tr(F
a)2 (2.9) 

The action will be positive-definite if the eigenvalues of 5^ + g2Xat) are all 
greater than zero, and this will clearly be the case for small enough coupling 
g. At large coupling, the SYM description will break down for of > 3 (for 
d = 3, the strong coupling limit is described by a dual SYM theory, for 
d = 4 an extra dimension emerges to give a 5+1 dimensional self-dual tensor 
theory etc) and the semi-classical analysis is in any case not applicable. 

Taking JP to satisfy the self-duality condition (2.1) with A given by A = 
—Aa for any of these eigenvalues will give a stationary point of the action. 
Choosing 9 = —g~2/\rnax gives the action 

=/tr? 32A 
1 (Xmax - Aa) (i^)2 (2.10) 

which is positive and vanishes for self-dual solutions satisfying (2.1) with A = 
Amax- The semi-classical functional integral is dominated at weak coupling 
by those solitons with zero action; all others are suppressed by factors of 
exp(—1/<?2). Thus with this choice of action, with the topological term 
given in this way in terms of Y, the weakly-coupled theory is dominated by 
the instantons that are Y-self-dual (2.1) with eigenvalue Amax. Similarly, 
choosing 6 = g~2 /n gives the action 

s = Itr E -T- (A« - w (iJ,a)2 (2-11) 
J a    9 ^ 

which is positive and vanishes for self-dual solutions satisfying (2.1) with 
A = Xmin, and these would dominate at weak coupling. 

3    p-Brane Solutions and Supersymmetry 

Consider solutions of (2.1) in a D = d + 1 dimensional flat space with 
Lorentzian signature. If N is an n-dimensional Euclidean submanifold and 
there is an instanton solution on iV satisfying (2.1) for some 4-form Y, then 
this will lift to a p-brane solution in D dimensions with p = d — n.1 For 
example, a 4-dimensional instanton leads to a 0-brane in 5-dimensions or a 
string in 6-dimensions. The theory with action (1.6) has saddle points corre- 
sponding to all self-dual solutions that satisfy (2.1) for some Y and some A 

1The Yang-Mills connection is independent of the coordinates transverse to N and the 
components transverse to N vanish. 
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(which must be an eigenvalue of Y for a non-trivial solution). Thus the the- 
ory will have BPS p-brane solutions with p = d — 4 (if d > 4), with p = d — 7 
(if d > 7), and with p = d — 8 (if d > 8), corresponding to 4-dimensional 
SU(2) instantons, 7-dimensional G2 instantons and 8-dimensional Spin(7) 
instantons, respectively. 

It was seen in the last section that, by choosing X to be proportional to 
9Y with appropriate tuning of the coefficient 0, one can arrange for precisely 
one type of self-dual instanton (those self-dual with respect to Y with either 
maximum or minimum eigenvalue) to have zero action and hence to dominate 
the path integral. This can be lifted to the p = d — n brane solutions; if the 
pull-backs of X and Y to N agree, X\N = 6Y\N, with appropriate choice 
of 6, then the p-branes satisfying (2.1) with either maximum or minimum 
eigenvalue will have zero transverse action (i.e. action per unit p-volume). 
Here it is important that the term in the action (1.6) involving X\N remains 
real; note that both the Euclidean and Lorentzian actions vanish in this 
case. Thus there are points in the SYM moduli space (corresponding to 
special choices of X) at which certain types of brane have zero action, even 
though they will in general have non-zero energy densities. Note that this is 
true for any value of the coupling #, and is a different phenomenon from the 
behaviour at strong coupling. Thus for special choices of X, a class of branes 
of a certain orientation is 'selected' to have zero action and so to dominate 
the functional integral, especially at weak coupling, when other branes are 
suppressed. One possible interpretation of this might be that at such points 
the vacuum is modified by a condensation of a particular class of p-brane. 

For example, self-dual instantons on a 4-dimensional submanifold N give 
rise to BPS d — 4 branes in d + 1 dimensions with finite energy density, 
proportional to l/g2. At points in moduli space at which the pull-back of X 
to N is — g2 times the volume form on A/", the action of these d — 4 branes 
vanishes, while the transverse action of all other p-branes (such as d—4 branes 
associated with other 4-submanifolds) remains of order l/g2 in general. For 
d = 4, these 0-branes become light at strong coupling, and the strong- 
coupling limit corresponds to a decompactification to 5+1 dimensions [11] 
with the 0-branes interpreted as Kaluza-Klein modes. For d = 5, these 
solitonic branes are the strings of the non-critical string theory, for d = 6 
these are membranes etc. Their presence is reflected by the presence of a 
d — 4 form 'central' charge in the d + 1 dimensional superalgebra. However, 
the instantons on N only have zero action if X is the volume form of iV. 

The d—4 branes are BPS and have finite action and energy density for all 
values of Y, but their action becomes zero for the special choice of X oc Y. 
The d — 7, d — 8 branes are (formally) BPS, but their total energy is infinite, 
as is the action for all values of X except the special value at which the 
action vanishes. 



C. M. HULL 627 

The Spin (7) and G2 instantons in R8 or M7 respectively have infinite 
action, and so these and the corresponding d—7, d—8 branes will be infinitely 
suppressed in the functional integral. Choosing X to be proportional to 
some Y with the appropriate coefficient will arrange for precisely one type 
of self-dual solution to have an action that is formally zero (the integrated 
kinetic and topological terms are separately divergent, but the Lagrnagian 
densities cancel). The energy per unit p-volume will remain divergent, so 
that the interpretation in this case is unclear. However, the actions for the 
instantons in E8 or E7, and the corresponding brane actions and energies, are 
infinite because of the slow fall off of the solution, and it would be interesting 
to see whether there are similar solutions on a torus (or compact space of 
special holonomy) and whether such solutions have finite action. If there 
were such finite action instantons on T8 or T7, they could play an important 
role in the matrix models for M-theory compactified on Td for d > 7. For 
d — 7,8, there would be a 0-brane in d + 1 dimensions that became light 
at strong coupling, which could be related to a decompactification to one 
higher dimension, as in the case of d = 4. This possibility will be discussed 
further elsewhere [15]. 

Thus, at least for weak coupling, the functional integral has saddle-point 
solitons satisfying the generalised self-duality equations (2.1), and it is clearly 
important to understand the properties of solutions to (2.1), and in partic- 
ular whether they are point-like or brane-like. The spectrum of solutions 
would then determine the brane-spectrum of (1.6). As the topological term 
is topological, the classical solutions of the theory are the same for all values 
of the coupling Xmnpq, but changing X changes the weight corresponding 
to each in the semi-classical approximation, and changes the subset of solu- 
tions that dominate the functional integral. In particular, the presence of X 
breaks the Lorentz group down to the sub-group preserving X, and for spe- 
cial choices of X (corresponding to special points in the moduli space) the 
Lorentz symmetry is 'enhanced' and there is the possibility of the spectrum 
of branes for which the action vanishes also being enhanced. In such cases, 
it is often possible to twist the SYM to obtain a topological field theory [21]. 

We consider now the supersymmetry of configurations satisfying (2.1). 
In SYM, the supersymmetry transformation of the spinor field x IS 

6x=±FmTir
mrie + ... (3.1) 

where the ellipses refer to extra terms involving scalar fields. For configu- 
rations involving only the YM fields (i.e. with vanishing scalar fields) and 
which satisfy (2.1), the variation (3.1) will vanish for spinorial parameters e 
satisfying 
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This implies that e satisfies 

(I-aAr)e = 0 (3.3) 

where 

r 
4! 

and 

F — —V prnnpq /o A\ L   —   A | 
1 mnpqL \0'^) 

12D(D - 1) 
ax =  (3.5) 

Thus a solution to (2.1) with a particular value of A will be preserved un- 
der those supersymmetries whose parameters satisfy the chirality constraint 
(3.3). 

4    Antisymmetric Tensor Gauge Theories 

This can be generalised to other fields.   For a 2-form gauge theory with 
H = dB, the action (1.6) generalises to 

l|i?2| + ^Dmn^sHmnpHqrs (4.1) 

where Dmnpqrs is a tensor with the symmetry properties 

y^mnpqrs    rJmnpJgrs _  T~\mnp[qrs\ _  rjqrsmnp (A OX 

Note that although it cannot be totally anti-symmetric in this case, it could 
be taken to be the 'square' of a 6-form Xmnpqrs, with 

j-\mnpqrs   _ -ymnptuv v      qrs (A O\ 

6 

Consider the generalised self-duality equations 

6 ■H-mnp —  £ *mnpqrs-£i \*m^) 

for some tensor YmnpqrSl which will be assumed to be totally antisymmetric 
so that the Bianchi identity implies the field equation for H. The 6-form 
Ymnpqrs can be regarded as an anti-symmetric matrix in the triplets of in- 
dices mnp and qrs and can be skew-diagonalised with eigen-values ±aa, or 
alternatively diagonalised over the complex variables with complex conjugate 
eigenvalues. Defining 

/ymnpqrs   _y"mnptuvy     qrs /A C:\ 

6 
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the tensor Cmnpqrs can be regarded as a symmetric matrix in the triplets 
of indices mnp and qrs and can be diagonalised, with eigenvalues Aa = a^. 
The self-duality condition (4.4) implies 

A 
—( 
6 -H-mnp —  s, ^mnpqrs-H- {^•^J 

with 

A - a2 (4.7) 

As in the 2-form case, the Hmnp can be decomposed into eigenstates of C, 
and there is a bound on the kinetic term corresponding to the largest and 
smallest eigenvalues Xmax^min — — M- 

[ \H\2 > T^— [{*Y) A if A *[(*Y) A H] (4.8) 
J ^max J 

and 

f \H\2 > -- [{*Y) AHA *[(*y) A H] (4.9) 

These bounds will be saturated if H satisfies the self-duality conditions (4.4) 
with a = ±VXmax or a = ±y/Xmin. Again, by considering the action with 
'topological' term (1.6), we can arrange for the action to vanish for these 
self-dual solutions by choosing D oc C with an appropriate constant of pro- 
portionality. 

In a supersymmetric tensor multiplet there is a spinor transforming as 

1 
6J 5x = 7:HmnpTmn*e + ... (4.10) 

where the ellipses refer to extra terms involving scalar fields and fermion 
bilinears. For configurations involving only the YM fields and which satisfy 
(4.4), (3.1) will vanish for spinorial parameters e satisfying 

(I-i9ar)€ = 0 (4.11) 

where 

1_ 

6! 
F — — Y pmnpqrs (A I ^\ L   — d 1 mnpqrsL x^'1-^) 

for some /3a. Thus a solution to (4.4) with a particular value of a will be pre- 
served under those supersymmetries whose parameters satisfy the chirality 
constraint (3.3)h. 
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5    Chirality and Self-Duality in Higher Dimensions 

In this paper we have considered theories whose 'coupling constants' include 
background tensors; in the case of Yang-Mills theories, the coupling con- 
stants included #, the metric gmn and a 4-form XmTipq. In D-brane actions 
and matrix theories, these emerge from the expectation values of certain 
fields. In particular, the matrix theory for M-theory on Td is related to 
SYM on Td x E and in this context it is natural to consider the metric on Td 

and the expectation values of various tensor gauge fields on Td as coupling 
constants of the matrix theory. Given such non-Lorentz-invariant coupling 
constants, it is possible to generalise the notions of chirality and self-duality 
to higher dimensions, albeit in a rather trivial way, and also to obtain su- 
persymmetric theories in higher dimensions. (This is related to the work 
of [24], in which theories with extra constant vectors can be super symmetric 
in more than 11 dimensions; in the present context, such vectors could be 
thought of as coupling constants.) 

For example, given a 4-form coupling constant Ymnpq in D dimensions, 
one can define generalised self-dual YM fields through (2.1) and generalised 
chiral spinors by 

FX = A (5.1) 

where T is given by (3.4). In 4 Euclidean dimensions, there is a supersym- 
metric system consisting of self-dual YM coupled to a chiral fermion [25], 
and it is possible to generalise this system to a higher dimensional supersym- 
metric system in this way. For example, in 4+1 dimensions (with signature 
(+, —, —, —, —)), the 4-form Y is dual to a vector V and (2.1) becomes 

*F = V A F (5.2) 

which implies that VmFmn = 0 and V2F = F, so that F = 0 unless the 
vector V is time-like with V2 = 1, in which case Am is independent of time 
in the gauge AQ = 0 and the YM sector reduces to 4-dimensional Euclidean 
self-dual YM. The fermion chirality constraint (5.1) then implies Vmr

mX = A 
which, together with the Dirac equation, implies that the spinor reduces to 
a chiral spinor in 4-dimensional Euclidean space. Thus the theory reduces 
to the supersymmetric self-dual YM system in 4 Euclidean dimensions. In 
higher dimensions, similar results should apply whenever the 4-form Y is the 
volume-form for a 4-dimensional Euclidean submanifold. 

In a similar way, it is possible to lift the 6-dimensional self-dual tensor 
theory to higher dimensions. In 5+1 dimensions, there is a (2,0) super- 
symmetric theory of a 2-form whose field strength H satisfies a self-duality 
constraint, together with a chiral spinor and 5 scalars. This could be lifted 
to D > 6 dimensions using a 6-form Y to a define generalised self-duality 
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constraint on H (4.4) and a generalised chirality constraint on the spinors, 
projecting onto aparticular eigenvalue of the chirality operator (4.12). If Y 
is 50(5,1) invariant, so that it corresponds to the volume form on a 5 + 1 
dimensional submanifold, then the lifted theory should again be supersym- 
metric. 
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