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Kapustin and Orlov observed that natural boundary conditions
in A-model are coisotropic A-branes, and also they need to be
included for mirror symmetry.

In the SYZ conjecture, the transformation which takes a holo-
morphic bundle E in X̌ to a Lagrangian A-brane in its mirror
manifold X uses the property that the restriction of E to any La-
grangian torus fiber in X̌ is topologically trivial.

In the semiflat setting, without assuming that E is fiberwise
topologically trivial, we construct a SYZ transformation which
takes holomorphic bundles in X̌ to coisotropic A-branes in X and
vice versa. The construction uses fiberwise Nahm transformations
for twisted Dirac operators on tori.
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1. introduction

Inspired by string theory, it is conjectured that the symplectic geometry
(A-model) of a Calabi-Yau manifold X̌ is equivalent to the complex geom-
etry (B-model) of a mirror Calabi-Yau manifold X and vice versa, which is
known as the mirror symmetry phenomenon. One mathematical formulation
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of this proposed by Kontsevich in [16] is the homological mirror symmetry
(HMS) conjecture, which interprets mirror symmetry as the equivalence of
the derived Fukaya category DFuk(X̌) of X̌ and the derived category of
coherent sheaves Db(X) of the mirror X. Objects of DFuk(X̌) are roughly
speaking Lagrangian submanifolds carrying flat unitary bundles (Lagrangian
A-branes) while objects ofDb(X) are bounded complexes of coherent sheaves
(B-branes). From physical perspectives, branes are boundary conditions for
strings. Kapustin and Orlov pointed out in [15] that, in general, extra objects
called coisotropic A-branes should be added to the Fukaya category for the
HMS conjecture to be true. A coisotropic A-brane is roughly a coisotropic
submanifold whose leaf space admits a holomorphic symplectic structure. In
particular, coisotropic A-branes on a four-torus was studied in [1].

Strominger-Yau-Zaslow [26] proposed a more geometric explanation to
mirror symmetry which is known as the SYZ conjecture. It asserts that, for a
pair of mirror Calabi-Yau manifolds X and X̌, there exist special Lagrangian
torus fibrations p : X → B and p̌ : X̌ → B over the same base manifold B
which are fiberwise dual to each other, at least in the large complex structure
(volume) limit. It was studied extensively, such as [8, 9, 11, 17–19, 22].

Moveover, it is conjectured that HMS can be revealed by the SYZ ap-
proach in the sense that DFuk(X̌) and Db(X) are exchanged by a fibrewise
Fourier-type transformation. The construction of the Fourier transformation
is based on the natural identification between the dual torus Ť and the mod-
uli space of flat U(1)-bundles over T. Suppose we are given a holomorphic
line bundle E → X which is flat along fibers of p : X → B. Then its restric-
tion to each fiber is a flat U(1)-bundle over T and it becomes a point in Ť
under the Fourier transformation. Therefore, family Fourier transformation
takes E to a section of p̌ : X̌ → B which can be shown to be a Lagrangian
submanifold of X̌. This program has been carried out successfully in the
semi-flat case, namely no singular fiber appears in those torus fibrations
[2, 6, 21, 23, 24]. In fact, this approach can be further extended beyond the
semi-flat case [3, 7, 10, 12, 13].

However, a coisotropic A-brane appears as mirror when E is no longer
fiberwise flat. Therefore, we need to define the SYZ transformation which is
a generalization of the fiberwise Fourier transformation. It is motivated by
the Nahm transformation which was used to transform anti-self-dual bundles
on flat four-tori in [5] and [25]. The basic idea is to use spinor bundles and
a family version of kernels of Dirac operators to incorporate coisotropic A-
branes into the SYZ picture.

Furthermore, at the large complex structure (volume) limit, A- and B-
branes are conjectured to be families of Yang-Mills bundles over semi-flat
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submanifolds. It leads us to consider the class of semi-affine branes (see Def-
inition 10). Our main theorem says that in the semi-flat case, if we relax the
fiberwise flatness condition to fiberwise Yang-Mills, then SYZ transforma-
tion still works precisely if we include coisotropic A-branes.

Theorem 1 (Main Theorem). The SYZ transformation exchanges semi-
affine coisotropic A-branes and B-branes between a semi-flat Calabi-Yau
manifold X̌ and its mirror manifold X.

Acknowledgement. The authors thank Kwokwai Chan, Siu-Cheong Lau
and Ziming Nikolas Ma for useful discussions. The work of the second author
was substantially supported by a grant from the Research Grants Council of
the Hong Kong Council of the Hong Kong Special Administrative Region,
China (Project No. CUHK402012).

2. Construction of transformation

2.1. SYZ mirror symmetry for semi-flat Calabi-Yau manifolds

In this section, we will briefly review the SYZ mirror symmetry for the semi-
flat Calabi-Yau manifolds and the construction of the Fourier transformation
on tori which appears in [21, 23]. Details can be also found in [6].

2.1.1. Semi-flat Calabi-Yau manifolds. Let M = Zn be a lattice and
N = Hom(M,Z) be its dual lattice. Define MR = M ⊗Z R and NR = N ⊗Z
R. Let B be an affine manifold such that all transition maps are in MR o
SL(n,Z). We can construct a pair (X, X̌) of mirror Calabi-Yau manifolds
from the tangent and cotangent bundles of B as follows:

Construction of X

Let (x1, . . . , xn) be local affine coordinates of B which induces fiber
coordinates (y1, . . . , yn) of the tangent bundle TB via the base ∂

∂x1
, . . . , ∂

∂xn
.

Since the transition maps of the affine manifold B lie in MR o SL(n,Z), we
have a lattice bundle Λ ⊂ TB which is generated by ∂

∂x1
, . . . , ∂

∂xn
. We define

X to be TB/Λ and then

p : X → B

is a torus fibration over B. Also (x1, . . . , xn; y1, . . . , yn) gives a set of local
coordinates on X which is called a semi-flat coordinate system. Furthermore,
X is a complex manifold with complex coordinates zi = xi +

√
−1 yi and a

holomorphic volume form ΩX := dz1 ∧ . . . ∧ dzn.
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If φ : B → R is a convex function, then

gX =
∑

1≤i,j≤n
φij (dxi ⊗ dxj + dyi ⊗ dyj)

defines a Kähler metric on X and the corresponding Kähler form is

ωX =
∑

1≤i,j≤n
φijdxi ∧ dyj =

√
−1

2

∑
1≤i,j≤n

φijdzi ∧ dz̄j ,

where φij := ∂2φ
∂xi∂xj

.

Construction of X̌

To construct X̌ which is the mirror of X, we consider the cotangent
bundle T ∗B with coordinates (x1, . . . , xn; y1, . . . , yn), where (y1, . . . , yn) are
fiber coordinates induced by dx1, . . . , dxn. Also, dx1, . . . , dxn gives rise to a
lattice bundle Λ∗ ⊂ T ∗B. As a consequence, if we define X̌ to be T ∗B/Λ∗,
we get the dual torus fibration

p̌ : X̌ → B

over B. Also (x1, . . . , xn; y1, . . . , yn) gives a set of coordinates on X̌ which
is called the mirror semi-flat coordinate system. Moreover, X̌ carries a sym-
plectic structure ωX̌ =

∑n
j=1 dxj ∧ dyj .

Furthermore, if φ : B → R is a convex function, then X̌ is a Kähler
manifold with complex coordinates zi = φijxj +

√
−1 yi and Kähler metric

gX̌ =
∑

1≤i,j≤n
φijdxi ⊗ dxj +

∑
1≤i,j≤n

φijdyi ⊗ dyj ,

where (φij) = (φij)−1, such that the Kähler form is exactly ωX̌ .
In summary, we get a pair of torus fibrations p : X → B and p̌ : X̌ → B

which are dual to each other over the same affine manifold B. Furthermore,
if φ satisfies the real Monge-Ampére equation:

det

(
∂2φ

∂xi∂xj

)
= constant,

then one can check easily that X and X̌ are Calabi-Yau manifolds and we
call them a mirror pair of semi-flat Calabi-Yau manifolds.
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2.1.2. Fourier transformation on tori. Let V be a real n-dimensional
vector space and Λ be a lattice in V which gives rise to a torus T := V/Λ. Let
V̌ and Λ̌ be the dual vector space of V and the dual lattice of Λ respectively,
then we can define the dual torus Ť := V̌ /Λ̌. Observe that the moduli space
MT of flat U(1)-bundles over T can be identified with Ť as follows: Given
any point y̌ ∈ Ť with a representative y̌ ∈ V̌ , then y̌ can be regarded as a
constant one-form on T. No matter which representative is chosen,

d− 2π
√
−1 y̌

defines the same connection on the trivial complex line bundle over T. We
denote the connection and the bundle associated by ∇y̌ and Ly̌ respectively.
Then, Ly̌ is a flat U(1)-bundle and the identification of Ť and MT is given
by

y̌ ←→ Ly̌.

In fact, this identification can be encoded in the Poincaré line bundle
P → T× Ť, which is a line bundle possessing an universal property that
P |T×{y̌} ∼= Ly̌ for any point y̌ ∈ Ť. The bundle P can be constructed as the
following: We first choose a linear coordinate system (y1, . . . , yn) of V and
its dual coordinates (y1, . . . , yn) of V̌ , which give local coordinates of T and
Ť. Consider the trivial bundle

L := T× V̌ × C→ T× V̌

with connection

∇L := d− 2π
√
−1

n∑
i=1

yidyi,

then we define a Λ̌-action on L:

λ̌·(y, y̌, v) = (y, y̌ + λ̌, e−2π
√
−1 〈ň,y〉v),

where λ̌ ∈ Λ̌, y ∈ T, y̌ ∈ V̌ and v ∈ C. It is easy to check that this action
preserves the connection ∇L on L. Therefore, the quotient bundle

(2.1) P := L/Λ̌→ T× Ť

is a well defined U(1)-bundle over the product T× Ť with the connection
∇P descended from ∇L. This bundle is called the Poincaré line bundle. The
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curvature of P is given by

(2.2) 2π
√
−1FP = 2π

n∑
i=1

√
−1 dyi ∧ dyi.

Let π and π̌ be the projections of T× Ť on T and Ť respectively. We
can define the Fourier transformation of differential forms between dual tori
by using FP as follows:

Definition 2. The Fourier transformation for differential forms between
dual tori

F : Ω∗(T)→ Ωn−∗(Ť)

is defined by

F(α) := π̌∗(π
∗(α) ∧ e−FP

) =

∫
T
π∗(α) ∧ e−FP

.

Remark 3. The Fourier transformation F in fact descends to be an iso-
morphism

F : H∗(T)→ Hn−∗(Ť).

Furthermore, we can use the Poincaré line bundle P to construct the
Fourier transformation for flat branes on tori.

Definition 4. A flat brane (C,E) on a torus T is a pair of affine subtorus
C of T and a flat unitary bundle E over C. We denote the set of all flat
branes on T by B0(T).

Let (C,E) be a flat brane in T with a flat unitary connection ∇E . For
each point y̌ in Ť, we define Ěy̌ to be the vector space of flat sections of the
bundle π∗E ⊗ P |C×{y̌} with respect to the connection π∗∇E ⊗∇P . We also
define

Č := {y̌ ∈ Ť| Ěy̌ 6= 0} ⊂ Ť.

It can be shown that Č is an affine subtorus in Ť and Ě :=
⊔
y̌∈Č Ěy̌ defines

a flat unitary bundle over Č. Then, we have the following definition:

Definition 5. The Fourier transformation

F : B0(T)→ B0(Ť)

is defined by F(C,E) = (Č, Ě).
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In fact, the flat unitary bundle E can be split orthogonally into a direct
sum of flat unitary line bundles. In case that E is a flat unitary bundle, the
Fourier transformation can be explicitly written down in local coordinates.
If the lifting of an affine subtorus C in V is given by

(2.3) {y ∈ V : yk+1 = bk+1, . . . , yn = bn}

and

(2.4) ∇E = d− 2π
√
−1

k∑
j=1

bjdyj

with respect to some trivialization of E, then Č can be described by the
lifting

(2.5) {y̌ ∈ V̌ : y1 = b1, . . . , yk = bk}

and the flat U(1)-connection ∇Ě on Ě is

(2.6) ∇Ě = d− 2π
√
−1

n∑
j=n−k+1

bjdy
j

with respect to some suitable trivialization of Ě.

Remark 6. From (2.3) and (2.5), it can be seen easily that C and Č are
of complementary dimensions.

This transformation for flat branes in fact descends to the Fourier trans-
formation F under the Chern character map ch:

B0(T)
F−−−−→ B0(Ť)ych ych

H∗(T)
F−−−−→ Hn−∗(Ť)

Conversely, one can also define the map

F̌ : B0(Ť) −→ B0(T)

by regarding ˇ̌T = T. Then, F ◦ F̌ and F̌ ◦ F are identity maps.
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2.1.3. Fiberwise Fourier transformation for semi-flat Calabi-Yau
manifolds. Let X and X̌ be a pair of mirror semi-flat Calabi-Yau mani-
folds. Then the fiber product X ×B X̌ can be regarded as a family of product
of T× Ť parametrized over the base B. In particular, branes that are fami-
lies of flat branes on tori are called semi-flat branes. Under fiberwise Fourier
transformation, semi-flat A- and B-branes in X are transformed to semi-flat
B- and A-branes in X̌ respectively.

For instance, if E is a fiberwise flat unitary bundle over X, then (X, E)
is a semi-flat B-brane in X. From Remark 6, since the restriction of X on
any fiber torus is the whole fiber, the corresponding A-brane obtained must
be a Lagrangian section with a fiberwise flat unitary bundle over it. How-
ever, Kapustin and Orlov in [15] constructed an example of B-brane which
is a four-torus with a non-fiberwise flat U(1)-bundle, but the correspond-
ing A-brane is the mirror four-torus which is coisotropic (see example 20).
Therefore, in order to include this case, we have to generalize the Fourier
transformation in Definition 2.1.2.

2.2. SYZ transformation on tori

In this section, we are going to construct the SYZ transformation which is
motivated by the Nahm transformation (see [5] and [25]) Simply speaking,
besides twisting the Poincaré bundle, a spinor bundle is also twisted to give
extra information.

Definition 7. A constant curvature brane (or simply brane) on a torus T
is a pair (C,E), where C is an affine subtorus of T and E is a projectively
flat unitary bundle over C such that the curvature is 2π

√
−1FE · IE , where

FE is a constant real two form on C. The set of all branes on a torus T is
denoted by B(T).

A flat brane on T may be regarded as a brane on T with FE = 0 and
hence B0(T) ⊂ B(T). Note that

V0 := {X ∈ TC : ιXF
E = 0 ∈ T ∗C}

defines a subbundle of TC. The metric on T induces a metric on C and
so TC can be decomposed as TC = V0 ⊕ V ⊥0 , where V ⊥0 is the orthogonal
complement of V0. Then V ⊥0 associates a spinor bundle S over C. Further-
more, the restriction of the Levi-Civita connection of TC on V ⊥0 induces a
connection ∇S on S. As a result, ∇S⊗E := ∇S ⊗∇E defines a connection on
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S ⊗ E over C, where ∇E is the unitary connection of E. We define Γ(S ⊗ E)
to be the space of sections of S ⊗ E and define

Γ(S ⊗ E)V0 := {s ∈ Γ(S ⊗ E) : ∇S⊗EX s = 0 for all X ∈ Γ(V0)}

to be the space of smooth invariant sections along V0, where Γ(V0) is the
space of sections of V0. Furthermore, by using ∇S⊗E , we associate the Dirac
operator

D : Γ(S ⊗ E)V0 → Γ(S ⊗ E)V0 .

We claim that kerD is finite dimensional, see Proposition 21. Following
the idea of the construction of the Fourier transformation, if kerD is nontriv-
ial, we twist the pullback of S ⊗ E over C × Ť ⊂ T× Ť with the Poincaré
bundle defined by (2.1), then for any y̌ ∈ Ť, we construct the induced Dirac
operator

(2.7) Dy̌ : Γ(π∗(S ⊗ E)⊗ P |C×{y̌})V0 → Γ(π∗(S ⊗ E)⊗ P |C×{y̌})V0 ,

where π and π̌ are projections of T× Ť on T and Ť respectively. We claim
that the kerDy̌ is finite dimensional. Furthermore,

Č := {y̌ ∈ Ť : kerDy̌ is nontrival}

defines an affine subtorus of Ť and

Ě :=
⊔
y̌∈Č

kerDy̌

defines an projectively flat unitary bundle over Č. Hence, (Č, Ě) is a brane
in Ť and we can define

Definition 8. The SYZ-transformation FSY Z : B(T)→ B(Ť) is defined by

FSY Z(C,E) = (Č, Ě).

Remark 9. In particular, if (C,E) is a flat brane on torus, then FE = 0.
In this case, V0 = TC and so S ⊗ E is just E. Then, we have

FSY Z(C,E) = F(C,E),

and hence the SYZ transformation in Definition 8 can be regarded as a
generalization of the Fourier transformation in Definition 5.
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2.3. Fiberwise SYZ transformation for semi-flat Calabi-Yau
manifolds

As the SYZ transformation is a generalization of the Fourier transformation,
it is expected that the family version of the SYZ transformation is able to
transform a larger class of branes, which are called semi-affine branes.

Let X be a semi-flat Calabi-Yau manifold and p : X → B is a torus
fibration over an affine manifold B.

Definition 10. A semi-affine brane is a pair (C, E), where

1) C is a submanifold in X such that p|C : C → p(C) is a torus bundle with
each fiber over x ∈ p(C) being an affine subtorus of p−1(x).

2) E is a projectively flat unitary bundle over C such that the curvature
of E is constant along any fiber of the fibration p|C : C → p(C).

The set of all semi-affine branes in X is denoted by B(X).

Basically, a semi-affine brane is a family of branes in Definition 7. There-
fore, the family version of the transformation in Definition 2.3 associates the
SYZ transformation

FSY Z : B(X)→ B(X̌),

see Theorem 26. Furthermore, we can show that (FSY Z)2 is the identity
map, see Theorem 38. Comparing to the Fourier transformation, the SYZ
transformation incorporates the spinor bundle. It is worth to note that even
the spinor bundle is trivial along torus fibers, it is a nontrivial bundle over
the semi-affine branes which provides extra information to transform a larger
class of objects.

Recall that if (X,ω) is a symplectic manifold and C is a submanifold of
X, we define TCω to be the orthogonal complement of TC in TX with respect
to the symplectic structure ω. The submanifold C is said to be Lagrangian
if TCω = TC and coisotropic if TCω ≤ TC. For a coisotropic submanifold C,
the subbundle TCω ≤ TC is an integrable distribution and hence it induces
a foliation for C by the Frobenius theorem. We call TCω the tangent bundle
of this foliation and

NC := TC/TCω

the normal bundle of this foliation. Note that the symplectic structure ω
induces an invertible bundle map ω : NC → NC∗ with inverse ω−1.
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Definition 11. A coisotropic A-brane on a symplectic manifold (X,ω) is
a pair (C, E), where C is a coisotropic submanifold of X and E is a unitary
line bundle over it, such that

1) The curvature two-form F of E , regarded as a bundle map F : TC →
TC∗, annihilates TCω. This induces a bundle map F : NC → NC∗.

2) The composition J := ω−1 ◦ F gives a complex vector bundle structure
on NC, i.e., J2 = −I.

Remark 12. In general, if we consider the mirror brane in X̌ of a brane
in X which is not semi-flat, then the ranks of the attached bundles may be
different. Therefore, we slightly generalize the definition given by Kapustin
and Orlov in [15] and allow E to be a projectively flat unitary bundle.

Definition 13. A B-brane on a complex manifold X is a pair (C, E), where
C is a submanifold of X and E is a unitary bundle over C satisfying that

1) C is a complex submanifold, of X;

2) E is a projectively flat unitary bundle satisfying that the (0, 1)-part of
its connection ∇E gives a holomorphic structure on E .

With the above definitions, we are ready to state the main result of this
paper as follows

Theorem 14 (Main Theorem). The fiberwise SYZ transformation FSY Z
transforms a semi-affine coisotropic A-brane to a semi-affine B-brane and
vice versa.

Remark 15. Following from Remark 9, the SYZ transformation is a gen-
eralization of the Fourier transformation which also transforms a semi-flat
Lagrangian A-brane to a semi-flat B-brane and vice versa.

3. Explicit computations

In fact, the SYZ transformation on a pair of dual tori or mirror semi-flat
Calabi-Yau manifolds can be written down explicitly by choosing normalized
coordinates as we explain below.
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3.1. SYZ transformation on tori

Let V be a n-dimensional real vector space and Λ be a lattice in V . Then
the quotient V/Λ gives a torus T. Let (C,E) be a brane in the torus T.
Note that E is a projectively flat unitary bundle over the affine subtorus C
such that the curvature is 2π

√
−1FE · IE , where FE ∈ Ω2(C,R). Since FE

can be regarded as a two form on the universal cover C̃ of C,

(3.1) C̃0 := {w ∈ C̃ : ιwF
E = 0}

defines an affine subspace of V and C̃0/(C̃0 ∩ Λ) defines a subtorus C0 of
C. Note that the codimension of C0 in C must be even, we can choose
coordinates of T ⊃ C ⊃ C0 as

(3.2) (u,y,v) = (u1, . . . , us, y1, . . . , y2r, v1, . . . , vk)

such that

(3.3) C = {(u,y,v) : u = b}

for some b = (b1, . . . , bs) ∈ Rs and

(3.4) ∇E = d+ 2π
√
−1

(
−b̌ dvT +

1

2
yAdyT

)
· IE ,

where b̌ = (b1, . . . , bk) ∈ Rk, dv = (dv1, . . . , dvk), dy = (dy1, . . . , dy2r) and

(3.5) A = diag

{[
0 a1

−a1 0

]
, . . . ,

[
0 ar
−ar 0

]}
which is a (2r)× (2r)-matrix with the listed block matrices on the diagonal
and a1, . . . , ar are nonzero real numbers. Then we have

(3.6) FE =
1

2
dy ∧A ∧ dyT .

Similarly, we can write down the dual brane (Č, Ě) by choosing a set of
normalized coordinates explicitly:
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Proposition 16. The dimensions of Č and Č0 are given by

dim Č0 = codim(C) and dimC0 = codim(Č).

Furthermore, there exists a set of normalized coordinates of Ť ⊃ Č ⊃ Č0 as

(3.7) (ǔ, y̌, v̌) = (u1, . . . , uk, y1, . . . , y2r, v1, . . . , vs)

such that

Č = {(ǔ, y̌, v̌) : ǔ = b̌}(3.8)

∇Ě = d+ 2π
√
−1

(
−b dv̌ +

1

2
y̌A−1dy̌T

)
· IĚ(3.9)

and so

(3.10) F Ě =
1

2
dy̌ ∧A−1 ∧ dy̌T .

Moreover, by Proposition 21, the rank of Ě equal to∫
C
ch(E).

Example 17. Let T be a two dimensional torus and let (C,E) be a brane
in T such that C = T and E is a U(1)-bundle over C with connection

∇E = d+ π
√
−1 (y1dy2 − y2dy1).

Then, we have

FE = dy1 ∧ dy2,

In this case, C0 = {∗} and Č = Ť. Also Ě is a U(1)-bundle over Č with

∇Ě = d+ π
√
−1 (−y1dy2 + y2dy1)

and

F Ě = −dy1 ∧ dy2.
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Example 18. If the connection ∇E in example 17 is changed such that

FE = 2dy1 ∧ dy2,

then Č is still the dual torus Ť. However, Ě is a projectively flat unitary
bundle with rank 2 and

F Ě = −1

2
dy1 ∧ dy2.

3.2. SYZ transformation on semi-flat Calabi-Yau manifolds

Let X and X̌ be a pair of mirror semi-flat Calabi-Yau manifolds, where
p : X → B and p̌ : X̌ → B are torus and dual torus fibrations over an affine
manifold B, see the construction in Section 2.1.1.

Let (C, E) be a semi-affine brane in a semi-flat Calabi Yau manifold X.
In order to describe C locally, we choose an open set U ∼= Rm such that
U ⊂ p(C) ⊂ B and we define Tx := p−1(x) to be the fiber torus over x ∈ U .
From the Definition 10, Cx := Tx ∩ C is an affine subtorus in Tx and

CU =
⊔
x∈U
Cx ∼= U × C,

where C is a torus.
Furthermore, the restriction of F E on Cx is a constant two form, so it

defines a subtorus C0,x in Cx as (3.1) and

C0,U :=
⊔
x∈U
C0,x
∼= U × C0,

where C0 is a subtorus of C with even codimension.
We choose normalized coordinates, as in (3.2), of p−1(U) ∼= U ×T as

(x; u,y,v) = (x1, . . . , xn;u1, . . . , us, y1, . . . , y2r, v1, . . . , vk),

with (u,y,v) as normalized coordinates on T ⊃ C ⊃ C0. Under this set of
coordinates,

(3.11) CU = {(x; u,y,v) : u = g(x)}
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for some function g(x) with valued in Rs, spanned by ui’s coordinates. The
connection of E is

(3.12) ∇E = d+ 2π
√
−1

(
α− ǧdvT +

1

2
yAdyT − fdyT

)
· IE ,

for some α = α(x) ∈ Ω1(U,R), f = f(x) and ǧ = ǧ(x) are some functions
and

A = diag

{[
0 a1

−a1 0

]
, . . . ,

[
0 ar
−ar 0

]}
for some nonzero real numbers a1, . . . , ar. Furthermore,

(3.13) F E = dα− dǧT ∧ dv +
1

2
dy ∧A ∧ dyT − df ∧ dyT .

Then, the dual semi-affine brane in X̌ (Č, Ě) can be written down ex-
plicitly:

Proposition 19. There exists a set of fiberwise dual normalized coordinates

(3.14) (x; ǔ, y̌, v̌) = (x1, . . . , xn;u1, . . . , uk, y1, . . . , y2r, v1, . . . , vs)

on p̌−1(U) ∼= U × Ť such that

(3.15) ČU := {(x; ǔ, y̌, v̌) : ǔ = ǧ(x)},

and

∇Ě = d+ 2π
√
−1

(
α− gdv̌T +

1

2
(y̌ + f)Ad(y̌ + f)T

)
· IĚ(3.16)

= d+ 2π
√
−1

(
α̌− ǧdv̌T +

1

2
y̌A−1dy̌T − f̌dy̌T

)
· IĚ

with

F Ě = dα− dg ∧ dv̌T +
1

2
d(y̌ + f) ∧A ∧ d(y̌ + f)T(3.17)

= dα̌− dǧ ∧ dv̌T +
1

2
dy̌ ∧A−1 ∧ dy̌T − df̌ ∧ dy̌T .

where α̌ = α+ 1
2(y̌ + f)A−1dfT ∈ Ω1(U,R) and f̌(x) = −1

2 fA−1.
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Example 20. Let B = T2 be a 2-torus with affine coordinates (x1, x2).
Then X = B ×T2 and X̌ = B × Ť2 is a mirror pair with semi-flat coordi-
nates (x1, x2, y1, y2) and (x1, x2, y

1, y2) respectively. The following examples
can be regarded as the family version of the example 17 which transform
semi-affine B-branes in X to semi-affine coisotropic A-branes in X̌ under
fiberwise SYZ transformation:

1) If (C1, E1) is a semi-affine B-brane in X, where C1 = X and E1 is a
U(1)-bundle over C1 with curvature 2π

√
−1F E and

F E = dx1 ∧ dx2 + dy1 ∧ dy2.

Then, its mirror (Č1, Ě1) is a semi-affine coisotropic A-brane in X̌,
where Č1 = X̌ and Ě1 is a line bundle with

F Ě1 = dx1 ∧ dx2 − dy1 ∧ dy2.

2) If (C2, E2) is a semi-affine B-brane in X, where C2 = X and E2 is the
trivial line bundle with

∇E2 = d+ 2π
√
−1

(
1

2
(x1dx2 − x2dx1) +

1

2
(y1dy2 − y2dy1)− f1dy1 − f2dy2

)
,

where f1 and f2 are functions on B. Moreover,

F E2 = (dx1 ∧ dx2)− (df1 ∧ dy1 − df2 ∧ dy2) + dy1 ∧ dy2.

Then, its mirror (Č2, Ě2) is a semi-affine coisotropic A-brane in X̌,
where Č2 = X̌ and Ě2 is the U(1)-bundle with

F Ě2 = (dx1 ∧ dx2 − df1 ∧ df2) + (df1 ∧ dy2 − df2 ∧ dy1)− dy1 ∧ dy2.

4. Proof

4.1. Kernel of Dirac operator

In this section, we will study the Dirac operator defined on torus.

Proposition 21. Let (C,E) be a brane on a torus T and let D : Γ(S ⊗
E)V0 → Γ(S ⊗ E)V0 be the Dirac operator defined on T. Then kerD 6= 0 if
and only if E|C0

is trivial. When this happens, one has

dim(kerD) =

∫
C
ch(E).
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Proof. We will first compute dim(kerD) when FE is non-degenerate and
then show the general situation can be reduced to this case.

Firstly, if FE is a non-degenerate two-form, dimC must be even, say 2r.
Therefore, the spinor bundle S = S+ ⊕ S− and the Dirac operator has the
form

D =

[
0 D−
D+ 0

]
.

We will show that kerD− vanishes and this proposition follows from the
Atiyah-Singer Index Theorem.

We choose an orthonormal frame {e1, . . . , en} of the tangent bundle T (T)
with dual frame {ω1, . . . , ωn}, such that

F E = λ1ω1 ∧ ω2 + · · ·+ λrω2r−1 ∧ ω2r

for some positive real numbers λ1, . . . , λr. Then the Lichnerowicz Formula
gives:

(4.1) D2 = ∇∗∇+

r∑
i=1

2π√
−1

λie2i−1e2i· ,

where ∇ denotes the connection of the spinor bundle S ⊗ E and ‘ · ’ denotes
the Clifford multiplication.

Remark 22. Since C is a flat torus, the spinor bundle S ∼= C × C2r

is
trivial with trivial connection. To simplify our notations, we use ∇ to denote
both connections of the bundles ∇E and ∇S⊗E when no confusion occurs.
Readers may refer to Appendix 5.1 for the details of spinor bundles and
Clifford multiplications.

Lemma 23. Let λ be the first eigenvalue of the operator

∇∗∇ : Γ(E)→ Γ(E),

then λ ≥ 2π
∑r

i=1 λi.

Proof. Suppose λ <
∑r

i=1 λi. Then there exists an non-zero section α ∈ Γ(E)
such that

∇∗∇α = 2πλα.

For each I = (ι1, . . . , ιr) ∈ Υ := {(1,−1)}r, we define

χI := χι1 ⊗ · · · ⊗ χιr ∈
r
⊗C2,
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where χ1 =

[
1
0

]
and χ−1 =

[
0
1

]
.

Suppose that I0 = (1, 1, . . . , 1) ∈ Υ, then η = χI0 ⊗ α is a nonzero sec-
tion of S ⊗ E which satisfies

∇∗∇η = 2πλη

since S is a trivial bundle with fiber
r
⊗C2 . Using (4.1),

D2η = 2π

(
λ−

r∑
i=1

λi

)
η.

This is a contradiction as λ <
∑r

i=1 and D2 is an non-negative operator. �

As FE is non-degenerate, we have V ⊥0 = TC and so Γ(S ⊗ E)V0 is simply
Γ(S ⊗ E).

Lemma 24. For any s ∈ kerD ⊂ Γ(S ⊗ E), s must be in the form of

s = χI0 ⊗ α,

where α is a section of E satisfying that ∇∗∇α = 2π(
∑r

i=1 λi)α.

Proof. Suppose that s ∈ kerD ⊂ Γ(S ⊗ E) and

s =
∑
I∈Υ

χI ⊗ αI

for some sections αI ∈ Γ(E). By plugging it into (4.1), we obtain∑
I∈Υ

χI ⊗ (∇∗∇αI − 2πµIαI) = 0,

where µI =
∑r

i=1 ιiλi. Therefore,

(4.2) ∇∗∇αI = 2πµIαI

for all I ∈ Υ. However,

µI < µI0 = 2π

r∑
i=1

λi
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for any I 6= I0 since λi > 0 for all i. By Lemma 23, αI = 0 for I 6= I0 and so

s = χI0 ⊗ αI0

with

∇∗∇αI0 = 2π

r∑
i=1

λiαI0

by (4.2). �

An immediate consequence is kerD− = 0 because χI0 ⊗ αI0 ∈ S+. By
the Atiyah-Singer Index Theorem, we have

dim(kerD) =

∫
C
ch(E)

In the general case, the subbundle

V0 = {X ∈ TC : ιXF
E = 0 ∈ T ∗C} ≤ TC

is integrable since FE is a constant two-form.
Since C0 is an affine subtorus of C, we can choose a complementary

affine subtorus C1 to get a decomposition

C = C1 × C0.

Suppose that φ1 : C → C1 and φ0 : C → C0 are projection maps. Note
that the bundles E and φ∗1(E|C1

) have the same rank and curvature.

Lemma 25. Let E and E′ be two projectively flat unitary bundles over a
torus C with the same rank and curvature. Suppose that E is irreducible,
then E and E′ differ by tensoring with a flat U(1)-bundle.

Proof. For simplicity, we assume that rank E = 2. Clearly, E ′ ⊗ E∗ is a flat
unitary bundle. Therefore,

E ′ ⊗ E∗ ∼=
4
⊕
i=1
Li

for four flat U(1)-bundles Li. Similarly, we also have

E∗ ⊗ E =
4
⊕
i=1
L′i
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for another four flat U(1)-bundles L′i. Therefore,

(4.3)
4
⊕
i=1

(E ⊗ Li) = E ′ ⊗ E∗ ⊗ E =
4
⊕
i=1

(E ′ ⊗ L′i).

We obtain two decompositions for the bundle E ′ ⊗ E∗ ⊗ E . For this bundle,
there must be at least one non-zero map among the orthogonal projections
from E ⊗ Li to E ′ ⊗ L′1 for 1 ≤ i ≤ 4. Without loss of generality, assume that
the map

φ : E ⊗ L1 → E ′ ⊗ L′1
is non-zero. We claim that φ is actually a unitary bundle isomorphism up
to a constant.

Let p be an arbitrary point in T and V be the fiber of the bundle
E ′ ⊗ E∗ ⊗ E with the holonomy group G acting on it. According to 4.3, the
representation of G on V has two decompositions ⊕4

i=1Vi and ⊕4
i=1V

′
i . Note

that the decomposition V = ⊕4
i=1Vi is irreducible since E is irreducible. Note

that the linear map

φ : V1 → V ′1

induced by the projection φ is a homomorphisms of representations. More-
over, φ is a non-zero map and V1 and V ′1 have the same dimension, so φ
is actually an isomorphism of representations by Schurs lemma. Hence, by
Schurs lemma again, one can prove that there exists a positive number c(p)
such that c(p) · φ preserves the Hermitian metrics on the fiber over the point
p.

On the other hand, it is easy to see that φ preserves the connections, by
letting c(p) to be a constant c independent of p, then c · φ gives a unitary
bundle isomorphism which completes the proof. �

By the above lemma and the fact that any flat U(1)-bundle on C =
C1 × C0 is of the form

φ∗1L1 ⊗ φ∗0L0

where L1 and L0 are some flat U(1)-bundles over C1 and C0. As a result,

E = φ∗1(E|C1
)⊗ (φ∗1L1 ⊗ φ∗0L0)

= φ∗1(E|C1
⊗ L1)⊗ φ∗0L0

Hence if we let E1 := E|C1
⊗ L1 and E0 := L0, then we can decompose E as

E = φ∗1E1 ⊗ φ∗0E0

such that the curvature of E1 is non-degenerate and E0 is flat.
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We claim that E0 is trivial. Otherwise, Γ(S ⊗ E)V0 is nontrivial and
there exists a non-zero section

s =
∑
I∈Υ

χI ⊗ αI ∈ Γ(S ⊗ E)V0

for some sections αI ∈ Γ(E). Since s is nonzero, there exists nonzero αI for
some I, which contradicts to the assumption that E0 is nontrivial.

As a result, E = φ∗1E1. Let S1 be the spinor bundle of C1 associated by
the tangent bundle TC1 and let

D1 : Γ(S1 ⊗ E1)→ Γ(S1 ⊗ E1)

be the corresponding Dirac operator. Note that S ∼= φ∗1S1, so we have the
bundle isomorphism

S1 ⊗ E1
∼= φ∗1(S1 ⊗ E1)

and it induces an isomorphism Γ(S1 ⊗ E1) ∼= Γ(S ⊗ φ∗1E1)V0 which is defined
by

s 7→ φ∗1s.

This map gives an isomorphism between kerD1 and kerD. Hence, dimD =
dimD1 and the general situation reduces to the non-degenerate case which
finishes the proof Proposition 21. �

4.2. Transformation of semi-affine branes

The main goal of this section is proving the following:

Theorem 26. The fiberwise SYZ transformation FSY Z transforms a semi-
affine brane in X to be a semi-affine brane in X̌.

Since FSY Z is defined fiberwisely, we can prove this theorem locally on
base. Without loss of generality, we assume that X ∼= B ×T where B is a
convex subset of Rn, then we have:

Proposition 27. Let (C, E) be a semi-affine brane on X. Then there exists
a decomposition of the torus T as a product of subtori C2 × C1 × C0 and
a semi-flat coordinate system (x; u,y,v) of X ∼= B × C2 × C1 × C0 which
satisfies:
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1)

C = {(x; u,y,v)| x ∈ p(C), u = g(x)}

for some vector valued function g(x) on p(C).

2)

E ∼= Eb ⊗ Em ⊗ Ef

for three bundles Eb, Em and Ef over C such that:
(i) Eb is the pull back of a U(1)-bundle over p(C) with curvature

2π
√
−1Fb.

(ii) Em = C× C with connection form

2π
√
−1

(
fdyT + ǧdvT

)
for two vector valued functions f and ǧ on p(C). We denote the
corresponding curvature by 2π

√
−1Fm.

(iii) Ef is the pull back of a projectively flat unitary bundle over C1 with
curvature to be 2π

√
−1Ff · IEf where

Ff =
1

2
dy ∧A ∧ dyT

and A = diag

{[
0 a1

−a1 0

]
, . . . ,

[
0 ar
−ar 0

]}
is a constant matrix

with ai ∈ R\{0}.

Proof. Recall the definition of a semi-flat submanifold that, if p : X ∼= B ×
T→ B is the projection map, then the restriction map p|C : C → p(C) gives
a torus fibration. Hence C can be regarded as a family of affine subtori of
T which gives a continuous family of homology classes in H∗(T,Q). Since
H∗(T,Q) is totally disconnected, this family actually gives only one homol-
ogy class in H∗(T,Q), which means C is homotopic to C for some subtorus C
in T. Then we can choose a subtorus C2 which is complementary to C in T
so that X ∩ p−1(p(C)) = p(C)× C2 × C with a semi-flat coordinate system
(x; u,w) and C is given by

C = {(x; u,w) : u = g(x)}

for some vector valued function g(x). Furthermore, the cohomology class of
F E can be represented by a constant two-form Ff on C. After carrying out
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a suitable coordinate change, we may assume that

Ff =
1

2
dw ∧ Ã ∧ dwT

where

Ã = diag{A,0} and A = diag

{[
0 a1

−a1 0

]
, . . . ,

[
0 ar
−ar 0

]}
where a1, . . . , ar are nonzero real numbers. So we can further decompose
coordinates w = (y,v) such that

Ff =
1

2
dw ∧ Ã ∧ dwT =

1

2
dy ∧A ∧ dyT .

Since [F E ] = [Ff ], one has F E − Ff = dα for some one form α on C.
Moreover, both F E and Ff are semi-affine forms, so α can be chosen to be
a semi-affine form which can be expressed as

α = fdyT + ǧdv + αb

where f = f(x) and ǧ = ǧ(x) are vector valued functions on p(C) and αb is
the pull back of some one-form on p(C). It then follows that

F E = dαb + (df ∧ dyT + dǧ ∧ dvT ) +
1

2
dy ∧A ∧ dyT

=: Fb + Fm + Ff .

Since C is homotopic to T by our assumption, we can construct three
bundles Eb, Em, Ef with curvatures as stated in the proposition and the
curvature of the bundle Eb ⊗ Em ⊗ Ef over C equals to a multiple of the
two-form 2π

√
−1F E . Then the result just follows from the family version of

Lemma 25. �

The Proposition 27 gives a decomposition of F E into the base part Fb,
the fiber part Ff and the mixed part Fm. With the above, we are ready to
come back:

Proof of Theorem 26. Note that p|C : C → p(C) is in fact a Riemannian fiber
bundle (see Section 5.2). In other words, C =

⊔
x∈p(C) Cx is a family of flat
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tori. Let

VC =
⊔

x∈p(C)

T (Cx)→ C

be the vertical tangent bundle of this Riemannian fiber bundle and let

V0 := {X ∈ VC : ιXF
E = 0 ∈ V∗C}

be a subbundle of VC . Then V⊥0 associates a spinor bundle /S → C which can
be regarded as a family of spinor bundles over the family of tori {Cx : x ∈
p(C)} (see Section 5.2). Furthermore, let π : X ×B X̌ → X and π̌ : X ×B
X̌ → X̌ be projection maps, we can define the Dirac operator /D which is
parametrized by points (x, y̌) ∈ X̌ = B × Ť

/D(x,y̌) : Γ(π∗(/S ⊗ E)⊗ P|Cx×{y̌})
V0|Cx → Γ(π∗(/S ⊗ E)⊗ P|Cx×{y̌})

V0|Cx ,

which is a family version of the one in (2.7). Then

Č := {(x, y̌) ∈ X̌ : ker /D(x,y̌) 6= 0},

Note that Cx is nonempty if and only if x ∈ p(C). Therefore, by Proposi-
tions 21 and 27,

Č = {(x; ǔ, v̌, w̌) : x ∈ p(C), ǔ = ǧ(x)}

defines a semi-affine submanifold in X̌ and Ě is a bundle over Č, where
Ěx = ker /D(x,y̌).

What remains to show is that the curvature of Ě is constant along any
fiber of the fibration p|C : C → p(C). The computation is divided into two
cases, the special case C = X and the general case:

(i) special case C = X

We begin from the case that C = X and the curvature of E is non-
degenerate along each fiber. In this case, dimCX = n = 2r is even and

V := V⊥0 = VC =
⊔
x∈B

T (Tx),

so the fiber coordinates of X in Proposition 27 only consist of y and we have
E ∼= Eb ⊗ Em ⊗ Ef , where

(i) Eb is the pull back of a U(1)-bundle over p(C) with curvature 2π
√
−1Fb;
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(ii) Em = C× C is a U(1)-bundle with connection 2π
√
−1 fdyT where f(x)

is a vector valued function on B;

(iii) Ef is a pull back of a projectively flat bundle over the fiber T with
curvature 2π

√
−1Ff · IEf , where

Ff =
1

2
dy ∧A ∧ dyT

for a constant invertible matrix

A = diag

{[
0 a1

−a1 0

]
, . . . ,

[
0 ar
−ar 0

]}
.

Suppose that (x; y̌) is the semi-flat coordinates in X̌ mirror to (x; y).
For our convenience, we perform a change of coordinates which is replacing
y̌ + f by y̌. Then

(4.4) (x; y, y̌) = (x1, . . . , xn; y1, . . . , yn, y
1, . . . , yn)

gives a set of coordinates of X ×B X̌.

Remark 28. The reason of performing this change of coordinates can be
seen from the equation (3.17).

We first investigate the connection of Ě . Note that Ě is a subbundle of
the bundle

Γ(π∗(/S ⊗ E)⊗ P|Cx×{y̌})
V0|Cx = Γ(π∗(/S ⊗ E)⊗ P|T×{y̌})→ H→ X̌.

A section s of H can also be regarded as a section of π∗(/S × E)⊗ P. There-
fore, H equips a connection which is defined by

∇Hv s := ∇v̂s,

where v is a vector field on X̌ with a lift v̂ via the connection of the Rie-
mannian fiber bundle π : X ×B X̌ → X̌.

Remark 29. A connection for a Riemannian fiber bundle π : M → B with
a vertical tangent bundle V in TM is a choice of splitting TM = V ⊕H. In
our case, the connection is induced by the Riemannian metric of X ×B X̌.
See Section 5.2 for more details.
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Since Ě is a subbundle of H, it has connection P∇H where P : H → Ě
is the orthogonal projection map. To calculate the curvature of Ě , we let

{ϕ1
(x,y̌)(y), . . . , ϕm(x,y̌)(y)}

be an orthonormal framing of Ě , where m is the rank of Ě . For simplicity,
we denote ϕp(x,y̌)(y) as ϕp. Then the connection matrix of ker /D is

Ǎpq := 〈ϕp, P∇Hϕq〉L2 = 〈ϕp,∇Hϕq〉L2 ,

where 〈·, ·〉L2 to denote the L2 metric of the infinity dimensional vector
bundle H. Then the calculation in [5] shows that the curvature

2π
√
−1F Ěpq = ďǍpq +

∑
k

Ǎpk ∧ Ǎkq

= 〈ϕp,∇H∇Hϕq〉L2 + 〈(Id− P )∇Hϕp,∇Hϕq〉L2

where ď is the exterior derivative of X̌. The Dirac operator /D(x,y̌) is simply
denoted by /D when no confusion occurs and we let G be the corresponding
Green’s operator, which is a self-adjoint operator satisfying

Id = P + /DG/D.

Therefore,

2π
√
−1F Ěpq = 〈ϕp,∇H∇Hϕq〉L2 + 〈G/D∇Hϕp, /D∇Hϕq〉L2

=: I + J

Note that for any two vector fields v, w of X̌ with lifts v̂, ŵ to X ×B X̌, we
have

I(v, w) = 〈ϕp,∇H∇H(v, w)ϕq〉L2

= 2π
√
−1F π

∗(/S⊗E)⊗P(v̂, ŵ)

= I/S ⊗ 2π
√
−1F π

∗E⊗P(v̂, ŵ) + 2π
√
−1F /S(v̂, ŵ)⊗ Iπ∗E⊗P

=: I1(v, w) + I2(v, w).
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We decompose J = Jb + Jm + Jf to be a sum of the base part, the mix part
and the fiber part, where

Jb : =
∑

1≤i,j≤n
〈G/D∇ ∂

∂xi

ϕp, /D∇ ∂

∂xj

ϕq〉L2dxi ∧ dxj

Jm : =
∑

1≤i,j≤n
〈G/D∇ ∂

∂xi

ϕp, /D∇ ∂

∂yj
ϕq〉L2dxi ∧ dyj

+
∑

1≤i,j≤n
〈G/D∇ ∂

∂yi
ϕp, /D∇ ∂

∂xj

ϕq〉L2dyi ∧ dxj

Jf : =
∑

1≤i,j≤n
〈G/D∇ ∂

∂yi
ϕp, /D∇ ∂

∂yj
ϕq〉L2dyi ∧ dyj .

Hence,

(4.5) 2π
√
−1F Ěpq = I1 + I2 + Jb + Jm + Jf

while we have the following lemma:

Lemma 30. If 2π
√
−1F Ěpq is decomposed as a sum of terms as in (4.5),

then

1) I1 = 2π
√
−1 δpqFb;

2) I2 + Jb = 0;

3) Jf = 2π
√
−1 δpq

(
1
2dy̌ ∧A

−1 ∧ dy̌T
)
;

4) Jm = 0.

An immediate result from this lemma that

F Ě = Fb +
1

2
dy̌ ∧A−1 ∧ dy̌T

which is constant along any fiber of the fibration p|C : C → p(C). The proof
of Lemma 30 will be deferred to the next section.

(ii) general case

For the general situation, we recall that the identification

Γ(S1 ⊗ E1) ∼= Γ(S ⊗ π∗1E1)V0
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which is also true for the family case. Hence we can apply the same method
and obtain a decomposition

2π
√
−1 F̌pq = I1 + I2 + Jb + Jm + Jf

as before. The only difference is the term I1 which is now given by

I1 = 2π
√
−1 δpq(Fb + dg ∧ v̌).

Furthermore, note that

FP |C×p(C)X̌
= dg ∧ dv̌T + dy ∧ dy̌T + dv ∧ dǔT ,

so there is an extra term

I1(
∂

∂x
,
∂

∂v
) =

〈
ϕp,

(
IS ⊗ 2π

√
−1F π

∗E⊗P
(
∂

∂x
,
∂

∂v

))
ϕq
〉
L2

= 2π
√
−1 δpq dg ∧ dv̌

(
∂

∂x
,
∂

∂v

)
.

As a result, we have

F Ě = Fb + dg ∧ v̌ +
1

2
dy ∧A−1 ∧ dyT .

Finally, we recall that we have used a change of coordinates which is replac-
ing y̌ + f by y̌. If we express F Ě in the original semi-flat coordinates, then
we have

F Ě =

(
Fb +

1

2
df ∧A−1 ∧ df

)
+ (dg ∧ v̌ + df ∧A−1 ∧ dy̌T )

+
1

2
dy̌ ∧A−1 ∧ dy̌T .

Therefore, the restriction of F Ě is constant along any torus fiber of the
fibration p̌ : Č → p̌(Č) and so (Č, Ě) is semi-affine brane on X̌. This completes
the proof of theorem. �

4.3. Proof of lemmas

We will give the proof of the Lemma 30 in this section.

Proof of Lemma 30. The proof is divided into four parts:
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Proof of (1). First note that

I1(v, w) = 〈ϕp, (I/S ⊗ 2π
√
−1F π

∗E⊗P(v̂, ŵ))ϕq〉L2

for any two vector fields v, w with lifts v̂, ŵ. Since we are able to write down
the curvatures of both bundles E and P, by direct computation, we have

I1 = −2π
√
−1 δpqFb.

Proof of (2). Let (x, y̌) be a fixed point in X̌. We start from the compu-
tation of I2. Suppose that /S is the spinor bundle associated to the vertical
tangent bundle V of the Riemannian fiber bundle π : X ×B X̌ → X̌, then
by [20], we know that F /S and FV are related by

F /S =
1

2

∑
i<j

〈FVei, ej〉eiej ,

where {e1, . . . , en} is an orthonormal frame of V. As a result, we have

(4.6) I2(v, w) =
1

2

∑
i<j

〈ϕp, 〈FV(v̂, ŵ)ei, ej〉eiejϕq〉L2

for any two vector fields v, w of X̌ with lifts v̂, ŵ to X ×B X̌. In order to
compute I2, we have to study FV .

For our convenience, we first choose an orthonormal frame of V as fol-
lows: Since each fiber of the Riemannian fiber bundle π : X ×B X̌ → X̌ is
a flat torus, we can find an n× n matrix valued function H(x) on B such
that

(4.7)

e1
...
en

 := H(x)


∂
∂y1

...
∂
∂yn


is an orthonormal frame of V with dual {ω1, ..., ωn} and the restriction of
the curvature of E to the fiber torus over the point (x, y̌) equals to a multiple
of

−2π
√
−1 (λ1ω1 ∧ ω2 + · · ·+ λrω2r−1 ∧ ω2r)

for some positive real numbers λ1, . . . , λr. We then calculate the connection
and curvature of V.
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Lemma 31. With respect to the orthonormal frame {e1, . . . , en}, the con-
nection of V equals to

∇V =
1

2

∑
l

((Bl)T −Bl)dxl

and

FV =
1

4

∑
l<m

[
Bm + (Bm)T , Bl + (Bl)T

]
dxl ∧ dxm

where

Bl :=
∂H

∂xl
H−1.

Proof. Recall that the bundle

V ≤ T ∗(X ×B X̌)

inherits a connection from the Levi-Civita connection of X ×B X̌ with the
metric which is a sum of the fiber metric and an arbitrary metric on the
base X̌. Moreover, this metric on V is independent of the choice of the base
metric. Therefore, we simply take a flat metric on the base X̌ such that

{dx1, . . . , dxn;ω1, . . . , ωn, dy
1, . . . , dyn}

forms an orthonormal frame of T ∗(X ×B X̌).
If we let dz = (dx1, . . . , dxn; dy1, . . . , dyn) and ω = (ω1, . . . , ωn) and let

Ω be the Levi-Civita connection of T (X ×B X̌), then

(4.8) d

[
dzT

ωT

]
= −Ω ∧

[
dzT

ωT

]
.

Furthermore, we can partition Ω into four blocks

Ω =

[
0 Q
−QT Γ

]
,

where the block Γ is the connection of V. Note that dωT = −BT ∧ ωT
by (4.7), where

B := (dH)H−1 =

n∑
l=1

Bldxl(4.9)
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Then equality (4.8) becomes[
0

−BT ∧ ωT
]

= −
[

Q ∧ ωT
−QT ∧ dzT + Γ ∧ ωT

]
.

and so

Q ∧ ωT = 0 and BT ∧ ωT = −QT ∧ dzT + Γ ∧ ωT .

Multiplying the second equation by ω, together with the first equation, we
have

ω ∧BT ∧ ωT = ω ∧ Γ ∧ ωT .

Moreover, since Γ is antisymmetric,

Γ =
1

2
(BT −B) =

1

2

n∑
l=1

((Bl)T −Bl)dxl.

Therefore,

FV = dΓ + Γ ∧ Γ(4.10)

=
∑

1≤l<m≤n

{
1

2

(
∂Bm

∂xl
− ∂Bl

∂xm

)T
− 1

2

(
∂Bm

∂xl
− ∂Bl

∂xm

)

+
1

4
[(Bl)T −Bl, (Bm)T −Bm]

}
dxl ∧ dxm.

By direct computations, we obtain that

(4.11)
∂Bm

∂xl
=

∂2H

∂xl∂xm
H−1 −BmBl

Therefore, by plugging (4.11) into (4.10), we obtain

(4.12) FV =
1

4

∑
1≤l<m≤n

[
Bm + (Bm)T , Bl + (Bl)T

]
dxl ∧ dxm.

�
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From the above lemma,

(4.13) I2

(
∂

∂xl
,
∂

∂ym

)
= I2

(
∂

∂yl
,
∂

∂ym

)
= 0

and

(4.14) I2

(
∂

∂xl
,
∂

∂xm

)
=

1

2

∑
i<j

〈
FV
(
∂

∂xl
,
∂

∂xm

)
ei, ej

〉
〈ϕp, eiejϕq〉L2 ,

where

FV(
∂

∂xl
,
∂

∂xm
) =

1

4

[
Bm + (Bm)T , Bl + (Bl)T

]
.

Then we compute (4.14) at (x, y̌). Note that the fiber torus over (x, y̌)
of π̌ : X ×B X̌ → X̌ is just Tx. Recall that

/S|Tx
∼= C2r ×Tx

and the Clifford multiplication of each ei is the matrix multiplication by
Ei. Under this trivialization, by Lemma 24, ϕp = χI0 ⊗ αp for some section
αp of the bundle (E ⊗ P)|Tx

. From the construction of matrices Ei’s, every
non-zero term among 〈ϕp, eiejϕq〉L2 ’s comes from

〈ϕp, e2i−1e2iϕ
p〉L2 = −

√
−1

for i = 1, . . . , r and p = 1, . . . ,m. Thus equation (4.14) becomes

(4.15) I2

(
∂

∂xl
,
∂

∂xm

)
= −δpq

√
−1

2

r∑
i=1

〈
FV
(
∂

∂xl
,
∂

∂xm

)
e2i−1, e2i

〉
.

If we express

Bl = [Bl
st]1≤s,t≤r

and each Bl
st is a 2× 2 block matrix. We can further obtain

(4.16) I2

(
∂

∂xl
,
∂

∂xm

)
= −
√
−1

8
δpq

∑
1≤s,t≤r

[
0 1

]
Qlmst

[
1
0

]

where

Qlmst =
(
Bm
ik + (Bm

ki)
T
)(
Bl
ik + (Bl

ki)
T
)T
−
(
Bm
ik + (Bm

ki)
T
)T(

Bl
ik + (Bl

ki)
T
)
.
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Next, we are going to compute Jb. Recall that

(4.17) Jb =
∑

1≤i,j≤2r

〈
G/D∇ ∂

∂xi

ϕp, /D∇ ∂

∂xj

ϕq
〉
L2

dxi ∧ dxj

at the point (x, y̌). We first express each /D∇ ∂

∂xi

ϕp as a linear combination

of ei∇ejϕp’s.

Lemma 32.

(4.18) /D∇ ∂

∂xl

ϕp = −
∑

1≤i,j≤2r

1

2

(
(Bl)T +Bl

)
ij

(ei∇ejϕp)

where ( )ij denotes the entry of a matrix at the i-th row and the j-th column.

Proof. Since /Dϕp = 0, one has

0 = ∇ ∂

∂xl

(/D(x,y̌)ϕ
p) = ∇ ∂

∂xl

(
n∑
i=1

ei∇eiϕp
)

(4.19)

=

n∑
i=1

(
∇V∂

∂xl

ei

)
∇eiϕp +

n∑
i=1

ei

(
∇ ∂

∂xl

∇eiϕp
)
.

In addition,

0 = F π
∗(/S⊗E)⊗P

(
∂

∂xl
, ei

)
= ∇ ∂

∂xl

∇ei −∇ei∇ ∂

∂xl

−∇[ ∂

∂xl
,ei].

The first equality holds because the F π
∗(/S⊗E)⊗P does not contain any dxi ∧

dyj . Therefore,

/D∇ ∂

∂xl

ϕp =

n∑
i=1

ei∇ei
(
∇ ∂

∂xl

ϕp
)

(4.20)

= −
n∑
i=1

(
∇V∂

∂xl

ei

)
∇eiϕp −

n∑
i=1

ei∇[ ∂

∂xl
,ei]ϕ

p.

From Lemma 31, we have

∇V∂
∂xl

ei =
1

2

n∑
j=1

((Bl)T −Bl)jiej(4.21)
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On the other hand, we recall that

e1
...
en

 = H(x)


∂
∂y1

...
∂
∂yn

 and Bl = (
∂H

∂xl
)H−1,

so we have

(4.22)

[
∂

∂xl
, ei

]
= (Bl)ijej .

Finally, by putting (4.21) and (4.22) into (4.20), the result follows. �

From Lemma 34, for s, t = 1, 2, . . . , r, we have

e2s−1∇e2t−1
ϕp = −e2s∇e2t

ϕp and

e2s∇e2t−1
ϕp = e2s−1∇e2t

ϕp =
√
−1 e2s∇e2t

.

Therefore, the formula 4.18 can be further expressed as
(4.23)

/D∇ ∂

∂xl

ϕp = −1

2

∑
1≤s,t≤r

([√
−1 1

] (
Bl
st + (Bl

ts)
T
)[√−1

1

])
(e2s∇e2t

ϕp).

By Lemma 36, for s, t = 1, 2, . . . , r,

G(e2s∇e2t
ϕp) =

λt
4π(λs + λt)

e2s∇e2t
ϕp,

and by Lemma 37, for k, l, s, t = 1, 2, . . . , r,

〈e2s∇e2t
ϕp, e2k∇e2l

ϕq〉L2 = λtπδskδtl(−1)s+t+k+l〈ϕp, ϕq〉L2 .
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As a result, we obtain

Jb

(
∂

∂xl
,
∂

∂xm

)
=

1

16
δpq

∑
1≤s,t≤r

λt
λs + λt

[√
−1 1

]
×

((
Bl
st + (Bl

ts)
T
)[ 1

√
−1

−
√
−1 1

](
Bm
st + (Bm

ts )T
)

−
(
Bm
st + (Bm

ts )T
)[ 1

√
−1

−
√
−1 1

](
Bl
st + (Bl

ts)
T
))[−√−1

1

]
=

1

16
δpq

∑
1≤s,t≤r

λt
λs + λt

(2
√
−1 )

[
0 1

]
(Qlmst +Qlmts )

[
1
0

]
=

√
−1

8
δpq

∑
1≤s,t≤r

[
0 1

]
Qlmst

[
1
0

]
= −I2

(
∂

∂xl
,
∂

∂xm

)
which means I2 + Jb = 0.

Proof of (3). Without loss of generality, we assume in this proof that ∂
∂yi

=

ei on the fiber torus Tx. We first express /D∇ ∂

∂yi
ϕp as a linear combination

of eiϕ
p’s:

Lemma 33. For i = 1, 2, . . . , 2r,

/D∇ ∂

∂yi
ϕp = 2π

√
−1 eiϕ

p.

The proof is similar to that of Lemma 32.
Then, by Lemma 36, we have

G/D∇ ∂

∂yi
ϕp =

√
−1

2λ[i/2]
eiϕ

p

and by Lemma 37,

〈eiϕp, ejϕq〉L2 = δ[ i

2
][ j

2
](
√
−1 )i(−

√
−1 )j〈ϕp, ϕq〉L2 .
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As a result, we obtain

Jf =
∑

1≤i,j≤n
− π

λ[i/2]
〈eiϕp, ejϕq〉L2dyi ∧ dyj

= 2πδpq
√
−1

(
1

λ1
dy1 ∧ dy2 + · · ·+ 1

λr
dy2r−1 ∧ dy2r

)
= 2πδpq

√
−1

(
1

2
dy̌ ∧A−1 ∧ dy̌T

)
.

The last equality is true because λi = ai by the assumption that ∂
∂yi

= ei on
the torus Tx.

Proof of (4). It suffices to show that for i, j, p, q = 1, 2, . . . , 2r,〈
G/D∇ ∂

∂xi

ϕp, /D∇ ∂

∂yj
ϕq
〉
L2

=

〈
G/D∇ ∂

∂yi
ϕp, /D∇ ∂

∂xj

ϕq
〉
L2

= 0

From Lemma 32 and Lemma 33, we know that G/D∇ ∂

∂xi

ϕp can be expressed

as a linear combination of ei∇ejϕp’s while /D∇ ∂

∂yj
ϕq is a linear combina-

tion of eiϕ
q’s. The result follows from the fact that the inner product

〈ei∇ejϕp, elϕq〉L2 = 0, see Lemma 37.
This completes the proof of Lemma 30. �

In the rest of the section, we will prove the computational lemmas used
in the proof of Lemma 30.

Lemma 34. For s = 1, 2, . . . r and for any ϕ ∈ ker /D(x,y̌), we have

1) e2sϕ =
√
−1 e2s−1ϕ;

2) e2s∇ejϕ =
√
−1 e2s−1∇ejϕ for j = 1, 2, . . . , 2r;

3) ∇e2s
ϕ =
√
−1∇e2s−1

ϕ.

Proof. By Lemma 24, if ϕ ∈ ker /D(x,y̌), then ϕ = χI0 ⊗ α. Therefore, in or-

der to show (1) and (2), it suffices to show that e2sα =
√
−1 e2s−1α and

e2s∇ejα =
√
−1 e2s−1∇ejα for j = 1, 2, . . . , 2r which are true by the proper-

ties of Clifford multiplication. Furthermore, first note that

0 = /Dϕ =

r∑
s=1

(e2s−1∇e2s−1
ϕ+ e2s∇e2s

ϕ)

=

r∑
s=1

χIs ⊗ (
√
−1∇e2s−1

α+∇e2s
α),
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where

Is := (1, . . . , 1, −1︸︷︷︸
s−th

, 1, . . . , 1)

and χIs is defined in Lemma 24. Note that {χI1 , ..., χIr} is a linear indepen-
dent set, so

√
−1∇e2s−1

α+∇e2s
α = 0,

and equivalently,
√
−1∇e2s−1

ϕ+∇e2s
ϕ = 0

for s = 1, . . . , r. �

To prove Lemma 36 and 37, we need following relations. For simplicity,
write f2i−1 = e2i and f2i = −e2i−1.

Lemma 35. Let [·, ·] denotes the superbracket. Then we have

1) [/D, ei] = −2∇ei;

2) [/D,∇ei ] = 2π
√
−1λ[i/2]fi;

3) [/D2
, ei] = −4π

√
−1λ[i/2]fi;

4) [/D2
,∇ei ] = −4π

√
−1λ[i/2]∇fi.

Proof. (1) just follows directly from eiej + ejei = −2δij . Note that ∇ei ◦
(el) = (el) ◦ ∇ei as ∇eiej = 0. Therefore,

/D∇ei −∇ei /D =

n∑
l=1

el∇el∇ei −
n∑
l=1

el∇ei∇el =

n∑
l=1

el ⊗ FS⊗E(el, ei).

Then, (2) follows from the fact that

F E =
2π√
−1

(λ1ω1 ∧ ω2 + · · ·+ λrω2r−1 ∧ ω2r).

Finally, (3) and (4) follows from (1) and (2) directly. �

Lemma 36. For any ϕ ∈ ker /D(x,y̌), we have

1) G(ei∇ejϕ) = 1
4π(λ[i/2]+λ[

j
2

]
)(ei∇ejϕ);

2) G(eiϕ) = 1
4πλ[i/2]

(eiϕ).
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Proof. By (3) and (4) in Lemma 35 and noting that /Dϕ = 0, we have

/D2
(ei∇ejϕ) =

4πλ[j/2]√
−1

ei∇fjϕ+
4πλ[i/2]√
−1

fi∇ejϕ.

Also by Lemma 34,
√
−1 ei∇ejϕ = ei∇fjϕ = fi∇ejϕ. Therefore,

(4.24) /D2
(ei∇ejϕ) = 4π(λ[i/2] + λ[j/2])ei∇ejϕ.

Note that ei∇ejϕ ⊥ ker /D as ei∇ej ∈ Γ(S− ⊗ E) and ker /D is a subset of

Γ(S+ ⊗ E), so the restriction of the Green’s operator G on ker /D⊥ is the

inverse of the operator /D2
and (1) is proved. The proof of (2) is similar. �

Lemma 37. For any ϕ,ψ ∈ ker /D(x,y̌), we have

1) 〈eiϕ, ejψ〉L2 = δ[ i

2
][ j

2
](
√
−1 )i(−

√
−1 )j〈ϕ,ψ〉L2;

2) 〈ei∇ekϕ, ej∇elψ〉L2 = πδ[ i

2
][ j

2
]δ[ k

2
][ l

2
](
√
−1 )i+k(−

√
−1 )j+lλt〈ϕ,ψ〉L2;

3) 〈ei∇ejϕ, ekψ〉L2 = 〈∇ejϕ,ψ〉L2 = 0.

Proof. First note that

〈eiϕ, ejϕ〉L2 = −〈ϕ, eiejϕ〉L2 .

Then (1) just follows from Lemma 24 and the properties of Clifford multi-
plication.

To prove (2), similar to the method of proving (1), it suffices to show
that

〈∇e2t−1
ϕ,∇e2v−1

ϕ〉L2 = πδtvλt〈ϕ,ψ〉L2 .

By (1) in Lemma 35 and /Dϕ = 0, we have

(4.25) ∇eiϕ = −1

2
/Deiϕ.

As a result,

〈∇e2t−1
ϕ,∇e2v−1

ϕ〉L2 =
1

4
〈/De2t−1ϕ, /De2v−1ϕ〉L2 =

1

4
〈/D2

e2t−1ϕ, e2v−1ϕ〉L2 .

On the other hand, by the proof of Lemma 36, /D2
e2t−1ϕ = 4πλte2t−1ϕ.

Therefore,

〈∇e2t−1
ϕ,∇e2v−1

ϕ〉L2 = πλt〈e2t−1ϕ, e2v−1ϕ〉L2

and hence (2) follows from (1).
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Again, to prove (3), it is enough to show that 〈∇ejϕ,ϕ〉L2 = 0. By equa-
tion (4.25),

〈∇ejϕ,ϕ〉L2 = −1

2
〈/Deiϕ,ϕ〉L2 = −1

2
〈eiϕ, /Dϕ〉L2 = 0.

�

4.4. Invertibility of the SYZ transformation

Theorem 38. (FSY Z)2 is the identity map.

Proof. Suppose that (Č, Ě) = FSY Z(C, E) and ( ˇ̌C, ˇ̌E) = FSY Z(Č, Ě). We need

to show that C = ˇ̌C and E ∼= ˇ̌E .
We first consider the case that C = X and the restriction of F E on each

fiber is non-degenerate, and come back to the general case after. In this

particular case, it is easy to see that C = ˇ̌C = X by Theorem 26 and we just

need to prove that E is isomorphic to ˇ̌E . We prove this by the following steps:

Step 1. The construction of the map I : E → ˇ̌E
Recall that Ě(x,y̌) is defined to be ker /D(x,y̌) whose elements are sections

of the bundle

π∗(/S ⊗ E)⊗ P|π̌−1(x,y̌) → X ×B X̌.
In other words, for each vector in Ě(x,y̌), we can associate a section of the
bundle π∗(/S ⊗ E)⊗ P|π̌−1(x,y̌). This gives rise to a section Ψ of the bundle

(π̌∗Ě)∗ ⊗ π∗(/S ⊗ E)⊗ P

The authors of [5] and [25] also introduced a section to show that the square
of the Nahm transformation for a four-torus is an identity map, whose family
version is exactly the section Ψ we have just defined. As each point (x, y) in
X, the section Ψ induces a map

Ψ : E∗(x,y) −→ Γ((π̌∗Ě)∗ ⊗ π∗/S ⊗ P|π−1(x,y)).

Also, we use δ to denote the map from a unitary bundle to its dual by its
Hermitian metric. Then the composition of the maps

E(x,y)
δ−→ E∗(x,y)

Ψ−→ Γ((π̌∗Ě)∗ ⊗ π∗/S ⊗ P|π−1(x,y))(4.26)

δ−→ Γ(((π̌∗Ě)∗ ⊗ π∗/S ⊗ P|π−1(x,y))
∗)

= Γ((π̌∗Ě)⊗ (π∗/S)∗ ⊗ P∗|π−1(x,y))
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gives a map

I :=
vol(Tx)√

rk(Ě)
δ ◦Ψ ◦ δ : E(x,y) −→ Γ((π̌∗Ě)⊗ (π∗/S)∗ ⊗ P∗|π−1(x,y)),

where vol(Tx) is the volume of the fiber torus Tx and rk(Ě) is the rank of
the bundle Ě .

Since T (Tx) is naturally identified with T ∗(Ťx), the bundle (π∗/S)∗ →
X ×B X̌ is in fact the pullback bundle π̌∗ /̌S, where /̌S is the family spinor
bundle of the Riemannian fiber bundle π̌ : X ×B X̌ → X̌. Therefore, we can
define the Dirac operator

/̌D(x,y) : Γ((π̌∗(Ě ⊗ Š)⊗ P∗|π−1(x,y))→ Γ((π̌∗(Ě ⊗ Š)⊗ P∗|π−1(x,y))

and carry out the SYZ transformation. Hence we have

ˇ̌E(x,y) = ker /̌D(x,y).

The following proposition says that I is in fact a map from E to ˇ̌E .

Proposition 39. /̌D(x,y)(I(f)) = 0 for any point (x, y) in X and any vector
f in the fiber E(x,y).

Proof. By choosing a local orthonormal frame {ϕi} of ker /D with correspond-
ing frame {f i} of Ě , for i = 1, 2, . . . , rk(Ě), we are able to write down the
map I explicitly:

(4.27) I(f) =
vol(Tx)√

rk(Ě)

n∑
i=1

δ(〈f, ϕi〉E)⊗ f i,

where 〈 , 〉E denotes the metric of the bundle E . Also, we choose a frame
{e1, . . . , en} of VČ with the same property on the torus over the point (x, y̌)
as in the proof of Proposition 21. Let {ě1, . . . , ěn} be the frame of VC that
are identified with {e1, . . . , en} under the identification between the bundles
VČ and VC .
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Then we have

/̌D(x,y)(I(f))(4.28)

=
vol(Tx)√

rk(Ě)

∑
1≤i,j≤n

ěj∇̌ěj (δ(〈f, ϕi〉E(x,y)
)⊗ f i)(4.29)

=
vol(Tx)√

rk(Ě)

∑
1≤i,j≤n

ěj

(
∇̌π

∗/S∗⊗P∗
ěj

(
δ(〈f, ϕi〉E(x,y)

)⊗ f i

+ vol(Tx)
∑

1≤i,j≤n
ějδ(〈f, ϕi〉E(x,y)

)

)
⊗ ∇̌Ěějf

i

)
,

where ∇̌ is the connection of the bundle π̌∗(Ě ⊗ /̌S)⊗ P∗. We further note
that

∇̌π
∗/S∗⊗P∗
ěj

(δ(〈f, ϕi〉E(x,y)
)) = δ(∇π

∗/S⊗P
ěj

(〈f, ϕi〉E(x,y)
))(4.30)

= δ(〈f,∇ějϕi〉E(x,y)
),

where ∇ denotes the connection of the bundle π∗(E ⊗ /S)⊗ P.
On the other hand, recall that the connection of Ě is given by

Ǎjik = 〈ϕk,∇ěkϕi〉L2 ,

so

n∑
i=1

(δ(〈f, ϕi〉E(x,y)
)⊗ ∇̌Ěějf

i) =

n∑
i=1

(
δ

(〈
f,

n∑
k=1

Ǎjkiϕ
k

〉
E(x,y)

)
⊗ f i

)
.

Also, we note that

n∑
k=1

Ǎ
j

kiϕ
k = −

n∑
k=1

〈ϕk,∇ějϕi〉L2ϕk = −P∇ějϕi,

so we have

(4.31)

n∑
i=1

(δ(〈f, ϕi〉E(x,y)
)⊗ ∇̌Ěějf

i) =

n∑
i=1

(δ(〈f,−P∇ějϕi〉E(x,y)
)⊗ f i).
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By plugging equations (4.30) and (4.31) into (4.28), we get

/̌D(x,y)(I(f)) =
vol(Tx)√

rk(Ě)

∑
1≤i,j≤n

ěj(δ(〈f, (I − P )∇ějϕi〉E(x,y)
)⊗ f i)

=
vol(Tx)√

rk(Ě)

∑
1≤i,j≤n

ěj(δ(〈f, /DG/D∇ějϕi〉E(x,y)
)⊗ f i)

=
vol(Tx)√

rk(Ě)

n∑
i=1

(δ(〈f,
n∑
j=1

ej /DG/D∇ějϕi〉E(x,y)
)⊗ f i)

Then by Lemma 36, 35 , 33 and noting that /Dϕi = 0, we have

n∑
j=1

ej /DG/D∇ějϕi = −
√
−1

n∑
j=1

1

λ[j/2]
ej∇ejϕi

= −
√
−1

n∑
s=1

1

λs
(e2s−1∇e2s−1

ϕi + e2s∇e2s
ϕi)

= 0.

The last equality follows from Lemma 34 that e2s−1∇e2s−1
ϕi + e2s∇e2s

ϕi =
0. As a result,

/̌D(x,y)(I(f)) = 0.

�

Step 2. Show that 〈f, g〉E = 〈If, Ig〉 ˇ̌E for any f, g ∈ E
Without loss of generality, we prove this on the fiber of E over a point

(x, 0) in X. We start with a more careful choice of local orthonormal frame
{ϕi}, for i = 1, 2, . . . , rk(E), of ker /D as below: Let E be a projectively flat
bundle over T with curvature to be 2π

√
−1FE · IE for an non-degenerate

constant two-form FE on T. As a non-degenerate invariant two-form, FE

induces an invertible linear map

ε : V → V̌ .

Note that V acts on the torus T by translation, so the inverse map ε−1

gives an action of the dual vector space V̌ on the torus T. Moreover, this
action can be lift to the bundle E by parallel translation of E. By direct
calculations, one can prove the following proposition, due to the fact that
FE is a constant two-form.
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Proposition 40. Let y̌ be a point in V̌ which induces a map y̌ : E → E.
Then

y̌∗∇E = ∇E − 2π
√
−1 y̌,

where y̌ on the right hand side is regarded as an one-form on the torus T.

The action of V̌ on T discussed above can be generalized to the family
case so that V̌ acts on X with a lifting to the bundle E . Similarly, it has the
property that

y̌∗∇E = ∇E − 2π
√
−1 y̌

for any point y̌ in V̌ .
Therefore, if a section ϕ lies in ker /D(x,0̌), then y̌∗ϕ gives a section in

ker /D(x,y̌). This motivates us to construct an orthonormal frame {ϕi}, of
ker /D as below: We first choose an orthonormal frame {ϕix(y)} of ker /D|B×{0}
and define ϕi(x,y̌)(y) to be y̌∗ϕ

i
x(y), then we get an orthonormal frame

{ϕi(x,y̌)(y)} of ker /D(x,y̌).
We have

(4.32)

〈If, Ig〉 ˇ̌E =
(vol(Tx))2

rk(Ě)
〈f, g〉E

rk(Ě)∑
i=1

∫
Ťx

〈ϕi(x,y̌)(0), ϕi(x,y̌)(0)〉vol(Ťx)dy̌

by (4.27), where vol(Ťx) equals to 1/vol(Tx). Therefore, it remains to show
that

1

rk(Ě)

rk(Ě)∑
i=1

∫
Ťx

〈ϕi(x,y̌)(0), ϕi(x,y̌)(0)〉vol(Tx)dy̌ = 1.

To prove this, first note that we can choose a region A of V with image
Ǎ = ε(A) such that A and Ǎ cover the torus T and Ť for rk(E)2 and rk(Ě)2

times respectively. By Proposition 40, we have∫
Ǎ
〈ϕi(x,y̌)(0), ϕi(x,y̌)(0)〉vol(Tx)dy̌ =

∫
Ǎ
〈ϕix(ε−1(y̌)), ϕix(ε−1(y̌))〉vol(Tx)dy̌

=

∫
A
〈ϕix(y), ϕix(y)〉vol(Tx) det(ε)dy.

Since det(ε) = rk(Ě)2

rk(E)2 and the choices of A and Ǎ, we then obtain∫
Ťx

〈ϕi(x,y̌)(0), ϕi(x,y̌)(0)〉vol(Tx)dy̌ =

∫
Tx

〈ϕix(y), ϕix(y)〉vol(Tx)dy(4.33)

= 〈ϕi, ϕi〉L2 = 1.
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Hence,

(4.34)
1

rk(Ě)

rk(Ě)∑
i=1

∫
Ť
〈ϕi(x,y̌)(0), ϕi(x,y̌)(0)〉vol(Tx)dy̌ = 1

which completes the step 2.

Step 3. Prove that I preserves the connections

Without loss of generality, we show that

〈∇EZf, g〉E = 〈∇
ˇ̌E
ZI(f), I(g)〉 ˇ̌E

at a point (x, 0) for any sections f, g of the bundle E and any vector Z in
T(x,0)X.

Recall that ∇ and ∇̌ are the connections of π∗(E ⊗ /S)⊗ P and π̌∗(Ě ⊗
/̌S)⊗ P∗ respectively. Let P̌ be the projection to ker /̌D and we have ∇

ˇ̌E
Z =

P̌ ∇̌Ẑ , where Ẑ is the lift of Z to X ×B X̌. Then,

〈∇
ˇ̌E
ZI(f), I(g)〉 ˇ̌E = 〈P̌ ∇̌ẐI(f), I(g)〉L2 = 〈∇̌ẐI(f), I(g)〉L2 .

Note that

∇̌(I(f)) =
vol(Tx)√

rk(Ě)

n∑
i=1

(
δ(〈f,∇ϕi〉E)⊗ f i + δ(〈∇Ef, ϕi〉E)⊗ f i

+ δ(〈f, ϕi〉E)⊗∇π̌
∗Ěf i

)
,

so

〈∇
ˇ̌E
ZI(f), I(g)〉 ˇ̌E =

1

rk(Ě)

rk(Ě)∑
i=1

〈f, g〉E
∫
Ťx

〈∇Ẑϕi, ϕi〉vol(Tx)dy̌

+
1

rk(Ě)

rk(Ě)∑
i=1

〈∇EZf, g〉E
∫
Ťx

〈ϕi, ϕi〉vol(Tx)dy̌

+
1

rk(Ě)

rk(Ě)∑
i=1

〈f, g〉E
∫
Ťx

〈ϕi, ϕi〉〈∇π̌∗ĚZ f i, f i〉Ěvol(Tx)dy̌

=: N1 +N2 +N3.

Next we compute N1, N2 and N3.
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Proposition 41. If a vector Z in T(x,0)X is decomposed as the sum of a
horizontal vector W and a vertical vector T with respect to the Riemannian
fiber bundle p̌ : X̌ → B, then

N1 = −〈f, g〉E
1

rk(Ě)

rk(Ě)∑
i=1

∫
Tx

〈∇E⊗/SW ϕix(y), ϕix(y)〉vol(Tx)dy;(4.35)

N2 = 〈∇EZf, g〉E ;(4.36)

N3 = 〈f, g〉E
1

rk(Ě)

rk(Ě)∑
i=1

∫
Tx

〈∇E⊗/SW ϕix(y), ϕix(y)〉vol(Tx)dy.(4.37)

Proof. First note that 〈∇Ẑϕi, ϕi〉 = 〈ϕi,∇Ẑϕ
i〉 = −〈∇Ẑϕ

i, ϕi〉. Therefore,

N1 = − 1

rk(Ě)

rk(Ě)∑
i=1

〈f, g〉E
∫
Ťx

〈∇Ẑϕ
i, ϕi〉vol(Tx)dy̌.

By Proposition 40,∫
Ťx

〈∇Ẑϕ
i
(x,y̌)(0), ϕi(x,y̌)(0)〉vol(Tx)dy̌

=

∫
Ťx

〈(∇E⊗/S − 2π
√
−1 y̌)Zϕ

i
(x,y̌)(0), ϕi(x,y̌)(0)〉vol(Tx)dy̌

=

∫
Ťx

〈∇E⊗/SZ ϕix(ε−1(y̌)), ϕix(ε−1(y̌))〉vol(Tx)dy̌.

Then, by changing the integral variables to be y, we get∫
Ťx

〈∇Ẑϕ
i
(x,y̌)(0), ϕi(x,y̌)(0)〉vol(Tx)dy̌

=

∫
Tx

〈∇E⊗/SZ ϕix(y), ϕix(y)〉vol(Tx)dy

= 〈∇E⊗/SW ϕix(y), ϕix(y)〉L2 + 〈∇E⊗/ST ϕix(y), ϕix(y)〉L2

= 〈∇E⊗/SW ϕix(y), ϕix(y)〉L2 .

The last equality holds because of Lemma 37. Then,

N1 = −〈f, g〉E
1

rk(Ě)

rk(Ě)∑
i=1

∫
Tx

〈∇E⊗/SW ϕix(y), ϕix(y)〉vol(Tx)dy.
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Note that 〈ϕi, ϕi〉 = 〈ϕi, ϕi〉, so

N2 = 〈∇EZf, g〉E

 1

rk(Ě)

rk(Ě)∑
i=1

∫
Ťx

〈ϕi, ϕi〉vol(Tx)dy̌

 = 〈∇EZf, g〉E

by equation 4.33. Because the choice of the frame {ϕi} and the term

〈∇π̌∗ĚZ f i, f i〉Ě are independent from y̌,

〈∇π̌∗ĚZ f i, f i〉Ě = 〈∇π̌∗ĚW f i, f i〉Ě =

∫
Tx

〈∇Ŵϕ
i
(x,y̌)(y), ϕi(x,y̌)(y)〉vol(Tx)dy

because ∇π̌∗Ě is the pull back connection such that ∇π̌∗ĚT f i = 0. Then, we
have ∫

Tx

〈∇Ŵϕ
i
(x,y̌)(y), ϕi(x,y̌)(y)〉vol(Tx)dy

=

∫
Tx

〈(∇E⊗/S − 2π
√
−1 y̌)Wϕ

i
(x,y̌)(y), ϕi(x,y̌)(y)〉vol(Tx)dy

=

∫
Tx

〈∇E⊗/SW ϕix(ε−1(y̌) + y), ϕix(ε−1(y̌) + y)〉vol(Tx)dy

=

∫
Tx

〈∇E⊗/SW ϕix(y), ϕix(y)〉vol(Tx)dy

which is independent of y̌. Therefore,

N3 =

〈f, g〉E 1

rk(Ě)

rk(Ě)∑
i=1

∫
Tx

〈∇E⊗/SW ϕix(y), ϕix(y)〉vol(Tx)dy


×
(∫

Ťx

〈ϕi, ϕi〉vol(Tx)dy̌

)

= 〈f, g〉E
1

rk(Ě)

rk(Ě)∑
i=1

∫
Tx

〈∇E⊗/SW ϕix(y), ϕix(y)〉vol(Tx)dy,

where the second equality follows from equality 4.33. �

By this proposition,

〈∇EZf, g〉E = 〈∇
ˇ̌E
ZI(f), I(g)〉 ˇ̌E
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which finishes step 3. As a result, the bundle E is isomorphic to the bundle
ˇ̌E for the case that C = X and the restriction of F E on each fiber is non-
degenerate.

For the general case, we consider V0-invariant sections and recall that
the vector space Ě(x,y̌) is identified with a finite dimensional subspace of

Γ(π∗(E ⊗ /S)⊗ P|π−1(x,y̌))
V0 .

Similar to the previous case, this identification gives us a section Ψ ∈
Γ((π̌∗Ě)∗ ⊗ π∗/S ⊗ π∗E ⊗ P) which induces a map

Ψ : E∗(x,y) −→ Γ((π̌∗Ě)∗ ⊗ π∗/S ⊗ P|π−1(x,y̌)).

Then we can construct a map I : E(x,y) −→ Γ((π̌∗Ě)⊗(π∗/S)∗⊗P∗|π−1(x,y̌))
V̌0

defined by

I :=
vol(Tx)√

rk(Ě)
δ ◦Ψ ◦ δ,

where (x, y) ∈ C and (x, y̌) ∈ Č. By the definition of FSY Z , the fiber ˇ̌E(x,y̌)

is the kernel space of

/D(x,y) : Γ(π̌∗(Ě ⊗ /̌S)⊗ P∗|π−1(x,y))
V̌0 −→ Γ(π̌∗(Ě ⊗ /̌S)⊗ P∗|π−1(x,y))

V̌0 .

Now by the same arguments in the proof for the non-degenerate case,
we can show that I is in fact an isomorphism of vector space between E(x,y)

and ker /D(x,y) for (x, y) ∈ C. Hence by the construction of FSY Z , we have

ˇ̌C = {(x, y) ∈ X : ker /D(x,y) 6= 0} = C.

Moreover, similar arguments can show that

I : E → ˇ̌E

preserves both Hermitian metrics and connections. Therefore, we obtain a

bundle isomorphism I between E and ˇ̌E and we finish the proof of Theo-
rem 38. �

4.5. Transformation between semi-affine coisotropic A-branes
and semi-affine B-branes

The mechanism of transformation between semi-affine coisotropic A-branes
and semi-affine B-branes can be reformulated in a more concise way in terms
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of generalized complex geometry. We are going to have a quick review and
details can be found in [14]. For any real vector space V , we define its
generalized space

V := V ⊕ V ∗

with a natural non-degenerate inner product of signature (n, n) defined by

〈X + ξ, Y + η〉 =
1

2
(η(X) + ξ(Y ))

for X,Y ∈ V and ξ, η ∈ V ∗. A generalized complex structure on V is a com-
plex structure J on V which preserves the above inner product. There are
two examples of generalized complex structures that we are particularly
interested:

Example 42 (Complex case). If V is a vector space equipped with a
complex structure J , then J induces a generalized complex structure

JJ :=

[
J 0
0 −J∗

]
.

Example 43 (Symplectic case). If V is a vector space equipped with a
symplectic structure ω, then ω induces a generalized complex structure

Jω :=

[
0 −ω−1

ω 0

]
.

A generalized subspace of V is defined to be a pair (W,F ), where W is
a subspace of V and F is a two-form on W . Also, we define the generalized
tangent space of (W,F ) to be

T(W,F ) := {X + ξ ∈W ⊕ V ∗ : ξ|W = ιXF} < V.

A generalized complex subspace of V with respect to a generalized com-
plex structure J is a generalized subspace (W,F ) such that the associated
subspace V F

W is stable under J .
Let (C, E) be a semi-affine brane on a Calabi-Yau manifold X. The cur-

vature of E is the multiple of a two-form 2π
√
−1F E on C. For each point p in

C, we can define a generalized space TpX = TpX ⊕ T ∗pX and its generalized

subspace (TpC, F E). Furthermore, since X is Calabi-Yau, we can construct
two generalized structures JJ and Jω on TpX which come from the complex
and symplectic structures of X respectively.
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Proposition 44. (C, E) is a coisotropic A-brane (B-brane) on X if and
only if (TpC, F E) is a generalized complex subspace of TpX with respect to
the generalized structure Jω (JJ) for any point p in C.

With the above preparation, we can now state and prove the main the-
orem:

Theorem 45 (Main Theorem). The fiberwise SYZ transformation FSY Z
transforms a semi-affine coisotropic A-brane to a semi-affine B-brane and
vice versa.

Proof. Let (C, E) be a semi-affine brane on X. By Proposition 26, (Č, Ě) =
FSY Z(C, E) is a semi-affine brane in X̌. Without loss of generality, assume
X = B ×T and X̌ = B × Ť, where B is a convex subset of a real vector
space V . Hence for any point (x, y) ∈ X and (x, y̌) ∈ X̌, we have

T(x,y)X ∼= TxB × TyT ∼= V ⊕ V

and

T(x,y̌)X̌ ∼= TxB × Ty̌Ť ∼= V ⊕ V ∗.
Therefore, the corresponding generalized space

T(x,y)X ∼= V ⊕ V ⊕ V ∗ ⊕ V ∗

and

T(x,y̌)X̌ ∼= V ⊕ V ∗ ⊕ V ∗ ⊕ V
Note that there is an obvious identification

(4.38) σ : T(x,y)X → T(x,y̌)X̌

defined by swapping the second and fourth summands above. Moreover, un-
der this map, the generalized complex structure JJ coming from the com-
plex structure J of X is mapped to the generalized complex structure Jω̌
coming from the mirror symplectic structure ω̌ of X̌ and vice versa. There-
fore, by Proposition 44, it remains to prove that the generalized tangent
spaces T(T(x,y)C,F ) and T(T(x,y̌)Č,F̌ ) are exchanged by σ for each (x, y) ∈ C and

(x, y̌) ∈ Č.
If we follow the notations in Proposition 26, then ∂

∂u , ∂
∂y , ∂

∂v , du, dy

and dv are mapped to dv̌, dy̌, dǔ, ∂
∂v̌ , ∂

∂y̌ and ∂
∂ǔ respectively under the

identification σ. Then, it is straightforward to show that T(T(x,y)C,F ) and
T(T(x,y̌)Č,F̌ ) are exchanged by σ. �
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5. Appendix

We are going to review those results of spin geometry which are used in this
article, readers may refer to [4] for more details.

5.1. Clifford algebra, spinor and Dirac operator

Let V be a n dimensional real vector space with the Euclidean metric g.
The Clifford algebra Cl(V, g) is defined to be the quotient algebra

∞∑
k=0

V ⊗k/〈v · w + w · v − 2g(v, w)〉.

Let

Cl(n) := C⊗R Cl(V, g)

be the complex Clifford algebra. It has a natural complex representation

ρ : Cl(n)→ End(S)

on the complex vector space S := C2[ n
2

]

constructed as below:
Case 1. When n = 2r is even. Let {e1, e2, ..., e2r−1, e2r} be an orthonormal

basis of V . We define I2×2 =

[
1 0
0 1

]
, A =

[
0 −1
1 0

]
and B =

[
0

√
−1√

−1 0

]
and for i = 1, . . . , r, define

E2i−1 := I2×2 ⊗ · · · ⊗ I2×2︸ ︷︷ ︸
r−i times

⊗A⊗
√
−1AB ⊗ · · · ⊗

√
−1AB︸ ︷︷ ︸

i−1 times

and

E2i := I2×2 ⊗ · · · ⊗ I2×2︸ ︷︷ ︸
r−i times

⊗B ⊗
√
−1AB ⊗ · · · ⊗

√
−1AB︸ ︷︷ ︸

i−1 times

Note that these are matrices acting on the vector space

S =
r
⊗
k=1

C2.

Then the representation ρ is determined by ρ(ek) = Ek for k = 1, . . . , 2r
since {e1, . . . , en} is a generating set of Cl(n).
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Case 2. When n = 2r + 1 is odd. Let {e1, e2, . . . , e2r−1, e2r, e2r+1} be an
orthonormal basis of V . For i = 1, . . . , r, we define

E′2i−1 : = [1]⊗ E2i−1

E′2i : = [1]⊗ E2i

E′2r+1 : =
[
−
√
−1
]
⊗
√
−1AB ⊗ · · · ⊗

√
−1AB

Note that these are matrices acting on the vector space

S := C1 ⊗
(

r
⊗
k=0

C2

)
= C2[ n

2
]

.

Also, the representation ρ is determined by ρ(ek) := Ek for k = 1, . . . , 2r + 1.
With the above definition, we can define the spin group

Spin(n) :=

∞⋃
k=1

{v1 · · · v2k : vi ∈ V, ‖vi‖ = 1, i = 1, . . . , 2k} ⊂ Cl(n)

which is the universal cover of the orthogonal group SO(n). As a subset
of the Clifford algebra Cl(n), Spin(n) has a representation induced by the
representation ρ of Cl(n):

ρ : Spin(n) ↪→ Cl(n)→ End(S).

When n is odd, this is an irreducible representation. However, if n is even,
this representation has two irreducible components:

ρ± : Spin(n)→ End(S±)

for S = S+ ⊕ S−.
Let E be an n dimensional oriented Riemannian vector bundle over a

manifold M and denote P to be the orthonormal frame bundle of it, which
is a principle SO(n) bundle. A spin structure is a lift Spin(n)-bundle P̃ of
P . The spinor bundle associated to this spin structure is

S = P̃ ×ρ S.

Note that each fiber of E is an Euclidean space and so we can associate the
Clifford bundle Cl(E). The spinor bundle S is in fact a bundle of modules
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over the bundle of algebras Cl(E):

Cl(E)× S → S.

This is called the Clifford multiplication and we denote it by “ · ”.
In particular, if E is a rank n subbundle of the tangent bundle TM of a

Riemannian manifold M , we can define the Dirac operator D : Γ(S)→ Γ(S)
which is given by

D :=

n∑
i=1

ei∇ei ,

where {e1, . . . , en} is an orthonormal frame of E. When n is even, we have
a further decomposition of the spinor bundle S = S+ ⊕ S− with Dirac op-
erator

D =

[
0 D−
D+ 0

]
.

5.2. Family spinor bundle

A Riemannian fiber bundle is a fiber bundle π : M −→ B such that Mb :=
π−1(b) is a Riemannian manifold for each point b in B. Then,

V :=
⊔
b∈B

T (Mb)

forms a subbundle of TM , which is called the vertical tangent bundle of
π : M → B. A connection of M → B is defined to be a choice of splitting
TM = V ⊕H of the following exact sequence of vector bundles

0→ V → TM → π∗TB → 0

and H is called a horizontal bundle.
For a Riemannian fiber bundle π : M → B with a connection, one can

associate a natural connection to the bundle V as below: We first choose a
Riemannian metric on the base manifold B and pull it up to get a metric
on the horizontal bundle H. Also note that the Riemannian metric for each
Mb gives a metric on the vertical tangent bundle V . Then by combining
the horizontal and the vertical metrics, one obtains a Riemannian metric on
M . Then the Levi-Civita connection on TM gives a connection ∇V on the
subbundle V of TM . By Proposition 10.2 in [4], ∇V is independent of the
choice of the metric on B:
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Proposition 46. Let π : M → B be a Riemannian fiber bundle equipped
with a connection. Then its vertical tangent bundle V is naturally a Rie-
mannian vector bundle with a compatible connection ∇V .

Assume that the bundle V is orientable and it is equipped with a spin
structure, then we can associate it with a spinor bundle /S which the Clifford
algebra bundle Cl(V ) of V acts on it. Moreover, the Riemannian connection
∇V induces an Hermitian connection∇ on /S. Since V |Mb

= TMb, the bundle
/S can be viewed as a family of spinor bundles /S|Mb

with Dirac operators /D
such that

/Db := /D|Mb
=

n∑
i=1

ei∇ei

parametrized by points b in B, where e1, . . . , en is an orthonormal frame of
the bundle V |Mb

= TMb.
Now, we can construct an infinity dimensional vector bundle⊔

b∈B
L2(S|Mb

)→ H→ B.

In order to get a finite dimensional subbundle of H over B, we consider the
kernels of the Dirac operators ker(/Db) ≤ L2(S|Mb

), for b ∈ B, which forms
an object ⊔

b∈B
ker(/Db)→ ker(/D)→ B

of H. Although the dimension of ker(/Db) may jumps as b varies in B such
that ker /D is not a bundle over B, it sometimes happens that B′ := {b ∈
B| ker(/Db) 6= 0} is a submanifold of B and ker(/D) is a bundle over B′. This
turns out to be our case and it is such a submanifold on which a brane
supports.

Remark 47. We can tensor S with a Hermitian bundle E →M and con-
sider the family twisted Dirac operators

/DEb : L2 ((S ⊗ E)|Mb
)→ L2 ((S ⊗ E)|Mb

)

to obtain

ker(/DEb )→ ker(/DE)→ B

in B.
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