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Geometric kernel formula relating
prime forms

ALEXANDER ZUEVSKY

We use geometric representation for the Szegd kernel on genus
g+ 1 and genus g Riemann surfaces in order to derive formulas
relating corresponding prime forms. The result will be useful for
computation of fermionic vertex algebra cohomology of smooth
manifolds foliations.

1. Differentials and kernels on a Riemann surface
1.1. The self-sewing formalism of a Riemann surface

In this subsection we recall the construction of the Szeg6 kernel on a Rie-
mann surface 1) constructed by self-sewing a Riemann surface £9) of
genus g. It is based on the formalism of the paper [Y]. Consider a Riemann
surface (9 of genus ¢. Let z1, 2o be local coordinates in the vicinity of
two separated points pi, pe. Consider two disks |z4| < 7g, for 74 > 0 and
a =1,2. We require that r1, ro must be sufficiently small to ensure that
the disks do not intersect. Let us introduce a complex parameter p such
that |p| < 717y and restrict the disks {z, : |z4| < |plr3 '} € @), to form
a twice-punctured surface $(9) = 2(9)\Ua:172{za : 2| < |plrst}. Here we
use the notation I = 2, 2 = 1. Next let us define annular regions A, C £
such that A, = {z, : ]p|7°c—fl < |zq| < rq} and identify them as a single re-
gion A = A; ~ Ay subject to the sewing relation 2122 = p, to construct a
compact Riemann surface 291 = 39\ {A4; U A2} U A of genus g + 1. The
sewing relation may be viewed as a parameterization of a cylinder connecting
the punctured Riemann surface to itself.

We define a standard homology basis of cycles {a1,b1,...,ag11,bg+1} on
0+ where {a1,b1,...,ay,b,} is the initial basis on 29, Let Cy(24) C Aa
denote a closed anti-clockwise contour parameterized by z, surrounding the
puncture at z, = 0. Then by applying the sewing relation one infers that
Ca(#2) ~ —C1(#1). We then define the cycle ag41 to be Ca(22), and the cycle
by+1 to be a path chosen in $(9) between identified points z1 = zg and 2z =
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p/zo on the sewn surface. The the holomorphic one-forms ui(gH) and the
period matrix QU*1 can be computed in terms of data coming from (9
Y.

1.2. Differentials on a Riemann surface

Consider a compact Riemann surface (9 of genus ¢ endowed with canonical

homology cycle basis a1,...,aq,b1,...,by. In general there exists g holomor-

phic one-forms yi(g), i=1,...,g which may be normalized [FK|, [Sp] by

(1.1) f{ AP = 2mid;.

The genus g period matrix Q9 is defined by

@_ 1 [ ©
(1.2) Q5 = 57 72 v,
fori,j=1,...,¢9. Q9 is symmetric with positive imaginary part, i.e., QW) e

H,, the Siegel upper half plane. Here We recall the definition of the theta
function with real characteristics [Mul, [FK]

o) [gz” <Z|Q(g>>
= ; @).09. (9) (9)y. i3(9)
%gexp(m(m—l—ag)ﬁg <m+ag)+(m—|—a9) <z+2mﬁg)>,

for a9 = (o), B = (Bi) ERY, z=(z;) € CI, and i = 1,...,g. There ex-
ists [Mul, [Fay] a non-singular odd character [gfj)) } such that

(9) (9)
0 |7 (9)y — @ |7 (9)
9 {5(9)} 0@y =0, 8.9 [5@] <O|Q );éo.

Then let us introduce
9 fy(g) )
(1.3) ¢9(z) = Z@Zilg(g) [6(9)] <0|Q(9)) /9(2),
i=1

a holomorphic one-form, and let (C (©) (:1:))5 denote the form of weight % on

the double cover £(9) of £(9). We call (¢((9)(z))* a double-valued 3-form on
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»(9). One defines the prime form £(9)(z, y) by (here the sign in the definition
differs with [Mul [Fay])

(1L4)  ED(x,y) =9 ['g((j))} ( / u<9)9<9>) (¢9@)

Y

N =
VS
Iy
—~
Q
~
—~
<
~
N———
N =

where [19) = (f I/i(g)> € C9. The prime form £ (z,y) = —£W(y,2) is a
y

y
holomorphic differential form of weight (—%, —%) on X9 x ©.09),
We define the Szegd kernel [Sc, [HS, [Fay] for 9(9) [gﬁji} (OIQ(g)) # 0 by

@[] [ T @100
e 09 [50)] ({” 1 >
s 59|00 ala®) -

( ) o aly ’
P 99 [50] 0109) £0)(z,y)

where 6(9) = (07,)7 ¢)(9) = (¢Z) c U(l)n for 9] — _6—27riﬂj’ ¢] — _6271'7,'01]" j =
1,...,g. This can be written as

(9) (9) ~1
N [Z(Q)] (z,y|Q9)) = 0W [Oé ] <a:,y; 1/(9)’0‘9(9)> <£(g)(x,y)> ;

with the functional

al9)
o [ 5(9)} (.9 f1, £2109) =

1.3. Szeg6 Kernel in the p-Formalism

Now let us determine the Szegd kernel

plo+1)
S(g+1) (LE, y) - S(g+1) |:¢(g+1):| (‘T’ y)a

on the self-sewn Riemann surface (91 in terms of genus g Szegé kernel and
the multiplier parameters associated with the handle cycles. The ST mul-
tipliers on the cycles a;, b; for i = 1,..., g are determined by the multipliers
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of 81 with o, (g+1) qb(g and 9(g+1) = 9(9) ie., oz(g+ ) = a(g) and B(g+
B; @) The remaining two multipliers associated Wlth the cycles ag+1 and bgyq
Pgt1 = qﬁéfll QMO‘;EZSU, Og1 = H(QH) = e 2mifY , must be specified
s0 that S(g“)(ezmara,y) = —¢0 1, S (x4, y),
St (z,,y) = —9;_;‘1178(9“)(.%(—1, y), for z, € A, and x5 € Aj.

Let kg = k + (—1)%k, for a = 1,2 and integer k > 1. For a kernel S(z,y)
on a genus ¢ Riemann surface we next define the infinite matrix Gg =

<G5;ab [Z((Zi} (k:,l)) of moments

9(9) 3 (katlpy—1)
Gs.ab [ } (k,1) = pi

) (27i)?
j{ % xa) " (yp)~ le(:za,yb) dwé dyb%.
Co(yn)

Finally we introduce infinite row vectors (indexed by a, k)

of half-order differentials

9(9)] pé(kré) 1
1.6 ha Sik,x) = jé oS (2, y,) dyé,
( ) |:¢)(9) ( ) 211 Ca(¥a) Y ( Y ) Y

7 10)) pz(k a=3) 1
(1.7) he [(;5(9)] (S;k,y) = 2m7€ . aS( )(xa, y) dzZ.

From the sewing relation we have dzg = (—1)%p2z; 'dz2, for £ € {+/—1}.
We also define the matrix T, ég ) = £GsD?, for infinite diagonal matrix

-1
DY (k1) = [ 990+1 !

_ngrl

} 5(k.,1).

Let us also introduce s € [—%, %) by ¢g41 = —e?™E je, k= oaééfl ) mod 1.
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2. Geometric formulas relating prime forms

In [TZ1] we have proved that S¥+1) is holomorphic in p for |p| < r1ry with
St (g, y) = S,gg)(x,y) + O(p), for some kernel S,gg)(x,y). For the genus
g+ 1 prime form €6 and genus g prime form £ we obtain here the
following result. Let us define

EW (z,p2) E9(y,p1)

(9) =
U (z,y) = EO (z,p1) €9 (y, pa)’

P2
and zp, ,, = [ 9, for holomorphic one-forms 1(9).
P1

Proposition 1. One can relate the genus g+ 1 and g prime forms E@+1)
and E9) by means of the following formulas. For k # -1/2,

@1 D y) =00 [500] (@004 0[Q0)
X [@(g) [gg} ($7y§’/(g) + Hzpl,pza’fzphmm(g))
x (U (z,9))" (€D (z,)) "

-1 _ -1
+§hs£ﬂ>($)D9 (I - Ts('Z‘z)) hg(ig)(y)] .

For k = —1/2 one obtains:
(2.2)
1
6D (5, ) = B+ [gi;q (3509, 0100D)
2@ (7 1 1
X [(ﬂ[ﬁ(g) /,/(9) + 5thpzm(g) (u(g)(x,y))
y

MO 1 1 B
— 0,10 [6(9)} /y(g) — §thpzm(g) (u(g) (, y)) W (z, )
Yy
Q@1 /1 o) 1 -1
([27] () -t [32] ()

-1
+&hgw () D°(I — Tégq)>)_1]_1§£g>(y)] .
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Proof. For z, y € fl(g), where S’,(Qg) (x,y) is defined [TZ1] as follows: for x #
1

2

[giii (f V + K/zpl sP2 |Q g ) (u(g) ((L’, y))’i
(2.3) SO (x,y) = :
19 |:g((ii)) i| (’{’ZP17P2 |Q(g)) g(g) ($, y)

For k= —3, st l)(x,y) is given by

U9 (2,9))* o 1
S,gg (.CE, y) = (( 5(9)( v |:5 :| /l/(g) + §ZP1,p2|Q(g)
y
U () ? ) () _ L (9)
—0g11 Wﬁ 5 / ~ 5%Pup: €2

y
a9 /1 al9) 1 -1
X <19 iﬁ(g)i (221,171,2]9(9)) — 0g4+19 iﬂ(g)] (—Qthmm(g))) .
Then we obtain in [TZI] that S@+Y(z,y) is given by

St (2 y) :S§9>(x,y)+£hsgg>( )D’ (I Té‘2>) h5<q>( )-

Note that det (I — 79) is non-vanishing and holomorphic in p for |p| < r17.
Using the definition ([1.5)) and expressing the genus g 4+ 1 prime form we find:

9la+1) [g;:ii;} (f ,/(g+1)|Q(g+1)>
y

Pt [5071] (oj0tery)

£ (a,y) =

—1
. [5&9><x,y>+sh&@<x>D (r-19) "]

Then substituting either or (2.4) for k # —1/2 or kK = —1/2 correspond-
ingly, we obtain and ( . O
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