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In this paper we study the quantum deformation of the superflag
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their projective embedding via a generalization to the super world
of the Segre map and we use it to construct a quantum deformation
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lows us to obtain a description of the quantum coordinate superring
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the quantum complex conformal supergroup SLq(4|1).
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1. Introduction

The construction of the flag and Grassmannian supermanifolds from an al-
gebraic geometric point of view appeared for the first time in Ref. [1]. In a
series of more recent works [2–5], the superflag F := Fl(2|0, 2|1; 4|1) is stud-
ied at the classical and quantum level as an homogeneous superspace for
the complex special linear supergroup SL(4|1), the complex superconformal
group of spacetime in dimension four. In the complex case we do not need
to worry about the signature, but we warn the reader that the real form of
the conformal group1 corresponding to a conformal structure of signature
(+,−,−,−) is SU(2, 2|1) and that the real form of the homogeneous space is
not a real flag supermanifold. In both cases, the big cell of the real or com-
plex supermanifold can be interpreted as the Minkowski superspace, once
one realizes that the subgroup of the conformal group that leaves invariant
the big cell is the Poincaré supergroup times dilations. In Refs. [3–5], a quan-
tization of the whole scheme is shown that starts by substituting the group
SL(4|1) by its quantum counterpart, the quantum supergroup SLq(4|1) [6],
and continues by constructing the corresponding quantum homogeneous su-
perspaces. The superspace C4|1 that appears in F is the super twistor space,
similar to the twistor space of Penrose [7] and shall not be confused with the
super spacetime.

The quantization of Grassmannians and flag manifolds (non super case)
has been studied before in several approaches. The procedure to quantize
F used in this paper and in Refs. [3–5] is inspired by the approach of Refs.
[8–10] for the non super case.

There are other approaches to the quantization of Grassmannians and
flags in the literature. We mention very briefly some of them, although our
list is probably not complete. In Ref. [11] one finds an interesting relation
between twistors and geometric quantization. In Refs. [12, 13] the conformal
group is deformed in the R-matrix approach. Since flags and Grassmannians
are coadjoint orbits of the group SL(n), one has the Kirillov-Kostant-Soriau
symplectic form on them and they can be quantized in terms of star prod-
ucts and Moyal brackets [14–17]. In Refs. [18–20] the property of being
coadjoint orbits is also exploited using the so-called Shapovalov pairing of
Verma modules. Finally we can mention the possibility of quantizing these
spaces as fuzzy spaces [21, 22].

The beauty of our approach is that the actions of the (classic and quan-
tum) conformal and Poincaré supergroups on the superspaces are built into

1Notice that SU(2, 2) is the spin group of the conformal group SO(4, 2).
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The Segre embedding of the quantum conformal superspace 1941

the very definition of the superspaces. Moreover it naturally leads to a dif-
ferential star product [23, 24].

It is then a very natural approach, giving the importance that symme-
tries have in physics. Quantum geometry is in fact a fascinating subject that
attracted a lot of attention in the recent past, but that seems not to have
exhausted its full potential: it generalizes the concepts of geometry [25, 26]
in a way resemblant to what quantum mechanics does for classic mechanics
and it is plausible that it may be used to describe the physical phenomena at
very short distance scales, where quantum effects affecting spacetime should
be noticeable. Although mainly inspired by fundamental principles, it has
also appeared repeatedly in string theory and supergravity [27–30]. A warn-
ing, however: here we deal only with flat spaces, so this is to be considered a
toy model which does not contain gravity. But it is, in any case, a non triv-
ial, first step towards that direction. We also want to remark that conformal
geometry have been recently applied to the study of the AdS/CFT corre-
spondence [31], thus we believe that our approach could also be relevant in
order to consider a deformed version of such correspondence.

Even when the full quantization of F in this scheme is proven to exist,
it is extremely difficult to give a presentation of the non commutative ring
associated to it in terms of generators and relations. It is possible, although
not straightforward [3–5], to give such presentation for what is called in
physics the chiral and antichiral superspaces. At the classical level, these
spaces do not have a real form compatible with the action of the conformal
supergroup SU(2, 2|1). They are, though, used in physics (for example in
supersymmetric Yang-Mills theories [32]).

Geometrically, the chiral conformal space is the super Grassmannian
Gr2 := Gr(2|1; 4|1) and the antichiral is Gr1 := Gr(2|0; 4|1). One Grassman-
nian is dual to the other in a sense that will be explained in detail in Sec-
tion 3.2.

All the results are in principle valid for a spacetime of dimension 4,
but some aspects could be generalized to higher dimensions. For example,
in Ref. [33] a symplectic realization of the chiral conformal superspace is
proposed, which can be extended to the 6 and 10 dimensional cases by using
matrix groups over quaternions and octonions. Also, a generalization to split
signatures (n, n) has been considered recently in Refs. [34, 35].

The key ingredient of our treatment is to consider the projective embed-
ding of F into a suitable projective superspace. This is achieved by viewing
F as embedded inside the product of two super Grassmanians, each of them
having a super Plücker embedding in a projective space. We give and explicit
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presentation of the coordinate ring with respect to such embedding: this will
be achieved by using two sets of Plücker coordinates, constrained by a set of
relations called incidence relations which are, in some sense, orthogonality
conditions. The big cell of F will turn out to be the complex Minkowski
superspace as constructed in Ref. [2]. Moreover, we use the projective lo-
calization technique to give a local picture of the conformal superspace: the
incidence relations become locally the twistor relations used in physics.

The coordinate rings of Gr1, Gr2 and F can be seen as subrings of co-
ordinate ring of SL(4|1). We exploit this feature to tackle the problem of
their quantization. We consider the quantum supergroup SLq(4|1) and then
we try to identify subalgebras of it that can be used to define the quantum
super Grassmannians and the quantum superflag. While for the Grassman-
nians this technique is successful (although laborious), for the superflag is
much more involved: finding the commutation relations between the coor-
dinates of Gr1 and Gr2 seems an unsurmountable calculation. On top of it,
one should find also the quantum version of the incidence relations.

We then try a different strategy. It is well know that the product of two
projective spaces can be further embedded into a bigger projective space
through the Segre embedding. This can be generalized to the super setting,
and then one can use the relation between projective embeddings and very
ample line bundles, which also holds in the super case.

Let G be an algebraic Lie supergroup and P a parabolic subgroup and
consider the homogeneous space G/P (in our case, G = SL(4|1) and P is
either of the parabolic subgroups associated to Gr1, Gr2 and F ). If O(G)
and O(P ) are the coordinate superrings of G and P . Then such embeddings
can be given in terms of an element of O(G) lifted from a character of P
[36]. We call this the classical section of the embedding. By the method
of parabolic induction one can see that equivariant sections of O(G) with
respect to the nth power of such character give the degree n subspace of the
graded coordinate ring O(G/P ) associated to the projective embedding of
G/P .

Luckily, it is possible to translate this approach to the quantum realm
by means of a quantum section [36–38]. We then achieve a characterization
of the coordinate superring of F associated to the super Segre embedding.

We have tried to give at least an idea or sketch of the different notions
that appear in the paper. The reader that is versed in algebraic geometry
may skip those parts, but a mathematical physicist may find this a useful
guide, even when proofs of standard results could not be provided explicitly.
We give a list of references for all the details.
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The organization of the paper is as follows:
In Section 2 we give a self contained introduction to supergeometry. We

use it to set up the notation and clarify the language used in the paper.
In particular, we describe the functor of points approach to supergeometry,
explaining some fundamental examples such as the projective superspace
and algebraic supergroups.

In Section 3 we study the embedding of F in Gr1 ×Gr2, and then the
super Plücker embeddings of Gr1 and Gr2 into projective superspaces. We
give the superring characterizing such embedding for the flag, including the
incidence relations. Then we review the Segre map and we propose its su-
persymmetric generalization.

In Section 4 we give a detailed description of the parabolic (super) ge-
ometries that enter into play. Then we describe the very ample super line
bundles associated to the Plücker embeddings of Gr1 and Gr2, the bundles
of antichiral and chiral superconformal densities, respectively. These are the
building blocks of the construction of the very ample super line bundle for
the superflag, whose description will be postponed until Section 6 for tech-
nical reasons.

In Section 5 we recall briefly the definition of the quantum group SLq(4|1)
and we propose a natural deformation of Gr1 and Gr2 as subalgebras of
SLq(4|1) .

In Section 6 we construct the very ample line bundle realizing the Segre
embedding of F and we use the notion of quantum section to propose a
characterization of the quantum coordinate superring for the super flag.

Finally, in the Appendix A we write down the incidence relations explic-
itly and in Appendix B we prove that the super Segre map is an embedding
using the so-called even rules principle.

Notation. The reader may find useful to resort to Refs. [39–41] for all the
results in supergeometry and to Ref. [5] for a more specific treatment of
conformal and Minkowski superspaces.

2. Algebraic supervarieties

In this section we intend to give a very brief account of some notions of
supergeometry that are an extension to superalgebras of well known notions
of algebraic geometry. We will assume that concepts as the spectrum of a
ring, sheaf, ringed space, Zariski topology, etc are known and we will try to
sketch how one proceeds to the generalization. We will not write any proof of
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the statements made, that can be found in the above mentioned references.
We set the ground field to be k = R or C.

Definition 2.1. A commutative2 superalgebra A = A0 ⊕A1 is said to be
an affine superalgebra if its even part, A0, is finitely generated as an algebra,
its odd part, A1, is finitely generated as an A0-module and the reduced
algebra, A0,r = A0/JA0

, where JA0
is the ideal of odd nilpotents, is itself

affine (contains no nilpotents).

In ordinary geometry, for any commutative, affine algebra F one finds
an affine algebraic variety as the spectrum of F . The topological space |X| =
Spec(F ) is the set of prime ideals of F endowed with the Zariski topology.
The structure sheaf is constructed by localizing F at each each p ∈ Spec(F ).
The algebra

Fp :=

{
f

g

∣∣ f ∈ F, g ∈ F − p

}
is the stalk of the sheaf at p. The structure sheaf is denoted as OX and
the pair X = (|X|,OX) is an affine algebraic variety. We recover the affine
algebra F as the set of global sections:

O(X) := OX(X) = F.

O(X) is the coordinate ring or coordinate algebra of the affine variety X.
There is then an equivalence between the categories of affine algebras

and affine algebraic varieties: it is given by the contravariant functor

(varaff) (algaff)

X −−−−→ O(X)

Spec(F ) ←−−−− F.

For the morphisms, one can prove that

Hom(varaff)(X,Y ) = Hom(algaff)(O(Y ),O(X)).

A generic algebraic variety is constructed by gluing together affine alge-
braic varieties. But in order to extend the above correspondence to general
commutative algebras one has to consider a wider category, the category of
affine schemes.

2We try to avoid the use of ‘supercommutative algebra’ as it appears in the
physics literature and stick to the categorical definition [39].
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The Segre embedding of the quantum conformal superspace 1945

Definition 2.2. A ringed space is a pair M = (|M |,F) consisting of a topo-
logical space |M | and a sheaf of commutative rings F on |M |. If the stalk
Fx at each point x ∈ |M | is a local ring (it has a unique maximal ideal) then
we say that it is a locally ringed space.

A morphism of ringed spaces φ : M = (|M |,F)→ N = (|N |,G) consists
of a continuous map |φ| : |M | → |N | and a sheaf morphism φ∗ : G → |φ|∗F ,
where |φ|∗F is the sheaf on |N | defined as |φ|∗F(U) = F(φ−1(U)) for all
open sets U ⊂ |N |. If the spaces are locally ringed then φ∗, on the stalks,
must sent the maximal ideals to the maximal ideals.

The pair X = (Spec(F ),OX) constructed above is a locally ringed space.
We will denote it as X = Spec(F ) = (Spec(F ),OX), to distinguish it from
the topological space |X| = Spec(F ).

Definition 2.3. An affine scheme is a locally ringed space which is iso-
morphic to Spec(F ) for some algebra F , not necessarily affine.

A morphism of affine schemes is a morphism of locally ringed spaces.

One can also prove that the categories of commutative algebras (alg)
and affine schemes (schemesaff) are contravariantly equivalent. Given this
equivalence, we will denote indistinctly as OF or OX the structure sheaf of
X = Spec(F ).

Definition 2.4. A scheme is a locally ringed space which is locally isomor-
phic to an affine scheme.

For an affine superalgebra A, the reduced algebra A0,r is an affine alge-
bra, so we have an affine variety associated to it. Notice that, as topological
spaces, Spec(A0,r) = Spec(A0), since they differ only by nilpotents. On the
other hand, A is an A0-module and one can define a sheaf of OA0

-modules
over Spec(A0) such that the set of its global sections is A1 and the stalk
at each prime p ∈ Spec(A0) is the localization of A1 at p. We have then a
sheaf of superalgebras over Spec(A0). This is the basis for the definition of
algebraic supervariety.

Definition 2.5. A superspace3 is a pair S = (|S|,OS) where |S| is a topo-
logical space and OS is a sheaf of superalgebras whose stalk at a point is a
local superalgebra (it has a unique, two-sided, maximal ideal).

3One shall not mistake this general definition of superspace with the more re-
stricted notion used in physics designating certain super spacetimes.
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A morphism of superspaces f : S = (|S|,OS)→ T = (|T |,OT ) is a pair
f = (|f |, f∗) where |f | : |S| → |T | is a continuous map and f∗ : OT → |f |∗OS
a morphism of sheaves (as in Definition 2.2).

Definition 2.6. An affine algebraic supervariety is a superspace S =
(|S|,OS) constructed from an affine superalgebra A = A0 +A1 by the pro-
cedure specified above. We will denote it as S = Spec(A).
|S| = Spec(A0) is an ordinary affine algebraic variety, the reduced variety.
The affine superalgebra A = OS(S) is the coordinate superalgebra or co-

ordinate superring of S.
Morphisms of affine supervarieties are morphisms of superspaces.

Example 2.7. The affine superspace kp|q is the affine supervariety whose
coordinate superalgebra is the affine superalgebra

A = k[x1, . . . , xp]⊗ Λ(θ1, . . . θq),

where Λ(θ1, . . . , θq) is the exterior algebra on the indeterminates θ1, . . . , θq.
The reduced algebra is the polynomial algebra A0,r = k[x1, . . . , xp] and the
reduced variety is simply kp.

By this construction, the categories of affine superalgebras (salgaff) and
affine supervarieties (svaraff) are equivalent, as in the ordinary setting. In
fact, one has that for two affine supervarieties

Hom(T, S) = Hom(O(S),O(T )).

Generic algebraic varieties are superspaces that are locally isomorphic to
affine supervarietes. We will encounter algebraic varieties that are not affine
in the following. As in the non super case, in order to obtain an equivalence
of categories with general superalgebras we have to use affine superschemes.

Definition 2.8. An affine superscheme is a superspace S = (|S|,OS) which
is isomorphic to Spec(A) for a superalgebra A, not necessarily affine.

A morphism of superschemes is a morphism of the corresponding super-
spaces.

We have that the categories of affine superschemes (sschemesaff) and the
category of commutative superalgebras (salg) are contravariantly equivalent.
More generally, we have the following definition.
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Definition 2.9. A superscheme is a superspace S = (|S|,OS) such that
OS,1 (in OS = OS,0 +OS,1) is a quasi coherent sheaf of OS,0-modules.

One can prove that a generic superscheme is locally isomorphic to
Spec(A) for some superalgebra A.

We will use the functor of points approach to supervarieties, so we re-
call its general definition here. We introduce it in the general language of
superschemes, although one could also define it on algebraic supervarieties.

Let S and T be be superschemes. A T -point of S is a morphism of
superschemes T → S. We denote by hS(T ) = Hom(T, S) the set of all T -
points of S.

Definition 2.10. The functor of points of a superscheme S is the con-
travariant functor hS : (sschemes)→ (sets) defined on objects as

T → hS(T ) := Hom(sschemes)(T, S),

and on morphisms φ : T → T ′ as

hS(φ)f = f ◦ φ, f ∈ Hom(sschemes)(T
′, S).

One can prove that morphisms of supervarieties or superschemes are
natural transformations between their functors of points.

The following important result will be used repeatedly in applications.

Theorem 2.11. The functor of points of a superscheme is determined by
its restriction to the category of affine superschemes.

So, once we have the functor defined in general, for many purposes it
will be enough to check how it works in the subcategory

(1)
(sschemesaff)

hS−−−−→ (sets)

T −−−−→ Hom(T, S).

A contravariant functor h from a certain category (cat) to (sets) is said to
be representable if h(X) = Hom(X,Y ) for all X ∈ (cat) and some Y ∈ (cat).
The object Y is said to represent the functor h. It is customary to denote
the representable functor as hY . So the functor of points of a superscheme is
a contravariant, representable functor. For a covariant functor we just have
to substitute h(X) = Hom(Y,X).
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Notice then that the functor defined in (1) will not be representable in
the category of affine superschemes if S is not affine. Nevertheless, given
the equivalence of categories among (sschemesaff) and (salg), we can give
alternatively the restricted functor (1) as

(salg)
hS−−−−→ (sets)

A −−−−→ Hom(Spec(A), S).

If the superscheme is affine, then Hom(Spec(A), S) = Hom(O(S), A).
In the literature, sometimes these functors are also called ‘representable’,

but we have to be aware that, strictly speaking, they are not: the functor of
points of a generic superscheme is always representable in the category of
superschemes. If the superscheme is affine, then for all purposes it is enough
to define the functor of points on affine superschemes. The extension to
generic superschemes could be done by a gluing procedure, using the fact
mentioned in Definition 2.9.

Example 2.12. The functor of points of affine superspace. We now go back
to Example 2.7. Let kp|q be the scheme of the affine superspace. We want to
describe its functor of points on affine superschemes. Due to the equivalence
of categories, we have that a morphism

φ : T → kp|q, T ∈ (sschemesaff)

can be determined by a morphism

A = k[x1, . . . , xp]⊗ Λ(θ1, . . . , θq)
φ′−−−−→ B = O(T )

(x1, . . . , xp; θ1, . . . , θq) −−−−→ (a1, . . . , ap; α1, . . . , αq).

The morphism φ′ is determined by the image of the generators, that is, by
p even elements ai ∈ B0 and q odd elements αj ∈ B1.

Notice that taking B = k, the k-points of of A are just the geometric
points of the affine space kp, the reduced variety. To detect the presence of
odd variables one needs more than the geometric points, one needs the full
functor of points.

By an abuse of notation, we will use the same name for the functor given
on the affine superschemes as for the functor given on the superalgebras.
Moreover, when there is no possibility of confusion, we will denote these
functors with the same letter than the superscheme or the supervariety itself.
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The following example of affine supervariety will be of special interest
for us.

Example 2.13. The functor of points of the algebraic supergroup SL(4|1).
An algebraic supergroup is an algebraic supervariety whose functor of points
is group valued.

Let A be a superalgebra. A supermatrix of dimension m|n with entries
in A is a matrix of the form

Mn|m(A) :=

{(
pm×m qm×n
rn×m sn×n

)}
where p, q, r and s are blocks of the dimension indicated above, with the
entries of p and s are valued in A0 and the entries of q and r are valued in
A1. Let A be a superalgebra. We define the functor SL(4|1) : (salg)→ (sets)
as

SL(4|1)(A) :=

{
g =

(
p4×4 q4×1

r1×4 s1×1

)
∈M4|1(A); p, s invertible, Ber g = 1

}
.

The Berezinian is given by (we suppress the dimensions of the blocks)

Ber

(
p q
r s

)
= det s−1 · det(p− qs−1r).

The Berezinian is the generalization of the determinant to the super case.
Notice that it is only defined if s and p are invertible, which in turn implies
that the supermatrix is invertible.

On morphisms f : A→ B, the functor SL(4|1) behaves as follows. Let us
denote as g = (gij) ∈ SL(4|1)(A), the supermatrix formed with the entries
gij . Then SL(4|1)(f)(g) = (f(gij)) ∈ SL(4|1)(B). This can be defined for the
full M4|1 (which is also a functor) and then one can check that it preserves
the invertibility condition.

This functor is group valued and representable. It corresponds to an
algebraic supervariety with (affine) coordinate superalgebra

k[xij , ξkl][(det p)−1, (det s)−1]/(Ber g − 1),

where xij are the even entries of p and s, and ξkl are the odd entries of q
and r.
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Examples of schemes and superschemes that are not affine are the pro-
jective space and superspace and projective algebraic varieties and superva-
rieties. We are interested in some examples of projective supervarieties so,
as a first example, we will describe the projective superspace.

Example 2.14. Functor of points of the projective superspace. Let T =
(|T |,OT ) be an affine superscheme. We define the following functor

(2)
(sschemes)

Pm|n

−−−−→ (sets)

T −−−−→ Pm|n(T ),

where

Pm|n(T ) := {locally free subsheaves FT ⊂ km+1|n ⊗OT of rank 1|0}.

When the functor is restricted to (sschemesaff) one can give it equivalently
on (salg):

(3)
(salg)

Pm|n

−−−−→ (sets)

A −−−−→ Pm|n(A),

where

Pm|n(A) := {finitely generated projective submodules

M ⊂ Am+1|nof rank 1|0}

and Am+1|n := A⊗ km+1|n. On morphisms f : A→ B we have that Pm|n(f)
is given through the extension of scalars

Pm|n(A)
Pm|n(f)−−−−−→ Pm|n(B)

MA −−−−→ B ⊗AMA.

This definition is closer to the geometric interpretation. One needs to
prove that the functor is representable in the (sschemes) category, that is,
we have to find a superscheme Pm|n (by an abuse of notation, we will denote
the functor and the superscheme by the same symbol), such that

Pm|n(T ) = Hom(T,Pm|n).

The superscheme Pm|n is in fact an algebraic variety, but not an affine
superscheme. It is constructed as a sheaf over the ordinary projective space
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Pm = Cm+1/ ∼, where, as usual

(x0, x1, . . . , xm) ∼ (x′0, x
′
1, . . . , x

′
m) iff x′i = λxi, λ ∈ C×.

An open cover of Pm is given by

Ui = {[x0, x1, . . . , xm] | xi 6= 0} i = 1, . . . ,m,

and local coordinates are given by

(ui0, . . . , û
i
i, . . . , u

i
m), uik := xk/xi.

On each open set Ui we consider the sheaf that for any V , open subset of
Ui,

OUi
(V ) = O0, U i(V )⊗ ∧(ξ1, . . . , ξn),

where O0, U i(V ) is simply the sheaf of algebraic functions on Ui and then so
OUi
∼= Cm|n.

These sheafs can be glued conveniently, the procedure being similar to
the one used for standard projective space. In this way we obtain the super-
variety Pm|n representing the functor (2). For a detailed proof of this fact,
see Refs. [3, 5, 41].

A projective supervariety is a supervariety that can be embedded into a
projective superspace. There is a standard construction, parallel to that of
Spec(F ), that contains the information of the projective supervariety and the
embedding. One starts with a Z-graded superring (with grading compatible
with the Z2-grading) and considers homogeneous ideals. We describe briefly
the construction, starting with the projective space itself.

Example 2.15. Projective superspace and projective supervarieties. The
standard construction of the projective superspace as a superscheme fol-
lows the same lines than for the non super case (see for example Chap-
ters 2 and 10 in Ref. [41]). We first consider the Z-graded superalgebra
A = k[x0, x1, . . . , xm; ξ1, . . . , ξn], with the polynomial grading, which is com-
patible with the Z2-grading. The polynomial grading is denoted with su-
perindices , A = ⊕∞n=0A

n, while the Z2-grading is denoted with subindices
A = A0 +A1. The topological space Proj(A0) is the set of Z-homogeneous
prime ideals in A0 which do not contain the ideal (x0, x1, . . . , xm; ξiξj).
This set is given the Zariski topology. It can be covered by open sets Ui,
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i = 0, . . . , n, formed by the homogeneous primes not containing xi, which
amounts to say, the homogeneous primes in

k[x0, x1, . . . , xm; ξ1, . . . , ξn][x−1
i ],

or simply the prime ideals in the ring at degree zero(
k[x0, x1, . . . , xm; ξ1, . . . , ξn][x−1

i ]
)0
.

Setting uij = xj/xi, this ring is isomorphic to

k[ui0, . . . , û
i
i, . . . , u

i
m; ξ1, . . . , ξn],

which defines the sheaves OUi
of Example 2.14. They glue to a scheme that

we denote as Proj(A) := (Proj(A),OA) = Pm|n.
The stalk of the scheme at each prime p is obtained by localizing A as an

A0-module, essentially with the technique described in Ref. [42] page 116.

A projective algebraic supervariety can be constructed in a similar way
starting from a graded superring S = ⊕∞d=0S

d obtained by quotienting A by
some homogeneous, Z2-graded ideal. As before, the set Proj(S0) is the set
of all homogeneous prime ideals not containing S+

0 = ⊕∞d=1S
d
0 . This set is

given the Zariski topology and a sheaf OS obtained localizing S. We then
obtain a scheme denoted as Proj(S) := (Proj(S),OS), locally isomorphic to
an affine scheme.

Remark 2.16. Duals and inner homomorphisms for modules. Let A be
a commutative superalgebra (associative, with unit). For a commutative
superalgebra, a left A-module M is also a right M -module by setting

m · a := (−1)p(m)p(a)a ·m, a ∈ A,m ∈M,

where p(a) and p(m) are the parities of a and m, so we can call them just
‘modules’. LetM be the category of A-modules. It is a tensor category with
unit 1 = A. Morphisms in M are linear maps of A modules f : M →M ′

that preserve parity.
If we consider the free modules M = Ap|q and M = Ar|s, a morphism f

can be represented as a supermatrix

(4)

(
Tr×p Tr×q
Ts×p Ts×q

)
where the diagonal blocks have entries in A0 and the off-diagonal blocks
have entries in A1.
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We can consider linear maps N →M , not necessarily parity preserving.
For free modules, this will correspond to consider supermatrices as in (4),
but with arbitrary entries in A. We will denote them as hom(N,M) as
opposed to Hom(N,M) for the parity-preserving morphisms. It is clear that
hom(N,M) is an A-module itself. One says that hom(−,−) is an internal
Hom functor Mop ×M→M.

The dual of an A-module M is the A-module M∗ = hom(M,A). Let
us consider the free module M = Ap|q and let {e1, . . . , ep, E1, . . . Eq} de-
note the canonical basis4. As for vector spaces one can define the dual basis
{e∗1, . . . , e∗p, E∗1 , . . . , E∗q } with

(5) e∗i (ej) = δij , e∗i (Eα) = 0, E∗α(ei) = 0, E∗α(Eβ) = δαβ,

with i, j = 1, . . . , p and α, β = 1, . . . , q. Any linear map M → A is deter-
mined by its values on a basis so it will be an A-linear combination of the
dual basis. The relations (5) imply that e∗i is a parity preserving (even) map
while E∗α changes by one the parity (odd map), so M∗ ∼= Ap|q, although the
isomorphism is not natural.

We will be interested in finitely generated projective modules and their
duals. One has that given two such A-modules N and M

(N ⊕M)∗ = N∗ ⊕M∗.

If M is a projective module, the above equation implies that M∗ is also a
projective module. One also has the natural isomorphism

M∗∗ ∼= M.

3. The classical superflag Fl(2|0, 2|1; 4|1) and its projective
embeddings

The super flag manifold Fl(2|0, 2|1; 4|1) of 2|0-subspaces of 2|1-subspaces of
the complex superspace C4|1 is the model of the complex, flat5, conformal,
N = 1 superspace. Indeed, this supervariety has a real form that is an homo-
geneous space for the the conformal supergroup SU(2, 2|1) and contains the
super Minkowski space as its big cell, together with the appropriate action
of the super Poincaré subgroup on it. These are all physical requirements. In

4Latin letters will generically denote even quantities, Greek letters odd ones.
5We refer to flat conformal geometry when the Minkowski space is contained in

the variety that we consider.
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Section 4.1 we make a brief summary of the properties of the conformal and
Minkowski superspaces seen as homogeneous superspaces of the conformal
and Poincaré supergroups, respectively.

We will realize the superflag Fl(2|0, 2|1; 4|1) as contained in the product
of Gr(2|0; 4|1) (the super Grassmannian of 2|0-subspaces in C4|1) times its
dual, Gr(2|1; 4|1) (the super Grassmannian of 2|1-subspaces in C4|1).

To ease the notation, through this paper we will denote (as in the Intro-
duction)

F := Fl(2|0, 2|1; 4|1), Gr1 := Gr(2|0; 4|1), Gr2 := Gr(2|1; 4|1).

In the super context, not all Grassmannian and flag superschemes can
be embedded into a projective space: topological obstructions arise some
cases. An example of a non projective super Grassmannian is Gr(1|1, 2|2)
(see Chapter 4 in Ref. [1] and Chapter 10 in Ref. [41]). But in the special
case that we investigate here, it is possible to obtain a projective embedding
by generalizing to the super case the so called Plücker embedding of the
Grassmannian Gr(2, 4) in P(∧2C4) ∼= P(C6) ∼= P5.

Our presentation here goes along the lines explored in Refs. [1–3, 5]. We
will give first the super Plücker embedding of Gr1 and Gr2 in the projective
space P6|4. Since F ⊂ Gr1 ×Gr2, then it also admits a projective embedding
in P6|4 ×P6|4. Finally, we will describe the Segre embedding of P6|4 ×P6|4

in the super projective space P64|56, which in turns gives the projective
embedding of Gr1 ×Gr2 and F as subsets of P64|56.

We start first with the Plücker embedding of the super Grassmannians.

3.1. Plücker embedding of the super Grassmannian
Gr(2|0; 4|1) and its dual Gr(2|1; 4|1)

Let {e1, e2, e3, e4, E5} be the canonical basis of C4|1 with ei even and E5 odd.
As customary, Latin letters are used for even objects, while Greek letters
are used for odd ones. Let A be a commutative superalgebra. We define the
functors Gr1,Gr2 : (salg)→ (sets) as

Gr1(A) := {finitely generated, projective submodules M⊂A4|1 of rank 2|0},

Gr2(A) := {finitely generated, projective submodules M⊂A4|1 of rank 2|1}.
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On morphisms of superalgebras f : A→ B we have that Gr1(f) is given by
the extension of scalars

Gr1(A)
Gr1(f)−−−−→ Gr1(B)

MA −−−−→ B ⊗AMA.

These definitions are analogous to the definition of projective superspace
(2.14) and the geometrical meaning is clear. As in that case, one can prove
representability (in the sense of Theorem 2.11 and the comments follow-
ing it) of these functors in terms of superschemes over the reduced variety,
the Grassmanian of 2-planes in C4, i.e. Gr(2, 4). Moreover, the supergroup
SL(4|1) has a left action over Gr1 and Gr2, so they become homogeneous
spaces

Gr1 = SL(4|1)/P1, Gr2 = SL(4|1)/P2,

where P1 and P2 are certain parabolic subgroups of SL(4|1). In the functor
of points notation, they are explicitly

P1(A) =




g11 g12 g13 g14 γ15

g21 g22 g23 g24 γ25

0 0 g33 g34 γ35

0 0 g43 g44 γ45

0 0 γ53 γ54 g55


 ,

P2(A) =




g11 g12 g13 g14 γ15

g21 g22 g23 g24 γ25

0 0 g33 g34 0
0 0 g43 g44 0
γ51 γ52 γ53 γ54 g55


 , gij ∈ A0, γkl ∈ A1.(6)

For the proof of these facts we refer the reader to Refs. [5, 41]. The treat-
ment of homogeneous spaces of supergroups, also with the functor of points
approach, is done carefully in Ref. [41].

In Ref. [3] the embedding of Gr1 in the projective space P(E), where
E = ∧2C4|1 ∼= C7|4, is described by giving explicit coordinates in the functor
of points approach. In the notation of Example 2.14, P(E) ∼= P6|4. We will
briefly outline it here.

In the functor of points language, any morphism (in particular, an em-
bedding) is a natural transformation among the functors. We then need
to give a natural transformation among the functors Gr1, P(E) : (salg)→
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(sets). For each object A in (salg) we define the morphism

Gr1(A)
pA−−−−→ P(E)(A)

M −−−−→ ∧2M,

where

∧2M = M ⊗M/(u⊗ v + (−1)|u||v|v ⊗ u)

and |u| is the parity of u. Notice that if M is a projective submodule of A4|1

of rank 2|0, then ∧2M is a projective submodule of ∧2A4|1 ∼= A7|4 of rank
1|0 so it is indeed an element of P(E)(A). This morphism is functorial in A,
that is, given a superalgebra morphism f : A→ B, the diagram

Gr1(A)
pA−−−−→ P(E)(A)

Gr1(f)

y yP(E)(f)

Gr1(B)
pB−−−−→ P(E)(B)

commutes. It is an easy exercise to prove that this is true.
The functors of points of Gr1 and P(E) are local or sheaf functors (see for

example Chapter VI of Ref. [43] in the non super case, Appendix B.2 of Ref.
[41] in the super case). In our case, this is guaranteed by the fact that they
are functors of points of superspaces. A natural transformation between local
functors is determined by its behaviour on local superalgebras This result
is proven in Proposition B.2.13 of Ref. [41], and it is a generalization of a
similar result in the non super case (see, for example, Ref. [43]). So, once we
have defined the natural transformation pA for an arbitrary superalgebra,
we can restrict ourselves to work on local superalgebras. The projective
submodules over a local superalgebra are free; then they have a basis, which
considerably simplifies the treatment.

Let A be a local superalgebra and let W1(A) ∈ Gr1(A) be the linear span
over A of two linearly independent, even vectors. In the canonical basis of
C4|1 (as above) we have

(7) W1(A) = span




a11

a21

a31

a41

α51

 ,


a12

a22

a32

a42

α52


 = span {r + ρE5, s+ σE5} ⊂ A4|1,

with
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r = a11e1 + a21e2 + a31e3 + a41e4, ρ = α51,

s = a12e1 + a22e2 + a32e3 + a42e4, σ = α52, aij ∈ A0, α5k ∈ A1.

The convention that we use for the exterior algebra is, for V = Cp|q, with
basis {e1, . . . , ep, ε1, . . . , εq},

∧V = ∧[e1, . . . , ep]⊗ Sym[ε1, . . . , εq] ,

so in the exterior algebra, e1, . . . , ep are odd and ε1, . . . , εq are even. We
consider now the wedge product of the two vectors. A basis in E(A) =
∧2C4|1(A) is given by

e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4, E5 ∧ E5 (even),

e1 ∧ E5, e2 ∧ E5, e3 ∧ E5, e4 ∧ E5, (odd),

so E(A) ∼= A7|4 and we can write

(r + ρE5) ∧ (s+ σE5) = r ∧ s+ (ρs− σr) ∧ E5 + ρσE5 ∧ E5

= q + λ ∧ E5 + d55E5 ∧ E5,

with

q := d12e1 ∧ e2 + d13e1 ∧ e3 + d14e1 ∧ e4

+ d23e2 ∧ e3 + d24e2 ∧ e4 + d34e3 ∧ e4,

λ := δ15e1 + δ25e2 + δ35e3 + δ45e4,

d55 := ρσ = α51α52,

and

dij := det

(
ai1 ai2
aj1 aj2

)
, δi5 := det

(
ai1 ai2
α51 α52

)
.

Notice that although δi5 is defined as a usual 2× 2 determinant, it is indeed
an odd element in A.

It is not difficult to prove that the coordinates dij , d55, δi5, determine
uniquely a subspace W1(A) ∈ Gr1(A) (see also Section 4.8 in Ref. [5]; there
the notation Grch is used instead of Gr1). Moreover, if we change the basis
we used to describe W1(A), that is, if we act on the right with GL(2|0) =
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GL(2,C) on W1(A), these coordinates vary by a common constant factor.
The natural transformation becomes

Gr1(A)
pA−−−−→ P(E)(A)

W1(A) = span {a1, a2} −−−−→ [a1 ∧ a2],

where P(E)(A) ∼= P6|4. In coordinates, the map is

span {r + ρE5, s+ σE5} → [d12, d13, d14, d23, d24, d34, d55; δ15, δ25, δ35, δ45].

The projective embedding of Gr1 ⊂ P(E) defined above is called the super
Plücker embedding.

We are going to characterize the image of the super Plücker embedding
in terms of homogeneous polynomials. Then, we will have proven that Gr1

is a projective supervariety. We ask then when a generic, even vector w in
E(A)

(8) w = d+ δ ∧ E5 + d55E5 ∧ E5,

with

d := d12e1 ∧ e2 + d13e1 ∧ e3 + d14e1 ∧ e4

+ d23e2 ∧ e3 + d24e2 ∧ e4 + d34e3 ∧ e4,

δ := δ15e1 + δ25e2 + δ35e3 + δ45e4.

is decomposable, that is, it can be written as a wedge product

(9) w = (r + ρE5) ∧ (s+ σE5).

One can prove [3] that this happens if and only if the following conditions
are satisfied

d ∧ d = 0, d ∧ δ = 0, δ ∧ δ = 2d55d.

These equations are known as the super Plücker relations for Gr1. They give
all the relations among the coordinates dij , δi5 and provide a presentation
of the coordinate ring of Gr1 associated to this embedding. More explicitly,
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the super Plücker relations are

d12d34 − d13d24 + d14d23 = 0, (classical Plücker relation)

dijδk5 − dikδj5 + djkδi5 = 0, 1 ≤ i < j < k ≤ 4,

δi5δj5 = d55dij , 1 ≤ i < j ≤ 4.(10)

Let us denote as IGr1 the homogeneous ideal generated by the quadratic
relations (10). Then, the Grassmannian coordinate ring C[Gr1] resulting
from this embedding is given by

(11) C[Gr1] = C[dij , d55; δi5]/IGr1 .

The projective variety so defined is called the super Klein quadric, and it is
isomorphic to Gr1 (see Refs. [3, 40]).

We now turn to the problem of finding a projective embedding for Gr2.
Let W2(A) ∈ Gr2(A) with

(12) W2(A) = span




a11

a21

a31

a41

α51

 ,


a12

a22

a32

a42

α52

 ,


α15

α25

α35

α45

a55


 ⊂ A

4|1.

As always, Latin letters are even elements in A and Greek letters are odd
elements in A. One could try to mimic the procedure used for Gr1: there
will appear 3× 3 determinants. But the change of basis is now given by the
right action of the supergroup GL(2|1)(A), and the ordinary determinants
are not invariant under the action of the supergroup.

Nevertheless we can bypass this problem by using a natural duality be-
tween Gr1 and Gr2 that we are going to describe.

Let us denote T (A) = A4|1, and consider the dual module T (A)∗ =
homA(T (A), A), the set of (even and odd) A-linear maps or forms A4|1 → A
(see Remark 2.16). We have that T (A) ∼= T (A)∗ ∼= A4|1, although the iso-
morphism is not natural. We will denote

Gr∗1(A) := {projective submodules M ⊂ T (A)∗ of rank 2|0}.

Clearly Gr∗1
∼= Gr1.



i
i

“4-Latini” — 2019/7/15 — 21:02 — page 1960 — #22 i
i

i
i

i
i

1960 R. Fioresi, et al.

Let W2(A) ∈ Gr2(A), where A is now an arbitrary superalgebra. We
define the annihilator6 of W2(A) as

W2(A)0 = {u∗ ∈ T (A)∗ | u∗(v) = 0 ∀ v ∈W2(A)}.

W2(A)0 is a submodule of T (A)∗ but in general, it is not a projective sub-
module.

In spite of that, let us first see how the construction works for local
superalgebras; then W2(A) is a free module so it has a basis. Let

(13) {e1, e2, e3, e4, E5}

denote the canonical basis of T (A) and let

(14) {e∗1, e∗2, e∗3, e∗4, E∗5}

denote the dual basis of T (A)∗ (5). Suppose that W2(A) = span {e1, e2, E5};
then its annihilator is W2(A)0 = span {e∗3, e∗4}. For a general submodule
W2(A), we can always choose a basis so that W2(A) and W2(A)0 have this
form. The change of basis accounts for the left action of the supergroup
SL(4|1), so for a general W2(A) we can write

W2(A) = 〈g · e1, g · e2, g · E5〉 ⊂ T (A),(15)

W 0
2 (A) = 〈(gt)−1 · e∗3, (gt)−1 · e∗4〉 ⊂ T (A)∗, g ∈ SL(4|1)(A).(16)

We have then established a natural transformation between the functors Gr2

and Gr∗1 restricted to local algebras

Gr2(A)
qA−−−−→ Gr∗1(A)

W2(A) ⊂ T (A) −−−−→ W2(A)0 ⊂ T (A)∗.

It has an inverse since there is a natural identification

T (A)∗∗ ∼= T (A),

so the transformation is an isomorphism of functors.

Remark 3.1. The fact that the entries of the matrix (gt)−1 are expressed in
terms of the entries of g has crucial consequences when considering quantum

6We use here the word ‘annihilator’ in the same sense than it is used for vector
spaces.
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deformations of these objects; in fact, this will enable us to realize both Gr1

and Gr2 within the same quantum matrix bialgebra.

We still have to tackle the problem of extending the natural transfor-
mation qA to generic superalgebras. Let W2(A) ∈ Gr2, with A generic, and
let us consider it as an A0-module. Being finitely generated and projective,
it is locally free (see for example Ref. [44], page 137 for the ordinary set-
ting). This means that there exists fi ∈ A0, i = 1, . . . , n such that the ideal
(f1, . . . , fn) = A0 and such that W2(A)[f−1

i ] is free as an A[f−1
i ]-module (see

Theorem B.3.4 in Ref. [41]).
The geometric meaning of this fact is the following: since the set of prime

ideals in A is in bijective correspondence with the set of prime ideals in A0

(see Chapter 10 in Ref. [41]), the topological space Spec(A) = Spec(A0) is
covered by the open sets

(17) Spec(A0)fi = Spec(A0[f−1
i ]),

and the localization of W2(A) on each fi, W2(A)[f−1
i ] is a free A[f−1

i ]-
module. The annihilator W2(A)[f−1

i ]0 can be constructed as in (16). We
have then a collection of free A[f−1

i ]-modules W2(A)[f−1
i ]0 of rank 2|0 which

obviously agree on A[f−1
j ][f−1

i ], and such that the gluing property (17) is
satisfied. They then glue to a projective A-module that we will denote as
W (A)⊥ ∈ Gr∗1(A). The construction is manifestly functorial. For more de-
tails on this construction, see Section 3.16 in Ref. [45] and also Sections 10.2.3
and 10.3.2 in Ref. [41].

We have then established a natural transformation (that we denote also
as qA)

Gr2(A)
qA−−−−→ Gr∗1(A)

W2(A) ⊂ T (A) −−−−→ W2(A)⊥ ⊂ T (A)∗,

which is an isomorphism of functors on arbitrary superalgebras.

We want now to obtain the super Plücker relations as in (10). We con-
sider W2(A)⊥ as a submodule of T (A)∗. In terms of the dual basis (14), we
will denote a vector in T (A)∗ simply as

r∗ + ρ∗E∗5 , with r∗ = a∗1e
∗
1 + a∗2e

∗
2 + a∗3e

∗
3 + a∗4e

∗
4,

and a vector in E(A) = ∧2C4|1(A) as

(18) w∗ = d∗ + δ∗ ∧ E∗5 + d∗55e
∗
5 ∧ E∗5 ,



i
i

“4-Latini” — 2019/7/15 — 21:02 — page 1962 — #24 i
i

i
i

i
i

1962 R. Fioresi, et al.

with

d∗ := d∗12e
∗
1 ∧ e∗2 + d∗13e

∗
1 ∧ e∗3 + d∗14e

∗
1 ∧ e∗4

+ d∗23e
∗
2 ∧ e∗3 + d∗24e

∗
2 ∧ e∗4 + d∗34e

∗
3 ∧ e∗4,

δ∗ := δ∗15e
∗
1 + δ∗25e

∗
2 + δ∗35e

∗
3 + δ∗45e

∗
4.

the two-form w∗ is decomposable

(19) w∗ = (r∗ + ρ∗E∗5 ) ∧ (s∗ + σ∗E∗5 )

if the super Plücker relations

d∗12d
∗
34 − d∗13d

∗
24 + d∗14d

∗
23 = 0, (classical Plücker relations)

d∗ijδ
∗
k5 − d∗ikδ∗j5 + d∗jkδ

∗
i5 = 0, 1 ≤ i < j < k ≤ 4,

δ∗i5δ
∗
j5 = d∗55d

∗
ij , 1 ≤ i < j ≤ 4(20)

are satisfied.

We have proven the following theorem:

Theorem 3.2. The product of super Grassmannians Gr1 and Gr2 is em-
bedded into the product of super projective spaces:

Gr1 ×Gr2 ⊂ P(∧2T )×P(∧2T ∗)

With respect to such projective embedding, the coordinate ring of Gr1 ×Gr2

is given by:

C[dij , d
∗
kl, d55, d

∗
55, δm5, δ

∗
n5]
/

(IGr1 + IGr2),

where IGr1 is the ideal of the super Plücker relations (10), while IGr2 is the
ideal of the super Plücker relations (20).

It is possible to see the coordinate rings of Gr1 and Gr2 as subrings of
the coordinate ring of SL(4|1). This is a consequence of (15) and (16), and
it is a crucial point in the quantization that we will propose in Section 7.
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Let A be a local superalgebra and g ∈ SL(4|1)(A)

g =


g11 g12 g13 g14 γ15

g21 g22 g23 g24 γ25

g31 g32 g33 g34 γ35

g41 g42 g43 g44 γ45

γ51 γ52 γ53 γ54 g55

 .

Let now

e1 =


1
0
0
0
0

 , e2 =


0
1
0
0
0


be two vectors of the standard basis. Then the action of g on e1 and e2

selects the first two columns of g

ge1 =


g11

g21

g31

g41

γ51

 , ge2 =


g12

g22

g32

g42

γ52

 ,

and these are the two independent vectors generating the subspace W1(A).
The coordinate ring of SL(4|1) is

C[SL(4|1)] = C[gij , γi5, γ5i]/(Ber g − 1),

where we are now interpreting gij , γi5 and γ5i as (even and odd) indeter-
minates and not as elements of the superring A. One can show [3–5] that
C[Gr1] is the subring of C[SL(4|1)] generated by the 2× 2 determinants

d12
ij := gi1gj2 − gi2gj1, δ12

i5 := gi1γ52 − gi2γ51, d12
55 = γ51γ52,

with i, j = 1, . . . , 4. We will suppress the superindex indicating columns 1
and 2, which coincides with the notation above. Nevertheless, we have to
remember that when seeing C[Gr1] as a subalgebra of C[SL(4|1)], these ex-
pressions refer to the determinants of the first two columns of the generators
gij of C[SL(4|1)].

Because of the duality between Gr∗1 and Gr2 discussed above there are
the corresponding expressions for Gr2, but now one has to consider the
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element of the group (gt)−1 (see (16)). We are going to give these expressions
explicitly, but we need first some notation.

Notation 3.3. Let us denote columns with upper indices and rows with
lower indices. Let I = (i1, . . . , ip) and J = (j1, . . . , jp) be multiindices. Then
dJI stands for usual determinant obtained by taking the columns J and the
rows I, while δJI stands for usual determinant with an odd column (in our
case, the only possibility is the 5th one). B denotes the total Berezinian of
g, while bJI stands for Berezinian obtained by taking columns J and rows I.
We also write b125

1...̂ı...̂...5 for the Berezinian obtained by taking the columns
1, 2, 5 and the rows obtained by removing i and j from 1, 2, 3, 4, 5.

We have then the following proposition:

Proposition 3.4. Let

g =

(
p4×4 q4×1

r1×4 s1×1

)
∈ SL(4|1)(A), or simply g =

(
p q
r s

)
as in Example 2.13. The rest of the notation is as above. Then

d∗ij := d34
ij ((gt)−1) = (−1)p(s) b125

1...̂ı...̂...5,

δ∗i5 := d34
i5 ((gt)−1) = (−1)i

B

det(p)2

[
b1245
1...̂ı...45 δ

1235
1234 − b1235

1...̂ı...45 δ
1245
1234

]
,

d∗55 := ((gt)−1)51((gt)−1)52 = − B2

det(p)4
δ2345

1234 δ
1345
1234 .

where s is the permutation

(1 2 3 4 5)→ (i j u v w) with {u, v, w} = {1, . . . ı̂, . . . , ̂, . . . 5}.

Proof. This can be checked by a long computation. We sketch the proof for
the particular case d∗12. The other cases go along similar lines.

Let us define p := p− qs−1r and s := s− rp−1q, we then have, explicitly

(g−1)t =

(
(p−1)t −(s−1rp)t

−(p−1qs)t s−1

)
.

The key identity is given by

d34
12((pt)−1) =

1

det p
d12

34(p).
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For g ∈ SL(4|1)(A) we have s = det p and s = det p, thus

d34
12((pt)−1) =

1

s
d12

34 (p− qs−1r) = b125
345

as we wanted to show. �

3.2. The Plücker embedding of the super flag
Fl(2|0, 2|1; 4|1)

In the same way than for the projective superspace and the super Grass-
mannians, we define the functor of points of the flag supervariety for a
superalgebra A as

F(A) = {finitely generated, projective submodules M ⊂ N ⊂ A4|1

where M is of rank 2|0 and N is of rank 2|1}.

This functor, when expressed in terms of superschemes, is also representable
[5]. The reduced scheme is again the Grassmannian Gr(2, 4). One can see
immediately that there is a left action action of the supergroup SL(4|1). As
an homogeneous space, the functor is given as

F = SL(4|1)/Pu, Pu = P1 ∩ P2,

where P1 and P2 are the parabolic subgroups defined in (6). We have

(21) Pu(A) =




g11 g12 g13 g14 γ15

g21 g22 g23 g24 γ25

0 0 g33 g34 0
0 0 g43 g44 0
0 0 γ53 γ54 g55


 .

As for the super Grassmannians, if A is local, one can express the functor
of points of the flag supervariety in terms of the action of SL(4|1) on the
canonical basis, namely

F(A) = {(span {g · e1, g · e2} , span {g · e1, g · e2, g · E5}) , g ∈ SL(4|1)(A)}

(see Sections 4.11 and 4.12 in Ref. [5]).
We want to determine the conditions on an element of Gr1(A)×Gr2(A)

to actually belong to the superflag, that is, (W1(A),W2(A)) ∈ Gr1(A)×
Gr2(A) be such that W1(A) ⊂W2(A) (we remind the reader that A is still a
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local algebra). This will determine extra relations among the generators of
the coordinate ring of Gr1 ×Gr2 (see Theorem 3.2) needed to describe the
superflag with its projective embedding.

We denote

W1(A) = span {a, b} = span




a1

a2

a3

a4

α5

 ,


b1
b2
b3
b4
β5




W 0
2 (A) = span {c∗, d∗} = span




r∗1
r∗2
r∗3
r∗4
ρ∗5

 ,


s∗1
s∗2
s∗3
s∗4
σ∗5


 .

The necessary and sufficient conditions for W1(A) ⊂W2(A) are

(22) r∗(a) = 0, r∗(b) = 0, s∗(a) = 0, s∗(b) = 0.

There is a way of expressing (22) in terms of d = a ∧ b and d∗ = r∗ ∧ s∗.
First, we unify the notation by defining e5 := E5 and e∗5 := E∗5 . Then we
define the contraction

(T (A)∗ ⊗ T (A)∗)⊗ (T (A)⊗ T (A))
Φ−−−−→ T (A)∗ ⊗ T (A)(

p∗ije
∗
i ⊗ e∗j

)
⊗ (qijei ⊗ ej) −−−−→

∑5
j=1 p

∗
ijqjke

∗
i ⊗ ek.

Assuming that d∗ and d are decomposable, (22) is equivalent to

(23) Φ(d∗ ⊗ d) = 0.

In components,

(24)

5∑
j=1

d∗ijdjk = 0, ∀ i, k = 1, . . . , 5.

where di5 := δi5 and d∗i5 := δ∗i5 Notice that this expression is antisymmetric
in (i, j) and (j, k), but the sum over j is unrestricted. This gives a total of
25 independent conditions that we write explicitly in Appendix A. They are
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the incidence relations. Conditions (10), (20) and (24) define completely the
flag supervariety F. We then can state the analog of Theorem 3.2 for the
superflag.

Theorem 3.5. There is an embedding of the superflag

F ⊂ Gr1 ×Gr2 ⊂ P(E)×P(E∗),

with E = ∧2(T ) ∼= C7|4, E∗ = ∧2(T ∗) ∼= C7|4. With respect to such embed-
ding, the bigraded coordinate ring of F is given by

C[F ] := C[dij , δi5, d55, d
∗
ij , δ

∗
i5, d

∗
55]
/

(IGr1 + IGr2 + Iinc)

where Iinc, is the ideal generated by the 25 incidence relations in Appendix A.

Remark 3.6. As for C[Gr1] and C[Gr2], also the coordinate ring of the
superflag C[F] relative to this embedding is the subring in C[SL(4|1)] gen-
erated by the determinants dij , δi5, d55, d

∗
ij , δ

∗
i5 and d∗55 inside C[SL(4|1)].

While dealing at the same time with coordinates dij and d∗ij is already cum-
bersome at the classical level, at the quantum level the problem becomes
intractable. This is why we will resort to a different argument, based on
super line bundles, to define the ring of the quantum superflag in Sections 6
and 7. Nevertheless, the whole construction is based on the same property
for C[Gr1] and C[Gr2].

In the following section we are going to see how the product of two
projective superspaces can be embedded into one projective superspace of
higher dimension.

3.3. The super Segre map

In this section we extend the Segre map to the super setting and then apply
it to the case of interest for the embedding of the superflag F into a unique
projective space.

In the ordinary case, given two projective spaces Pn(C), also denoted as
P(Cn+1), the Segre map is given by

P(Cn+1)×P(Cd+1)
ψ−−−−→ P(Cn+1 ⊗ Cd+1)

(U, V ) −−−−→ U ⊗ V.
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In terms of the homogeneous coordinates for each space, one has

Pn(C)×Pd(C)
ψ−−−−→ PN (C)

([x0, . . . , xn], [y0, . . . , yd]) −−−−→ [x0y0, x0y1, . . . , xiyj , . . . , xnyd]

with i = 0, . . . , n, j = 0, .., d and N = (n+ 1)(d+ 1)− 1.
As usual, [x0, . . . , xn] stands for the equivalence class in Pn(C) given by

(x0, . . . , xn) ∼ λ(x0, . . . , xn), for all λ ∈ C× (see Example 2.14).
If we label as zij the homogeneous coordinates of PN (C), then it is

not hard to prove that the image of the Segre map is an algebraic variety
given by the zero locus of the 2× 2 minors of the matrix (see for example
Chapter 1 in Ref. [42]) 

z00 z01 · · · z0d

z10
...

. . .

zn0 zn1 · · · znd

 .

Moreover, the map ψ is an embedding.

In order to generalize this construction to the super setting we have
to define a natural transformation among the functors Ψ : Pn|r ×Pd|s →
PN |M , where N = (n+ 1)(d+ 1) + rs− 1 andM = (n+ 1)s+ (d+ 1)r. For
an arbitrary superalgebra A, this is given by

(25)
Pn|r(A)×Pd|s(A)

ΨA−−−−→ PN |M (A)

(U(A), V (A)) −−−−→ U(A)⊗A V (A).

Since the natural transformation is defined in general, we can now restrict
to local algebras. The submodules are free and in homogeneous coordinates
we have

(26)

Pn|r(A)×Pd|s(A)
ΨA−−−−→ PN |M (A)

([x0, . . . , xn |α1, . . . , αr], [y0, . . . , yd |β1, . . . , βs]) −−−−→ [xiyj , αkβl |xiβl, yjαk].

with

i = 0, . . . , n, j = 0, . . . , d, k = 1, . . . , r, l = 1, . . . , s.
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The super Segre map is an embedding and one can give the polynomial
equations defining its image. To do so, we use the even rules principle [39], a
technique essentially similar to the usual ‘Grassmann envelope’ well known
to people working with superalgebras, that helps to keep track of insidious
signs. In order not to disrupt the discourse at this point we have preferred
to put that proof in the Appendix B, where we also describe the technique.

We have shown in Section 3 how the superflag F embeds into the prod-
uct of two projective superspaces through the Plücker embedding. We just
need now to consider the composition of the natural transformation of The-
orem 3.5 with the super Segre map (25). Restricting to local superalgebras
we have

(27)
F(A) −−−−→ P(E)(A)×P(E∗)(A)

W1(A) ⊂W2(A) −−−−→ ([dij , d55 | δi5], [d∗ij , d
∗
55 | δ∗i5])

where W1(A) = span{r + ρE5, s+ σE5} and W2(A) is given in terms of
W2(A)0 = span{r∗ + ρ∗E∗5 , s∗ + σ∗E∗5}. The relation with the coordinates
dij , . . . d

∗
ij , . . . is then expressed in equations (8, 9, 18, 19).

Composing with the super Segre map we will embed F into PM |N , where
M |N = 64|56; explicitly, we get:

(28)

P(E)(A)×P(E∗)(A)
Ψ−−−−→ PM |N (A)

([zij,z55 | ζi5], [z∗ij , z
∗
55 | ζ∗i5]) −−−−→ [zijz

∗
kl, z55z

∗
55, zijz

∗
55, z55z

∗
kl, ζi5ζ

∗
k5 |

zijζ
∗
k5, z55ζ

∗
k5, ζi5z

∗
kl, ζi5z

∗
55].

Let us denote I,K = (1; 2); (1; 3); (1; 4); (2; 3); (2; 4); (3; 4): Then, accord-
ing to the notation in Appendix B, we can organize the image of the super
Segre map CM+1|N in matrix form:

(29)

 zIz
∗
K z55z

∗
K

zIz
∗
55 z55z

∗
55

ζi5z
∗
K ζi5z

∗
55

zIζ
∗
k

z55ζ
∗
k

ζi5ζ
∗
k5

 .

This image is a projective algebraic variety in the generators ZIK Z5K

ZI5 Z55

ΓiK Γi5

ΛIk
Λ5k

Tik

 ,

satisfying the homogeneous polynomial relations (B.6).



i
i

“4-Latini” — 2019/7/15 — 21:02 — page 1970 — #32 i
i

i
i

i
i

1970 R. Fioresi, et al.

4. Line bundles and projective embeddings

In this section we want to introduce basic concepts in parabolic geometry and
construct the very ample line bundle describing the projective embedding
of the Grassmanian. Along the way, we will also discuss its interpretation as
the bundle of conformal densities. We will then extend our construction to
the super Grassmanians Gr1 and Gr2 as well as the super flag F.

4.1. Parabolic (super)geometries

Let G be a semisimple Lie group, g = Lie(G) and we consider its root de-
composition with respect to a Cartan subalgebra h. If ∆± are the subsets
of positive and negative roots respectively, with ∆ = ∆+ ∪∆−, we denote
as usual

n+ =
∑
α∈∆+

gα, n− =
∑
α∈∆−

gα,

so we have the decomposition g = n− ⊕ h⊕ n+, The Borel subalgebra for this
system of roots is b± = h⊕ n±, where one can choose indifferently b+ or b−.
All the Borel subalgebras are conjugated. A parabolic subalgebra of g is a
subalgebra p that contains the Borel subalgebra but it is not the full g.

To every parabolic subalgebra p there is associated a |k|-grading of g

g = g−k ⊕ · · · g−1 ⊕ g0 ⊕ g+1 · · · ⊕ g+k, k ∈ N,

with [gi, gj ] ⊂ gi+j , such that p = g0 ⊕ g+1 · · · ⊕ g+k. Also, one defines p+ :=
g+1 ⊕ · · · ⊕ g+k and p− := g−k ⊕ · · · ⊕ g−1 .

The Levi subgroup of P is the group whose adjoint action preserves the
grading. Its Lie algebra is g0, and we will denote it as G0. It is in fact the
reductive component in the Levi decomposition, P = G0 n P+ where P+ is
the unipotent radical with Lie(P+) = p+.

The following is the relevant example.

Example 4.1. The complexified conformal and Poincaré groups. We con-
sider the conformal group of the Minkowski spacetime, the group SO(4, 2).
Its spin group (the double covering) is SU(2, 2), with complexification SL4(C).
The Lie algebras so6(C) ∼= sl4(C) are isomorphic, but we will use the four
dimensional notation. This means that the conformal algebra and the con-
formal group act on a four dimensional space called the twistor space whose
relation with the four dimensional spacetime we will see in a moment. For
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the standard choice of roots (diagonal), the Borel subalgebra consists of the
lower triangular matrices7


∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗

 .

The complexified Poincaré subalgebra plus dilations is a parabolic subalgebra
consisting of lower, 2×2 -block triangular matrices(

l 0
m r

)
,

where the diagonal blocks l and r form the Lorentz subalgebra plus dilations
sl2(C)⊕ sl2(C)⊕ C ∼= so(4,C)⊕ C, and the block m represents the trans-
lations. The Poincaré group times dilations, in this context, is the group
P = (SL2(C)× SL2(C)× C) n M2(C), where M2(C) is the space of 2× 2-
dimensional matrices. We will denote a generic element of this group as

(30) g =

(
L 0
NL R

)
,

(notice that L and R are invertible matrices).
The conformal space is the Grassmannian Gr(2, 4) ∼= SL4(C)/Pu, where

Pu is the upper parabolic subgroup of elements

g =

(
L Q
0 R

)
,

which is conjugated to (30). The grading of the Lie algebra is

g0 =

{(
l 0
0 r

)}
, g−1 =

{(
0 0
m 0

)}
, g+1 =

{(
0 q
0 0

)}
.

The Levi subgroup G0 is the Lorentz group times dilations.
If one represents an element in the Grassmannian Gr(2, 4) in terms of a

4× 2-matrix whose columns are the basis vectors of the 2-plane, the big cell
is characterized in terms of matrices with the minor d12 6= 0. By a change

7Or, alternatively, the upper triangular matrices.
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of basis one can always bring such matrix to a standard form

(31)


a1 b1

a2 b2

a3 b3

a4 b4

 −−−−→ (
id
A

)
,

and A is an arbitrary 2× 2-matrix. The action of the group on the big cell
is simply

(32) A −→ RAL−1 +N, A ∈M2(C).

A linear change of coordinates in terms of the Pauli matrices allows us to
see the relation with the standard coordinates in Minkowski space:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

with A =
∑4

µ=0 x
µσµ and

detA = (x0)2 − (x1)2 − (x2)2 − (x3)2.

One can also check that the action of the Poincaré group times dilations in
these coordinates is the expected one.

Given a flag manifold on Cn, the subgroup of SLn(C) that stabilizes
one point is an upper parabolic subgroup (that is, a subgroup of SLn(C)
whose Lie algebra is an upper parabolic subalgebra), so we have that a flag
manifold can be written always a a quotient SLn(C)/Pu (here Pu stands
for a generic upper parabolic subgroup). One can construct a generalized
Plücker embedding for all the flags. Moreover, this construction generalizes
for semisimple groups G other than SLn(C). The spaces G/Pu are called
generalized flag varieties. One has the following theorem:

Theorem 4.2. Let g be a complex semisimple Lie algebra, p a parabolic
subalgebra, G a connected Lie group with Lie(G) = g and P a parabolic sub-
group of G with Lie(P ) = p. Then, the generalized flag manifold G/P is a
compact Kähler manifold and a projective algebraic variety.

We do not give here the proof of this well known result. The reader can
consult, for example, Ref. [46], page 306. A stronger result is in fact true:



i
i

“4-Latini” — 2019/7/15 — 21:02 — page 1973 — #35 i
i

i
i

i
i

The Segre embedding of the quantum conformal superspace 1973

the quotient G/P , P being a closed subgroup of G, is parabolic if and only
if G/P is projective (see Ref. [47], Chapter IV).

We turn now to the super case. As mentioned in Section 3, Theorem 4.2
does not have an extension to the super setting. Nevertheless, the three su-
perflags of interest for us, Gr1, Gr2 and F are projective, as shown explicitly
with the super Plücker and super Segre embeddings.

As in the non super case, for each parabolic subalgebra of a superalgebra
g there is associated a |k|-grading of g [48]. We first analyze the gradings
corresponding to the three parabolic subalgebras.

Gradings of sl(4|1). Let us write in block form the super Lie algebra

g = sl(4|1) =


 l q ν
p r α
µ β s

 ∣∣∣ tr l + tr r = s

 ,

where, as always, Latin letters denote blocks with even entries and Greek
letters denote blocks with odd ones.

• For the parabolic subalgebra of the parabolic subgroup P1 in (6), as-
sociated to the supergrassmannian Gr1 = SL(4|1)/P1:

p1 =


 l q ν

0 r α
0 β s

 ,

we have the |1|-grading

g−1 =


0 0 0
p 0 0
µ 0 0

 , g0 =


 l 0 0

0 r α
0 β s

 , g+1 =


0 q ν

0 0 0
0 0 0

 ,

with p1 = g0 ⊕ g+1.

• For the parabolic subalgebra of the parabolic subgroup P2 in (6), as-
sociated to the supergrassmannian Gr2 = SL(4|1)/P2:

p2 =


 l q ν

0 r 0
µ β s

 ,
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we have the |1|-grading

g−1 =


0 0 0
p 0 α
0 0 0

 , g0 =


 l 0 ν

0 r 0
µ 0 s

 , g+1 =


0 q 0

0 0 0
0 β 0

 .

with p2 = g0 ⊕ g+1.

• For the superalgebra the supergroup Pu = P1 ∩ P2 (21, 6) associated
to the superflag F:

pu =


 l q ν

0 r 0
0 β s


we have the |2|-grading

g−2 =


0 0 0
p 0 0
0 0 0

 , g−1 =


0 0 0

0 0 α
µ 0 0

 , g0 =


 l 0 0

0 r 0
0 0 s

 ,

g+2 =


0 q 0

0 0 0
0 0 0

 , g+1 =


0 0 ν

0 0 0
0 β 0

 ,

with pu = g0 ⊕ g+1 ⊕ g+2.

Notice that in the cases of P1 and P2 the Levi subgroup is not purely even,
while for P1 ∩ P2 it is so.

The decompositions written above for p1, p2 and p are semidirect prod-
ucts. Generically

p = g0 ⊕ p+, p+ =
⊕
k>0

gk

which are also called Levi decompositions, as in the non super case.

Definition 4.3. The complex conformal supergroup is the complex special
linear supergroup SL(4|1). The complex Poincaré supergroup times dilations
is the subgroup of SL(4|1) given, in the functor of points notation, by

R(A) =


 L 0 0
NL R Rχ
dϕ 0 d

 ⊂ SL(4|1)(A).
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We can denote Pu = P1 ∩ P2, so F = SL(4|1)/Pu. F is an homogeneous
superspace [5, 41] of SL(4|1) that we can call the complex conformal super-
space. As in the non super case, a point in F can be given in terms of the
basis vectors of the corresponding subspaces of C4|1 (the twistor superspace).
In the big cell the minor d12 6= 0, so we can bring both basis to standard
forms id

A
α

 ,

id 0
B β
0 1

, with B = A− βα.

The last relation expresses the fact that the first space is a subspace of the
second one in the big cell, and it is equivalent to the relations (24) locally,
once the condition d12 6= 0 is imposed.

The action of the Poincaré supergroup times dilations is

A −−−−→ R(A+ χα)L−1 +N,

α −−−−→ d(α+ ϕ)L−1,

β −−−−→ d−1R(β + χ).

4.2. The bundle of (super)conformal densities

Embeddings of a variety into projective spaces are in one to one correspon-
dence with a certain class of line bundles called very ample line bundles.
These are bundles that have enough global sections to be used as projective
coordinates of a projective embedding (see for example Ref. [49]).

Theorem 4.2 does not have an extension to the super setting. Never-
theless, embeddings into projective superspace are also determined by very
ample line superbundles. The goal of the this section will be to describe
explicitly a line superbundle associated to the projective embedding of the
superflag F explained in detail in Section 3.

We consider first the non super case. The reader can resort to Ref. [46]
for more details.

As before, let G be an algebraic, semisimple Lie group and H a closed
subgroup with Lie algebras g and h respectively. Let π : G→ G/H be the
canonical projection. The sheaf of regular functions RG/H can be con-
structed in terms of OG and an invariance condition. Let U ⊂open G/H.
Then π−1(U) is invariant under the action of H. One can define

(33) RG/H(U) = {f ∈ OG(π−1(U)) | f(gp) = f(g) ∀g ∈ π−1(U), p ∈ H}.
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If H is a parabolic subgroup, H = P , then G/P is a projective variety
and the set of global regular functions R(G/P ) = k. In the following, we will
describe a series of line bundles whose global sections reconstruct, degree by
degree, the Z-graded algebra S = ⊕∞n=0S

n that gives the scheme Proj(S) of
Example 2.15, associated to the projective variety G/P .

We consider now the Levi subgroup G0 of P . Any representation of
G0 can be extended to the whole P , by virtue of the Levi decomposi-
tion, assuming that it is trivial on P+. In particular, the group G0 acts
on p− := g−k ⊕ · · · ⊕ g−1 with the adjoint representation. We shall use this
representation to obtain a representation of G by the method of parabolic
induction, which we briefly describe.

Let V be a P -module and consider the associated vector bundle G×P V
over G/P . The space of global sections of this bundle, Γ(G×P V) is given
by

Γ(G×P V) = {f ⊗ v ∈ O(G)⊗ V |
f(gp)⊗ v = f(g)⊗ p−1v ∀g ∈ G, p ∈ P}.

On this space there is a natural action of G. A class of P -modules can be
obtained starting with a representation of G0 and extending it trivially to
the full P . If V ∼= C, then the representation is a character of P and the
bundle is a line bundle. In particular, one can take the determinant (or a
power of it) of the adjoint action of G0 on p− :

G0
χ−−−−→ C

g −−−−→ |det(Ad−(g))|−
1

d .

In the above formula, d is the dimension of p−. We remark that the form
of the exponent is purely conventional and carefully tuned for the purpose
of this paper; when dealing with the Weyl structure it is natural to write
it differently8. We will denote the induced bundle of the character χ as L.
Global sections of L are P -equivariant functions:

(34) Γ(L) = {f : G −→ C | f(gh) = χ−1(h)f(g)}.

We also denote as Ln the bundle obtained by using the character χn (so
L = L1) and by Γ(Ln) the set of its global sections. It is then natural to

8We thank Andreas Cap and Rod Gover for this observation.
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construct the graded algebra

(35) L∗ :=
⊕
n≥0

Γ(Ln),

which is generated as an algebra in degree one.
We now come back to the particular example where G = SL4(C) and

P = Pu . In this case, an easy computation shows that χ(g) = (detL)−1,
and we refer to the bundle Ln, constructed out of this character, as the
bundle of conformal densities of weight n. We will also use Notation 3.3, so
detL = d12(= d12

12), that is, the determinant of the upper left 2× 2 matrix
in SL4(C). This will be useful mainly to connect with the notation used in
the quantum case.

Remark 4.4. These bundles have an interesting interpretation that we are
going to discuss. We start by noticing that on the conformal space Gr(2, 4) =
SL4(C)/Pu there is no invariant Riemannian metric, but there is a more
generic structure called a conformal metric (see for example Ref. [40], page
100 or Ref. [5], page 101). At each point of the manifold we associate a
set of non singular, quadratic, symmetric, holomorphic (or smooth, real
analytic,...) forms on its tangent space which are non zero scalar multiples
of each other. We assume that the choice is such that on a neighborhood
there is an holomorphic metric whose quadratic form belongs to that set, but
such choice is perhaps not possible globally. For Gr(2, 4), it is not difficult
to prove that the Minkowski metric on the big cell defines an invariant
conformal metric in that neighborhood and that changing from one open
set to another amounts to multiply the Minkowski metric by a non zero
factor. In the notation of (31), where the Minkowski space is M2(C), the
quadratic form becomes

q(A) = detA = ad− bc = (x0)2 − (x1)2 − (x2)2 − (x3)2,

A =

(
a b
c d

)
=

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
.

A conformal metric defines a principal bundle Q ⊂ T ∗M ⊗ T ∗M with fiber
C× = C− {0} and local sections of this bundle are in one to one correspon-
dence with a local choice of metric representing the conformal structure.
Since the quadratic form in the big cell is just detA, under the action of G0

it transforms as

detA −−−−→ detL2 detA.
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Associated to this principal bundle by the actions on C

C× × C −−−−→ C

(Ω2, z) −−−−→ Ωnz

we reencounter all the bundles Ln.
In the conformal case, a section of L is known as a conformal scale since

it amounts to give a local choice of units of length. This is strictly related
to the the notion of dilaton field that is the gauge field of the dilations.

Proposition 4.5. The bundle of conformal densities of weight one over
SL(4,C)/Pu, that is, the line bundle

L = SL(4,C)×Pu
C = O(SL4(C)/Pu)1

defined by the character d12 of Pu is very ample.

Proof. First we note that the determinants {dij(= d12
ij )} are Pu-equivariant

functions on SL(4,C) as required in (34):

gp =

(
A B
C D

)(
L Q
0 R

)
=

(
AL AQ+BR
CL CQ+DR

)
, g ∈ SL(4,C), p ∈ Pu.

Moreover, they cannot be all zero at the same point and, at each point,
they span the fiber of the line bundle. They are in fact the standard Plücker
coordinates of the embedding of G(2, 4) into P5 (see for example Refs. [5,
40]). �

We are now ready to generalize these structures to the super setting.
Similarly to the classical case, we can establish a correspondence between
certain super line bundles on a supervariety X and the embeddings of X into
projective superspaces. Let us start with a basic definition (see for example
Ref [41], Section 10.5).

Definition 4.6. Let S = (|S|,OS) be a superscheme. A super vector bundle
V of rank p|q over S is a locally free sheaf of OS-modules of rank p|q. That
is, for each x ∈ |S| there exists an open set Ux ⊂ |S| such that V(U) ∼=
OS(U)p|q := OS(U)⊗ kp|q.

The stalk at a point x ∈ |S|. Vx , is the OS,x-module Vx := OS,x ⊗ kp|q,
The fiber over the point x is the super vector space Vx/(mxVx) ∼= kp|q,

with mx being the maximal ideal of OS,x.
A super line bundle V on S is a rank 1|0 super vector bundle over S.
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Super line bundles can also be very ample, and they are related with
projective embeddings. It is instructive to understand the construction of
the super line bundle in the simplest case, the projective superspace.

Example 4.7. Very ample super line bundle on the projective superspace.
Going back to Example 2.15, we consider Proj(A) with

A = k[x0, x1, . . . , xm; ξ1, . . . , ξn].

One just takes the graded A-module A(1), defined by shifting the degree
A(1)d = Ad+1 and proceeds, by standard localization techniques, to con-
struct the sheaf of modules over the scheme Proj(A). This is known as the
twisting sheaf of Serre (see for example Ref. [42]). A basis of the space of
global sections is then the set of homogeneous coordinates {x0, x1, . . . , xm;
ξ1, . . . , ξn}.

Let G be a super Lie group (see Example 2.13), in the algebraic or
differential setting. Let V be a super vector space. A representation of G on
V is a morphism of super Lie groups9

G
χ−−−−→ GL(V ).

We will denote as χc the contragradient representation on the dual space V ∗.
As in the non super case, one can construct representations of G on

the space of sections of a certain super vector bundle, induced from a finite
dimensional representation of a subgroup. Let P ⊂ G be a closed subgroup10

and let G0 and P0 be the reduced groups of G and P . We assume that G0

is connected.
We first describe the quotient superspace G/P in terms of the sheaf

of regular functions G0/P0. Let π : G→ G/P and π0 : G0 → G0/P0 be the
canonical projections. Let RG be a sheaf obtained similarly to (33): if µ :
G×G→ G is the group multiplication (a map of sheafs), we can consider

9There are equivalent ways of seeing a representation of a super Lie group: Es-
pecially important is the construction in terms of super Harish-Chandra modules
[53], but this definition will be enough for our purposes.

10Later on, P will be a parabolic subgroup.
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the composition

µG,P : G× P 11×i
↪−−→ G×G µ−→ G

and, for an open set V ⊂ G× P , the corresponding map of superalgebras

µ∗G,P : OG
(
µ−1(V )

)
→ OG×P (V ).

The quotient superspace is the topological space G0/P0 together with the
sheaf

(36) RG/P (U) := {f ∈ OG
(
π−1

0 (U)
)
| µ∗G,P f = f},

where U is an open set U ⊂ G0/P0.
Remember that for a supergroup, the functor of points is a group val-

ued functor. One can define a functor acting on superschemes as T →
G(T )/P (T ). In general, it is not representable, but there exists always the
sheafification of such functor which is so. The functor is then the functor of
points of the superscheme defined in (36). The proof of this fact and further
details can be found in Section 9.3 of Ref. [41].

We now consider the sheaf obtained by tensoring with the super vector
space V:

A(U) := OG
(
π−1

0 (U)
)
⊗ V.

If χ is a representation of P on V , we select the appropriate equivariant
sections:

(37) Ainv(U) = { f ∈ A(U) | (µ∗G,P ⊗ 1)f = (1⊗ χ∗c)f }.

We have the following proposition [53]:

Proposition 4.8. Let G and P be as above. Then the sheaf Ainv is a super
vector bundle over G/P with fiber V.

It is useful to write this in terms of the functor of points. Let A be a
superalgebra and let g be an A-point of G and p an A-point of P , so they
are morphisms from O(G) to A (see Example 2.13). We identify V with the
affine space kp|q, so let v be an A-point of V (see Example 2.12). We consider
the set of global sections O(G). Let f be an element of O(G)⊗ V . It is an
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invariant element if

(38) (gh⊗ v)(f) = (g ⊗ χ(h)−1v)f.

We now consider G = SL(4|1) and the parabolic subgroups associated
to the super Grasmannians Gr1,Gr2 and the superflag F. Then, d12 is a
character of both, P1 and Pu = P1 ∩ P2. As we are going to see, it is only
for P1 that the induced super line bundle is very ample. So, in complete
analogy with the classical case, we construct over Gr1 the associated bundles
to SL(4|1) by using the character χ(g) = d12 of P1; we name it the bundle
of antichiral superconformal densities . It is an interesting object due to the
following

Proposition 4.9. The bundle of antichiral superconformal densities of
weight one over Gr1, that is the line bundle

SL(4|1)×P1
C

defined by the character d12 of P1 is very ample.

Proof. It is enough to observe again that {dij , d55, δi5} are P1-equivariant
sections on SL(4|1) and they can not all vanish at the same time. In terms
of the functor of points, this amounts to a simple check of the condition
(38), like in Proposition 4.5. �

We conclude this section with the following natural remark:

Remark 4.10. The very ample line bundle associated to the Plücker em-
bedding of Gr2 can be constructed out of the character d∗12; we call it the
bundle of chiral superconformal densities, and it is obviously very ample too.
It is a natural task then to construct the very ample line bundle associated
to the Segre embedding; we postpone this discussion to the next section
where we will introduce the key concepts of classical and quantum sections,
and we will use the intuition arising from the bundles of chiral and antichiral
superconformal densities to characterize the coordinate ring of the superflag.
The full answer is in Example 6.3.

5. The quantum Grassmannians Gr1,q and Gr2,q

We start with the definition of the quantum matrix superalgebra due to
Manin [6].

We will denote Cq := C[q, q−1].
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Definition 5.1. The quantum matrix superalgebra is given by

Mq(m|n) =def Cq〈aij〉/IM , i, j = 1, . . . , n,

where Cq〈aij〉 denotes the free algebra over Cq = C[q, q−1] generated by the
homogeneous variables aij and the ideal IM is generated by the relations [6]:

aijail = (−1)π(aij)π(ail)q(−1)p(i)+1

ailaij , j < l

aijakj = (−1)π(aij)π(akj)q(−1)p(j)+1

akjaij , i < k

aijakl = (−1)π(aij)π(akl)aklaij , i < k, j > l or i > k, j < l

aijakl − (−1)π(aij)π(akl)aklaij = η(q−1 − q)akjail i < k, j < l

where

i, j, k, l = 1, . . .m+ n, η = (−1)p(k)p(l)+p(j)p(l)+p(k)p(j),

p(i) = 0 if 1 ≤ i ≤ m, p(i) = 1 if m+ 1 ≤ i ≤ n+m and

π(aij) = p(i) + p(j).

It is usual to organize the generators aij in matrix form as

M = (aij) =

(
Am×m Λm×n
Υn×m Bn×n

)
,

where the dimensions of the blocks are indicated. One says that a matrix like
M is a quantum supermatrix. Mq(m|n) is a bialgebra with comultiplication
and counit given by

(39) ∆(aij) =
∑
k

aik ⊗ akj , E(aij) = δij .

We observe that the comultiplication can be formally understood as matrix
multiplication.

If n = 0 one reduces to the even case and the relations above are the ones
of the standard quantum matrices Mq(m). The standard quantum group
GLq(m) is then obtained by inverting the determinant, that is,

GLq(m) =def Mq(m)〈D−1〉,

where D−1 is an (even) indeterminate such that

DD−1 = 1 = D−1D.
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GLq(m) is a Hopf algebra with antipode given by:

Se(Aij) = (−q)i−jdetqA(j, i) detqA
−1,

where A(j, i) is the quantum matrix obtained from A removing the j-th row
and the i-th column and detq is the quantum determinant:

detqA =def

∑
σ∈Sm

(−q)−l(σ)a1σ(1) · · · amσ(m).

Definition 5.2. The quantum general linear supergroup is defined as

GLq(m|n) =def Mq(m|n)〈D1
−1, D2

−1〉,

where D1
−1 and D2

−1 are even indeterminates such that

D1D
−1
1 = 1 = D1

−1D1, D2D2
−1 = 1 = D2

−1D2,

and

D1 =def detqA, D2 =def detqB,

are the quantum determinants of the diagonal blocks.

GLq(m|n) is a Hopf algebra with the comultiplication and counit as in
Mq(m|n) and the antipode S [50] is given (in matrix form) as follows:

S(A) = Se(A) + Se(A) (ΛSe(H)Υ)Se(A), S(B) = Se(H),

S(Λ) = −Se(A)ΛSe(H) S(Υ) = −Se(H)ΥSe(A),

S(D−1
1 ) = D1, S(D−1

2 ) = D2,(40)

where H := B −ΥSe(A)Λ.
One can compute the commutation relations for the entries of H and

check that it is a quantum matrix (see Ref. [50], Section 4) thus Se(H) is
well defined.

Manin [6] also introduced the quantum berezinian (see also Refs. [50–
52]), which is a central and group like element

BerqM =def detqAdetq (Se(B −ΥSe(A)Λ)) .

The quantum special linear supergroup is defined as

SLq(m|n) =def GLq(m|n)/〈Bq − 1〉.



i
i

“4-Latini” — 2019/7/15 — 21:02 — page 1984 — #46 i
i

i
i

i
i

1984 R. Fioresi, et al.

In SLq(m|n) (and GLq(m|n) or Mq(m|n))) we can define an algebra-
morphism, the supertranspose:

SLq(m|n)
st−−−−→ SLq(m|n)

aij −−−−→ st(aij) = (−1)(p(j)+1)p(i)aji.

As one can readily check, the Manin relations and 〈Bq − 1〉 are invariant
under st. Then, the supertranspose is an algebra automorphism of GLq(m|n)
and SLq(m|n). It is also immediate to check that with respect to the coal-
gebra structure, it is an antiautomorphism.

The following proposition, will turn out to be very important for us.

Proposition 5.3. Let S be the antipode in GLq(m|n). The map S ◦ st is
a Hopf algebra isomorphism of the two quantum superalgebras SLq(m|n)→
SLq−1(m|n) (where the latter is the same as SLq(m|n), but with q replaced
by q−1).

Proof. The antipode is always an antiautomorphism of the Hopf algebra,
so the composition S ◦ st is an algebra antiautomorphism and a coalgebra
automorphism of SLq(m|n). The map

aij → aij , q → q−1,

can be extended to an algebra-antiautomorphism. With respect to the coal-
gebra structure, it is an automorphism.

Then, S ◦ st can be seen as an isomorphism SLq(m|n)→ SLq−1(m|n).
�

We now go back to our special case, and we consider SLq(4|1). This is
a quantum deformation of SL(4|1), hence we call it the quantum conformal
supergroup.

Different parabolic subgroups as P1q, P2q and Puq = (P1 ∩ P2)q are de-
fined as quotients of this superalgebra by the an ideal. Formally, this ideal
is the same than in the classical case, that is, the ideal of the entries that
are put to zero in (6).

The superflag F can be realized both, as a suitable quotient of SL(4|1)
and as embedded the product of two super Grassmannians, Gr1 ×Gr2. The
first point of view gives immediately the action of the conformal supergroup
and the realization of F as homogeneous superspace, while the second one
allows to associate to F the coordinate superalgebra of Theorem 3.5.
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In Section 3 we have provided a detailed description of the coordinate
superalgebras of Gr1 and Gr2. We now want to give a quantization of them
[3, 5]. We will use them to obtain a quantum deformation of the superflag
F.

The following definition is motivated by the fact (proven at the end of
Section 3.1) that C[Gr1] and C[Gr2] can be seen as subalgebras of C[SL(4|1).

Definition 5.4. Let the notation be as above. We define the quantum super
Grassmannians Gr1,q, Gr2,q as the following Z-graded subalgebras defined
inside SLq(4|1) (equivalently, inside GLq(4|1)). The superalgebra Gr1,q is
generated by the following quantum super minors:

Dij = ai1aj2 − q−1ai2aj1, 1 ≤ i < j ≤ 4,

Di5 = ai1a52 − q−1ai2a51, 1 ≤ i ≤ 4,

D55 = a51a52,

while Gr2,q is generated by

D∗ij = ai3aj4 − qai4aj3, 1 ≤ i < j ≤ 4,

D∗i5 = ai3a54 − qai4a53, 1 ≤ i ≤ 4,

D∗55 = a53a54,

where we have written, as usual, aij = (S ◦ st)(aij).

The following proposition gives the true meaning of these deformations.

Proposition 5.5. The generators of the subalgebra Gr1,q satisfy the follow-
ing relations, which provide a presentation:

Quantum super Plücker relations.

D12D34 − q−1D13D24 + q−2D14D23 = 0,

DijDk5 − q−1DikDj5 + q−2Di5Djk = 0, 1 ≤ i < j < k ≤ 4,

Di5Dj5 = qDijD55, 1 ≤ i < j ≤ 4.

Commutation relations.
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• If i, j, k, l are not all distinct and Dij, Dkl are not both odd, we have:

(41) DijDkl = q−1DklDij , (i, j) < (k, l), 1 ≤ i, j, k, l ≤ 5,

where ‘<’ refers to the lexicographic ordering.

• If i, j, k, l are all distinct and Dij, Dkl are not both odd, we have:

DijDkl = q−2DklDij , 1 ≤ i < j < k < l ≤ 5,

DijDkl = q−2DklDij − (q−1 − q)DikDjl, 1 ≤ i < k < j < l ≤ 5,

DijDkl = DklDij , 1 ≤ i < k < l < j ≤ 5.

• Commutations with D55 or involving two odd elements:

DijD55 = q−2D55Dij ,

Di5Dj5 = −q−1Dj5Di5 − (q−1 − q)DijD55 = −qDj5Di5

Di5D55 = D55Di5 = 0.

The subalgebra Gr2,q admits the same presentation where q is replaced
by q−1 and D is replaced with D∗.

Proof. The claim about the presentation of Gr1,q is proved in Chapter 5 of
Ref. [5], while the one about Gr2,q is an immediate consequence of Proposi-
tion 5.3. �

As stated in Refs. [3, 5] one can prove that Gr1,q and Gr2,q are quan-
tum homogeneous spaces for the quantum supergroup SLq(4|1) (also for
GLq(4|1)). This is the content of the next proposition:

Proposition 5.6. There is a well defined coaction of the quantum super-
groups GLq(4|1) and SLq(4|1) on Gr1,q and Gr2,q, obtained by restricting the
comultiplication. On the generators, such coaction is given explicitly by the
formulas

∆(Dij) =
∑

Dkl
ij ⊗Dkl, ∆(D∗ij) =

∑
D∗klij ⊗D∗kl.

Proof. Direct calculation, essentially the same as in Proposition 1.4 of Ref.
[9]. �

At this point one may be tempted, in analogy with the ordinary setting
(see Remark 3.6), to define the quantum superflag as the quantum subsu-
peralgebra of SLq(4|1) generated by the elements Dij , D

∗
kl defined above.
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Such definition would require us to compute the commutation relations of
any pair Dij , D

∗
kl, in order to make sure that this subsuperalgebra is well

defined. In other words, one has to prove that no other elements besides Dij

and D∗kl appear actually in the commutation relations. Moreover, in order
to give a presentation similar to Theorem 3.5, one would have to compute
a generalization of the incidence relations (24). As Proposition 5.5 shows,
these relations are highly non trivial to compute and for this reason we prefer
to take another route.

We will define the quantum superflag via the notion of a quantum section
[36] of the very ample super line bundle related to the projective embedding
of the conformal superspace. This will allow us to give a characterization of
the quantum coordinate ring.

6. The quantum section

The global sections of the super line bundle L are characterized by the
equivariance condition (38). We can express it in pure Hopf algebraic terms.
Since V = C in our case, we identify O(G)⊗ V ∼= O(G). Let I(P ) the ideal in
O(G) defining P , so O(P ) = O(G)/I(P ), and denote as π : O(G)→ O(P )
the canonical projection. Let ∆ : O(G)→ O(G)⊗O(G) be the coproduct
in O(G). Then we have

O(G/P )1 =
{
f ∈ O(G)

∣∣∣ (11⊗ π)∆(f) = f ⊗ S(χ)
}
.

Let t ∈ O(G) such that t = π(χ). If L is very ample –it corresponds to a
projective embedding– we have the following important result [36]:

Proposition 6.1. Let the notation be as above. Let the supervariety G/P
be embedded into some projective superspace via the line bundle L. Let π :
O(G)→ O(P ) = O(G)/I(P ) and ∆ the coproduct in O(G) (formally the
same as in (39)). Then, there exists an element t ∈ O(G), with π(t) = χ,
such that

((11⊗ π) ◦∆) (t) = t⊗ π(t), π
(
tm
)
6= π

(
tn
)
∀m 6= n ∈ N,

O(G/P )n =
{
f ∈ O(G)

∣∣∣ (11⊗ π)∆(f) = f ⊗ π
(
tn
)}
,

O(G/P ) =
⊕

n∈N O(G)n,

and O(G/P ) is generated in degree 1, namely by O(G/P )1.
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We call t the classical section associated to the super line bundle L. The
following are the relevant examples.

Example 6.2. For the Grassmannians Gr1 and Gr2, it is a calculation to
show that the first condition is satisfied for the elements d12 ∈ O(SL(4|1))
and d∗12 ∈ O(SL(4|1)). The remaining conditions rely on Proposition 4.9.

Example 6.3. For the superflag, having in mind the super Segre em-
bedding, the natural guess for the classical section would be t = d12d

∗
12 ∈

O(SL(4|1)). This is in fact true: one can check that the coordinates of the
super Segre embedding (see Section 3.3) dId

∗
K d55d

∗
K

dId
∗
55 d55d

∗
55

δi5d
∗
K δi5d

∗
55

dIδ
∗
k

d55δ
∗
k

δi5δ
∗
k5

 ,
I,K = (1, 2), (1, 3), (1, 4),

(2, 3), (2, 4), (3, 4),

with d, d∗, δ and δ∗ being the determinants defined at the end of Section 3.1,
are t-equivariant sections. We have then achieved a description of the coor-
dinate ring of the projective embedding of F in P64|56 as a (graded) subring
of O(SL(4|1).

We are now ready to transfer to the quantum supergroup setting the
notion of super line bundle and the equivalent and corresponding notion of
super projective embedding (see Refs. [36] and [41] Ch. 10 for the ordinary
setting).

We start with the definition of the quantum section. Let Oq(G), Oq(P )
denote the quantizations of the superalgebras O(G) and O(P ). Let Iq(P )
the ideal in Oq(G) such that

Oq(P ) = Oq(G)/Iq(P ).

We denote as π : Oq(G) −→ Oq(P ) (no risk of confusion) the canonical pro-
jection.

Definition 6.4. Let L be the super line bundle on G/P given by the classi-
cal section t. A quantum section or quantization of t is an element d ∈ Oq(G)
such that

1) (11⊗ π)∆(d) = d⊗ π(d).

2) t = d mod (q−1)Oq(G)
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Since d ∈ Oq(G) reduces to t when we specialize q = 1, and t contains
all of the information to reconstruct the line bundle L, we may think of d
as a quantum deformation of the line bundle L. Also, L corresponds to an
embedding of G/P into a projective superspace and consequently a Z-graded
superalgebra

O(G/P ) =

∞∑
n=0

O(G/P )n

similar to the construction in (35). We now use the quantum section d to
translate it the quantum case.

Definition 6.5. Let d be a quantum section of L. We define

Oq(G/P ) := ⊕n∈NOq(G/P )n,

where

Oq(G/P )n :=
{
f ∈ Oq(G) | (11⊗ π)∆(f) = f ⊗ π(dn)

}
.

The next proposition is proven in Ref [36] and it shows the importance
of quantum sections. We recall here that the superalgebra Oq(G/P ) is seen
as a subalgebra of Oq(G), as in Definition 5.4.

Theorem 6.6. Let d be a quantum section on G
/
P . Then we have:

1) For all r, s ∈ N

Oq
(
G
/
P
)
r
· Oq

(
G
/
P
)
s
⊆ Oq

(
G
/
P
)
r+s

.

Furthermore,

Oq
(
G
/
P
)

=
⊕

n∈N
Oq
(
G
/
P
)
n
⊂ Oq(G).

2) The grading in (1) is compatible with the quantum homogeneous space
structure, that is, Oq

(
G
/
P
)

is a graded Oq(G)–comodule algebra, via
the restriction of the comultiplication ∆ in Oq(G), where we take on
Oq(G) the trivial grading:

∆|
Oq

(
G
/
P
) : Oq

(
G
/
P
)
−→ Oq(G)⊗Oq

(
G
/
P
)
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3) For every c ∈ kq, we have Oq
(
G
/
P
)⋂

cOq(G) = cOq
(
G
/
P
)
. In par-

ticular,

Oq
(
G
/
P
)⋂

(q−1)Oq(G) = (q−1)Oq
(
G
/
P
)
.

Hence Oq
(
G
/
P
)

is a projective homogeneous quantum supervariety for the
coaction of the quantum supergroup Oq(G).

7. The quantum superflag

We now take G = SL(4|1) and P = Pu the upper parabolic subgroup of F
(6):

Pu(A) =


P Q ν

0 R 0
0 β s

 ⊂ SL(4|1)(A),

We intend to give the quantum deformation of the conformal superspace
through a quantum section. The superflag F is seen inside the product of
the super Grassmanians, while its projective embedding is realized by means
of the super Segre map. We already observed in the Example 6.2 that the
Plücker embeddings for Gr1 and Gr2 are related to the classical sections d12

and d∗12 respectively. For the flag, one has to consider the classical section
t = d12d

∗
12. We want now to construct a quantum section d which reduces

modulo q − 1 to t.
We define as before:

D12 = a11a22 − q−1a12a21, D∗12 = a13a24 − qa23a14

The next statements are the main results of this section and give a
quantization of the conformal superspace.

Proposition 7.1. The element d = D12D
∗
12 ∈ SLq(4|1) is a quantum sec-

tion, with respect to the super line bundle L on SL(4|1)/Pu given by t =
d12d

∗
12.

Proof. By Prop. 1.4 in Ref. [9],we have that:

∆(D12) =
∑

1≤k<l≤5

Dkl
12 ⊗Dkl.

Hence, since π(Dkl) = 0, unless (k, l) = (1, 2), we have:

(11⊗ π)∆(D12) = D12 ⊗ π(D12).
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By 5.3 (see also [52] Sec. 2) we also have that

∆(aij) =
∑

aik ⊗ akj

hence, repeating a calculation similar to the one in Prop. 1.4 [9] one obtains:

∆(D∗12) =
∑

1≤k<l≤5

D∗ kl12 ⊗D∗kl.

Since, as above, π(D∗kl) = 0, unless (k, l) = (1, 2), we have

(11⊗ π)∆(D∗12) = D∗12 ⊗ π(D∗12),

Since ∆ is multiplicative, i.e. ∆(D12D
∗
12) = ∆(D12)∆(D∗12), we have our

result. �

Corollary 7.2. The Z-graded subalgebra

Cq := Oq(G/P ) ⊂ SLq(4|1), G = SL(4|1), P = Pu

defined by the quantum section d = D12D
∗
12 is a quantum deformation of the

graded subalgebra of SLq(4|1) obtained via the classical section t = d12d
∗
12.

Furthermore Cq has a natural coaction of the supergroup SLq(4|1). There-
fore it is a quantum homogeneous superspace.

Proof. Immediate from Props. 7.1 and 6.6. �

We can then call Cq the quantum conformal superspace, because it is a
quantum deformation of Oq(SL(4|1)/Pu), the graded algebra of the confor-
mal superspace, with respect to the Segre embedding discussed above.
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Appendix A. Incidence relations

− d12d
∗
12 − d13d

∗
13 − d14d

∗
14 − δ15δ

∗
15 = 0,

− d13d
∗
23 − d14d

∗
24 − δ15δ

∗
25 = 0,

− d23d
∗
13 − d24d

∗
14 − δ25δ

∗
15 = 0,

d12d
∗
23 − d14d

∗
34 − δ15δ

∗
35 = 0,

d23d
∗
12 − d34d

∗
14 − δ35δ

∗
15 = 0,

− d12d
∗
24 + d13d

∗
34 − δ15δ

∗
45 = 0,

δ15δ
∗
25 + d13δ

∗
35 + d14δ

∗
45 + δ15d

∗
55 = 0,

d12d
∗
12 + d23d

∗
23 + d24d

∗
24 + δ25δ

∗
25 = 0,

d12d
∗
13 + d24d

∗
34 + δ25δ

∗
35 = 0,

d13d
∗
12 + d34d

∗
24 + δ35δ

∗
25 = 0,

− d12d
∗
14 + d23d

∗
34 − δ25δ

∗
45 = 0,

− d12δ
∗
15 + d23δ

∗
35 + d24δ

∗
45 + δ25d

∗
55 = 0,

− δ15d
∗
12 + δ35d

∗
23 + δ45d

∗
24 − d55δ

∗
25 = 0,

d13d
∗
13 + d23d

∗
23 + d34d

∗
34 + δ35δ

∗
35 = 0,

− d13d
∗
14 − d23d

∗
24 − δ35δ

∗
45 = 0,

− d14d
∗
13 − d24d

∗
23 − δ45δ

∗
35 = 0,

− d13δ
∗
15 − d23d

∗
25 + d34δ

∗
45 − δ35d

∗
55 = 0,

− δ15d
∗
13 − δ25d

∗
23 + δ45d

∗
34 − d55δ

∗
35 = 0,

− d14d
∗
15 − d24δ

∗
25 − d34δ

∗
35 + δ45d

∗
55 = 0,

− δ15d
∗
14 − δ25d

∗
24 − δ35d

∗
34 + d55d

∗
34 = 0,

− δ15δ
∗
15 − δ25δ

∗
25 − δ35δ

∗
35 − δ45δ

∗
45 + d55d

∗
55 = 0,

d24d
∗
12 − d34d

∗
13 − δ45δ

∗
15 = 0,

δ25d
∗
12 + δ35d

∗
13 + δ45d

∗
14 − d55δ

∗
15 = 0,

− d14d
∗
12 + d34d

∗
23 − δ45δ

∗
25 = 0,

d14d
∗
14 + d24d

∗
24 + d34d

∗
34 − δ45δ

∗
45 = 0.

Appendix B. The super Segre map is an embedding

We want to prove that the super Segre map (25) is an embedding. We will
proceed by using the even rules principle by Deligne and Morgan [39].
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Theorem B.1. Even rules principle. Let {Vi}i∈I , I = 1, . . . , n be a family
of super vector spaces, V another super vector space and A = A0 ⊕A1 a
commutative superalgebra. We denote Vi 0(A) = (A⊗ Vi)0 and V0(A) = (A⊗
V )0.

Any family of A0-multilinear maps

V1 0(A)× · · · × Vn 0(A)
fA−−−−→ V0(A)

which is functorial in A comes from a unique morphism

V1 ⊗ · · · ⊗ Vn
f−−−−→ V ,

that is,

fA(b1 ⊗ v1, b2 ⊗ v2, . . . , bn ⊗ vn) = (−1)pb1 · · · bn f(v1 ⊗ · · · ⊗ vn),

where p is the number of pairs (i, j) with i < j and vi, vj odd.

Let A be a local superalgebra. We consider the super vector spaces
Cn+1|r, Cd+1|s and its tensor product CM+1|N with M + 1 = (n+ 1)(d+
1) + rs, N = (n+ 1)s+ (d+ 1)r. We recall the notation Ap|q = A⊗ Cp|q
and we will also denote

(x, α) := (x0, . . . , xn |α1, . . . , αr) ∈ Cn+1|r,

(y, β) := (y0, . . . , yd |β1, . . . , βs) ∈ Cd+1|s.

For shortness, if there is no possibility of confusion, we will denote

a⊗ x :=

n∑
i=0

ai ⊗ xi, θ ⊗ α :=

r∑
a=1

θa ⊗ αa ai ∈ A0, θa ∈ A1,

b⊗ y :=

n∑
i=0

bi ⊗ yi, ξ ⊗ β :=

r∑
a=1

ξa ⊗ βa bi ∈ A0, ξa ∈ A1.(B.1)

There is a family of A0-bilinear maps
(B.2)

A
n+1|r
0 ×Ad+1|s

0
fA−−−−→ A

M+1|N
0

(a⊗ x+ θ ⊗ α, b⊗ y + ξ ⊗ β) −−−−→ ab⊗ (x⊗ y)− θξ ⊗ (α⊗ β)

+bθ ⊗ (α⊗ y) + aξ ⊗ (x⊗ β),



i
i

“4-Latini” — 2019/7/15 — 21:02 — page 1994 — #56 i
i

i
i

i
i

1994 R. Fioresi, et al.

which is functorial in A. According to the even rules principle, there is a
unique morphism

Cn+1|r ⊗ Cd+1|s f−−−−→ CM+1|N

which, in this case, is just the identity, f = 11. Although trivial, this mor-
phism will help us to keep track of the signs.

In terms of the canonical basis of Cn+1|r, Cd+1|s and its tensor product,
we can represent an element of AM+1|N as a supermatrix with entries in A:

(B.3) MA =

(
ZA ΛA
ΓA TA

)
,

where ZA is an (n+ 1)× (d+ 1) block, TA is an r × s block, ΛA is an (n+

1)× s block, ΓA is an r × (d+ 1) block. The supermatrix is in A
M+1|N
0 if

the blocks ZA and TA have entries in A0 and the blocks ΛA and ΓA have
entries in A1.

Let us denote the 2× 2 minor of this matrix, with rows (k, l) and columns
(i, j), as dijklA(M). The result is and element of A with definite parity, 0 or
1. For each choice of (i, j), (k, l) we can define a family of A0-bilinear maps

A
M+1|N
0

dijklA−−−−→ A0,1

MA −−−−→ dijklA(MA)

which are also functorial in A. If the target is A0, we have that A0 = (A⊗
C1|0)0 and if the target is A1 we have that A1 = (A⊗ C0|1)0. Besides this
remark, the argument does not change. The construction is functorial in A
and composing it with fA in (B.2) we have families of maps

A
n+1|r
0 ×Ad+1|s

0

dijklA
◦fA−−−−−→ A0,1,

and applying the even rules principle they define morphisms among the
super vector spaces

Cn+1|r ⊗ Cd+1|s dijkl◦f−−−−→ C1|0,C0|1.

Let us now consider again two elements a⊗ x+ θ ⊗ α and b⊗ y + ξ ⊗ β.
We write the image under fA in matrix form

(B.4)

(
ab⊗ (x⊗ y) bθ ⊗ (α⊗ y)
aξ ⊗ (x⊗ β) −θξ ⊗ (α⊗ β)

)
.
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It is easy now to check that this matrix is in the kernel of dijklA. On the other
hand, since we are dealing with local algebras and ordinary A0-modules, the
condition

(B.5) dijklA(MA) = 0.

is, as for vector spaces, equivalent to say that the matrix M is decomposable
as (B.4), so we have identified the image of the map fA as the solution to
the polynomial equations (B.5). This condition can be translated into the
super vector space morphism, were we get ride of the auxiliary variables in
A. We dispose the generators of CN+1|M (as an affine superspace) in matrix
form similarly to (B.3). We have that the image of the super Segre map is
given by the homogeneous polynomials

(B.6) dijkl(M) = 0, M =

(
Z Λ
Γ T

)
.

Since the polynomials are homogeneous, they are indeed constraints in pro-
jective space.

Remark B.2. Notice that the equations (B.6) are determinants only for
the upper left block. In all the other cases they pick up signs. The auxiliary
variables in A help us to keep track of these signs.

Once the relations (B.6) are given, they provide us with a supergraded
ring C[Z,Λ,Γ, T ]/dijkm defining a projective superscheme in PN |M . This su-
perscheme is identified via the morphism with Pn|r ×Pd|s, as one can readily
check on the standard covering.
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[17] R. Fioresi and M. A. Lledó, A comparison between star products on
regular orbits of compact Lie groups, Journal of Physics A. 35 (2002),
5687–5699.



i
i

“4-Latini” — 2019/7/15 — 21:02 — page 1997 — #59 i
i

i
i

i
i

The Segre embedding of the quantum conformal superspace 1997

[18] A. Alekseev and A. Lachowska, invariant *-products on coadjoint or-
bits and the Shapovalov pairing, Commentarii Mathematici Helvetici 80
(2005), 795–810.

[19] B. Enriquez, P. Etingof, and I. Marshall, Quantization of some Poisson-
Lie dynamical r-matrices and Poisson homogeneous spaces, Contempo-
rary Mathematics 433 (2007), 135–175.

[20] A. Mudrov, Orthogonal basis for the Shapovalov form of Uq(sl(n+ 1)),
Reviews in Mathematical Physics 27 (2015), 1550004, 1–23.

[21] J. Donin and A. Mudrov, Explicit equivariant quantization on coadjoint
orbits of GL(n,C), Letters in Mathematical Physics 62 (2002), 17–32.

[22] B. P. Dolan and O. Jahn, Fuzzy complex Grassmannian spaces and their
star products, International Journal of Modern Physics A 18 (2003),
no. 11, 1935–1958.

[23] D. Cervantes, R. Fioresi, M. A. Lledó, and F. A. Nadal, Quantum
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to Algebraic Geometry, Springer (2000).
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Universitat de València and IFIC (CSIC-UVEG)

C/Dr. Moliner, 50, E-46100 Burjassot (València), Spain
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