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1. Introduction and summary

Conformal field theories with (2, 0) supersymmetry in dimension six (hence-
forth (2, 0) SCFTs, see for instance [1]), play a central role in our under-
standing of the non-perturbative physics of lower-dimensional supersymmet-
ric quantum field theories. They are however notoriously difficult to study
because of their intrinsically quantum nature: they do not admit a semi-
classical limit in which perturbative methods would apply. At the price of
breaking the conformal symmetry, it is possible to reduce them to essentially
free theories in the IR, by turning on generic Coulomb branch parameters.
While this process drastically changes the properties of theory, ’t Hooft
anomaly matching shows that the gravitational and R-symmetry anomalies
are invariant. These anomalies are therefore computable quantities offering
a window into the strongly coupled regime of (2, 0) SCFTs.

The local gauge and R-symmetry anomalies were computed in [2, 3],
while their global counterparts have been recently derived in [4]. There is
however much more information in the anomalies of (2, 0) SCFTs than was
extracted by these papers. For instance, a (2, 0) SCFT on a 6-manifold M
does not generally have a single partition function, but rather a vector of
“conformal blocks”, of dimension d = |H3(M ; Γ)|1/2, where Γ is the finite
group obtained as the quotient of the weight lattice by the root lattice of the
ADE Lie algebra defining the SCFT. Under transformations disconnected
from the identity, the vector of conformal blocks is transformed by a U(d)
element. [2, 3] considered only infinitesimal transformations, and [4] only
transformations leaving the vector of conformal blocks invariant up to a
phase. Moreover, there are Hamiltonian anomalies, affecting the state space
of the theory on a 5-dimensional manifold, as well as more exotic anomalies
affecting the objects the theory associates to lower dimensional manifolds.

A prior, it is a challenge to describe all the anomalies and the consistency
relations they obey. A recent insight addressing this problem is the notion of
anomaly field theory [1, 5–9]: all the anomalies of a d-dimensional quantum
field theory are encoded in an extended field theory in dimension d+ 1 (or
more precisely in an equivalence class thereof), the anomaly field theory.
Moreover, the consistency constraints that anomalies satisfy are nothing
but the requirement that the anomaly field theory is a field theory functor,
in the Atiyah-Segal sense. This formalism also naturally includes anomalous
“relative quantum field theories” [10] which do not have a unique partition
function or state space, such as the chiral conformal field theories in two
dimensions or the (2, 0) SCFTs to be discussed here.
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The anomaly field theories 2037

The main result of the present paper is the construction of anomaly field
theories for the (2, 0) SCFT, as non-extended quantum field theories. The
7-dimensional anomaly quantum field theories are the product of certain
invertible field theories with a discretely gauged Wu Chern-Simons theory,
constructed in [11]. While the invertible field theories can easily be formu-
lated as extended field theories (see for instance [7, 12]), the Wu Chern-
Simons theory is currently known only as an ordinary field theory. The
anomaly field theories, in their current non-extended formulation, therefore
only contain information about the anomalies of the conformal blocks of the
(2, 0) SCFTs. It would be very interesting to extend them at least to codi-
mension 2, to study Hamiltonian anomalies, but this is beyond the scope of
the present work.

All the quantum field theories to be discussed here are Euclidean. A
suitable Wick rotation relates the correlation functions of the Lorentzian
and Euclidean theories, and therefore their anomalies as well. The focus of
this paper is on gauge and gravitational anomalies, but we will comment
on conformal anomalies at the end of this introduction. We will now recall
the notion of anomaly field theory and summarize the results of the paper
in more detail. A more elaborate discussion of the concept of anomaly field
theory can be found in [9].

Anomaly field theories. The thesis underlying the concept of anomaly
field theory is that a d-dimensional anomalous field theory is nothing but a
“field theory taking value in a certain d+ 1 field theory”, the anomaly field
theory.

To understand what this means, recall that a d-dimensional quantum
field theory assigns in particular a complex number, the partition function,
to any closed d-dimensional manifold Md, and a Hilbert space, the state
space, to any closed d− 1-dimensional manifold Md−1. A “d-dimensional
field theory F taking value in a d+ 1-dimensional field theory A” assigns an
element of the Hilbert space A(Md) to Md. Its partition function is therefore
a vector rather than a complex number. Similarly, its state space F(Md−1)
is not a Hilbert space, but rather an object in the category assigned by
A to Md−1 (which can be physically pictured as the category of boundary
conditions of A). Of course, these assignments are subject to consistency
conditions. Those can be formalized neatly by seeing A as a functor from a
(higher) bordism category to the (higher) category of Hilbert spaces. F is
then a natural transformation from A to the trivial d+ 1-dimensional field
theory functor. We refer the reader to [9] for an explanation of these claims.
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Familiar anomalous quantum field theories, such as chiral fermions, have
invertible field theories. Recall that a d+ 1-dimensional quantum field the-
ory A is called invertible when the objects it assigns to d+ 1- and d-
dimensional manifolds of various dimensions are all invertible. For instance,
its partition function on a closed d+ 1-dimensional manifold should be a
non-vanishing complex number, and its state space on a closed d-dimensional
manifold should be a 1-dimensional Hilbert space, i.e. a Hermitian line,
which is invertible with respect to the tensor product operation. Anomalous
field theories with invertible anomaly field theories have therefore partition
functions taking value in a Hermitian line. As Hermitian lines can be non-
canonically be identified with C, their partition functions can be identified
with complex numbers at the price of unnatural choices. If a unitary symme-
try is present, it acts on A(Md) by multiplication by a phase. The partition
function of F , being a vector in A(Md), gets multiplied by this phase and
therefore fails to be invariant under the symmetry. This shows how the con-
ventional picture of anomalies as symmetry breaking phenomena is recovered
in this formalism.

Examples of anomalous quantum field theories with value in non-
invertible anomaly field theories are provided by rational chiral conformal
theories. They generally do not admit a single partition function, but rather
a vector of “conformal blocks”. This vector of conformal blocks takes value
in the state space of a Reshetikhin-Turaev topological field theory, con-
structed out of the modular tensor category of representations of the rel-
evant chiral vertex algebra. In the particular case of chiral WZW models,
the Reshetikhin-Turaev theory is quantum Chern-Simons theory, and the
observation above dates back to [13].

The anomaly field theories of (2, 0) SCFTs. The (2, 0) SCFTs in di-
mension six studied in the present paper are similar to chiral conformal field
theories in the sense that they generally have a vector of conformal blocks
rather than a single partition function. Accordingly, their 7-dimensional
anomaly field theories are non-invertible. (The only exception is the E8

theory.)
The anomaly field theory to be described is defined on 7-dimensional

manifolds carrying all the data necessary to define a (2, 0) SCFT in dimen-
sion six. We refer to these manifolds as (2, 0)-manifolds in the following, see
Section 2 for definitions. (2, 0)-manifolds are in particular endowed with a
rank 5 R-symmetry bundle N . For the (2, 0) SCFT based on the Lie algebra
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The anomaly field theories 2039

g, we find that the anomaly field theory is

(1.1) Ang =
(

DF
1

2

f

)⊗(−rg)

⊗
(

DF
1

4
σ

)⊗(−rg)

⊗ AnHWZ ⊗WCSG[Λg, 0],

with

AnHWZ =
(
WCSP[Z,−2b̌]

)⊗ rghg
2(1.2)

⊗
(
BF[−2b̌, Č ′]

)⊗ rghg
2 ⊗

(
CSp

2
[b̌]
)⊗ |g|hg

6 .

The notation is as follows. Each factor corresponds to a quantum field the-
ory, and the tensor product operation corresponds physically to taking non-
interacting copies of the relevant field theories on the same spacetime. rg, Λg,
hg and |g| denote respectively the rank, root lattice, dual Coxeter number
and dimension of g.

DF
1

2 is a “half Dai-Freed theory” [14], a 7-dimensional invertible field
theory describing the anomalies of 6-dimensional symplectic Majorana-Weyl
fermions valued in the spinor bundle of TM ⊗N , where M is the space-
time. As the 6d SCFT contains rg tensor multiplets on the Coulomb branch,
each involving one such fermion with negative chirality, we have rg non-

interacting copies of the complex conjugate of DF
1

2 , as denoted by the tensor
product with negative exponent. We discuss this theory in more detail in
Section 4.5. The second factor DF

1

4 is a “quarter Dai-Freed theory” asso-
ciated to the signature Dirac operator. It essentially describes the anomaly
of the self-dual fields present in the tensor multiplets. This field theory is
discussed in Section 4.5 as well.

WCSG[Λg, 0] is a discretely gauged Wu Chern-Simons theory, constructed

in [11] and discussed in more details in Section 3. WCSG[Λg, 0] is the only
non-invertible factor in (1.1). Its state space on a 6-manifold M has dimen-
sion |H3(M ; Λ∗g/Λg)|1/2, which is an integer because of the perfect skew-
symmetric pairing on H3(M ; Λ∗g/Λg). This is consistent with expected di-
mension of the vector of conformal blocks of the (2, 0) SCFT [15]. In the
presence of torsion in H3(M ;Z), the Heisenberg module structure on the
space of conformal blocks is however different than what was conjectured in
[15], see the discussion in Section 7.

Finally, AnHWZ is the anomaly field theory associated to the “Hopf-Wess-
Zumino terms” [3] present on the Coulomb branch of the (2, 0) SCFT. It
is a product of three distinct invertible quantum field theories, as detailed
in (1.2), and involves two background fields b̌ and Č ′. For simple enough
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topologies of the (2, 0) theory’s spacetime and R-symmetry bundle, b̌ and
Č ′ vanish and AnHWZ is trivial.

We first describe the background fields, and then the factors of (1.2). b̌
is a degree 3 background gauge field whose field strength has half-integral
fluxes congruent mod 1 to half the periods of w4(N ), the fourth Stiefel-
Whitney class of the R-symmetry bundle N . Recall that the An (2, 0)
SCFTs can be realized as stacks of M5-branes after decoupling the center of
mass of the stack. N is then interpreted as the normal bundle of the stack.
When N is non-trivial, there is no unique way of decoupling the center of
mass, and b̌ encodes a choice of decoupling. When the 4th Stiefel-Whitney
class w4(N ) vanishes, we can choose b̌ = 0. Else, it has to be understood as
part of the definition of the (2, 0) SCFT (see Section 2.1).

On the 6-dimensional spacetime of the (2, 0) SCFT, Č ′ is a background
degree 3 abelian gauge field, of which torsion fluxes may have to be turned
on to avoid gauge anomalies of the self-dual fields in the (2, 0) theory [16].
In order to describe the most general anomalies of the (2, 0) SCFT, Č ′

should be allowed to be an arbitrary background abelian gauge field on the
7-dimensional spacetime of the anomaly field theory.

We now describe the factors in (1.2). WCSP[Z,−2b̌] is a prequantum Wu
Chern-Simons theory [11] based on the lattice Z, with background abelian
gauge field −2b̌. (See Section 3.1 for an explanation of the term “prequan-
tum”.) The second factor BF[−2b̌, Č ′] is a 7-dimensional prequantum BF
theory constructed from the gauge fields −2b̌ and Č ′. CSp

2
[b̌], a “prequan-

tum Chern-Simons-p2” theory, is a new invertible 7-dimensional field theory.
It is essentially a quadratic Chern-Simons theory with degree 3 abelian gauge
field b̌. However, because of the shift in the quantization of the fluxes of b̌,
such a theory would be ill-defined. The action of the Chern-Simons-p2 theory
contains a second term derived from 1

4p2, where p2 is the second Pontryagin
class. Because of the fractional factor, the action associated to this second
term is ill-defined as well. However, they yield together a well-defined action
and prequantum theory. The Hopf-Wess-Zumino anomaly field theory and
its three components are described in more details in Section 4.7.

Derivation of the anomaly field theory. The anomaly field theory
(1.1) is designed to reproduce the global anomaly of the (2, 0) SCFT com-
puted in [4]. The global anomaly of [4] determines the partition function of
the anomaly field theory, and we find a natural way of consistently complet-
ing this data to a quantum field theory. Elementary properties of field theory
functors imply that this completion is essentially unique (see the discussion
below).
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The anomaly field theories 2041

There are however two shortcomings in the derivation. First, the global
anomaly was derived in [4] for the A series, using the realization of the An
(2, 0) SCFT on a stack of M5-branes, but only conjectured for the D and E
series. The same is restrictions apply in the present paper.

A second shortcoming is the following. The derivation of the anomaly
field theory to be presented below is valid only if every 7-dimensional (2, 0)-
manifold M is the boundary of a 8-dimensional (2, 0)-manifold. In Ap-
pendix D and Section 2.2, we show that this is true when

(1.3) w2(TM)w3(TM) = 0,

where wi are the Stiefel-Whitney classes. We do not know whether there ex-
ists a 7-dimensional (2, 0)-manifold M̃ that does not bound an 8-dimensional
(2, 0)-manifold, but should it exist, it would necessarily violate (1.3). In this
case, it may be that the correct anomaly field theory differs from the one
presented here by a sign on M̃ . We therefore restrict our discussion to (2, 0)
SCFTs whose R-symmetry bundle satisfy (1.3), and to anomalies that can
be computed using 7-dimensional (2, 0)-manifolds satisfying (1.3).

Conformal anomaly. We should emphasize that the anomaly field theory
described in the present paper describes the gravitational and R-symmetry
anomalies of the (2, 0) SCFTs, but not directly their conformal anomalies.
The main tool for deriving the anomaly field theory is anomaly inflow from
M-theory onto a stack of M5-branes. M-theory is not conformally invariant;
conformal invariance is obtained only after a decoupling limit. As a result,
there is no reason to expect the construction of the present paper to capture
directly the conformal anomaly.

It is expected that supersymmetry should relate the conformal anomaly
to the local gravitational and R-symmetry anomalies, which are computable
from the anomaly field theory. This relation is however still elusive.1 The
conformal anomalies of (2, 0) SCFTs have been computed from first princi-
ples recently in [17].

The paper is organized as follows. In Section 2, we spell out in detail the
data required to define a (2, 0) SCFT on a 6-dimensional manifold, yield-
ing the notion of (2, 0)-manifold. For the purpose of computing anomalies,
we also need to consider (2, 0)-manifolds of dimension 7 and 8. We define
morphisms of (2, 0)-manifolds and the associated category. In Section 3, we
recall some of the results of [11] about Wu Chern-Simons theory. We find a

1We thank Ken Intriligator for pointing this out to us.
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relation between Wu Chern-Simons theories whose gauge groups are related
by lattice decompositions, which is crucial to perform the subtraction of the
center of mass anomaly. In Section 4, we describe the anomaly field theory
of a stack of M5-branes, decomposing it into the product of an anomaly field
theory due to the worldvolume of the M5-branes and an anomaly field the-
ory due to the Hopf-Wess-Zumino terms of [3]. In Section 5, we describe the
anomaly field theory of the center of mass tensor multiplet. The anomaly
field theory of the An SCFT is then derived in Section 6. We use it to con-
jecture the anomaly field theories of SCFTs in the D and E series. This
section also contains a brief discussion of the relation between the defects of
the (2, 0) SCFT and the defects of its anomaly field theory. In Section 7, we
discuss the implication of our results for the conformal blocks of the (2, 0)
SCFT. Appendix A reviews the differential cohomology model of abelian
gauge fields. Wu structures and Euler structures are presented in Appendix
B and C, respectively. Appendix D contains a proof that the cobordism
group of 7-dimensional (2, 0)-manifolds subject to (1.3) vanishes.

2. (2,0)-manifolds

We assume that the reader is familiar with the differential cohomology model
of (higher) abelian gauge fields, briefly reviewed in Appendix A. In this
model, degree p− 1 abelian gauge fields (with degree p field strengths) are
degree p differential cocycles. The gauge equivalence classes of degree p− 1
abelian gauge fields are then in bijection with degree p differential coho-
mology classes. Shifted differential cocycles model gauge fields whose field
strength may have fractional fluxes, such as the M-theory C-field. Differen-
tial cocycles will always be written with a caron (Č).

2.1. Data required to define a (2,0) SCFT
and its anomaly field theory

We start by recalling the topological and geometrical data required for the
definition of a (Euclidean) (2,0) SCFT on a manifold M . The same data is
required for the definition of the corresponding 7-dimensional anomaly field
theory. We will in fact need to consider manifolds endowed with such data in
dimensions up to 8. The data required to define a (2,0) SCFT is composed
of the following:

1) A choice of a Lie algebra g of A, D or E-type. This fixes the gauge
symmetry of the theory.
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2) An orientation, a smooth structure, a Riemannian metric on the man-
ifold M , which we will take to be compact for simplicity.

3) A rank 5 bundle N over M endowed with an inner product and a
compatible connection, satisfying

(2.1) w1(TM) = w1(N ) = 0, w2(TM) + w2(N ) = 0, w5(N ) = 0.

The first equalities ensure that both M and N are orientable. The
second equality implies that TM ⊕N is spin. w5 is the reduction mod
2 of the Euler class e(N ), which is Z2-torsion, so the last equality is
equivalent to e(N ) = 0. It is a consequence of the first two equalities
in dimensions 7 or lower, as explained in Appendix A of [18]. We
write π : N →M for the bundle projection. From the point of view of
the (2,0) theory, N is the R-symmetry bundle in which the Coulomb
branch parameters take value. In the case of the M5-brane realization
of the An theory, N is the normal bundle of the stack of M5-branes.

4) A spin structure on TM ⊕N . This spin structure is necessary to
define the fermionic fields in the free tensor multiplets appearing on
the Coulomb branch. Note that we do not need M to be spin.

5) An Euler structure on N (see Appendix C). The requirement that
e(N ) = 0 ensures that Euler structures on N exist [18, 19]. Con-
cretely, an Euler structure provides an integral cocycle a representing
the top cohomology class of the fibers of M̃ , the 4-sphere bundle over
M associated to N .

We also need a differential cocycle refinement ǎ of a, i.e. a differential
cocycle ǎ whose characteristic is a. We will take it to be of the form

(2.2) ǎ =
1

2
ě(TV M̃) + π∗(ǎ′).

ě(TV M̃) is the differential cocycle associated to the Euler class of the
vertical tangent bundle TV M̃ and the connection on TV M̃ inherited
from N . (See Theorem 2.2 of [20] for more detail about how to asso-
ciate a differential cocycle to a bundle with connection and a character-
istic class.) ǎ′ is a differential cocycle on M with harmonic curvature.
The harmonicity condition uniquely fixes the curvature of ǎ. As the
Euler class may not be divisible by 2, ǎ′ may be a shifted (and there-
fore non-vanishing) differential cocycle in order to ensure that ǎ is
unshifted. Like a, ǎ integrates to 1 on the 4-sphere fibers of M̃ .

The Euler structure should be thought of as a way of decomposing
degree 4 cohomology classes on M̃ into “fiberwise” and “longitudinal”



i
i

“6-Monnier” — 2019/7/15 — 21:03 — page 2044 — #10 i
i

i
i

i
i

2044 Samuel Monnier

components. ǎ extends this decomposition to degree 4 differential co-
cycles (representing degree 3 abelian gauge fields). In the M-theory
realization of the An SCFTs, such a decomposition is necessary in
order to decouple the center of mass of the stack of M5-branes [4].
We explain below that in favorable cases, like for instance when N is
trivial, the Euler structure and ǎ can be chosen canonically.

The results of [16] imply that

(2.3) b̌ :=
1

2
π∗(ǎ ∪ ǎ)

is a degree 4 differential cocycle on M shifted by w4(N ).

6) A degree 4 differential cocycle ČM shifted by the degree 4 Wu class
of TM , see Appendix B. ČM is a higher abelian gauge field coupling
to the self-dual fields in the tensor multiplets present on the Coulomb
branch of the (2,0) SCFT. In the M-theory realization of the An SCFT
ČM is the effective C-field on the worldvolume of the stack of M5-
branes [18]. Note that unless the dimension of M is 8, the Wu class
vanishes, and ČM is in fact an unshifted differential cocycle. On a 6-
manifold supporting a (2,0) SCFT, it would be natural to take ČM
to vanish, but an analogue of the Freed-Witten anomaly affecting the
self-dual fields may require its characteristic to be a certain 2-torsion
class [16, 21]. In turn, this implies that we have to allow for arbitrary
C-fields on 7-dimensional manifolds in order to be able to compute all
the anomalies in 6 dimensions.

In special cases, the data above can be trimmed down. For instance, assume
that N 'M × R5 is trivial with the canonical connection. Then M has to
be spin. TV M̃ ' TS4 ×M , so the Euler class is divisible by 2 and we can take
ǎ′ = 0. ǎ is the pullback of a top differential cocycle on the 4-sphere, whose
curvature is fixed by the harmonicity condition. The twisting construction,
commonly used in order to obtain supersymmetric gauge field theories from
the compactification of a (2,0) SCFT, requires however in general a non-
trivial R-symmetry bundle. Then, if at least w4(N ) = 0, b̌ is unshifted and,
on 6- and 7-dimensional manifolds we can choose ǎ such that b̌ = ČM . As
explained above, in the absence of the Freed-Witten-like anomaly we may
also choose ČM = 0.

In addition, we will also choose a Wu structure of degree 4 on TM
if dim(M) < 8. Wu structures should be thought of as generalizations of
spin structures and are described in Appendix B. In the same way as any
oriented manifold of dimension smaller or equal to 3 admits a spin structure,
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any manifold of dimension smaller or equal to 7 admits a Wu structure of
degree 4, so this does not put restrictions on the manifolds we consider. The
theory is independent of the choice of the Wu structure, but the latter will
be useful in certain constructions below.

In the following, we refer to the data above, including the Wu struc-
ture, as a (2, 0)-structure, and to manifolds endowed with (2, 0)-structures
as (2, 0)-manifolds.

2.2. The category of (2, 0)-manifolds

For two (2, 0)-manifolds M and N of dimension respectively smaller and
strictly smaller than 8, a morphism of (2, 0)-manifolds from M to N is a
smooth orientation preserving isometric embedding compatible with the rest
of the (2, 0)-structures, and similarly for two (2, 0)-manifolds of dimension
8. There is clearly no morphism from M to N if dim(M) > dim(N).

When M has dimension strictly smaller than 8 and N has dimension 8,
the definition of morphisms is less straightforward.M carries a Wu structure,
but N does not, and ČN is shifted by the Wu class of N while ČM is
unshifted. We define the morphisms between from M to N to be again
smooth orientation preserving isometric embeddings compatible with the
rest of the (2, 0)-structure, subject to the following compatibility condition.

As explained in Appendix B, the Wu structure on M can be pictured as a
trivialization η of the Wu cocycle νM = w4(TM) + w2

2(TM) (itself obtained
via the pullback of a representing cocycle on the associated classifying space).
N also comes with a Wu cocycle νN , which however is not necessarily trivial,
because the degree 4 Wu class of an 8-manifold may be non-zero. Extending
the cochain η arbitrarily to N , we obtain a cocycle

(2.4) µ = νN − dη

vanishing on M . We require that ČN is an extension of ČM as a differential
cocycle shifted by 1

2µ. ČN is, as required, shifted by the Wu class, because
µ differs from νN by an exact cocycle.

Armed with the notion of morphism of (2, 0)-manifolds, we can now
consider (2, 0)-manifolds M with boundary. We require the embedding of
∂M into M to be a morphism of (2, 0)-manifolds. In addition, for technical
reasons, we require that the Riemannian metric is isometric to a direct
product in a neighborhood of the boundary.
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We will always implicitly restrict ourselves to (2, 0)-manifolds satisfying
the constraint

(2.5) w2(TM)w3(TM) = 0.

As we necessarily have w2(N ) = w2(TM) from (2.1) and w3 = Sq1w2, the
condition (2.5) is equivalent to

(2.6) w2(N )w3(N ) = 0.

In Appendix D, we show that the 7-dimensional cobordism group of man-
ifolds with (2, 0)-structure satisfying (2.6) vanishes. This means that any
7-dimensional (2, 0)-manifold satisfying (2.5) is the boundary of an 8-dimen-
sional (2, 0)-manifold on which the (2, 0)-structure extends. The argument
of Appendix D do not exclude that the same is true without the constraint
(2.5).

If a (2, 0)-manifold M is spin, then w2(TM) = 0 and (2.5) is automati-
cally satisfied. More generally, if it is spinc, then w2(TM) is the reduction
of an integral class and w3(TM) = Sq1w2(TM) vanishes, yielding (2.5) as
well.

3. Discretely gauged Wu Chern-Simons theories

We review in this section certain topological field theories on manifolds with
Wu structures constructed in [11], the so called discretely gauged Wu Chern-
Simons theories.

On 3-manifolds, one can define Chern-Simons theories with half-integer
level [22–24]. These theories depend on a choice of spin structure on the
3-manifold. This statement has a generalization for higher degree abelian
gauge fields. On a 4k + 3-dimensional manifold endowed with a degree 2k + 2
Wu structure, one can define a quadratic Wu Chern-Simons theory with
half-integral level involving a degree 2k + 1 abelian gauge field.

Given the classical Wu Chern-Simons action, one can construct invertible
field theories, the prequantum Wu Chern-Simons theories. The theories of
interest here are obtained by gauging a discrete symmetry of the prequantum
Wu Chern-Simons theories. Alternatively, they can be seen as defined by a
path integral over discrete gauge fields, akin to Dijkgraaf-Witten theories.
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3.1. The prequantum theory

Gauge group. The abelian gauge group and level of a generic abelian
Chern-Simons theory can be elegantly encoded in the data of an even lattice
Λ. The gauge group is then the torus (Λ⊗Z R)/Λ. U(1) Chern-Simons theory
at level k corresponds to the even lattice

√
2kZ. Similarly, the gauge group

and level of a generic abelian spin Chern-Simons theory can be specified
by an integral lattice Λ. The gauge group of a Wu Chern-Simons theory is
analogously specified by an integral lattice Λ. The 2k + 1-form gauge field
of the theory can then be modelled by a differential cocycle Č = (g, C,G)
taking value in Λ (see Appendix A for definitions).

Wu structure. Let M be a 7-dimensional (2, 0)-manifold. As explained
in Appendix B, the data of a (degree 4) Wu structure can be encoded in
a trivialization of the Wu cocycle: dη = ν, where η and ν are Z2-valued
cocycles. Let us lift η to a Z-valued cochain ηZ and pick a characteristic
element c ∈ Λ, i.e. an element such that (c, b) = (b, b) modulo 2 for all b ∈ Λ.
We define the cochains ηΛ := ηZ ⊗ c and νΛ = dηΛ. They can be gathered
into a trivial Λ-valued differential cocycle ν̌ = (νΛ,−ηΛ, 0).

Lagrangian. The Lagrangian of the theory is the real-valued cocycle

(3.1) L(Λ, Č) =
1

2

[
Č ∪ (Č + ν̌)

]
co

where [. . . ]co denotes the connexion part of the differential cocycle in the
bracket, see Appendix A. ∪ is the cup product of differential cocycles, also
defined in Appendix A.

The familiar U(1) Chern-Simons action at level k is recovered when
Λ =

√
2kZ and the gauge field Č = (g, C,G) is topologically trivial (g = 0).

Then the second term in (3.1) does not contribute modulo integers. Using
the cocycle condition G = dC, we have

(3.2)
1

2
[Č ∪ Č]co =

1

2
C ∪G+

1

2
H∧∪ (G,G) ∼ 1

2
C ∧Λ dC = k C ∧Z dC,

where ∼ denotes equality up to exact cocycles and H∧∪ is a homotopy be-
tween the cup and wedge products, see Appendix A. ∧Λ and ∧Z denotes
respectively the wedge products obtained from the pairing on Λ and the
standard unimodular pairing on Z. We therefore recover up to an exact
term the familiar Lagrangian kC ∧ dC. (3.1) generalizes it to topologically
non-trivial fields, arbitrary abelian groups and half-integer levels.
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Action. The Lagrangian above has the puzzling feature that it is not gauge
invariant modulo integers under large gauge transformations [11], unless the
lattice pairing is valued in 2Z, in which case we are dealing with ordinary
abelian Chern-Simons theory. One cannot construct a gauge invariant action
by simply integrating L(Č) over the spacetime manifold M . The solution to
this puzzle is that L(Č) and g2 := g mod 2 define together a class [L(Č), g2]
in a certain generalized cohomology, named E-theory. This class is invariant
under the gauge transformations of Č. One can use the integration map
in E-theory on this class to construct a gauge invariant action from the
Lagrangian above [11]. The action therefore reads

(3.3) SWCS(M,Λ, Č) =
1

2

∫ E

M

[
L(Λ, Č), g2

]
,

where we denoted the integration map in E-theory by
∫ E

.
If the 7-dimensional (2, 0)-manifold M is bounded by an 8-dimensional

(2, 0) manifold W , the action can be expressed as an ordinary integral of
differential forms over W [11]. As the inclusion of M in W is a morphism of
(2, 0)-manifolds, Č extends to W as a differential cocycle ČW shifted by the
Wu class. We can extend as well the differential cocycle ν̌ to a differential
cocycle ν̌W on W whose characteristic νΛ,W := νZ,W ⊗ c lifts the Wu class,
i.e. the periods of the Z-valued cocycle νZ,W are even or odd depending on
whether the periods of the Wu class of W are 0 or 1. The field strength
λW of ν̌W is then a differential form vanishing on M lifting the Wu class.
Therefore

(3.4) Č ′W := ČW −
1

2
ν̌W ,

is an unshifted differential cocycle, with field strength G′W := GW − 1
2λW .

The action then reads

SWCS(M,Λ, Č) =

∫
W

(
1

2
GW ∧GW −

1

8
λ2
W

)
(3.5)

=
1

2

∫
W
G′W ∧ (G′W + λW ).

Prequantum theory. Given the action, there is a standard way to con-
struct from it an invertible field theory, the prequantum theory associated
to the action [25]. The partition function of the prequantum theory on
a 7-dimensional (2, 0)-manifold M is simply the exponentiated action
exp 2πiSWCS(M,Λ, Č). As is well-known in the case of ordinary Chern-
Simons theory, on a manifold with boundary, the exponentiated action is
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not canonically a complex number: it is not gauge invariant, so its value as
a complex number depends on a choice of gauge. However, it is possible to
see it canonically as an element of a Hermitian line associated to the bound-
ary (i.e. a 1-dimensional Hilbert space non-canonically isomorphic to C). A
choice of gauge determines an isomorphism with C, thereby allowing to iden-
tify the exponentiated action with a complex number. This Hermitian line
is the state space that the prequantum theory assigns to the 6-dimensional
boundary. One can show that this data combines into a field theory functor
in the sense of Atiyah-Segal, from the bordism category of 6-dimensional
(2, 0)-manifolds into the category of Hilbert spaces. We will write it

(3.6) WCSP[Λ, Č].

Despite the notation, the theory depends only on the differential cohomology
class of the gauge field Č. A detailed construction of WCSP[Λ, Č] can be
found in Section 5 of [11].

3.2. Discrete gauging

Symmetry. It was shown in [11] that there is an action of H3(M ; Λ∗/Λ)
on the group Ȟ4(M ; Λ) of gauge equivalence classes of gauge fields on M . Up
to possible anomalies, this action is a symmetry of the prequantum theory,
and can therefore be gauged.

We refer the reader to Section 3 of [11] for a detailed description of
this symmetry, but we can understand it as follows. There is a subgroup
C of H3(M ; Λ∗/Λ) consisting of classes u which are reductions of classes in
H3(M ; Λ∗) ' H3(M ;Z)⊗ Λ∗. The action of this subgroup on the gauge field
Č is to add Λ∗-valued holonomy (or “Wilson line”) along a 3-dimensional
cycle Poincaré dual to the class in H3(M ;Z) determined by u. The subgroup
of C coming from torsion classes in H3(M ;Z) acts trivially. The quotient
K = H3(M ; Λ∗/Λ)/C is in bijection with a subgroup of H4

tors(M ; Λ) through
the Bockstein map. The elements inH3(M ; Λ∗/Λ) that project on non-trivial
elements of K therefore add torsion fluxes in addition to holonomy. The fact
that these operations are symmetries of the action essentially comes from
the fact that the pairing between Λ∗ and Λ is integer valued. Note also that
if the lattice is unimodular, Λ∗ = Λ and the symmetry group above is trivial.

There is a convenient homomorphism from H3(M ; Λ∗/Λ) into the dif-
ferential cohomology group Ȟ4(M ; Λ) that makes the action above obvious.
Let e be a cocycle representative of a class in H3(M ; Λ∗/Λ). We can lift e
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to a Λ∗-valued cochain eΛ∗ . Then

(3.7) ě = (−deΛ∗ , eΛ∗ , 0)

is a Λ-valued differential cocycle defining a class in Ȟ4(M ; Λ). The action of
H3(M ; Λ∗/Λ) on Ȟ4(M ; Λ) is then just given by the addition of differential
cohomology classes through this homomorphism.

Anomalies. The statements above should be qualified. Strictly speaking
the action of H3(M ; Λ∗/Λ) may change the sign of the exponentiated action.
We can see this sign as an anomaly of the would-be symmetry. The action
of H3(M ; Λ∗/Λ) is a true symmetry, and not just a symmetry up to signs,
only for certain choices of Wu structures (called admissible), and for certain
choices of torsion fluxes for Č, as explained in Sections 4.5 and 4.6 of [11].
We will always assume that the Wu structure and fluxes have been chosen
so that the action of H3(M ; Λ∗/Λ) is a symmetry.

The partition function of the gauged theory. The partition function
of the gauged theory is up to a normalization factor the sum of the partition
function of the prequantum theory, the exponentiated action, over the orbit
of the action of H3(M ; Λ∗/Λ). As the action itself is constant along the orbit,
the only effect of the sum is to produce a prefactor. Combining it with the
normalization factor, the partition function of the gauged theory reads:

(3.8) WCSG[Λ, Č](M) = µM exp 2πiSWCS(M,Λ, Č),

where and

(3.9) µM =

3∏
i=0

|H i(M ; Λ∗/Λ)|(−1)3−i

.

See [11] for the case of a manifold with boundary.

The state space of the gauged theory. The construction of the state
space of the gauged theory on a 6-manifold N is quite subtle and is carried
out in Sections 7 and 8 of [11]. It can be informally described as follows.

There are Wilson operators associated to elements in G = H3
free(N ;Z)⊗Z

Λ∗/Λ. They form a representation of the discrete Heisenberg group H associ-
ated to the skew symmetric non-degenerate R/Z-valued cup product pairing
on G. Let V be the direct sum of the (one-dimensional) state spaces of the
prequantum theory associated to the elements of the orbit of a gauge field Č
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on N under the action of H3(N ; Λ∗/Λ). Then V decomposes into |K| copies
of the regular representation of H, where we recall that K is the image of
H3(N ; Λ∗/Λ) into H4

tors(N ; Λ) through the Bockstein homomorphism.
The state space of the gauged theory is a certain quotient of the repre-

sentation above, isomorphic to |K| copies of the irreducible representation
of H. Some extra data is actually required to identify the state space as a
well-defined Hilbert space, due to the presence of Hamiltonian anomalies.
The dimension of the Hilbert space is |H3(N ; Λ∗/Λ)|1/2.

We will describe the state space in a bit more detail in Section 7.

Gluing conditions. The proof that the data above define a field theory
functor, i.e. that it behaves consistently with the gluing of bordism, is far
from straightforward and can be found in [11].

3.3. Wu Chern-Simons theories and lattice decompositions

We now study the behavior of the field theories defined above under decom-
positions of the lattice Λ. These results did not appear in [11].

Lattice decompositions. Suppose that we have a self-dual lattice Λ into
which we pick a sublattice of maximal dimension, which is itself decomposed
into two orthogonal lattices Λ1 and Λ2. We want to understand how the
gauged Wu Chern-Simons theories associated to the lattices Λ, Λ1 and Λ2

are related to each other. A typical example is the following. Let Λ be the
unit cubic lattice in three dimensions. Take Λ1 to be the sublattice isometric
to
√

3Z generated by (1, 1, 1) and Λ2 to be the A2 sublattice given by the
lattice elements in the plane orthogonal to (1, 1, 1). Λ1 ⊕ Λ2 is a sublattice
of Λ of maximal dimension and of index 3. More generally, we are interested
in the case where Λ is the k-dimensional unit cubic lattice, Λ1 =

√
kZ and

Λ2 = Ak−1.
Let Vi = Λi ⊗Z R. We can decompose any a ∈ Λ as a = a1 + a2, ai ∈ Vi.

The integrality of the pairing on Λ and the fact that Λi ⊂ Λ imply that
ai ∈ Λ∗i . Moreover, given a1 ∈ Λ∗1, the set of a2 ∈ Λ∗2 such that a1 + a2 ∈ Λ
forms a Λ2-torsor. In fact, there is an isomorphism φ : Λ∗1/Λ1 ' Λ∗2/Λ2 such
that a1 + a2 ∈ Λ if and only if the equivalence class of a2 in Λ∗2/Λ2 is the
image through φ of the equivalence class of a1 in Λ∗1/Λ1.

The isomorphism φ induces an isomorphism between H3(M ; Λ∗1/Λ1) and
H3(M ; Λ∗2/Λ2), which we write φ as well. Let us write µM,Λ′ , Λ′ = Λ,Λ1,Λ2

for the normalization factor (3.9) of the discretely gauged theory. The iso-
morphism φ guarantees that µM,Λ1

= µM,Λ2
. As Λ is self-dual, we obviously

have µM,Λ = 1.
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Decomposition of the action. In the case of interest to us where Λ is
a unit square lattice, the element c = (1, 1, . . . , 1) is characteristic: (c, x) =
(x, x) modulo 2 for all x ∈ Λ. It projects to characteristic elements of Λ1 =√
kZ and Λ2 = Ak−1, namely

√
k and 0. (Recall that Ak−1 is an even lattice,

so 0 is a characteristic element.) We use c to construct ηΛ as in Section 3.1
and we have η√kZ = ηΛ and ηAk−1

= 0.

Let Č be a differential cocycle valued in
√
kZ ⊂ Λ. As ηAk−1

= 0, we
trivially have

(3.10) L(Λ, Č) = L(
√
kZ, Č).

More generally, if e is a cocycle representing a class in H3(M ; Λ∗1/Λ1), the
orthogonality of the lattices

√
kZ and Ak−1 imply

(3.11) L(Λ, Č + ě+ φ(ě)) = L(
√
kZ, Č + ě) + L(Ak−1, φ(ě)),

where ě is the differential cocycle constructed from e as in (3.7). This equality
holds at the level of the actions:

SWCS(M,Λ, Č + ě+ φ(ě)) = SWCS(M,
√
kZ, Č + ě)(3.12)

+ SWCS(M,Ak−1, φ(ě)).

Relation between the prequantum theories. The relation (3.12) be-
tween the actions, valid as well on manifolds with boundary, implies imme-
diately that the prequantum field theory functors are related by

(3.13) WCSP[Λ, Č]⊗WCSP[
√
kZ, Č] = WCSP[Ak−1, 0].

On a closed 7-dimensional (2, 0)-manifold M , the tensor product sign in
(3.13) should be understood as multiplication and the bar as complex con-
jugation. (3.13) is then a rephrasing of (3.12) for the exponentiated actions.
On a closed 6-dimensional (2, 0)-manifold N , ⊗ in (3.13) denotes the tensor
product and the bar is the complex conjugation of Hilbert spaces. (3.13)
holds as a result of the fact that the Hilbert space of the prequantum the-
ory is constructed as the limit of a diagram of homomorphisms from C to
C given by the exponentiated action. The equality of the actions implies
directly a canonical isomorphism between the corresponding Hilbert spaces.
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Relation between the gauged theories. The form of the partition func-
tion (3.8) shows that at the level of the gauged theories, we have

(3.14) WCSG[Λ, Č](M)⊗WCSG[
√
kZ, Č](M) = WCSG[Ak−1, 0](M).

Indeed, as Λ∗/Λ is the trivial group, the “gauged” Wu Chern-Simons the-
ory associated to Λ coincides with the prequantum theory. Moreover, the
isomorphism φ ensures that the sums and normalization factors appearing
in WCSG[

√
kZ, Č](M) and WCSG[Ak−1, 0](M) are the same.

The state space of the gauged theory is constructed in two steps. First,
a direct sum of the state space of the prequantum theory is taken over the
orbit of the discrete gauge group. Then, a quotient is taken with respect the
action of a certain groupoid, defined by the action of the prequantum theory
on cylinders. The relation (3.13) satisfied by the prequantum theory functor,
applied throughout the construction above, implies that in dimension 6, we
have as well:

(3.15) WCSG[Λ, Č](N)⊗WCSG[
√
kZ, Č](N) = WCSG[Ak−1, 0](N).

All in all we have the equality of the field theory functors

(3.16) WCSG[Λ, Č]⊗WCSG[
√
kZ, Č] = WCSG[Ak−1, 0].

4. Anomaly field theory of a stack of M5-branes

4.1. M-theory backgrounds from (2,0)-structures

We explain here how the data of an Ak−1 (2, 0)-structure on a d-dimensional
manifold U can be used to construct a “(d+ 5)-dimensional M-theory back-
ground”. We will mostly be interested in d = 6, 7, 8, but the construction is
independent of d. The case where the (2, 0) manifold is 7-dimensional and
the M-theory background 12-dimensional is the one relevant to the compu-
tation of partition function anomalies, in keeping with the fact that partition
function anomalies are described by geometric invariants of manifolds with
one more dimension than the spacetime of the physical theory.

Consider the total space E(NU ) of the bundle NU . The connection and
hermitian structure on NU , together with the Riemannian metric on U , yield
a Riemannian metric on E(NU ). The spin structure on TU ⊕NU yields
a spin structure on TE(NU ). Pick k sections of NU , to be seen as the
worldvolumes of k M5-branes. As a manifold, the M-theory background Y
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is E(NU ) after the excision of the k sections. They are excised because the
M-theory C-field has a divergence on the worldvolumes.

Let us now construct the C-field. Intuitively, the C-field is the one
sourced by the k M5-branes. The subtlety is that if NU is non-trivial, there
may not be a canonical C-field associated to the M5-brane configuration. In
fact, we will only need the asymptotic value of the C-field on the complement
of a tubular neighborhood of the stack, in the limit where the distances be-
tween the branes are scaled down to zero. Such a C-field can be constructed
from the (2,0)-structure on U as follows. Construct the differential cocycles
b̌ := 1

2π∗(ǎ ∪ ǎ) and Ǎ := Č − b̌ on U . Note that Ǎ is a differential cocycle
shifted by w4(TU ⊕NU ) [4]. We require that on the boundary of a tubular
neighborhood of radius r enclosing all k M5-brane, separated by a typical
distance rstack, the C-field takes the form

(4.1) ČY = kǎ+ π∗(Ǎ) +O(rstack/r).

As ǎ is unshifted, ČY is a differential cocycle shifted by w4(TY ), as required
by membrane anomaly cancellation [26]. We will not need to specify the
C-field more explicitly in the following.

4.2. Idea of the computation

The partition function anomalies of a d-dimensional quantum field theory
are described by a certain geometric invariant of d+ 1-dimensional mani-
folds, see for instance Section 2 of [4]. This geometric invariant is supposed
to be identified with the partition function of the anomaly field theory. The
geometric invariant of 7-dimensional (2, 0)-manifolds describing the anomaly
of a stack of M5-branes can be computed through anomaly inflow, by eval-
uating the M-theory Chern-Simons term on a 4-sphere bundle Ũ → U in Y
enclosing the stack of M5-branes [2, 4, 27]. Practically, we can use the fact
that Ũ is the boundary of a 4-sphere bundle W̃ over the 8-manifold W ad-
mitting U as a boundary. This follows from the fact that the (2, 0)-structure
on U extends to W , upon taking Ũ and W̃ to be the unit sphere bundles in
NU and NW , respectively. The anomaly is then given by the integral over W̃
of the 12-dimensional characteristic form CS12 associated to the M-theory
Chern-Simons term:

(4.2) CS12(W̃ , ČW̃ ,k) = 2πi

∫
W̃

(
1

6
G ∧G ∧G−G ∧ I8

)
,
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where G is the field strength of the C-field ČW̃ ,k := kǎW̃ + π∗(ǍW ) on W̃ ,
in the limit rstack/r → 0. The index density I8 is defined in terms of the
Pontryagin forms of TW̃ by

(4.3) I8 =
1

48

p2(TW̃ )−

(
p1(TW̃ )

2

)2
 .

Note that we do allow for configurations in which the M5-branes in-
tersect. This is crucial to ensure that every 7-dimensional (2, 0)-manifold
subject to (2.5) is a boundary. The fact that the M5-branes intersect is ir-
relevant for the computation of the anomaly, as the latter is computed on
a tubular neighborhood of the stack. Note however that strictly speaking,
global anomaly cancellation in M-theory backgrounds containing M5-branes
was checked only for non-intersecting M5-branes [18]. We are assuming here
that M-theory is anomaly free in the presence of configurations of intersect-
ing M5-branes.

4.3. Anomaly of the stack

The integral of CS12 over the fibers of W̃ has been performed in [4], see also
[2]. We obtain

1

2πi
ln AnStack,k(U) =

∫
W̃

CS12(W̃ , ČW̃ ,k)(4.4)

=

∫
W

(
kJ8 −

k3 − k
24

p2(NW )− k

2
G2
W,k

)
,

where GW,k is the curvature of ČW,k := kb̌+ Ǎ. J8 is defined by

(4.5) J8 := I8 −
1

24
p2(NW ),

where I8 has is the same expression as in (4.3), but involves now the Pon-
tryagin classes of TW . (4.4) depends only on the (2, 0)-structure of U and
has now to be interpreted as the partition function of the anomaly field
theory of the stack. To this end, it is useful to reformulate it a bit. Let us
write ČW = ČW,1 and GW for its curvature. We add and subtract k

2G
2
W in
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the expression above and rearrange the terms as follows

1

2πi
ln AnStack,k(U) = k

∫
W

(
J8 −

1

2
G2
W

)
(4.6)

+

∫
W

(
−k

3 − k
24

p2(NW )− k

2
G2
W,k +

k

2
G2
W

)
.

The first term can be naturally interpreted as k times the anomaly of a
single M5-brane, while the second term is the anomaly due to the “Hopf-
Wess-Zumino terms” of [3]. (See also Section 4.7 of [4] for a geometrical
interpretation of the Hopf-Wess-Zumino terms, in the case where the M5-
branes do not intersect.) We will consider these terms separately.

4.4. Anomaly of the M5-brane worldvolumes

Recall the first term of (4.6):

(4.7)
1

2πi
ln AnkM5(U) = k

∫
W

(
J8 −

1

2
G2
W

)
,

which we now rewrite in a purely 7-dimensional form. We have [27]

(4.8) If = −2J8 +
1

4
L(TW ),

where L(TW ) is the degree 8 form component of the Hirzebruch genus of
TW and If is the degree 8 index density of the Dirac operator Df,W on W
associated to the spinor bundle of TW ⊕NW . If is twice the index density
computing the local anomaly of the chiral fermions on a single M5-brane,
the factor two being due to the symplectic Majorana condition satisfied by
the latter. We write

(4.9) GW =
1

2
λW +G′W

where λW is a differential form representative of the cocycle determining the
shift of ČW , as in (3.5). G′W is a differential form with integral periods. We
have

1

2πi
ln AnM5(U) = −k

2

∫
W
If −

k

8

∫
W

(λ2
W − L(TW ))(4.10)

− k

2

∫
W
G′W (G′W + λW ).
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Let us analyse the terms of (4.10) one by one. The Atiyah-Patodi-Singer
theorem [28] expresses the integral of If over W in terms of the modified
eta invariant [14, 29] ξf (U) on U :

(4.11) ξf (U) =

∫
W
If − index(Df,W )

ξf (U) is given in terms of the ordinary eta invariant ηf (U) of Df,U as

(4.12) ξf (U) =
ηf (U) + hU

2

where hU is the dimension of the space of zero modes of Df,U . As Df,W is
quaternionic, index(Df,W ) is even, so the first term of (4.10) can be rewritten
as −k

2ξf (U) mod 1.
The second term is k times the geometric invariant hs(U) described by

Hopkins and Singer in [30]. Note that it has an implicit dependence on the
choice of Wu structure on U , as the latter determines the periods of λW .

The third term is the action of a Wu Chern-Simons theory on U

(4.13) k × 1

2

∫ E

U
Č ′U ∪ (Č ′U + ν̌U ),

where we used the same notation as in (3.4):

(4.14) Č ′U = ČU −
1

2
ν̌U .

Let Λ be the k-dimensional unit cubic lattice, with canonical basis {ei}. We
can rewrite the action above as the action of a Wu Chern-Simons theory on
U whose field ČΛ

U =
∑

i eiČ
′
U takes value in Λ and is diagonal:

(4.15) SWCS(U,Λ, ČΛ
U ) =

1

2

∫ E

U
ČΛ
U ∪ (ČΛ

U + ν̌Λ
U ),

where ν̌Λ
U =

∑
i eiν̌U . The ith component of ČΛ

U is interpreted as the effective
M-theory C-field on the worldvolume of the ith M5-brane. ČΛ

U is diagonal
because in the limit rstack → 0, the effective C-field is the same on each
M5-brane. Like the Hopkins-Singer term, (4.15) has a dependence on the
Wu structure. As (4.7) had no dependence on the Wu structure, it exactly
cancels against the Wu structure dependence of the Hopkins-Singer term.
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We conclude that the anomaly of the worldvolume theory of k M5-branes
can be rewritten as

1

2πi
ln AnkM5(U) =− k

2
ξf (U)− khs(U)− SWCS(U,Λ, ČΛ

U ).(4.16)

4.5. Anomaly field theory of the M5-brane worldvolumes

The form of the anomaly (4.16) suggests that the anomaly field theory of
the stack of M5-branes is given by

(4.17) AnkM5 =
(

DF
1

2

f

)⊗(−k)

⊗ (HS)⊗(−k) ⊗WCSG[Λ̄, ČΛ̄],

where each factor represents a quantum field theory, as defined below. The
tensor product denotes the tensor product of the associated functors, cor-
responding physically to taking non-interacting copies of the quantum field
theories to live on the same spacetime. (•)⊗k means taking the kth tensor
product of the theory within the brackets. Negative exponents make sense
for invertible field theories. The bar over the symbol of a quantum field the-
ory denotes complex conjugation. For unitary invertible theories, complex
conjugation is equivalent to (•)⊗−1.

Half Dai-Freed theory. Given a Dirac operator on d-dimensional man-
ifolds, for d odd, Dai and Freed constructed in [14] a d-dimensional field
theory functor DF. The partition function of DF on a d-dimensional mani-
fold M is the exponential of the modified eta invariant ξ:

(4.18) DF(M) = exp 2πiξ.

The state space assigned by DF to a d− 1-dimensional manifold is the de-
terminant line of the chiral Dirac operator obtained from the restriction of
the d-dimensional Dirac operator. It was shown in [14] that the exponenti-
ated modified eta invariant on a manifold with boundary takes value in the
determinant line of the boundary, and that this data glue consistently. The
extension of this field theory as an extended field theory down to codimen-
sion 2 was sketched in [9].

The field theory DF
1

2

f appearing as the first factor of (4.17) is not quite
a conventional Dai-Freed theory. It is a “half” or a “square root” of the Dai-
Freed theory associated to the Dirac operator Df , due to the fact that it
acts on spinors obeying a symplectic Majorana condition, which effectively
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divides by two the number of degrees of freedom. It can be described as
follows.

On a 7-dimensional (2, 0)-manifold U , the partition function is defined
as

(4.19) DF
1

2

f (U) := expπiξf ,

where ξf is as above the modified eta invariant associated to the Dirac oper-
ator Df,U . There is a potential ambiguity in the expression (4.19), because
as the Dirac operator may experience spectral flow as the background data
is changed, ξf is a priori defined only modulo 1. However, the fact that
Df,U is quaternionic shows that ξf may only jump by even integers when
the background data is varied, thereby ensuring that (4.19) is a well-defined
function over the space of background data.

On a 6-dimensional (2, 0)-manifold M , the fact that Df,M is quater-
nionic ensures that Df,M admits a Pfaffian line Pfaff(Df,M ) whose square

is the determinant line of DfM . The state space that DF
1

2

f assigns to M is
the Hermitian line Pfaff(Df,M ). More details about the construction of the
Pfaffian line can for instance be found in Section 1.3 of [31].

The proof of the gluing relations showing that DF
1

2

f is a field theory
functor should follow the same lines as the original analysis of Dai and Freed
[14], although to our knowledge this has not been worked out in detail.

Hopkins-Singer theory. The second factor HS in (4.17) denotes an in-
vertible quantum field theory that can be straightforwardly constructed from
the results of Hopkins and Singer in [30]. In fact, we will see that this factor
cancels against an identical factor coming from the center of mass of the
stack of M5-branes, and hence will not appear in the anomaly field theory
of the (2, 0) SCFTs. We will therefore not describe HS in detail.

In short, the proof of the main theorem of [30] involves the construction
of a map from a Thom spectrum into a spectrum known as the Anderson dual
of the sphere. But one can associate to such a map an invertible field theory
functor (see for instance [7]). Maybe more concretely, one can specialize
the main theorem of [30] to the case where S is a point and k = 2 in their
notation. It then states that to each 8− p-dimensional manifold endowed
with an integral lift of the Wu class and a differential cocycle, one can
associate a differential cocycle of degree p over a point. This assignment is
compatible with the gauge transformations of differential cocycle and with
the gluing of manifolds. But a differential cocycle of degree 1 over a point
is just an element of R/Z, so their theorem assign and element of R/Z to
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a 7-manifold, which is to be interpreted as the log of the partition function
of the Hopkins-Singer field theory. Similarly, a differential cocycle of degree
2 over a point is a Hermitian line, to be interpreted as the state space that
the Hopkins-Singer field theory assigns to a 6-manifold. Their construction
implicitly specifies a fully extended field theory, as p can be as large as 8.

Wu Chern-Simons theory. The last term in (4.17) is the Wu Chern-
Simons theory associated to the k-dimensional cubic lattice Λ, described in
Section 3.1 and constructed in detail in Section 5 of [11]. Note that as Λ is
self-dual, there is no difference between the prequantum Wu Chern-Simons
theory and the discretely gauged one (the discrete gauge group is trivial).
We choose here to see it as a gauged theory.

4.6. Hopf-Wess-Zumino anomaly

We now turn to the second term in (4.6):

(4.20)
1

2πi
AnHWZ(U) =

∫
W

(
−k

3 − k
24

p2(NW )− k

2
G2
W,k +

k

2
G2
W

)
.

Writing hW for the field strength of b̌W and using GW,k = GW + (k − 1)hW ,
this can be rewritten as the sum of two terms [4]

(4.21)
1

2πi
AnHWZ(U) = S

(3)
HWZ + S

(2)
HWZ,

with

S
(3)
HWZ(U) = −(k3 − k)

∫
W

(
1

24
p2(NW ) +

1

2
h2
W

)
,(4.22)

S
(2)
HWZ(U) = −k(k − 1)

∫
W
hW (GW − hW ) .(4.23)

It was explained in [4] why these two terms are integers for closed W , and
therefore well-defined geometric invariants modulo 1 associated to U . We
now reexpress (4.22) and (4.23) in terms of quantities defined on U .

The term (4.22). It is easy to check that k3 − k is always a multiple of
6, so we can rewrite

(4.24) S
(3)
HWZ(U) = −k

3 − k
6

∫
W

(
1

4
p2(NW ) + 3h2

W

)
,
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where the prefactor is an integer. Recall that hW is the curvature of b̌W ,
which is a differential cocycle shifted by w4(NW ). Writing bW for the char-
acteristic of b̌W , this means that 2bW is an integer-valued cocycle lift of
w4(NW ), or equivalently that 2bW modulo 2 is a cocycle representative of
w4(NW ). We showed in [4] that any such cocycle lift satisfies

(4.25) [(2bW )2] = [p2,W ] mod 4,

where p2,W is any integral cocycle representative of the second Pontryagin
class, and the bracket denote the (Z-valued) cohomology class.

(4.25) can be promoted to an equality of cocycles as follows. Recall from
Appendix C that BSO[e](5) is the homotopy fiber of the classifying map
of the Euler class of the universal bundle over BSO(5). BSO[e](5) carries
a rank 5 bundle N given by the pullback of the universal bundle over
BSO(5), and by definition, the Euler class of N vanishes. As explained
in Appendix C, we choose a degree 4 cocycle a on the unit sphere bundle
B̃SO[e](5) of N that represents the top cohomology class on each fiber. The
Euler structure in the (2, 0)-structure of W provides a lift to BSO[e](5) of
the classifying map of NW into BSO(5), and NW coincides with the pullback
of N through this lift. bW is the pull-back of the 1

2Z-valued cocycle b :=
1
2π∗(a ∪ a). The discussion of [4] mentioned the previous paragraph applies
to N , showing that (2b)2 represents the second Pontryagin class of N
modulo 4. We can therefore choose a cocycle p2 on BSO[e](5) representing
the second Pontryagin class of N such that

(4.26) p2 = (2b)2 mod 4.

The choice of universal cocycles a, b and p2 on BSO[e](5) induces corre-
sponding cocycles satisfying (4.26) on every (2, 0)-manifold, in a way com-
patible with the morphisms of (2, 0)-manifolds. In particular, p2 induces via
pull-back an integral cocycle p2,W on W representing the second Pontryagin
class of NW and satisfying p2,W = 2bW mod 4. Then the combination

(4.27)
1

4
p2,W + 3b2W

is an integer-valued cocycle.
We can use p2,W and the Riemannian metric on W to construct a canon-

ical differential cocycle representative p̌2(NW ), whose characteristic is p2,W

and whose curvature is the second Pontryagin form p2(NW ) (see Theorem
2.2 of [20]). We can rewrite the integrand of (4.22) as the curvature of a
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differential cocycle:

(4.28) S
(3)
HWZ = −k

3 − k
6

∫
W

[
1

4
p̌2(NW ) + 3b̌2W

]
cu

.

(Note that we have defined the cup product in Appendix A only on unshifted
differential cocycles. The integrand above should be read

1

4

(
p̌2(NW ) + 3(2b̌W )2

)
,

which indeed involves only unshifted differential cocycles.) Using the closure
relation [č]ω = [č]ch + d[č]co valid for any differential cocycle č, we obtain
(4.29)

S
(3)
HWZ(U) = −k

3 − k
6

∫
W

([
1

4
p̌2(NW ) + 3b̌2W

]
ch

+ d

[
1

4
p̌2(NW ) + 3b̌2W

]
co

)
.

But as noted above, the first term is an integer, and the second one can be
rewritten as an integral over U :

(4.30) S
(3)
HWZ(U) = −k

3 − k
6

∫
U

[
1

4
p̌2(NU ) + 3b̌2U

]
co

mod 1.

p̌2(NU ) is the differential cocycle representative of the second Pontryagin
class of NU constructed from the Riemannian metric on U and from the
integral cocycle p2,U pulled back from F . It coincides with the restriction
of p̌2(NW ) to U by the discussion above. This provides an expression for

S
(3)
HWZ(U) in terms of quantities defined on U only. We will write

(4.31) SCSp2 :=

∫
U

[
1

4
p̌2(NU ) + 3b̌2U

]
co

.

The term (4.23). Using (4.9) and the fact that k(k − 1) is even, we can
rewrite
(4.32)

S
(2)
HWZ(U) =

k(k − 1)

2

(
1

2

∫
W

(−2hW ) (λW + (−2hW )) +

∫
W

(−2hW )G′W

)
,

where the prefactor is an integer, and −2hW and G′W are differential forms
with integer periods. Comparing with (3.5), we see that (4.32) is the sum of
the action of a Wu Chern-Simons theory and of a BF theory. The BF theory
action can easily be expressed on U using the cup product of differential
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cocycles, so we obtain

S
(2)
HWZ(U) =

k(k − 1)

2

(
SWCS(U,Z,−2b̌U ) + SBF(U,−2b̌U , Č

′
U )
)
,(4.33)

SBF(U,−2b̌U , Č
′
U ) :=

∫
U

[
(−2b̌U ) ∪ Č ′U

]
co

(4.34)

4.7. Hopf-Wess-Zumino anomaly field theory

The form of the anomaly above suggests the following anomaly field theory.

AnHWZ =
(
WCSP[Z,−2b̌]

)⊗ k(k−1)

2(4.35)

⊗
(
BF[−2b̌, Č ′]

)⊗ k(k−1)

2 ⊗
(
CSp

2
[b̌]
)⊗ k−k3

6 ,

where the factors are detailed below.

Prequantum Wu Chern-Simons theory. The first factor WCSP[Z,−2b̌]
is a prequantum Wu Chern-Simons theory associated to the lattice Z, with
background gauge field given by −2b̌, see Section 3.1.

Abelian prequantum BF theory. The second factor BF[−2b̌, Č ′] is the
prequantum abelian BF theory with action (4.34). This is an invertible quan-
tum field theory that can be constructed along the lines of Section 3.1 (see
also [25] or Section 4 of [9]).

In short, the partition function of the prequantum abelian BF theory
on a 7-manifold is simply the exponentiated action. On a 7-manifold with
boundary, because of the failure of gauge invariance, the exponentiated ac-
tion is not quite a complex number, but rather an element of a Hermitian line
associated to the 6-dimensional boundary. This hermitian line is the state
space of the prequantum abelian BF theory on the 6-dimensional boundary.
More abstractly, the state space can be constructed by “integrating the de-
gree 7 cocycle over the 6-dimensional boundary”, a procedure introduced in
[25] in the context of Dijkgraaf-Witten theory.

Abelian prequantum Chern-Simons-p2 theory. For lack of a better
name, we call the third factor CSp

2
[b̌] a Chern-Simons-p2 theory. In the

action (4.31), the second term looks like a usual quadratic Chern-Simons
term for the U(1) 3-form gauge field associated to the differential cocycle
b̌U . The subtlety is that this gauge field is shifted by w4(U): its fluxes on
four-cycles are integral or half-integral depending on whether the periods of
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w4(U) are zero or one modulo 2. Such a quadratic term would not be well-
defined on its own, but the presence of the first term proportional to the
second Pontryagin class makes the whole action well-defined, as explained
in Section 4.6.

As the Lagrangian 1
24 p̌2(NU ) + 1

2 b̌
2
U is an unshifted differential cocycle

of degree 8, the procedure sketched above in the case of the BF action yields
an invertible quantum field theory, the prequantum Chern-Simons-p2 theory
CSp

2
[b̌].

Dependence on the Wu structure. WCSP[Z,−2b̌] depends on the Wu
structure of the (2, 0) manifold, and so does BF[−2b̌, Č ′], through its argu-
ment Č ′. However, (4.23) makes it clear that the product theory depends
only on b̌ and Č, and is therefore independent of the Wu structure.

5. Anomaly field theory of the center of mass

The (2, 0) Ak−1 theory is obtained from the worldwolume theory of a stack of
k M5-branes by removing the center of mass degrees of freedom, associated
to the collective excitations of the M5-branes. The center of mass degrees
of freedom form a free tensor multiplet carrying a charge k with respect
to the background C-field. The subtle part of the anomaly of the tensor
multiplet comes from the anomaly of the charge k self-dual field it contains.
In this section, we first analyse the anomalies and anomaly field theory of
the charge k self-dual field and then those of the charge k tensor multiplet.

5.1. Anomaly of a charge k self-dual field

Consider a degree 2 self-dual gauge field in six dimension. This theory can be
naturally coupled to a degree 3 U(1) gauge field [27]. The self-dual field can
have arbitrary integer charge k with respect to this U(1) gauge field [32]. The
anomalies of the charge k self-dual field are encoded in a geometric invariant
AnSD(k) of 7-dimensional smooth oriented Riemannian manifolds endowed
with a degree 3 U(1) gauge field. For our purpose, it will be sufficient to
restrict ourselves to the case where the 7-dimensional manifold U and the
gauge field ČU are obtained from a (2, 0)-manifold by forgetting the bundle
N . The results of Appendix D show that there is always an 8-dimensional
(2, 0)-manifoldW bounded by U endowed with a U(1) gauge field ČW shifted
by the Wu class and satisfying ČW |U = ČU . As explained in Section 4.3 of
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[4], we have

(5.1)
1

2πi
ln AnSD(k)(U, ČU ) =

1

8
ησ(U)− k

∫
W

(
1

2
G2
W −

1

8
σW

)
,

where ησ(U) is the eta invariant of the signature Dirac operator on U , σW is
the signature of the wedge product pairing on the cohomology of W relative
to U and GW is the field strength of ČW .

We now give a purely 7-dimensional formula for the anomaly above. The
Atiyah-Patori-Singer theorem [28] allows us to write the signature as

(5.2) σW =

∫
W
L(TW )− ησ(U).

Using (4.9), we have

k

2

∫
W
G2
W −

k

8
σW (U) =

k

8
ησ +

k

8

∫
W

(
λ2
W − L(TW )

)
(5.3)

+
k

2

∫
W
G′W ∧ (G′W + λW )

Comparing with (3.5), we see that the third term coincides with minus the
action of the Wu Chern-Simons theory on U associated to the lattice

√
kZ,

which is the charge lattice of the self-dual field of charge k. The second term
is k times the geometric invariant described by Hopkins and Singer in [30],
which already appeared in (4.16). We therefore have

1

2πi
ln AnSD(k)(U, ČU ) = −k − 1

8
ησ(U)(5.4)

− khs(U)− SWCS(U,
√
kZ, ČU ).

(5.4) provides a manifestly 7-dimensional expression for the anomaly of a
charge k self-dual field.

5.2. Anomaly field theory of the charge k self-dual field

Our task is now to interpret (5.4) as the partition function of a quantum
field theory, which we would identify with the anomaly field theory of a
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self-dual field of charge k. (5.4) suggests that the relevant field theory is

(5.5) AnSD(k) =
(

DF
1

4
σ

)⊗(−k+1)

⊗HS⊗(−k) ⊗WCSG

[√
kZ
]

We now describe the quantum field theories appearing in (5.5) and comment
on their relation to (5.4).

Quarter Dai-Freed theory. DF
1

4
σ is a “fourth root” of the Dai-Freed the-

ory (see Section 4.5) associated to the signature Dirac operator. Recall that
the signature Dirac operator [28] on U is constructed from the differential
and the Hodge star operator. Its kernel can be expressed in terms of the
cohomology of U , and has therefore constant rank over the connected com-
ponents of the moduli space of 7-dimensional (2, 0)-manifolds. This means
that unlike the eta invariants associated to other Dirac operators, ησ(U) is
well-defined as a real number, not only as a real number modulo 2. Therefore
1
8ησ(U) is well-defined. The partition function of DF

1

4
σ on U is

(5.6) DF
1

4
σ (U) = exp

(
2πi

1

8
ησ(U)

)
.

The standard construction of a prequantum field theory, already sketched
in Sections 3.1 and 4.7, combined with the definition [14] of the eta invari-
ant on manifolds with boundary, can be applied to the exponentiated action

(5.6) to yield an invertible field theory DF
1

4
σ . The proof of the gluing axioms

should follow from the corresponding proof in [14].

Hopkins-Singer theory. The Hopkins-Singer theory HS has already been
discussed in Section 4.5.

Discretely gauged Wu Chern-Simons theory. WCSG

[√
kZ
]

is the

complex conjugate of a discretely gauged Wu Chern-Simons theory associ-
ated to the lattice

√
kZ, with background field given by [Č]k, see Section 3.2.

We should justify why we identify the WCS action in (5.4) with the
gauged theory, rather than with the prequantum theory. Recall that (3.8)
implies that their partition functions have the same phase. However, while
the prequantum theory is invertible, the gauged theory is not if |k| > 1.
It is known that self-dual fields with charges larger than 1 do not admit
a single partition function, but rather a vector of conformal blocks [32].
This is the hallmark of theories with non-invertible anomaly field theories
[9], and suggests the identification with the gauged theory rather than the
prequantum theory.
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We will see that the non-invertibility of WCSG

[√
kZ
]

is also ultimately

responsible for the appearance of the conformal blocks of the Ak−1 (2,0)
SCFTs.

5.3. Anomaly field theory of a free tensor multiplet

The tensor multiplet is the (2,0) supersymmetric multiplet generated by
the supercharges from the self-dual field theory. On a 6-dimensional (2, 0)-
manifold M , it contains symplectic Majorana fermions valued in the spinor
bundle of TM ⊕NM , as well as anomaly-free scalars. We therefore ob-
tain the anomaly of the charge k tensor multiplet by adding the fermionic
anomaly to the anomaly of the charge k self-dual field. The former is the
same as the fermionic anomaly on the worldvolume of a single M5-brane, al-
ready discussed in Section 4.4. The anomaly of the charge k tensor multiplet
therefore reads

1

2πi
ln AnTM(k)(U, ČU ) = −1

2
ξf (U)− k − 1

8
ησ(U)(5.7)

− khs(U, ω)− SWCS(U,
√
kZ, ČU , ω),

The corresponding anomaly field theory is
(5.8)

AnTM(k) =
(

DF
1

2

f

)⊗(−1) (
DF

1

4
σ

)⊗(−k+1)

⊗HS⊗(−k) ⊗
(

WCSG[
√
kZ
)⊗(−1)

Compared to the anomaly (5.5) of a charge k self-dual field, there is an extra

tensor product with the inverse of the half Dai-Freed theory DF
1

2

f . This field
theory was already described in Section 4.5.

6. Anomaly field theories of (2,0) SCFTs

We combine here the results of the previous sections to describe the anomaly
field theory of the An (2,0) SCFT. We will see that the expressions involving
the parameter n can be naturally reexpressed in terms of Lie algebra data,
yielding conjectural anomaly field theories for the (2, 0) SCFTs in the D and
E series. These conjectures are automatically consistent with the exceptional
isomorphisms of low rank algebras in the A, D and E series.
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6.1. The An case

The anomaly of the An (2,0) SCFT is obtained [2, 4] from the anomaly of
a stack of k = n+ 1 M5-branes by subtracting the anomaly of the center of
mass degrees of freedom, which form a charge k tensor multiplet. We need
to lift this subtraction procedure to the level of anomaly field theories.

We tensor the anomaly field theory of the M5-brane worldvolumes (4.17)
with the anomaly field theory of the Hopf-Wess-Zumino terms (4.35) to find
the anomaly field theory of a stack of k M5-branes AnStack,k. To subtract the
center of mass, we tensor it with the field theory complex conjugate to the
anomaly field theory of the charge k tensor multiplet (5.8). The (invertible)
Hopkins-Singer theories HS appear in the tensor in complex conjugate pairs,
and therefore cancel. Results of Section 3.3 show that the gauged Wu Chern-
Simons theories associated to the cubic lattice Λ and to the 1-dimensional
lattice

√
kZ combine into a gauged Wu Chern-Simons theory associated to

the An lattice, with vanishing background field. The anomaly field theory
of the An (2,0) SCFT therefore reads

AnAn
=
(

DF
1

2

f

)⊗(−n)

⊗
(

DF
1

4
σ

)⊗(−n)

⊗ AnHWZ ⊗WCSG[An, 0],(6.1)

AnHWZ =
(
WCSP[Z,−2b̌]

)⊗n(n+1)

2(6.2)

⊗
(
BF[−2b̌, Č ′]

)⊗n(n+1)

2 ⊗
(
CSp

2
[b̌]
)⊗ (n+2)(n+1)n

6 .

The field theories appearing in these expressions have all been described in
Sections 4.5, 4.7 and 5.2. We made explicit the fact that the background
field vanishes in the notation for the An discretely gauged WCS theory
WCSG[An, 0]. We can interpret the field theory factors above on the Coulomb
branch of the (2, 0) SCFT. The first two factors in (6.1) are due to the free
tensor multiplets. The third factor comes from the Hopf-Wess-Zumino terms
already discussed above. The fourth factor is responsible for the conformal
blocks of the (2, 0) SCFT, as we discuss in Section 7.

6.2. The general case

The various n-dependent quantities appearing in (6.1) and (6.2) have natural
Lie algebra interpretations: n is the rank rsun+1

, n(n+ 2) is the dimension
|sun+1| and n+ 1 is the dual Coxeter number hsun+1

. This yields a natural
conjecture for the anomaly field theory of any (2, 0) SCFT associated to a
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Lie algebra g of type A, D or E:

Ang =
(

DF
1

2

f

)⊗(−rg)

⊗
(

DF
1

4
σ

)⊗(−rg)

⊗ AnHWZ ⊗WCSG[Λg, 0],(6.3)

AnHWZ =
(
WCSP[Z,−2b̌]

)⊗ rghg
2(6.4)

⊗
(
BF[−2b̌, Č ′]

)⊗ rghg
2 ⊗

(
CSp

2
[b̌]
)⊗ |g|hg

6 ,

where Λg is the root lattice of g. One can check explicitly that the exponents
are all integers for every g of type A, D or E. The relevant data is summarized
in the table below:

(6.5)

|g| hg

An n2 + 2n n+ 1

Dn 2n2 − n 2n− 2

E6 78 12

E7 133 18

E8 248 30

.

As (6.3) and (6.4) are expressed in term of Lie algebra data, they are auto-
matically compatible with the exceptional isomorphisms between low rank
algebras in the A, D and E series.

6.3. Defects

It is often interesting to consider (2,0) SCFTs in the presence of various
defects. We do not have a complete picture of the relation between the
defects of the (2,0) SCFTs and those of the anomaly field theory, but we
describe here a correspondence between a class 2-dimensional defects in the
(2,0) SCFT and a class of 3-dimensional defects of its anomaly field theory.
We also present an analysis suggesting that the codimension 2 defects of the
SCFT do not affect anomalies, and therefore are not visible in the anomaly
field theory.

2-dimensional defects. The 6d SCFTs have instantonic strings, which
are 2-dimensional defects charged under the self-dual fields. The self-duality
condition requires them to carry both electric and magnetic charges. Their
charges live in the weight lattice Λ∗g of the Lie algebra g. As the “W-bosons”
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of the 6d SCFT have charges in the root lattice Λg, a screening mechanism
can neutralize the defect charges if they live in Λg. The observable charges
therefore live in the finite discrete group Γg = Λ∗g/Λg. The fact that these
defects source the self-dual fields magnetically means that a 3-sphere linking
the 2-dimensional worldvolume of the defect carries a flux of the self-dual
field strength. Note that in order to have a well-defined configuration of the
self-dual gauge field, we need to excise the worldsheet of the instantonic
string.

To understand how these defects should be incorporated in the anomaly
field theory, we use the fact that by definition, the 6d SCFT on a manifold
M can be used as a boundary condition of the anomaly field theory on a
manifold U with ∂U = M . We work on the Coulomb branch, where the gauge
symmetry of the (2,0) SCFT is broken to the diagonal U(1)n subgroup. We
model the self-dual gauge field, following [32], as an ordinary gauge field
B̌ = (b, B,H) ∈ Č3(M ; Λg) whose field strength H ∈ Ω3(M) is required to
live in a Lagrangian subgroup of Ω3(M). The self-dual field strength of the
self-dual field is then the self-dualization of H. The degree 3 gauge field
Ǎ = (a,A, F ) of the Wu Chern-Simons theory in the anomaly field theory,
which so far has been set to zero, should be trivialized by the self-dual field
on the boundary: Ǎ = dB̌ on M , or more explicitly

(6.6) a = db, A = H − dB − b, F = dH.

Of course, if B̌ is a differential cocycle, then Ǎ = 0. However, the presence
of an instantonic string forces B̌ to be a non-closed differential cochain, and
therefore corresponds to configuration of the anomaly field theory where
the Wu Chern-Simons gauge field is turned on. Indeed, although we do have
dH = 0 and db = 0, the closedness condition H − dB − b = 0 is impossible
to satisfy unless the fluxes of H are valued in Λg. Therefore a Λ∗g-valued
flux of H has to be accompanied with a non-zero A: the Wu Chern-Simons
gauge field has a Γg-valued holonomy (the higher dimensional equivalent of
a Wilson line) along the 3-spheres linking the worldsheet of the instanton
string.

This also tells us that the worldsheet of the instanton string, that has
already been excised from the boundary, has to be extended in U as a 3-
manifold with boundary and excised from U as well. Without this operation,
it would be impossible for Ǎ to have holonomy along the linking 3-spheres.

In summary, the instantonic strings of the 6d SCFT correspond to dis-
crete Λ∗g-valued holonomies of the Wu Chern-Simons gauge field of the
anomaly field theory along 3-spheres linking the worldsheet of the string.
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In the 7-dimensional spacetime of the anomaly field theory, the instantonic
strings have to be promoted to 3-dimensional excised defects, including a
holonomy of the Wu Chern-Simons gauge field along the linking 3-spheres.

We can generalize the discussion above to arbitrary Λ∗g-valued fluxes of
the self-dual field. Such a flux corresponds to an element in H3(M ; Λ∗g).

Λ∗g-valued fluxes generally require that B̌ is not closed, so Ǎ cannot vanish.

We therefore find again that the fluxes of B̌ are related to the holonomies
of Ǎ. This relation is given by the surjective homomorphism H3(M ; Λ∗g)→
Hom(H3(M ; Λg), U(1)), induced by the evaluation of cocycles on cycles. The
former group is the group of fluxes of B̌, while the latter group is the group
of holonomies of Ǎ.

Codimension 2 defects. The most interesting class of defects of (2, 0)
SCFTs are the codimension 2 defects. They are in particular crucial to the
construction of many 4-dimensional supersymmetric quantum field theories
from the (2, 0) SCFTs [33–35]. In the M-theory realization of the An SCFT,
such defects are associated to M5-branes intersecting the stack of M5-branes
along codimension 2 submanifolds.

These defects should correspond to codimension 2 defects of the anomaly
field theory, but we have not been able to find natural candidates. The
computation of the Chern-Simons term on the 4-sphere bundle W̃ over W ,
in the presence of defect M5-branes is strictly speaking ill-defined, because
of the singularities of the C-field at the locus of the defect M5-branes. A
simple counting argument reveal however that there should not be any cross
term between the C-field field strength Gstack sourced by the stack and the
field strength Gdefect sourced by the defect M5-branes. Indeed, both forms
have two legs along two of the three common transverse directions, showing
that their wedge product vanishes. (Note that this argument is valid both in
the physical 11-dimensional spacetime and in the 13-dimensional spacetime
used to compute anomalies, because the codimensions are the same.)

This rough argument suggests that the inclusion of codimension 2 defects
should not change the anomalies of the 6d SCFTs, except for restricting
the group of allowed diffeomorphisms/R-symmetry transformations to the
subgroup preserving the defects. This would explain why such defects seem
invisible to the anomaly field theory.

7. The conformal blocks of the (2, 0) SCFTs

Dimension. An interesting feature of the anomaly field theory (6.3) is
that it is not invertible [5]. In particular, its state space on a 6-dimensional
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(2, 0)-manifold M generally has dimension higher than 1. Indeed, all the
tensor factors of (6.3) are invertible, except possibly for the discretely gauged
Wu Chern-Simons theory WCSG[Λg, 0], whose state space has dimension
|H3(M ; Γg)|1/2. Γg = Λ∗g/Λg is here the center of the simply connected group

associated to g, and |H3(M ; Γg)|1/2 is an integer because H3(M ; Γg) carries
a non-degenerate skew-symmetric pairing. The (2, 0) SCFT associated to the
ADE Lie algebra g has therefore a vector of partition functions taking value
in a Hilbert space of dimension |H3(M ; Γg)|1/2. (The only (2, 0) SCFT that
has an invertible anomaly field theory is the one associated to E8. Indeed,
E8 has a unimodular root lattice, so ΓE8

= 1 and the discretely gauged
Wu Chern-Simons theory coincides with the prequantum theory, which is
invertible.)

The dimension of the space of conformal blocks described above has been
deduced previously from the reduction of the (2, 0) SCFT on a torus [15],
see also [36, 37], as well as [38] for the case of (1,0) SCFTs. The proposed
anomaly field theory is therefore consistent with the expected dimension of
the conformal blocks of the (2, 0) theory.

A subtlety in the presence of torsion. In [15], the space of conformal
blocks was obtained by quantizing the action of discrete H3(M ; Γg)-valued
shifts of a background degree 3 Λg-valued gauge field minimally coupled to
the self-dual field. It was claimed that upon quantization, the shift operators
form a copy of the Heisenberg group H′ associated to H3(M ; Γg) and its
skew-symmetric pairing, and that moreover the action of H′ on the space of
conformal blocks is irreducible. As we will explain below, this is true only in
the absence of torsion in H3(M ; Λ∗g) (or equivalently in H3(M ;Z)). Indeed,
in [15], the irreducibility of the action was shown only in the absence of
torsion.

A background degree 3 Λg-valued gauge field can be represented by a
degree 4 Λg-valued differential cocycle Č = (c, C,G). The equivalence class of
the gauge field is the associated differential cohomology class in Ȟ4(M ; Λg).
We need to understand how H3(M ; Γg) acts on Ȟ4(M ; Λg): the action of
the Heisenberg group H′ on the space of conformal blocks should lift this
action. For this, we can use the following fact proven in Proposition 3.1 of
[11], and already mentioned in Section 3.2. Classes in H3(M ; Γg) can be
represented by differential cocycles of the form (a, f, 0), with a a degree 4
Λg-valued cocycle and f a degree 3 Λ∗g-valued cochain. The cocycle condition
is a = −df , and two such cocycles are considered equivalent if a2 − a1 = db,
f2 − f1 = −b+ dg, for b a degree 3 Λg-valued cochain and g a degree 2 Λ∗g-
valued cochain. The equivalence classes of such cocycles is H3(M ; Γg). (This
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is due to the fact that g is restricted to be a Λ∗g-valued cochain instead
of a Λg ⊗Z R-valued cochain, as in the definition of standard differential
cohomology.) A cocycle (a, f, 0) acts on Č by the obvious action (c, C,G)→
(c+ a,C + f,G), and one can show that this action descends to an action
of H3(M ; Γg) on Ȟ4(M ; Λg).

In order to study the irreducibility of this action, we need to describe
in some detail the structure of H3(M ; Γg) in the presence of torsion. Recall
first the short exact sequence

(7.1) 0→ H3
tors(M ; Λ∗g)→ H3(M ; Λ∗g)→ H3

free(M ; Λ∗g)→ 0,

which holds for cohomology valued in any free abelian group. In addition,
there is a long exact sequence derived from the short exact sequence of
abelian groups 0→ Λg → Λ∗g → Γg → 0, reading:

· · · → H3(M ; Λg)
ι→ H3(M ; Λ∗g)(7.2)

→ H3(M ; Γg)→ H4(M ; Λg)
ι→ H4(M ; Λ∗g)→ · · ·

that tells us that the Γg-valued cohomology fits in a short exact sequence

(7.3) 0→H3(M ; Λ∗g)/ι(H3(M ; Λg))→H3(M ; Γg)→ker
(
ι|H4(M ;Λg)

)
→0.

Combining it with (7.1), we obtain the following filtration for H3(M ; Γg):

T ↪→ C ↪→ H3(M ; Γg),(7.4)

T := H3
tors(M ; Λ∗g)/ι(H3(M ; Λg)), C := H3(M ; Λ∗g)/ι(H3(M ; Λg)),(7.5)

G := C/T ' H3
free(M ; Λ∗g)/ι(H3(M ; Λg)),(7.6)

K := H3(M ; Γg)/C ' ker
(
ι|H4(M ;Λg)

)
.(7.7)

G can alternatively be described as the space of de Rham cohomology classes
with periods valued in Λ∗g, modulo the space of de Rham cohomology classes
with periods valued in Λg. As the de Rham cohomology of degree 3 on M
carries a non-degenerate skew-symmetric pairing, the same is true for G.
The pairing coincides with the non-degenerate skew-symmetric pairing B of
H3(M ; Γg), restricted on C and induced on the quotient C/T. The fact that
B is non-degenerate also implies that T and K are Pontryagin duals of each
other.

With these technical details cleared up, we can immediately see that the
subgroup T ⊂ H3(M,Γg) acts trivially on Ȟ4(M,Λg). Indeed, an element
of T can be represented by a differential cocycle of the form (0, f, 0), with
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f a Λ∗g-valued cocycle. The fact that this cocycle comes from the torsion
subgroup H3

tors(M ; Λ∗G) means that f , although not necessarily trivial, is
trivial as a Λg ⊗Z R-valued cocycle. Its action sends Č = (c, C,G) to (c, C +
f,G), an equivalent cocycle.

We deduce that in the presence of torsion in H3(M ;Z), the action of
H3(M,Γg) on Ȟ4(M,Λg) has a kernel, and therefore the conformal blocks
cannot form an irreducible representation of the Heisenberg group H′, unlike
what is claimed in [15]. We can explain this in slightly more physical terms as
follows. The elements of T are dual to Λg-valued homology cycles of degree
2, so we could think of them as trying to shift the holonomies of the gauge
field along those cycles. But a degree 3 gauge field has no holonomy along
degree 2 cycles, so this action has to be trivial.

The correct picture can be understood by a careful construction [11]
of the state space of the discretely gauged Wu Chern-Simons theory
WCSG[Λg, 0]. As T acts trivially, the action passes to an action of
H3(M ; Γg)/T, which contains G as a subgroup. As mentioned above, G car-
ries a non-degenerate skew-symmetric pairing, with an associated Heisenberg
group H. The state space of the anomaly field theory is a direct sum of |K| ir-
reducible representations of H, of dimension |K||G|1/2. As the filtration (7.4)
ensures that

(7.8) |H3(M ; Γg)| = |T||G||K|

and the perfect pairing between T and K implies that |T| = |K|, the dimen-
sion of the state space is equal to |H3(M ; Γg)|1/2, even in the presence of
torsion.
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Appendix A. The differential cohomology model of abelian
gauge fields

In this appendix, we recall how differential cocycles and differential coho-
mology [20, 30] can be used to model higher abelian gauge fields and their
gauge equivalence classes. A pedagogical and physically motivated reference
for gauge group U(1) appears in Section 2 of [39]. We take a more general
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view in the present appendix, including arbitrary compact connected abelian
gauge groups, as well as gauge fields with shifted fractional flux quantization
conditions.

Shifted differential cochains. Let Λ be an integral lattice such that
the abelian gauge group takes the form V/Λ, where V = Λ⊗Z R. We write
Cp(M ;A) for the group of degree p cochains with value in an abelian group
A on a smooth manifold M , and Zp(M ;A) for the corresponding group
of cocycles. Choose a cocycle s ∈ Zp(M ;V/Λ). Let Ωp(M ;V ) be the group
of V -valued degree p smooth differential forms on M . The set of degree p
Λ-valued differential cochains on M shifted by s is

Čps (M ; Λ) :=
{

(g, C,G) ∈ Cp(M ;V )× Cp−1(M ;V )× Ωp(M ;V ) |(A.1)

g = s mod Λ
}
.

Čp(M ; Λ) = Čp0 (M ; Λ) is an abelian group (with the group structure in-
duced by the addition of cochains and forms) and Čps (M ; Λ) is a torsor over
Čp(M ; Λ).

We write differential cochains with a caron: Č = (g, C,G). [Č]ch := g is
the characteristic, [Č]co := C is the connection and [Č]cu := G is the curva-
ture or field strength of Č. Differential cochains Č with [Č]ch = 0 are called
topologically trivial, while differential cocycles with [Č]cu = 0 are called flat

Shifted differential cocycles. We define a differential on the complex
Č•s (M ; Λ) as follows:

(A.2) d(g, C,G) := (dg,G− g − dC, dG),

which satisfies d2 = 0. The set of degree p Λ-valued differential cocycles on M
shifted by s Žps (M ; Λ) is the kernel of d on Čps (M ; Λ). Žp(M ; Λ) = Žp0 (M ; Λ)
is an abelian group and Žps (M ; Λ) is a torsor over Žp0 (M ; Λ).

We can put an equivalence relation on the set of degree p differential
cocycles, by seeing as equivalent any pair of differential cocycles differing by
the differential of a flat unshifted differential cochain:

(A.3) (g, C,G) ∼ (g + dh,C − h− dB,G)

for all (h,B, 0) ∈ Čp−1
0 (M ; Λ).

The degree p Λ-valued differential cohomology group of M shifted by s
Ȟp
s (M ; Λ) is the quotient of (Ž•s (M ; Λ), d) by this equivalence relation. We

write Ȟp(M ; Λ) := Ȟp
0 (M ; Λ).
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Physical interpretation. Žps (M ; Λ) models degree p− 1 abelian gauge
fields on M for the gauge group V/Λ, with a shifted flux quantization con-
dition determined by s. The gauge transformations correspond to the equiv-
alences (A.3), and the elements of Ȟp

s (M ; Λ) are gauge equivalence classes
of fields.

In the physics literature, it is common to model gauge fields as differen-
tial forms. This is possible only if the gauge field has trivial topology. For
ordinary degree 1 gauge fields, this occurs when the gauge field is a connec-
tion on a trivial principal bundle. Topologically trivial differential cocycles
are triplets (0, C,G) satisfying G = dC, where the V -valued cochain C can
be seen as a degree p− 1 V -valued differential form. The gauge transfor-
mations preserving g = 0 are C → C − dB for B a degree p− 2 V -valued
cochain that can as well be seen as a degree p− 2 differential form. G can
therefore be interpreted as the field strength of the gauge field, and C as the
gauge field itself. The advantage of using differential cocycles is that gauge
fields of arbitrary topology can be modelled.

The transformations (A.3) with h 6= 0 correspond to large gauge trans-
formations. The holonomy (“Wilson line”) of the gauge field along a p− 1-
cycle Z is given by exp 2πi

∫
Z C, which is checked to be gauge invariant.

The constraint G− g − dC = 0 shows that the periods of G coincide
with the periods of g, and will therefore be given mod Λ by the cocycle s.
Ordinary gauge fields, whose fluxes are valued in Λ, correspond therefore
to unshifted differential cocycles, associated to s = 0. Shifted differential
cocycles model gauge fields with shifted fractional quantization law.

For instance, the M-theory C-field is a U(1)-valued degree 3 gauge field,
whose fluxes are given mod 1 by half the periods of the fourth Stiefel-
Whitney class w4 of spacetime [26]. It is naturally seen as an element of
Ž4
w4

(M ;Z), where we see w4 as a R/Z-valued cocycle using the standard
embedding Z2 ⊂ R/Z.

Cup product. [20, 30] The pairing on Λ induces a product on the groups
of unshifted differential cochains

∪ : Čp0 (M ; Λ)× Čq0(M ; Λ)→ Čp+q0 (M ;Z)(A.4)

Č1 ∪ Č2 = (g1∪g2, (−1)pg1∪C2+C1∪G2+H∧∪ (G1, G2), G1∧G2)

where we wrote Či = (gi, Ci, Gi). H
∧
∪ is a choice of homotopy between the

wedge and cup products, i.e. a homomorphism from Ωp(M ;V )× Ωq(M ;V )
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to Cp+q−1(M ;V ) such that

dH∧∪ (G1, G2) +H∧∪ (dG1, G2) + (−1)pH∧∪ (G1, dG2)(A.5)

= G1 ∧G2 −G1 ∪G2.

H∧∪ can be chosen canonically if a suitable model for cochains is used, see
[20]. One can check that ∪ passes to a well-defined product on differential
cocycles and differential cohomology classes.

There is no obvious way of defining a cup product on shifted differential
cochains for general shifts.

Appendix B. Wu structures

A more detailed account of Wu structures can be found in Appendix C of
[11].

Wu structures are higher analogues of spin structures. To understand
their definition, it is useful to recall the definition of a spin structure. Let
BSO(n) be the classifying space of bundles with SO(n) structure. To any
smooth oriented manifold M of dimension n, we can associate its tangent
bundle TM , and therefore a (homotopy class of) classifying map fromM into
BSO(n). The second Stiefel-Whitney class w2 can be seen as a homotopy
class of maps from BSO(n) into K(Z2, 2). The associated homotopy fiber is
written BSpin(n), and a spin structure on M is a lift of the classifying map
of TM from BSO(n) to BSpin(n).

Wu classes form a family of Z2-valued characteristic classes that can be
expressed in terms of the Stiefel-Whitney classes, see for instance [40] Chap-
ter 11 for a definition. For oriented manifolds, the second Stiefel-Whitney
class coincides with the second Wu class. A Wu structure of degree p is de-
fined as above, by replacing the second Stiefel-Whitney class by the degree p
Wu class. Explicitly, if νp is the degree p Wu class, we define BSO[νp](n) to
be the homotopy fiber of the map from BSO(n) into K(Z2, p) defined by νp.
A Wu structure on M is a lift of the classifying map of TM from BSO(n)
to BSO[νp](n). As is obvious from the above discussion, a Wu structure
of degree 2 is nothing but a spin structure. In the present paper, we are
mostly interested in Wu structures of degree 4, associated to the Wu class
of degree 4

(B.1) ν4(TM) = w4(TM) + (w2(TM))2 .
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Wu structures of degree p, when they exist, are in bijection with
Hp−1(M ;Z2). Any manifold of dimension strictly smaller than 2p admits
Wu structures of degree p.

The Wu structure of M is encoded in the homotopy class of the classify-
ing map from M into BSO[νp](n). In order to have a more concrete object
representing the Wu structure, we can pick an actual classifying map and
proceed as follows. Pick a cocycle representative of the Wu class on BSO(n),
which we also write νp for simplicity. Pull it back to BSO[νp](n). By def-
inition, νp is exact on BSO[νp](n), so let us choose a trivialization η on
BSO[νp](n): dη = νp. We can pull-back η by the classifying map to obtain
a cochain on M . This cochain encodes the data of the Wu structure on M .

In the main text, we are only interested in degree 4 Wu structures, i.e.
p = 4. We write νM for the degree 4 Wu cocycle on a manifold M .

Appendix C. Euler structures

The same idea can be applied to the Euler class of an arbitrary real bun-
dle NM over M , defining an Euler structure on NM . Euler structures on
the tangent space of 3-manifolds have been discussed previously in [41].
We make here the construction explicit in the case of interest to us, where
NM is a rank 5 bundle. NM is classified by a homotopy class of maps into
BSO(5). The Euler class e defines a homotopy class of maps from BSO(5)
into K(Z, 5), and we write BSO[e](5) for the corresponding homotopy fiber.
BSO[e](5) carries a universal bundle N , whose Euler class vanishes by def-

inition. Let B̃SO[e](5) be the associated 4-sphere bundle. It is possible to

pick a degree 4 integral cocycle a on B̃SO[e](5) restricting to a generator
of the top cohomology on each fiber. Writing π∗ for the push forward map
over the fibers of N , the discussion around (5.20) in [16] shows that

(C.1) b := π∗(a ∪ a)

represents w4(N ) when reduced modulo 2.
If the Euler class of NM vanishes, an Euler structure on NM is a (ho-

motopy class of) lift of its classifying map from BSO(5) into BSO[e](5).
Denoting by M̃ the 4-sphere bundle of NM , we can pull back a through a
classifying map to obtain an integral cocycle aM̃ restricting to a generator
of the top cohomology on each fiber.

Like in the case of Wu structures, we will assume that the Euler struc-
ture includes a choice of classifying map to BSO[e](5), rather than just a
homotopy class of maps.
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Appendix D. The cobordism group of (2, 0)-manifolds

D.1. Statement of the theorem

Recall the definition of (2, 0) structures and morphisms of (2, 0)-manifolds
in Section 2. In this appendix, we prove

Theorem D.1. Any 7-dimensional manifold U endowed with a (2, 0)-
structure is the boundary of an 8-dimensional manifold W endowed with
a (2, 0)-structure that restricts to the one of U on the boundary, provided

(D.1) w2(NU )w3(NU ) = 0.

Condition D.1 is sufficient, but we do not know whether it is necessary
or not. For reasons explained in Appendix C of [18], a (2, 0)-manifold U is
the boundary of a (2, 0)-manifold W if and only if U corresponds to a trivial
class in the stable homotopy group

ΩM5
12 = lim

n→∞
π12+n(MSpin(n) ∧ TF ∧K(Z, 4)+)(D.2)

= Ω̃Spin
12 (TF ∧K(Z, 4)+).

In this formula, F := BSO[e](5) is the homotopy fiber of the map

(D.3) BSO(5)
e→ K(Z, 5)

defined by the Euler class of the universal bundle, TF is the Thom space of
the universal bundle on F pulled-back from BSO(5), MSpin(n) is the Thom
space of the universal bundle over BSpin(n), K(Z, 4)+ is the Eilenberg-
MacLane space K(Z, 4) with a disjoint base point and Ω̃Spin

• are the reduced
spin cobordism groups. As also explained in [18], we can rewrite ΩM5

12 as
follows:

(D.4) ΩM5
12 = Ω̃Spin

12 (TF )⊕ Ω̃Spin
12 (TF ∧K(Z, 4)).

In the following, we will use the Atiyah-Hirzebruch spectral sequence to
show that the second group on the right-hand side vanishes and that the
first one is either zero or Z2. The potential obstruction is generated by the
(homology dual of the) characteristic class w2(N )w3(N ), so if the latter
vanishes, the 7-dimensional (2, 0)-manifold bounds.
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D.2. The integral homology of F

Our first task is to compute the low degree homology groups of F with
coefficients in Z and Z2. The fibration F → BSO(5)→ K(Z, 5) implies the
existence of a fibration

(D.5) K(Z, 4)→ F → BSO(5).

We use the Serre spectral sequence of this fibration to compute the coho-
mology of F and then use the universal coefficient theorem to deduce the
homology.

Low degree homology groups of K(Z, 4) with integral coefficients are
given for instance the Appendix C of [42]. We use the universal coefficient
theorem to deduce from them the low degree cohomology with integral co-
efficients
(D.6)

H•(K(Z, 4);Z) =


0 1 2 3 4 5 6 7 8 9

Z 0 0 0 Z 0 0 Z2 Z Z3

1 − − − g − − β ◦ Sq2(g) g2 ?

· · ·

,
where we wrote the generators in terms of the universal class

g ∈ H4(K(Z, 4);Z).

β is the Bockstein of the short exact sequence Z→ Z→ Z2 and Sq2 is the
second Steenrod square, implicitly precomposed with reduction mod 2.

The cohomology of BSO(n) is described in [43]. We have
(D.7)

H•(BSO(5);Z) =


0 1 2 3 4 5 6 7 8 9

Z 0 0 Z2 Z Z2 Z2 Z2
2 Z2 ⊕ Z2 Z2

2

1 − − W2 p1 W4 W 2
2 p1W2,W2,4 p2, p

2
1,W2W4 W 3

2 , p1W4

· · ·

,

where {pi} are the Pontryagin classes and {Wi} are the integral Stiefel-
Whitney classes, defined from the Stiefel-Whitney classes {wi} by Wi = βwi.
We also wrote W2,4 = β(w2w4). The Euler class e coincides with W4.

There is a Serre spectral sequence

(D.8) E2
p,q = Hp(BSO(5), Hq(K(Z, 4);Z))⇒ Hp+q(F ;Z).
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whose second page has the following form.

(D.9)

9 Z3 0 · · · · · · · · · · · · · · · · · · · · · · · ·

8 Z 0 0 · · · · · · · · · · · · · · · · · · · · ·

7 Z2 0 Z2 Z2 · · · · · · · · · · · · · · · · · ·

6 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

4 Z 0 0 Z2 Z Z2 Z2 Z2
2 Z2 ⊕ Z2 Z2

2

3 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 Z 0 0 Z2 Z Z2 Z2 Z2
2 Z2 ⊕ Z2 Z2

2

q/p 0 1 2 3 4 5 6 7 8 9

By the definition of F , the Euler class pulls back to a trivial class. The
only way that this can occur in the spectral sequence above is if the 5th
differential satisfies d5

0,4(g) = W4. This determines the cohomology groups
of F in degrees 0 to 6 to be Z, 0, 0, Z2, Z2, 0, Z2. The extra free generator
in degree 4 compared to BSO(5) is 2g, coming from the 2E2

0,4 = E∞0,4 = 2Z
term of the spectral sequence.

We will need the integral homology of F in degree 7, so we have to
determine the integral cohomology of F in degree 7 as well as the torsion
part of the cohomology in degree 8.

Degree 7. Clearly, H7(F ;Z) can only be pure torsion. E2
7,0 = Z2

2 sur-
vives through the spectral sequence. E2

3,4 is generated by gW2 and us-
ing the compatibility of the differentials with the cup product, we have
d5(gW2) = W4W2 6= 0, so it does not contribute to the cohomology of F .
E2

0,7 = Z2 is generated by β ◦ Sq2(g), which survives through the spectral
sequence.

Degree 8. E2
8,0 = Z2 ⊕ Z2, with the torsion term generated by W4W2. As

we saw above, the latter is in the image of d5, so is killed by the spectral
sequence. E2

4,4 is generated by gp1 and d5(gp1) = W4p1 6= 0, so only the
even multiples survive. E2

0,8 is sent by d2, d5 and d9 onto torsion groups.
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This cannot generate any torsion. We have therefore shown that H8(F ;Z)
has no torsion.

Result. The discussion above and the universal coefficient theorem yield
the integral homology groups of F :
(D.10)

H•(F ;Z) =


0 1 2 3 4 5 6 7

Z 0 Z2 0 Z2 Z2 Z3
2 0

1 − (W2)∗ − p∗1, (2g)∗ (W 2
2 )∗ (p1W2)∗, (W2,4)∗, (βSq2(g))∗ −

· · ·

.

A cohomology class decorated with an asterisk denotes the dual homology
class with respect to the basis of generators chosen in (D.6) and (D.7). The
7th homology group vanishes because the 7th cohomology group has no free
part and the 8th cohomology group has no torsion.

D.3. The homology of F with Z2-coefficients

The cohomology of BSO(5) with Z2 coefficient can also be found in [43]. It
is expressed in terms of the Stiefel-Whitney classes as

H•(BSO(5);Z2)(D.11)

=

 0 1 2 3 4 5 6 7

1 − w2 w3 w4, w
2
2 w5, w3w2 w4w2, w

2
3, w

3
2 w5w2, w3w

2
2, w4w3

· · ·

,
where each generator generates a Z2 subgroup.

To compute the the homology of F with Z2 coefficients we can repeat
our analysis of the Serre spectral sequence above for Z2 coefficients. Alterna-
tively, the universal coefficient theorem allows us to deduce it from (D.10).
A comparison with the cohomology of BSO(5) above allows to identify the
generators as follows:

H•(F ;Z2)(D.12)

=

 0 1 2 3 4 5 6

1 − (w2)∗ (w3)∗ (w4)∗, (w2
2)∗ (w3w2)∗ (w4w2)∗, (w2

3)∗, (w3
2)∗, (Sq2h)∗

· · ·



given in terms of the homology basis dual to (D.11). We wrote h for the
generator of H4(K(Z, 4);Z2). We see that the mod 2 reduction of the Euler
class, which coincides with w5, is killed.
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D.4. The 12th spin cobordism group of TF

To compute Ω̃Spin(TF ), we use the Atiyah-Hirzebruch spectral sequence

(D.13) E2
p,q = H̃p(TF,Ω

spin
q (pt.))⇒ Ω̃Spin

p+q (TF ).

The spin cobordism groups of the point can for instance be found in Stong’s
appendix in [44]

(D.14) Ωspin
• (pt.) =

 0 1 2 3 4 5 6 7

Z Z2 Z2 0 Z 0 0 0
· · ·

 .

We will make use of the fact the second differential of the spectral sequence
above coincides at q = 0 and q = 1 with the dual of the second Steenrod
square composed with reduction mod 2 and with the dual of the second
Steenrod square, respectively [45]:

(D.15) d2
p,0 = (Sq2)∗ ◦ ρ2, d2

p,1 = (Sq2)∗.

We can equivalently write (d2
p,0)∗ = ε ◦ Sq2, where ε is the natural homo-

morphism Hp(TF ;Z2)→ Hom(Hp(TF,Z),Z2) given by the evaluation of
representing cocycles on representing cycles.

The second page of the Atiyah-Hirzebruch spectral sequence is as follows:

(D.16)

7 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

4 Z 0 Z2 0 Z2 Z2 Z3
2 0

3 0 0 0 0 0 0 0 0

2 Z2 0 Z2 Z2 Z2
2 Z2 Z4

2 · · ·

1 Z2 0 Z2 Z2 Z2
2 Z2 Z4

2 · · ·

0 Z 0 Z2 0 Z2 Z2 Z3
2 0

q/p 5 6 7 8 9 10 11 12

Using the Thom isomorphism, the only non-zero potential contributions to
Ω̃Spin

12 (TF ) are E2
11,1 = H6(F ;Z2) = Z4

2, and E2
10,2 = H5(F ;Z2) = Z2.
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Vanishing of E3
11,1. E3

11,1 is the cohomology of the sequence

(D.17) H8(F ;Z) H6(F ;Z2) H4(F ;Z2).
d213,0 d211,1

We first remark that 〈h, (Sq2)∗(Sq2h)∗〉 = 〈Sq2h, (Sq2h)∗〉 6= 0, so (Sq2h)∗ is
not in the kernel of d2

11,1 and it is killed by the spectral sequence. Similarly,
we compute Sq2(w4) = w4w2, Sq2(w2

2) = w2
3, which means that the kernel

of d2
11,1 is generated by (w3

2)∗.
To check whether (w3

2)∗ is in the image of d2
13,0, we compute

(D.18) Sq2(w3
2) = w2

3w2 + w4
2.

As w4
2 = ρ2(p2

1), ε(w4
2) = p2

1 ∈ Hom(H8(F ;Z),Z2). Therefore (d2
13,0)∗(w3

2) =
p2

1 + · · · where the dots denote generators of Hom(H8(F ;Z),Z2) indepen-
dent from p2

1. Therefore d2
13,0((p2

1)∗) = (w3
2)∗ and (w3

2)∗ is killed as well by
the spectral sequence.

We conclude that E3
11,1 = 0.

Potential obstruction in E3
10,2. E3

10,2 is the cohomology of the sequence

(D.19) H7(F ;Z2) H5(F ;Z2) 0.
d212,1

As Sq2(w3w2) = 0, we have (d2
12,1)∗(w3w2) = 0, so w3w2 is not in the image

of d2
12,1 and (w3w2)∗ is not killed on the second page. This generator may

be killed by

(D.20) E3
13,0 H5(F ;Z2) E3

7,4 = H2(F ;Z),
d313,0 d310,2

but cannot be killed by any of the following differentials. Unfortunately, we
don’t know what d3

13,0 and d3
10,2 are.

D.5. The 12th spin cobordism group of TF ∧ K(Z, 4)

We now turn to the second summand of (D.4). We need first to compute
the reduced homology of TF ∧K(Z, 4) with coefficients in Z and Z2. Then
we can use the Atiyah-Hirzebruch spectral sequence like in the case of TF .



i
i

“6-Monnier” — 2019/7/15 — 21:03 — page 2085 — #51 i
i

i
i

i
i

The anomaly field theories 2085

The reduced homology of TF ∧K(Z, 4) can be computed with the
Künneth short exact sequence:

(D.21)

0
⊕

i+j=k H̃i(TF ;Z)⊗ H̃j(K(Z, 4);Z)

H̃k(TF ∧K(Z, 4);Z)

⊕
i+j=k−1 TorZ(H̃i(TF ;Z), H̃j(K(Z, 4))) 0

The reduced homology of TF is deduced from (D.10) and the Thom isomor-
phism:

(D.22) H̃•(TF ;Z) =

 5 6 7 8 9 10

Z 0 Z2 0 Z2 Z2

· · ·

 .

The reduced homology of K(Z, 4) is given in Appendix C of [42]:

(D.23) H̃•(K(Z, 4);Z) =

 4 5 6 7 8 9

Z 0 Z2 0 Z⊕ Z3 0
· · ·

 .

(All the reduced homology groups vanish in degrees lower than those indi-
cated.) It turns out that the Tor groups do not contribute in the degrees of
interest to us and we find:

(D.24) H̃•(MF ∧K(Z, 4);Z) =

 9 10 11 12 13

Z 0 Z2
2 0 Z3 ⊕ Z2 ⊕ Z3

· · ·

 .

From this, we deduce the homology with Z2 coefficients:

(D.25) H̃•(MF ∧K(Z, 4);Z2) =

 9 10 11 12 13

Z2 0 Z2
2 Z2

2 Z4
2

· · ·

 .

We now consider the Atiyah-Hirzebruch spectral sequence for spin bor-
dism

(D.26) E2
p,q = H̃p(TF ∧K(Z, 4),Ωspin

q (pt.))⇒ Ω̃Spin
p+q (TF ∧K(Z, 4)).
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The only potential contribution to Ω̃Spin
12 (TF ∧K(Z, 4)) comes from

(D.27) E2
11,1 = H̃11(TF ∧K(Z, 4),Z2) = Z2

2,

generated by the duals of u2Sq2(g2) and of Sq2(u2)g2, where u2 is the gen-
erator of H5(TF ;Z2) and g2 is the generator of H4(K(Z, 4);Z2). E2

9,2 = Z2,
generated by u2g2 and we have

(D.28) Sq2(u2g2) = Sq2(u2)g2 + u2Sq2(g2).

This means that d2
11,1 = (Sq2)∗ : E2

11,1 → E2
9,2 satisfies

(D.29) d2
11,1((Sq2(u2)g2)∗) = d2

11,1((u2Sq2(g2))∗) = (u2g2)∗.

The kernel of d2
11,1 is therefore (Sq2(u2)g2)∗ + (u2Sq2(g2))∗.

We have

(D.30) Sq2(Sq2(u2)g2) = Sq2(u2Sq2(g2)) = Sq2(u2)Sq2(g2).

If we can show that ε(Sq2(u2)Sq2(g2)) 6= 0, we will have shown that
(Sq2(u2)g2)∗ + (u2Sq2(g2))∗ is in the image of d2

13,0, and therefore that E2
11,1

is killed by the spectral sequence.
The universal coefficient theorem computing Z2-valued cohomology to-

gether with the fact that H6(MF ;Z) = 0 show that ε(Sq2(u2)) is the non-
trivial element of Hom(H7(MF ;Z),Z2). Similarly, as H5(K(Z, 4);Z) = 0,
ε(Sq2(g2)) is the nontrivial element of Hom(H6(K(Z, 4);Z),Z2). This im-
plies that ε(Sq2(u2)Sq2(g2)) 6= 0.

We conclude that ΩSpin
12 (TF ∧K(Z, 4)) = 0, and therefore that

(D.31) ΩM5
12 = Z2 or 0,

where the uncertainty comes from the cokernel of d2
12,1 in the Atiyah-

Hirzebruch spectral sequence for ΩSpin
12 (TF ), see (D.19).

The computations above show that if ΩM5
12 is non-trivial, its only gener-

ator is the dual of w2(N )w3(N ). Therefore any (2, 0)-manifold such that
w2(N )w3(N ) = 0 bounds, proving the theorem.
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power functors, Geometry & Topology 20 (2016), 257–352.

[43] E. Brown, The cohomology of BSOn and BOn with integer coefficients,
Proc. Amer. Math. Soc. 85 (1982), 283–288.

[44] E. Witten, Topological tools in ten-dimensional physics, Int. J. Mod.
Phys. A1 (1986), 39.

[45] A. V. Zhubr, Spin bordism of oriented manifolds and the hauptvermut-
ing for 6-manifolds, in: Topology, Ergodic Theory, Real Algebraic Ge-
ometry. Rokhlin’s Memorial, V. Turaev, A. Vershik, and V. Rokhlin,
eds., pp. 263–286, American Mathematical Society, 2001.
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