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804 V. Mathai and G. C. Thiang

1. Introduction

Most of the existing work on topological phases in condensed matter physics

deals implicitly with a Euclidean geometry. This is the case both in the well-

studied integer quantum Hall effect (IQHE) and in the more recently discov-

ered phases such as the Chern insulator [19], time-reversal invariant topo-

logical insulators [31, 41], topological superconductors, and crystalline topo-

logical phases. This is partly due to the availability of the classical Bloch–

Floquet theory, based upon Fourier transforming the abelian (sub)group Zd

of discrete translational symmetries of a crystal lattice in Euclidean space.

This leads to the topological band theory paradigm, where vector bundles

over the Brillouin torus are constructed out of spectral projections of Zd-
invariant Hamiltonians, which then determine topological invariants such as

Chern classes, Kane–Mele invariants [34], K-theory classes [27, 40, 60] etc.

Besides the problem of cataloguing bulk topological phases, there is also

the important issue of modelling mathematically the fundamental physical

concept of the bulk-boundary correspondence. This roughly says that in pass-

ing from the bulk of a material hosting a topologically non-trivial gapped

phase to the external “topologically trivial vacuum”, the gapped condition

is violated at the boundary (“zero modes” fill the gap) and the change in

bulk topological indices is furthermore recorded in the form of a boundary

topological invariant. For the IQHE, this correspondence is the equality of

bulk Hall conductance and (direct) edge conductance, which was proved rig-

orously in the noncommutative geometry (NCG) framework in [38]. Indeed,

the non-triviality of bulk topological phases is often deduced experimentally

from the detection of boundary gapless modes.

In this paper, we study topological phases in the hyperbolic plane, pro-

pose a bulk-boundary correspondence of the resulting topological indices,

which may be fractional, and show its persistence in the presence of certain

types of disorder. We also show that with time-reversal symmetry, there is

an interesting Z2 “hyperbolic plane topological insulator”, characterised by

a hyperbolic version of the Kane–Mele invariant [34] originally introduced

for the (Euclidean plane) quantum spin Hall effect.

Our main motivation comes from the possibility of realising fractional in-

dices in the hyperbolic setting, as a result of certain orbifold Euler

characteristics taking rational rather than integer values, as explained by
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Topological phases on the hyperbolic plane 805

Marcolli–Mathai in [44, 45]. Physically, the non-Euclidean geometry is sup-

posed to provide an effective model for electron-electron interactions while

formally staying within the single-particle framework. Besides providing a

predictive model for the fractional quantum Hall effect that can be compared

with experiments [45], a recent work of Marcolli–Seipp [46] showed that one

can even obtain interesting composite fermions and anyon representations by

considering symmetric products of Riemann surfaces. The extension of the

bulk-boundary correspondence principle from integer to fractional indices,

and from Euclidean to other geometries, is therefore of great interest.

We will use tools from NCG, which were first deployed by Bellissard et

al to analyse the IQHE [7]. In that setting, we recall that a mild form of

noncommutativity occurred in the sense that quantum Hall Hamiltonians

enjoyed only magnetic translational symmetry, so that a Brillouin torus is

unavailable in the strict sense. An important insight is that the Kubo formula

for Hall conductivity, obtainable in the commutative case as an integral of

the Chern class of the valence bundle over the Brillouin torus, could be

understood as a pairing of a geometrically determined cocycle with the K-

theory class of the Fermi projection. The effect of disorder in producing

plateaux could also be accounted for in a rigorous way.

Fortuitously, the NCG framework is very general and allows us to go fur-

ther and dispense with the Euclidean space paradigm altogether. In hyper-

bolic geometry, lattice translation symmetry is no longer an abelian group

Z2, but some noncommutative surface group Γg, so the classical Bloch–

Floquet theory and momentum space are unavailable even in the absence

of a magnetic field. Nevertheless, there is a standard NCG prescription of

taking a group algebra or crossed product algebra as the noncommutative

“momentum space”, with respect to which bulk topological phases can be

defined.

A more serious difficulty arises when trying to formulate a bulk-boundary

correspondence in the hyperbolic plane. Our solution is novel: to exploit the

idea of T-duality to circumvent this difficulty. In the Euclidean case, bulk-

to-boundary maps are K-theoretic index maps associated to a Toeplitz-like

extension [54] of the bulk algebra of observables with the boundary algebra,

where the extended algebra encodes some type of half-space boundary con-

ditions [38]. Abstractly, such extensions may be studied using K-homology

or Kasparov theory — indeed a KK-theoretic formulation was worked out
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806 V. Mathai and G. C. Thiang

in [12]. In [52, 53], we showed that under appropriate T-duality transforma-

tions (a geometric Fourier transform closely related to the Baum–Connes

assembly map), the Euclidean space bulk-boundary maps simplify into geo-

metric restriction-to-boundary maps, and these results were extended to Nil

and Solv geometries in [28, 29].

In these cases, there is a translational symmetry transverse to the bound-

ary which, together with the longitudinal symmetries of the boundary, re-

cover the symmetries of the bulk. Then our earlier results show that the

Toeplitz-like extension correctly encodes the geometric bulk-boundary rela-

tionship T-dually. In the hyperbolic plane, transversality properties of “hy-

perbolic translations” are more complicated (Fig. 3), and half-space bound-

ary conditions for tight-binding models become very difficult to give explic-

itly, e.g. the atomic sites are no longer simply labelled by a set of integers.

Then it becomes essential to utilise T-duality to analyse on the geometric

side (cf. motivation for the Baum–Connes conjecture). Another technical

difference in the hyperbolic setting is that the Pimsner–Voiculescu (PV) ex-

act sequence, relevant for computing the K-theory of crossed products with

Zd, is not available for computing the twisted crossed product with a surface

group. Instead, we use the Kasparov spectral sequence that generalises the

PV sequence, presenting the computations in the Appendix.

Outline and main results. We first review the quantum Hall effect on

the hyperbolic plane and establish some notation and facts about surface

and Fuchsian groups in Section 2. In Section 3, we introduce noncommuta-

tive T-duality for Riemann surfaces, and compute its effects on K-theory

generators. In Section 4, we recall the relation between C∗-algebra exten-

sions and KK-theory, and introduce the important geometrical notion of a

1-dimensional boundary separating the hyperbolic plane into a bulk and a

vacuum region (Fig. 2-3).

Armed with the above tools, we are able to carry out our main ob-

jective — to obtain a bulk-boundary correspondence of fractional indices

— by using the universal coefficients theorem to design a suitable exten-

sion that induces a bulk-boundary map. This construction is relevant both

for the empirically verified fractional quantum Hall effect, as well as our

proposed fractional version of Chern insulators/anomalous Hall effect and

Kane–Mele invariants in Section 6. A central result of this paper is that

this bulk-boundary map is T-dual to the geometric restriction-to-boundary
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Topological phases on the hyperbolic plane 807

map (Theorem 4.1). Pairings with cyclic cohomology are also analysed in

Section 4.5, leading to a fractional bulk-boundary correspondence. In Sec-

tion 5, we extend these constructions and results to include the effect of

disorder (Proposition 5.1).

2. Overview of the quantum Hall effect on the

hyperbolic plane

The hyperbolic plane analogue of the quantum Hall effect was initially stud-

ied in [17, 18, 20]. Quantisation of the Hall conductance followed from similar

arguments to those in the IQHE [7], with the added bonus that fractional in-

dices could be achieved. We begin by reviewing the construction of magnetic

Hamiltonians in a continuous model with a background hyperbolic geometry

term [17].

One model of the hyperbolic plane is the upper half-plane H equipped

with its usual Poincaré metric (dx2 + dy2)/y2, and symplectic area form

ωH = dx ∧ dy/y2. The group PSL(2,R) acts transitively and isometrically

on H by Möbius transformations

x+ iy = z 7→ gz =
az + b

cz + d
, for g =

(
a b

c d

)
.

Any smooth Riemann surface Σg of genus g greater than 1 can be realised

as the quotient of H by the action of its fundamental group realised as a

cocompact torsion-free discrete subgroup Γ = Γg of PSL(2,R).

Pick a 1-form A such that dA = θωH, for some fixed θ ∈ R. As in geo-

metric quantisation we may regard A as defining a connection ∇ = d− iA
on a line bundle L over H, whose curvature is θωH. Physically we can think

of A as the electromagnetic vector potential for a uniform magnetic field of

strength θ normal to H. Using the Riemannian metric the Hamiltonian of

an electron in this field is given in suitable units by

H = HA =
1

2
∇∗∇ =

1

2
(d− iA)∗(d− iA).

Comtet [20] has computed the spectrum of the unperturbed Hamiltonian

HA, for A = −θdx/y, to be the union of finitely many eigenvalues {(2k +

1)θ − k(k + 1) : k = 0, 1, 2 . . . < |θ| − 1
2}, and the continuous spectrum [1

4 +
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θ2,∞). Any A is cohomologous to −θdx/y (since they both have ωH as

differential) and forms differing by an exact form dφ give equivalent models:

in fact, multiplying the wave functions by exp(iφ) shows that the models for

A and −θdx/y are unitarily equivalent. This equivalence also intertwines

the Γ-actions so that the spectral densities for the two models also coincide.

This Hamiltonian can be perturbed by adding a potential term V . In

[17], the authors took V to be invariant under Γ, while in [18], the authors

allowed any smooth random potential function V on H using two general

notions of random potential (in the literature random usually refers to the

Γ-action on the disorder space being required to admit an ergodic invariant

measure).

However, the perturbed Hamiltonian HA,V = HA + V , which is impor-

tant for the quantum Hall effect, has unknown spectrum for general Γ-

invariant V . For γ ∈ Γ, let ψγ(x) be a function on H satisfying γ∗A−A =

dψγ , such that ψγ(x0) = 0 for all γ ∈ Γ with x0 ∈ H a choice of origin.

Define a projective unitary action T σ of Γ on L2(H) as follows:

Uγ(f)(x) = f(γ−1x)

Sγ(f)(x) = exp(−2πiψγ(x))f(x)

T σγ = Uγ ◦ Sγ .

Then the operators T σγ , also known as magnetic translations, satisfy T σe =

Id, T σγ1
T σγ2

= σ(γ1, γ2)T σγ1γ2
, where

(2.1) σ(γ, γ′) = exp(−2πiθψγ(γ′x0)),

which is a multiplier (or 2-cocycle) on Γ, that is, it satisfies,

1) σ(γ, e) = σ(e, γ) = 1 for all γ ∈ Γ;

2) σ(γ1, γ2)σ(γ1γ2, γ3) = σ(γ1, γ2γ3)σ(γ2, γ3) for all γj ∈ Γ, j = 1, 2, 3.

These are the multipliers that we will be interested in in this paper, so

that σ = σθ will be understood to be parametrised by θ. An easy calcula-

tion shows that T σγ ∇ = ∇T σγ and taking adjoints, T σγ ∇∗ = ∇∗T σγ . Therefore

T σγ HA = HAT
σ
γ . Also, since V is Γ-invariant, T σγ V = V T σγ . We conclude

that for all γ ∈ Γ, T σγ HA,V = HA,V T
σ
γ , that is, the Hamiltonian commutes

with magnetic translations. The commutant of the projective action T σ is



i
i

“5-Mathai” — 2019/11/26 — 17:23 — page 809 — #7 i
i

i
i

i
i

Topological phases on the hyperbolic plane 809

the projective action T σ̄. If λ lies in a spectral gap of HA,V , then the Riesz

projection is pλ(HA,V ) where pλ is a smooth compactly supported function

which is identically equal to 1 in the interval [inf specHA,V , λ], and whose

support is contained in the interval [−ε+ inf specHA,V , λ+ ε] for some ε > 0

small enough. Then

(2.2) pλ(HA,V ) ∈ C∗r (Γ, σ̄)⊗K(L2(F)),

where F is a fundamental domain for the action of Γ on H, and pλ(HA,V )

defines an element in K0(C∗r (Γ, σ̄)). Here C∗r (Γ, σ̄) is the twisted reduced

group C∗-algebra of Γ. By the gap hypothesis, the Fermi level of the physical

system modelled by the Hamiltonian HA,V lies in a spectral gap.

Fuchsian groups. As in [43, 44], we can even take Γ to be a Fuchsian

group of signature (g,ν) ≡ (g, ν1, . . . , νr), that is, Γ = Γg,ν is a discrete co-

compact subgroup of PSL(2,R) of genus g ≥ 0 and with r elliptic elements

of order ν1, . . . , νr respectively. The canonical presentation is

Γg,ν = 〈Ai, Bi, Cj , i = 1, . . . , g, j = 1, . . . , r, |(2.3)

[A1, B1] . . . [Ag, Bg]C1 . . . Cr = 1, C
νj
j = 1〉.

and the quotient orbifold Σg,ν = H/Γg,ν is a compact oriented surface of

genus g with r elliptic points p1, . . . , pr. Note that H/Γg = Σg, g ≥ 2 consid-

ered above is just the special case where r = 0. Each pj is a conical singular-

ity in the sense that it looks locally like a quotient D2/Zνj under rotation

by 2π/νj , where D2 is a unit disc in R2. The universal orbifold covering

space of Σg,ν is H, and the orbifold fundamental group of Σg,ν [59] recovers

Γg,ν . Each orbifold Σg,ν is “good” in the sense that there is a (non-unique)

smooth Σg′ which covers Σg,ν , with projection map the quotient under the

action of a finite group G on Σg′ , and the Riemann–Hurwitz formula gives

g′ = 1 +
#G

2
(2(g − 1) + (r − ν))

where ν :=
∑r

j=1
1
νj

. There is a short exact sequence

(2.4) 1 −→ Γg′ −→ Γg,ν −→ G −→ 1,

so that Γg,ν always contains hyperbolic elements (even if g < 2).



i
i

“5-Mathai” — 2019/11/26 — 17:23 — page 810 — #8 i
i

i
i

i
i

810 V. Mathai and G. C. Thiang

As before, we will consider multipliers σ on Γg,ν defined through the

magnetic field by Eq. (2.1), which has vanishing Dixmier–Douady invariant,

δ(σ) = 0. The above discussion leading to Eq. (2.2) is still valid [43], and we

will therefore need the computations [26, 43]

(2.5) K•(C
∗
r (Γg,ν , σ)) ∼=

{
Z2+

∑r
j=1(νj−1) • = 0,

Z2g • = 1.

We remark that Γg,ν is K-amenable [22], so that Eq. (2.5) holds also for the

full (unreduced) twisted group algebra C∗(Γg,ν , σ).

Notation. Generally, we will use Γ (resp. Σ) to denote Γg,ν (resp. Σg,ν),

and include subscripts only when we need to distinguish the torsion free

situation Γg,Σg (with ν empty) from the general one.

3. Noncommutative T-duality for Riemann surfaces

T-duality describes an inverse mirror relationship between a pair of type

II string theories. Mathematically, it is a geometric analogue of the Fourier

transform [32], giving rise to a bijection of (Ramond–Ramond) fields and

their K-theoretic charges. The global aspects of topological T-duality are

most interesting in the presence of a background flux [13], while the non-

commutative generalisation appears in [49–51]. This body of work pertains

to (noncommutative) circle or torus bundles. In this section, we introduce

the notion of (noncommutative) T-duality for Riemann surfaces. This is

motivated by the fact that the twisted group algebra C∗r (Γg, σ) of the sur-

face group Γg appears as the bulk algebra when studying the IQHE on the

hyperbolic plane.

As a warm up, we recall the notion of T-duality Tcircle for circles. It can

be defined as the composition of Poincaré duality K0(S1) ∼= K1(S1) with

the Baum–Connes isomorphism1

µZ : K1(S1) ≡ K1(BZ) ∼= K1(C∗(Z)) ∼= K−1(T),

1The Pontryagin dual T of Z is also a circle, but we use a different symbol from

S1 = BZ for clarity.
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and its formula on generators is

K0(S1) 3 [1S1 ]
Tcircle←→ [ζ] ∈ K−1(T)

K−1(S1) 3 [W ]
Tcircle←→ [1T] ∈ K0(T).(3.1)

Here, 1S1 ,1T are trivial line bundles generating K0(S1),K0(T) respectively,

while W and ζ are winding number 1 unitaries in C(S1) and C(T) generating

K−1(S1) and K−1(T) respectively. This deceptively simple formula hides

the non-triviality of the Baum–Connes map — in particular, that it is an

isomorphism (see, e.g. the detailed discussion in Section 4 of [61]).

There is also a formulation as a Fourier–Mukai transform [13] which

makes the analogy to the Fourier transform more apparent, and proceeds

via a “push-pull” construction. In the following, we generalise the latter

construction for Σ. This proceeds quite abstractly, and the reader may skip

to Section 3.1 for the description through the Baum–Connes map.

For Σ = Σg,ν an orbifold, the appropriate algebra of functions is C(Σg′) o
G with the G-action in accordance with Eq. (2.4). For the rest of this sub-

section, we will abuse notation and simply write C(Σ) to mean C(Σg′) oG,

keeping in mind that we are treating Σ as an orbifold rather than just an

ordinary topological space, thus it has orbifold K-theories etc. [1]. We note

that G is finite so that there are Green–Julg–Rosenberg isomorphisms

K•(C(Σ)) ≡ K•orb(Σ) ≡ K•G(Σg′) ∼= K•(C(Σg′) oG)

and K•(C(Σ)) ≡ Korb
• (Σ) ≡ KG

• (Σg′) ∼= K•(C(Σg′) oG),

cf. Theorem 20.2.7 of [11].

Consider the diagram,

Mσ

��
C(Σ)⊗ C∗r (Γ, σ)

C(Σ)

ι1

77

C∗r (Γ, σ),

ι2

hh
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where ι1, ι2 are inclusion maps, and Mσ is the universal finite projective

module over C(Σ)⊗ C∗r (Γ, σ), playing the role of the Poincaré line bundle,

which we now construct.

Consider Γg as a discrete subgroup of PSL(2,R), acting on the right on

H. The multiplier σ = σθ extends to PSL(2,R) [17] as follows. Let c denote

the area cocycle on PSL(2,R) as defined just after Proposition 3.1, then

σ = σθ = exp(2π
√
−1θc). So there is a central extension,

1 −→ U(1) −→ PSL(2,R)σ −→ PSL(2,R) −→ 1.

The cocycle σ has the property that it vanishes on SO(2), the stabiliser of

PSL(2,R) on H, so we may define Hσ = SO(2)\PSL(2,R)σ. There are also

the central extensions restricted to Γ = Γg,ν and to its torsion-free normal

subgroup Γg′

1 −→ U(1) −→ Γσg′ −→ Γg′ −→ 1,

1 −→ U(1) −→ Γσg,ν −→ Γg,ν −→ 1

Now Γσg′ acts on the right on SO(2)\PSL(2,R)σ = Hσ and by the left action

on C∗r (Γ, σ). Set Mσ = C(Σg′ ,Vσ), where

Vσ = Hσ ×Γσ
g′
C∗r (Γ, σ)

is a locally trivial vector bundle with fibers C∗r (Γ, σ) over Hσ/Γσg′ = Σg′ .

There remains a left action of the quotient G = Γg,ν/Γg′ ∼= Γσg,ν/Γ
σ
g′ on Vσ

covering that on Σg′ .

Recall that Σg = H/Γg = EΓg/Γg is a classifying space BΓg. It is known

that C∗r (Γg, σ) is K-oriented with Poincaré duality

K0(C∗r (Γg, σ)) ∼= K0(C∗r (Γg, σ̄))

implemented by a fundamental class constructed in Section 2.6 of [14] (see

also Theorem 3.3 of [23]), and that Σg is K-oriented. Their K-theories are

related by twisted versions of Kasparov’s maps (pp. 192 of [36]),

βσ : K•(Σg)→ K•(C
∗(Γg, σ)),

ασ̄ : K•(C∗(Γg, σ̄))→ K•(Σg),
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which turn out to be dual to each other and isomorphisms in this case,

as a result of K-orientability. For Σ = Σg,ν , there is Poincaré duality in

the orbifold sense. More precisely, by section 4, [36], one has G-equivariant

Poincaré duality, which implies that

PD : KG
• (Σg′) ∼= K•G(Σg′),

that is,

PDorb : Korb
• (Σ) ∼= K•orb(Σ).

We say that Σ is Korb-oriented in this case. We use the G-equivariant version

of Kasparov’s maps ασ̄, βσ to deduce K-orientability for C∗(Γg,ν , σ) (and

C∗r (Γg,ν , σ) by K-amenability). Thus for Σ = Σg,ν and Γ = Γg,ν , we have

that C(Σ) and C∗r (Γ, σ) are K-orientable, and together with the fact that

their K-theories are torsion-free, we deduce by the Künneth theorem that

C(Σ)⊗ C∗r (Γ, σ) is K-orientable as well. Thus we have the Poincaré dualities

PDC(Σ)⊗C∗r (Γ,σ) : K0(C(Σ)⊗ C∗r (Γ, σ)) ∼= K0(C(Σ)⊗ C∗r (Γ, σ̄)),

PDC∗r (Γ,σ) : K0(C∗r (Γ, σ̄)) ∼= K0(C∗r (Γ, σ)).

Finally, for an orbifold vector bundle E over Σ = Σg,ν (or G-equivariant

bundle over Σg′) representing a class in K0(C(Σ)), noncommutative T-

duality is the composition,

K0(C(Σ)) 3 [E ] −→ ι!2((ι1)∗([E ])⊗C(Σ)Mσ) ∈ K0(C∗r (Γ, σ)),

where the wrong way map, or Gysin map

ι!2 : K0(C(Σ)⊗ C∗r (Γ, σ))→ K0(C∗r (Γ, σ))

is defined by

ι!2 = PDC∗r (Γ,σ) ◦ (ι2)∗ ◦ PDC(Σ)⊗C∗r (Γ,σ),

where

(ι2)∗ : K0(C(Σ)⊗ C∗r (Γ, σ̄))→ K0(C∗r (Γ, σ̄))

is the homomorphism in K-homology.
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3.1. Noncommutative T-duality for Σg in even degree

We can also formulate noncommutative T-duality through the Baum–

Connes isomorphisms. First, consider the case where ν is empty, and the

K-theory degree is even.

Poincaré duality in K-theory. The 2D Riemann surface Σg is a Spin

manifold, therefore it is K-oriented. Poincaré duality in the K-theory of Σg

is given by

PDΣg : K0(Σg)
∼−→ K0(Σg)

[E ] 7→ [/∂Σg ⊗ E ](3.2)

where /∂Σg ⊗ E is the Spin Dirac operator on Σg coupled to the vector bundle

E over Σg. In particular, we see that the class of the trivial line bundle [1Σg ]

maps to [/∂Σg ], the class of the Spin Dirac operator on Σg, also known as

the fundamental class in K-homology, which is a generator. Also the class of

the nontrivial line bundle L with Chern number c1(L) =
∫

Σg
dx∧dy
y2 = 1 maps

under PDΣg to the class of the coupled Spin Dirac operator, [/∂Σg ⊗ L]. Recall

that

K0(Σg) ∼= Z[1Σg ]⊕ Z[L],

and since Poincaré duality is an isomorphism, we see that

K0(Σg) ∼= Z[/∂Σg ]⊕ Z[/∂Σg ⊗ L].

3.1.1. Twisted Baum-Connes isomorphism. Let [L̃] denote the class

of the virtual bundle L 	 1Σg , then we can take [1Σg ], [L̃] as generators for

K0(Σg).

Recall that Σg ' BΓg, so the twisted Baum–Connes map [17, 47] is an

isomorphism of groups,

µθ : K0(Σg)
∼−→ K0(C∗r (Γg, σ)).

because the Baum–Connes conjecture with coefficients is true for Γg (cf.

[5, 21]). It can be expressed as

µθ : K0(Σg) 3 [/∂Σg ⊗ E ] 7→ indexC∗r (Γg,σ)(/∂Σg ⊗ E ⊗ Vσ) ∈ K0(C∗r (Γg, σ)).

Let 1 denote the trivial projection in C∗r (Γg, σ).
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Proposition 3.1. µθ exchanges [/∂Σg ⊗ L̃]↔ [1] and [/∂Σg ]↔ [Pσ], where

[Pσ] denotes the nontrivial class in K0(C∗r (Γg, σ)) defined below.

Proof. Let τ denote the von Neumann trace on C∗r (Γg, σ) extended to an

additive map K0(C∗r (Γg, σ))→ R, and B = θ (dx ∧ dy)/y2 a 2-form on Σg.

By the index theorem in [17, 47],

τ(µθ([/∂Σg ⊗ E ])) =

∫
Σg

eB ∧ Ch(E)

= rank(E)

∫
Σg

B + c(E) = rank(E) θ + c(E).

Therefore

τ(µθ([/∂Σg ⊗ L̃]) = 1, τ(µθ([/∂Σg ⊗ 1Σg ])) = θ

and the range of τ is Z + θZ with τ([1]) = 1. Recall that the area cocycle

c(g1, g2) on PSL(2,R) is a group 2-cocycle defined as the oriented hyper-

bolic area of the geodesic triangle with vertices at {o, g1.o, g
−1
2 .o} on the

hyperbolic plane H with o ∈ H, as in Fig. 1, and let τc be the corresponding

cyclic cocycle (see Section 5.1). The higher twisted index theorem (section

2, [44]) gives

τc(µθ([/∂Σg ⊗ E ])) =

∫
Σg

ωc ∧ eB ∧ Ch(E) = rank(E)2(g − 1),

where ωc is the hyperbolic volume form associated to the area cocycle c

on Γg. Then the range of τc on K0(C∗r (Γg, σ)) is 2(g − 1)Z. Since τc([1]) =

τc(1,1,1) = 0, there is another generator [Pσ] of K0(C∗r (Γg, σ)) which maps

to 2(g − 1) under τc. This other generator is only specified up to some mul-

tiple of [1], and we choose it2 such that τ([Pσ]) = θ. The two index formulae

allow us to conclude that

µθ([/∂Σg ⊗ L̃]) = [1], µθ([/∂Σg ⊗ 1Σg ]) = [Pσ].

�

2Note the slight abuse of notation, since [Pσ] may actually need be written as a

difference of projections.
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Figure 1: Hyperbolic triangle.

Noncommutative T-duality at the level of K-theory groups is the com-

position,

TΣg = µθ ◦ PDΣg : K0(Σg)
∼−→ K0(C∗r (Γg, σ)).

By Eq. (3.2) and Proposition 3.1, we have

Corollary 3.2. TΣg exchanges [1Σg ]↔ [Pσ] and [L̃]↔ [1].

Remark 3.3. From the physical perspective, τ is relevant for gap-labelling

problems, while the geometrically defined 2-cocycle τc turns out to be co-

homologous to the (hyperbolic) Kubo conductivity cocycle τK [17] which

computes the contribution to the Hall conductance by a projection P. Thus

[Pσ] has the physical meaning of the K-theory class contributing to the

smallest nonzero value of the quantised Hall conductance.

Remark 3.4. In the Euclidean case where Γ = Z2 and C∗r (Z2, σ) is the

noncommutative torus, Pσ is the Rieffel projection, cf. [53].

3.2. Noncommutative T-duality for Σg,ν in even degree

When ν is nonempty, we need to consider the orbifold K-theory K0
orb(Σg,ν)

∼= K0
G(Σg′). Note that for the smooth manifold Σg, we have K0

orb(Σg) =

K0(Σg). Returning to Σg,ν , besides the trivial line bundle 1Σg,ν and the

(virtual) line bundle L̃ whose Chern class generates the top degree cohomol-

ogy, there are new orbifold line bundles on Σg,ν (or G-equivariant bundles
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on Σg′) which generate extra copes of Z in K0
orb(Σg,ν). These extra bundles

can be labelled by the non-trivial characters χj of Zνj at each singular point

pj [43]. We write L̃χj for these virtual bundles, and there are
∑r

j=1(νj − 1)

classes of them. Then [1Σg,ν ], [L̃] and [L̃χj ], j = 1, . . . , r account for

K0
orb(Σg,ν) ∼= Z2+

∑r
j=1(νj−1).

Poincaré duality PDΣg,ν takes [E ] ∈ K0
orb(Σg,ν) to the class of the E-

twisted Dirac operator (denoted /∂+
E in [44]) in Korb

0 (Σg,ν) ∼= K
Γg,ν
0 (EΓg,ν)

with the latter isomorphism given by lifting /∂+
E to a Γg,ν-invariant operator

/̃∂+
E on the contractible cover H ' EΓg,ν . Recall also that the twisted Baum–

Connes assembly map µθ gives an isomorphism

µθ : K
Γg,ν
0 (EΓg,ν)→ K0(C∗r (Γg,ν , σ)),

which is in accordance with Eq. (2.5). Noncommutative T-duality in this

case is the map TΣg,ν = µθ ◦ PDΣg,ν , where

TΣg,ν : K0
orb(Σg,ν) 3 [E ] 7→ indexC∗r (Γg,ν ,σ)(/∂

+
E ⊗ Vσ) ∈ K0(C∗r (Γg,ν , σ)).

There is again a higher index formula [43, 44]

(3.3) τc(TΣg,ν ([E ])) = φ rank(E),

where φ = 2(g − 1) + (r − ν) ∈ Q is the orbifold Euler characteristic of Σg,ν .

Let [Pσ] ∈ K0(C∗r (Γg,ν , σ)) be a generator such that τc(Pσ) = φ. Then we

have

Corollary 3.5. TΣg,ν takes [L̃], [L̃χj ] into ker τc, and [1Σg,ν ] 7→ [Pσ] up to

an element in ker τc.

Note that Corollary 3.5 is consistent with the special case in Corol-

lary 3.2.

3.3. Noncommutative T-duality for Σg,ν in odd degree

For the T-duality isomorphism K−1
orb(Σg,ν)↔ K1(C∗r (Γg,ν)), it is convenient

to identify both the K-groups with Z2g in terms of the canonical 2g group

generators Ai, Bi of Γg,ν .
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First, consider the torsion free case where ν is empty. The abelianisation

of Γg is Γab
g
∼= Z2g = Zg ⊕ Zg with canonical generators denoted Aab

i , B
ab
i ,

and we can also identify Γab
g
∼= H1(Γg,Z) ∼= H1(Σg) with the generating cy-

cles of the latter denoted lAi , lBi . More generally, Y ab ∈ Γab
g has a corre-

sponding homology class [lY ab ] ∈ H1(Σg).

Let LσY denote σ-left translation by Y ∈ Γg, which is a unitary in

C∗r (Γg, σ). The inclusion Y 7→ LσY induces a homomorphism β̃σa : Γg →
K1(C∗r (Γg, σ)) which factors through

βσa : Γab
g → K1(C∗r (Γg, σ)).

In fact, βσa is an isomorphism here, so that [LσAi ], [L
σ
Bi

] are canonical genera-

tors for K1(C∗r (Γg, σ)) [48] (in the untwisted case the rational injectivity of

βa is a general result of [2, 25]). There is also a canonical homomorphism

βt : Γab
g → K1(Σg)

such that

(3.4) βσa = µθ ◦ βt

where µθ=µ
Γg
θ is the twisted Baum–Connes assembly map K1(BΓg'Σg)→

K1(C∗r (Γg, σ)) [48, 61]. It is convenient to identify K1(Σg) with H1(Γg) under

the Chern character, then βt(Y
ab) corresponds to [lY ab ].

When ν is nonempty, Γab
g,ν may have torsion elements but its free part

is still Z2g and generated by Aab
i , B

ab
i as before. Rationally, βσa : Γab

g,ν →
K1(C∗r (Γg,ν , σ)) still gives an isomorphism, so K1(C∗r (Γg, σ)) is again gen-

erated by [LσAi ], [L
σ
Bi

]. In particular, [LσY ] depends only on Y ab. The Baum–

Connes map is

µθ = µ
Γg,ν
θ : Korb

1 (Σg,ν) = KG
1 (Σg′)→ K1(C∗r (Γg, σ)),

and the homomorphism βt : Γab
g,ν → Korb

1 (Σg,ν) is such that Eq. (3.4) holds.

In particular, βt vanishes on the torsion elements of Γab
g,ν [61]. Using the

Baum–Connes Chern character [4] or delocalised equivariant homology [43],

we may identify Korb
1 (Σg,ν) ∼= H1(Σg,ν) ∼= Z2g with the generating cycles

lAi , lBi as before. Note that torsion elements of Γab
g,ν such as Cj do not

contribute any nontrivial (K)-cycles.
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With these descriptions, we can now state the effect of the noncommu-

tative T-duality map

TΣg,ν : K−1
orb(Σg,ν)→ K1(C∗r (Γg,ν , σ)),

defined as µθ composed with Poincaré duality, as follows.

Proposition 3.6. Let [U ] ∈ K−1
orb(Σg,ν) have Chern character whose

Poincaré dual is [lY ab ], then TΣg,ν ([U ]) = [LσY ] ∈ K1(C∗r (Γg,ν , σ)).

Note that if [U ] is nontrivial, Y is necessarily torsion free. Also, the in-

tersection pairing of cycles is such that [lAi ]#[lBj ] = δij so that the Poincaré

duals can be described explicitly. For example, the Poincaré dual of [lAi ]

evaluates to 1 on [lBi ] and kills the other generating cycles; e.g. this can be

seen from Fig. 3.

4. Bulk-boundary maps

4.1. Preliminaries: UCT and extensions

The classical index theorem linking the Fredholm index of a Toeplitz oper-

ator with the winding number of its symbol may be understood in terms of

K-theory and extensions as follows. We think of C(T) ∼= C∗r (Z) acting on

l2(Z) ∼= L2(T) so that C(T) is generated by translations Ln, n ∈ Z whose

Fourier transforms are multiplication by einθ. When truncated to Hardy

space thought of as l2(N), the translation operator L1 becomes a unilateral

shift L̃1, and acquires a dimension 1 cokernel (the subspace for the bound-

ary n = 0). It is a Fredholm operator L̃1 = Tf with invertible symbol f = eiθ

and index(Tf ) = −1 = −Wind(f). The Toeplitz algebra T generated by L̃1

is a non-split extension

(4.1) 1 −→ K −→ T symbol−→ C(T) −→ 1.

with kernelK the compact operators on l2(N). In the seminal work of Brown–

Douglas–Fillmore (BDF) [16], the extension theory of C∗-algebras A by

K (denoted Ext(C(X)) up to a certain notion of equivalence) was shown

to be related to K-homology in the sense that Ext(C(X)) ∼= K1(X) (at

least when X is a CW complex). From this point of view, Eq. (4.1) defines
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the generating element of K1(T), and the analytic index pairing K1(T)×
K−1(T)→ K0(K) ∼= Z taking ([T ], [f ]) 7→ Index(Tf ) realises the topological

winding number/index of the symbol f (up to a sign).

As explained in the latter part of this section, we will need to consider

extensions of C∗r (Γ, σ) by C(T) (actually its stabilisation), where Γ = Γg,ν , in

order to model bulk-boundary maps. Such extensions may be studied using

the universal coefficient theorem (UCT) due to Rosenberg–Schochet [58],

and vastly generalises the BDF theory. By Corollary 7.2 in [58], K o Γ ∼=
C∗r (Γ, σ)⊗K satisfies UCT, so that one has a short exact sequence,

0→ Ext1
Z(K∗(C

∗
r (Γ, σ)),K∗(C(T)))→ KK1(C∗r (Γ, σ), C(T))

→ Hom(K1(C∗r (Γ, σ)),K0(C(T)))⊕Hom(K0(C∗r (Γ, σ)),K1(C(T)))→ 0.

Since K∗(C
∗
r (Γ, σ)) for Γ = Γg,ν and K∗(C(T)) are free abelian groups,

Ext1
Z = 0, therefore

KK1(C∗r (Γ, σ), C(T)) ∼= Hom(K1(C∗r (Γ, σ)),K0(C(T)))

⊕Hom(K0(C∗r (Γ, σ)),K1(C(T))).

This shows that any element α⊕ ∂ of the RHS above determines a unique

extension class [11, 35]

0→ C(T)⊗K → E(α⊕ ∂)→ C∗r (Γ, σ)→ 0

giving rise to the 6-term exact sequence in K-theory, with boundary maps

α : K1(C∗r (Γ, σ))→ K0(C(T))

∂ : K0(C∗r (Γ, σ))→ K1(C(T)).

4.2. Bulk-boundary maps in Euclidean space

In [38, 56] a model for bulk-boundary maps was introduced, in which a

bulk C∗-algebra was extended by a boundary C∗-algebra, and the resulting

boundary homomorphisms in K-theory taken to be bulk-boundary maps.

This was applied successfully to prove equality of bulk and boundary con-

ductivities in the physical context of the Integer quantum Hall effect. In

the cases studied there, the bulk algebra is generated by a lattice Z2 of Eu-

clidean magnetic translation symmetries generated by elements A,B, while
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the boundary symmetries comprised only the subgroup ZA generated by A

which translated along the physical codimension-1 boundary (a Euclidean

line containing a ZA orbit which partitions Euclidean space into the “bulk”

on one side and the “vacuum” on the other). The extension was taken to be

a Toeplitz-like extension (in the sense of Pimsner–Voiculescu [54]) with the

effect of imposing boundary conditions on the bulk translations operators.

Then the bulk-boundary map was (ignoring the modelling of disorder)

∂PV : K0(C∗r (Z2, σ))→ K1(C∗r (ZA)) = K1(C(T)),

which mapped the class of the Rieffel projection [Pσ] to the generator of

K1(C(T)) and mapped the trivial projection [1] to zero. Similarly, under

αPV : K1(C∗r (Z2, σ))→ K0(C∗r (ZA)), the class of the unitary [LB] maps to

the generator whereas [LA] maps to zero. An explicit analysis of ∂PV as a

Kasparov product with the class of the above extension in KK1(C∗r (Z2, σ),

C(T)) was carried out in [12].

4.3. Bulk-boundary maps in the hyperbolic plane

For our hyperbolic plane generalisation, the bulk-algebra is taken to be

C∗r (Γ, σ) as discussed in Section 2, and we need a sensible notion of a “bound-

ary” in H and translations therein. A natural choice is to take the subgroup

ZX generated by some hyperbolic element (necessarily non-torsion) X ∈ Γ,

and the boundary algebra to be C∗r (ZX) ∼= C(T). The geometric meaning is

as follows [6, 33].

Any hyperbolic transformation X of H has two idealised fixed points

at infinity (they are two points on the boundary circle in the Poincaré disc

model of H). There is a unique geodesic (hyperbolic straight line), called the

axis of X, connecting these fixed points. A hypercycle for X comprises the

points in H which are on one side of and a fixed hyperbolic distance away

from the geodesic. Thus all the hypercycles for X only intersect (eventually)

at the two fixed points — a manifestation of the non-Euclidean geometry.

The orbit of a given point in H under ZX is contained in a hypercycle for

X through that point, and will serve as a boundary partitioning H into two

sides (Fig. 2).

Note that such a “boundary hypercycle” is homeomorphic to R, and in

the quotient H/Γ = Σ it becomes a cycle lX : S1 = R/ZX → Σ. Recall that
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Figure 2: In the Poincaré disk model of the hyperbolic plane, geodesics

(green) are arcs of (Euclidean) circles that orthogonally intersect the bound-

ary circle at infinity. A hyperbolic transformation effects translations along

hypercycles (red) connecting its two idealised fixed points at infinity. One

such hypercycle is a geodesic (dark red). An elliptic transformation effects

“rotations” about some fixed point ×, and each of its orbits lies in a hyper-

bolic circle (blue).

under the identification Z2g ∼= H1(Σ), the homology classes are labelled by

[lXab ] with Xab ∈ Γab, and we see that [lX ] = [lXab ]. The intersection pairing

is [lAi ]#[lBj ] = δij , which means that we can interpret Bi as a translation

transverse to boundaries generated along Ai, while for j 6= i, the translations

Aj , Bj are not transversal (their orbits cross the boundary an equal number

of times in each direction). The geometry of intersections of hypercycles is

illustrated for the special case of Γg=2 in Fig. 3.

Recall that K0(C∗r (Γ)) ∼= Z[Pσ]⊕ ker τc where we had distinguished

Z[Pσ] as the classes that contribute to Hall conductance in Proposition 3.1

and Remark 3.3. Also, we explained in Section 3.3 that K1(C∗r (Γ, σ)) ∼= Z2g

with all classes realisable by [LσY ab ] for some Y ab ∈ Γab. Guided by the ge-

ometry of the hypercyclic boundary defined by X and the bulk-boundary
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Figure 3: A tiling of the Poincaré disk by fundamental polygons for Γg with

g = 2 (edges near the boundary circle are omitted to reduce clutter). The

vertices of the polygons constitute a Cayley graph for Γg. The edges of the

central octagon are pairwise identified according to the arrows to form the

Riemann surface Σg. For each of the hyperbolic generators A1, B1, A2, B2

of Γ2, two hypercycles are drawn (dashed lines). We see that (Ai, Bi) are

transversal to each other for i = 1 and also i = 2, but the other pairs are

not. For instance, although the large B2 hypercycle intersects the large A1

hypercycle twice in total, their signed intersection number is 0.

map in the Euclidean case, we will define

(4.2) ∂X([Pσ]) = [ζ], ∂X(ker τc) = 0,

where [ζ] is the generator of K1(C(T)) ∼= K−1(T) ∼= Z, and

(4.3) αX([LσY ]) = αX([LσY ab ]) = ([lY ab ]#[lXab ]) · [1].

The intuition behind Eq. (4.3) is that each translation transverse to the

boundary gets modified to a “half-translation” and leaves behind a zero
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mode. This is analogous to the interpretation of the classical Fredholm index

of the unilateral shift operator on N. Eq. (4.2) generalises the Euclidean case,

with the only change being that the extra non-trivial classes in K0(C∗r (Γ, σ)),

which are due to the conical singularities pj , are mapped to zero under ∂X .

This is reasonable since the boundary hypercycle is not generally preserved

by the elliptic symmetries Cj so it cannot “see” the K-theory classes arising

from them.

Through the UCT, the combination αX ⊕ ∂X specifies (albeit abstractly)

the class of an extension of C∗r (Γg,ν , σ) by C∗r (ZX) ∼= C(T), generalising the

Toeplitz-like extension used in the Euclidean case. The sign ambiguity in [ζ]

corresponds to the choice of side of the boundary to take as the bulk; notice

that the induced orientation on the boundary depends on this choice.

4.4. T-duality simplifies the bulk-boundary correspondence

A hypercyclic boundary containing an orbit of ZX gives rise to a cycle

lX : S1 → Σ, and there is a pullback l∗X in K-theory which we can think of

as a “restriction map” to the immersed image of lX . When we regard the

boundary as R ' EZX , then the quotient under ZX is S1 = R/ZX ' BZX ,

and we can apply T-duality (3.1) to this circle.

Theorem 4.1. The following diagram commutes for • = 0, 1,

K•orb(Σ)

l∗X
��

∼
TΣ

// K•(C
∗
r (Γ, σ))

∂X
��

K•(S1)
∼

Tcircle

// K•−1(T)

.

Proof. We check this by computing the maps on generators of K•orb(Σ). For

• = 0, since S1 is one dimensional, it is clear that only the rank invariant

survives under l∗X . We compute

Tcircle ◦ l∗X([1]Σ) = Tcircle([1]S1) = [ζ]

By Corollaries 3.2, 3.5, and the formula for ∂X in Eq. (4.2), we also have

∂X ◦ TΣ([1]Σ) = ∂X([Pσ]) = [ζ].
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As for the other generators [L̃], [L̃χj ] of K0
orb(Σ), they are mapped to zero

by l∗X (and thus by Tcircle ◦ l∗X), while TΣ takes them to ker τc which vanishes

under ∂X .

For • = 1, let [U ] ∈ K−1
orb(Σ) have Chern character Ch([U ]) Poincaré dual

to [lY ab ], and [W ] be a generator of K−1(S1). We compute

〈Ch(l∗X [U ]), [S1]〉 = 〈l∗XCh([U ]), [S1]〉
= 〈PD([lY ab ]), (lX)∗([S

1])〉
= 〈PD([lY ab ]), [lXab ]〉
= [lY ab ]#[lXab ]

= 〈[lY ab ]#[lXab ] · [W ], [S1]〉,

which combined with Eq. (3.1) gives

Tcircle ◦ l∗X([U ]) = Tcircle(([lXab ]#[lY ab ]) · [W ]) = [lXab ]#[lY ab ] · [1].

On the other hand, using Proposition 3.6 we also get

αX ◦ TΣ([U ]) = αX([LσY ]) = [lXab ]#[lY ab ] · [1].

�

To summarise, the relatively complicated and abstract boundary map,

αX ⊕ ∂X : K∗(C
∗
r (Γ, σ))→ K∗−1(T)

is equivalent to the conceptually simple geometric restriction-to-boundary

maps,

l∗X : K•orb(Σ)→ K•(S1), • = 0, 1.

Reversing the argument, this says that the extension defined by αX ⊕ ∂X
indeed correctly captures the geometry of the bulk-boundary relationship.

Theorem 4.1 generalises to the hyperbolic plane geometry, the Euclidean

space result [52] and the Nil and Solv geometry results [28, 29].

4.5. Cyclic cohomology, Hall conductance and boundary

conductance

Since the group Γ = Γg,ν is a cocompact discrete subgroup of PSL(2,R), it

has the rapid decrease (RD) property, see [24] and chapter 8 in [62]. It follows
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that there is a smooth subalgebra C∗r (Γ, σ)∞ ↪→ C∗r (Γg, σ) inducing an iso-

morphism in K-theory. The periodic cyclic cohomology HP even(C∗r (Γg, σ)∞)

includes [τ ] and [τK ] where τ is the von Neumann trace on C∗r (Γ, σ)∞ and

τK is the conductance cocycle (see [17, 45] for details and its meaning as a

higher genus Kubo formula),

τK(f1, f2, f3) =
1

g

g∑
i=1

τ(f1(δi(f2)δi+g(f3)− δi+g(f2)δi(f3)))

for f1, f2, f3 ∈ C∗r (Γ, σ)∞. Here the derivations

δi(f)(γ) = ai(γ)f(γ), δi+g(f)(γ) = bi(γ)f(γ),

where ai, bi are the group 1-cocycles on Γ corresponding to the generators

Ai, Bi.

The Kubo conductance cocycle τK is actually cohomologous to τc ([17],

Theorem 4.1 of [44]), which facilitates the calculation of the range of τc
on K0(C∗r (Γ, σ)) through a higher twisted index theorem (Eq. (3.3)) —

the range is φZ where φ = 2(g − 1) +
∑r

j=1
1
νj
∈ Q [44], with the value φ

achieved by [Pσ]. Thus φZ is the range of possible values of the Hall con-

ductance.

For conductance along the boundary, we also need to know that the

periodic cyclic cohomology of the smooth functions on the circle C∞(T) is

H1(S1) = HP odd(C∞(T)) = C[τw]

where τw(U) evaluates the winding number of a unitary function U on T.

Just as in the Euclidean case [38], τK should be obtained from the boundary

conductance 1-cocycle τbd under the map ∂̆X in HP dual to ∂X , that is,

(4.4) τbd(∂X([P])) = (∂̆Xτbd)([P]) ≡ τK([P]), [P] ∈ K0(C∗r (Γ, σ)).

It suffices to consider [P] = [Pσ], whence Eq. (4.4) reads

τbd([ζ]) = τK([Pσ]) = φ.

Since τw([ζ]) = 1, we have τbd = φτw as the boundary conductance 1-cocycle.

Notice that there is a geometric factor of φ in τbd which was simply 1

in the Euclidean (genus 1) case. Intuitively, the way in which the boundary
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is embedded in H depends strongly on the data of g,ν in Γg,ν , so that the

boundary does “feel” the bulk geometry.

5. Modelling of disorder with crossed products

5.1. Cyclic cocycles and Hall conductance

in the presence of disorder

Following [7, 55], one can model the effect of disorder by using a com-

pact space Ω of disorder configurations on which Γ = Γg,ν acts. Instead of

C∗r (Γ, σ), we need to use the (σ-twisted) reduced crossed product algebra

C(Ω) oσ,r Γ.

We wish to discuss cyclic cocycles on a smooth subalgebra of the (re-

duced) crossed product algebra C(Ω) oσ Γ, denoted (C(Ω) oσ Γ)∞. We need

to assume besides a minimal action of Γ on Ω, that the Γ-action has an in-

variant probability measure µ. This is possible when Γ acts on Ω via an

amenable quotient. We recall that a locally compact Hausdorff group is said

to be amenable if it admits a left (or right) invariant mean, which for dis-

crete groups simplifies to having an invariant finitely additive probability

measure. Amenable groups are closed under many operations such as taking

subgroups, quotients and group extensions. However, the free group on two

generators is not amenable, and so Γ is not amenable.

Let us examine the hypothesis that Γ acts via an amenable quotient.

There is a surjective homomorphism Γ = Γg,ν � Fg onto the free group on g

generators, mapping the generators Cj 7→ e and Bi 7→ e. Now any amenable

group A with g generators is a quotient of Fg, therefore there is a surjective

homomorphism Γ � A and any minimal action of A on Ω satisfies the

hypothesis. Finally, the constructive proof of the remarkable Corollary 1.5

in [30] asserts that every countable discrete group acts freely and minimally

on a Cantor set, so there are many such examples.

A cyclic 2-cocycle on (C(Ω) oσ Γ)∞ can be defined from a group 2-

cocycle c as follows. Let fj(x, γ) ∈ (C(Ω) oσ Γ)∞ for j = 0, 1, 2. Then

trc,µ(f0, f1, f2) =
∑

γ0γ1γ2=1

∫
Ω

[
f0(x, γ0)f1(γ−1

0 x, γ1)f2((γ0γ1)−1x, γ2)

× c(1, γ1, γ1γ2)σ(γ1, γ2)
]
dµ(x)
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defines a cyclic 2-cocycle on (C(Ω) oσ Γ)∞.

Let c denote the area cocycle defined in Section 3. Recall that we had

τc([Pσ]) = φ where φ = 2(g − 1) + (r − ν) ∈ Q is the orbifold Euler charac-

teristic of Σ = Σg,ν . The natural inclusion C∗r (Γ, σ) = Coσ Γ ↪→ C(Ω) oσ Γ

takes the (virtual) projection Pσ to a (virtual) projection Pσ in a matrix

algebra over C(Ω) oσ Γ, and Pσ does not depend on x ∈ Ω. So we have

(5.1) trc,µ([Pσ]) ≡ trc,µ(Pσ,Pσ,Pσ) = τc([Pσ])

∫
Ω
dµ(x) = φ.

Note that [Pσ] is then a non-torsion class.

We can understand Pσ more geometrically through its T-dual, con-

structed in the following way. Let M = Ω×Γ H, which is an orbifold fibre

bundle over Σ = Σg,ν . Let E be a (orbifold) vector bundle over M , then

there is a twisted foliation index theorem [9] generalizing the index theorem

in [8]

(5.2) trc,µ(µθ([/∂M ⊗ E ])) =
1

2π

∫
M
eB ∧ Ch(E) ∧ ωc

where ωc is the hyperbolic volume 2-form on Σ pulled back to M , corre-

sponding to the area 2-cocycle c on Γ. In analogy to the Dirac operator

playing the role of a fundamental class, /∂M in Eq. (5.2) is the Dirac oper-

ator on the orbifold Σ = Σg,ν lifted to M , which is elliptic along the leaves

of the foliation, and /∂M ⊗ E is its E-twisted version. This generalises /∂+
E

in Section 3.2. Also, µθ is the twisted Baum–Connes map with coefficients

C(Ω), and we define T-duality to be the map

T : K0
orb(M) 3 [E ] 7→ µθ([/∂M ⊗ E ]) ∈ K0(C(Ω) oσ Γ).

The integral in Eq. (5.2) simplifies to

1

2π

∫
M
eB ∧ Ch(E) ∧ ωc =

1

2π

∫
M

rank(E)ωc.

Since the action of Γ on Ω is minimal, so that M is connected (Lemma 3,

[10]), the integer valued function rank(E) is a constant, therefore there is a
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further simplification

1

2π

∫
M

rank(E)ωc = rank(E)
1

2π

∫
M
ωc = rank(E)µ(Ω)

1

2π

∫
Σ
ωc

= φ rank(E) = rank(E)trc,µ([Pσ]).

This means that up to a term in the kernel of trc,µ, the T-duality map T :

K0
orb(M)→ K0(C(Ω) oσ Γ) takes [1M ] (the class of the trivial line bundle

over M) to [Pσ], whereas K̃0
orb(M) is mapped to the kernel of trc,µ, i.e.

(5.3) T ([E ]) = rank(E)[Pσ] + C, C ∈ ker trc,µ.

As in Section 4.5, we can define the disorder-averaged Kubo conductivity

cocycle trK,µ and show that it is cohomologous to trc,µ. We see that the sub-

group Z[Pσ] ⊂ K0(C(Ω)σΓ)) may be interpreted as that which contributes

to the Hall conductance in the presence of disorder.

5.1.1. Boundary conductivity cocycles in the presence of disorder.

For the boundary algebra, we use C(Ω) o ZX , noting that σ is trivial on ZX .

It is known (cf. [57]) that

(5.4) K0(C(Ω)) = C(Ω,Z), K1(C(Ω)) = 0.

From the Pimsner–Voiculescu (or Kasparov spectral) sequence, we deduce

that

K1(C(Ω) o ZX) ∼= K0(C(Ω))ZX = C(Ω,Z)ZX ,

i.e. the ZX -invariant part of C(Ω,Z). In particular, the class [ξ] ∈ K1(C(Ω) o
ZX) induced from the unitary ζ ∈ C∗r (ZX) under inclusion of scalars C ↪→
C(Ω), corresponds to the constant invariant function Ω 7→ 1.

Let us define the boundary map ∂X : K0(C(Ω) oσ Γ)→ K1(C(Ω) o ZX)

to be

∂X([Pσ]) = [ξ], ∂X(ker trc,µ) = 0,

generalising Eq. (4.2).

5.1.2. Bulk-boundary map is T-dual of restriction map in presence

of disorder.
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Proposition 5.1. The following diagram commutes,

K0
orb(M)

ι∗X
��

∼
T
// K0(C(Ω) oσ Γ)

∂X
��

K0(M1)
∼
T1

// K1(C(Ω) o ZX)

.

Here, M = Ω×Γ H, M1 = Ω×ZX R with R a hypercycle for X whose inclu-

sion in H induces M1
ιX→M .

Proof. First, we note that a vector bundle E over M has constant rank ev-

erywhere, since M is connected. Then the rank gives a splitting K0
orb(M) =

K̃0
orb(M)⊕ Z[1M ]. Also, there is a T-duality isomorphism T−1

1 : K0(M1) ∼=
K1(C(Ω) o ZX) ∼= C(Ω,Z)ZX by standard arguments; elements of C(Ω,Z)ZX

are integer linear combinations of characteristic functions on ZX -invariant

clopen subsets S ⊂ Ω. In particular, the constant function Ω 7→ 1 corre-

sponding to [ξ] T-dualises to [1M1
] which generates Z[1M1

] ⊂ K0(M1). Gen-

erally, a characteristic function on S corresponds to a trivial line bundle over

the subbundle of M1 with fibre S. Since a non-zero E →M is supported on

all of M , the homomorphism ι∗X lands on the subgroup Z[1M1
], taking [E ]

to rank(E)[1M1
]. In summary,

(5.5) T1 ◦ ι∗X([E ]) = rank(E)[ξ].

From Eq. (5.3), one deduces that

∂X ◦ T ([E ]) = ∂X
(
rank(E)[Pσ] + C

)
= rank(E)[ξ],

which together with (5.5), shows that the above diagram commutes. �

A “disorder-averaged” cyclic 1-cocycle on (C(Ω) o ZX)∞ is defined from

a group 1-cocycle a on ZX as follows. Let fj(x, γ) ∈ (C(Ω) o ZX)∞ for j =

0, 1. Then

tra,µ(f0, f1) =
∑

γ0γ1=1

∫
Ω
f0(x, γ0)f1(γ−1

0 x, γ1)dµ(x)a(1, γ1)

defines a cyclic 1-cocycle on (C(Ω) o ZX)∞. Let a be the group 1-cocycle

on ZX that represents the generator of H1(ZX ,Z), and gives rise to the
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winding number cyclic cocycle τw on (C∗r (ZX))∞. Then φa is a real-valued

group cocycle on ZX . Since τw([ζ]) = 1, we see that

trφa,µ([ξ]) = trφa,µ(ξ−1, ξ) = τw([ζ])

∫
Ω
dµ(x) = φ.

Together with Eq. (5.1) and trK,µ ∼= trc,µ, we have

trK,µ([Pσ]) = trc,µ(Pσ,Pσ,Pσ) = φ = trφa,µ([ξ]) = trφa,µ(∂X [Pσ]),

so that taking the boundary conductance cocycle to be trφa,µ yields the

equality of bulk and boundary conductance.

Remark 5.2. To define an extension of C(Ω) oσ Γ by C(Ω) o ZX , we need

(besides ∂X above) to also define the bulk-boundary map αX in the other K-

theory degree. Furthermore, it is not clear that K∗(C(Ω) oσ Γ),K∗(C(Ω) o
ZX) are torsion-free, so there may be some further nonuniqueness of the ex-

tension due to the Ext1
Z term in the UCT (although this is not a problem if Γ

acts through the amenable group A = Z2 or Z3, see [8]). Nevertheless, these

freedoms are independent of the boundary map ∂X that we are studying in

this Section, so we leave open the specific choice of extension.

Remark 5.3. For plateaux formation in quantum Hall effects, one should

work in the regime of “strong disorder” or a “gap of extended states”, which

involves passing to noncommutative Sobolev spaces [7, 55, 56]. In the hyper-

bolic plane and for torsion-free Γ = Γg, this was studied for bulk phases in

[18]. The bulk-boundary correspondence in a gap of extended states remains

a difficult problem even in the Euclidean case, and we intend to study this

in a future work.

6. The time-reversal invariant topological insulator on the

hyperbolic plane

The following stable splitting lemma is useful for computing the complex

and real K-theories of Σg:

Lemma 6.1. Σg is stably homotopic to the wedge sum of 2g circles and a

2-sphere.
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Proof. The 1-skeleton of Σg is
∨2g
i=1 S

1, and the attaching map of its 2-

cell is the product of commutators of inclusions S1 ↪→ S1 in accordance

with the fundamental polygon. For the suspension SΣ of Σg, the 3-cell is

attached null-homotopically to the 2-skeleton
∨2g
i=1 S

2 since π2 is abelian.

Thus SΣ ' (
∨2g
i=1 S

2) ∨ S3 ' S(S2
∨2g
i=1 S

1). �

A fermionic time-reversal symmetry T has the property that it is antiuni-

tary and T2 = −1. It is assumed to act pointwise in space, whether Euclidean

or hyperbolic, and to commute with (magnetic) translations. This restricts

the 2-cocycle σ to be O(1) instead of U(1)-valued, and a realistic situation

under this condition is that of zero magnetic field, θ = 0, σ ≡ 1, rather than

e.g. θ = 1
2 in Eq. (2.1). In the absence of time-reversal symmetry, the ar-

guments in Section 2 led us to classify spectral projections of Γg-invariant

Hamiltonians using K0(C∗r (Γg)) or equivalently K0(C∗r,R(Γg)⊗R C), where

C∗r,R(Γg) denotes the reduced group C∗-algebra of Γg over the reals. Both the

operator T and the complex scalars C commute with C∗r,R(Γg), but Ti = −iT

means that there is an action of the quaternions H which the T-symmetric

Hamiltonians must be compatible with. The upshot is that we need to com-

pute instead [60]

(6.1) KO0(C∗r,R(Γg)⊗R H) ∼= KO4(C∗r,R(Γg)),

with a degree-4 shift [37]. By the real Baum–Connes isomorphism [3] and

Poincaré duality, this is

KO4(Σg) ∼= KO−2(Σg) ∼= K̃O
−2

(S0 ∨ Σg).

In K̃O-theory, we can replace S0 ∨ Σg by a stably homotopic space, which

by Lemma 6.1 is S0 ∨ S2
∨2g
i=1 S

1. Then

KO•(Σg) ∼= K̃O
•
(S0)⊕ K̃O

•
(S2)

2g⊕
i=1

K̃O
•
(S1)

∼= KO•(pt)⊕KO•−2(pt)

2g⊕
i=1

KO•−1(pt).

Definition 6.2. The K-theoretic hyperbolic Kane–Mele invariant is the

Z2 ⊂ KO−2(Σg) corresponding to K̃O
−2

(S0) ∼= KO−2(pt) ∼= Z2.
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Another method to compute KO•(C
∗
r,R(Γg)) ∼= KO•(Σg) is to use

Poincaré duality KO•(Σg) ∼= KO2−•(Σg) and compute the latter using the

Atiyah–Hirzebruch spectral sequence. The E2 term is Hp(Σg,KO
q(pt)), so

for • = 4 we have the terms

H0(Σg,KO
−2(pt))⊕H2(Σg,KO

−4(pt)) ∼= Z2 ⊕ Z

The Z2 indeed splits off in KO−2(Σg) as it arises from the inclusion of a

point.

Remark 6.3. In the Euclidean case, the Z2 subgroup in KO−2(T2) =

K̃O
−2

(S0 ∨ T2) corresponds under T-duality to K̃R
−4

(T2, ς) ∼= Z2 [53],

where the latter T2 is the Brillouin torus equipped with the momentum

reversal involution ς : k 7→ −k. This Z2 invariant was originally identified as

the K-theoretic Kane–Mele invariant [34] in [40], and justifies the terminol-

ogy of our hyperbolic generalisation in Definition 6.2. Indeed K̃R
−4

(T2, ς)

was computed in [40] using the Baum–Connes isomorphism, although it can

also be computed directly using an equivariant stable splitting of (T2, ς)

[27]. In the hyperbolic case, we do not have momentum “space” in the usual

sense, but Eq. (6.1) is still available.

Towards fractional Kane–Mele indices. When ν is nonempty, the

computation of KO−2
orb(Σg,ν) appears more difficult. Nevertheless, there is

still a Z2-factor coming from inclusion of a point. In the absence of T, the

geometry of Σg,ν causes the pairing of the area cocycle with K0(C∗r (Γg,ν , σ))

to acquire a geometrical factor φ to become φZ ⊂ R-valued. Typically, tor-

sion K-theory classes pair trivially with cyclic cocycles. Nevertheless, in the

presence of T and in the Euclidean case (as well as with disorder), modified

cyclic cocycles were considered in [39] which resulted in Z-valued pairings

with KO0(C(Ω,H) o (Z2)) well-defined modulo 2. We anticipate that the

hyperbolic generalisation of [39] along the lines of this paper will lead to frac-

tional Kane–Mele (Z2) indices. For the bulk-boundary map, the extension

theory and UCT in the real case was given in [42]. We intend to also develop

a fractional bulk-boundary correspondence of Kane–Mele type indices in a

future work.
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7. Appendix: Kasparov spectral sequence

Let A be a unital C∗-algebra with a Γg-action. According to Kasparov,

section 6.10 in [36], there is a spectral sequence (Er, dr), generalising the

PV-sequence, that converges to K0(Aoσ Γg) with E2 term equal to

H0(Γg,K0(A))⊕H1(Γg,K1(A))⊕H2(Γg,K0(A)),

where the factors are group homologies with coefficients in the induced Γg-

module Ki(A) [15]. Applying Poincaré duality to the last term gives

H0(Γg,K0(A))⊕H1(Γg,K1(A))⊕H0(Γg,K0(A)),

which simplifies to

(7.1) K0(A)Γg ⊕H1(Γg,K1(A))⊕K0(A)Γg

where K0(A)Γg denotes the coinvariants and K0(A)Γg the invariants [15].

7.1. Cantor disorder space with minimal action of Γg

As an example, let A = C(Ω) with Ω a Cantor set. Suppose Ω is equipped

with a mimimal action of Γg, and let σ be a multiplier on Γg. Let us mention

that there exist examples of minimal actions of Γg on a Cantor set [30].

Using Eq. (5.4) and Eq. (7.1), we see that the differentials in the Kas-

parov spectral sequence vanish in this special case, so that

K0(C(Ω) oσ Γg) ∼= C(Ω,Z)Γg ⊕ Z,

where C(Ω,Z)Γg are the co-invariants under the Γg-action, and since Γg acts

minimally on Ω, so C(Ω,Z)Γg ∼= Z. More precisely,

• The natural inclusion C∗r (Γg, σ) ↪→ C(Ω) oσ Γg takes Pσ to Pσ, and

[Pσ] generates the Z factor in K0(C(Ω) oσ Γg).
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• The inclusion C(Ω,Z)Γg ↪→ K0(C(Ω) oσ Γg) is induced by the inclu-

sion C(Ω) ↪→ C(Ω) oσ Γg.

Thus we have

K0(C(Ω) oσ Γg) ∼= C(Ω,Z)Γg ⊕ Z[Pσ].

Remark 7.1. In the above case with Γ = Γg, the kernel of trc,µ may be

identified with the subgroup C(Ω,Z)Γg of K0(C(Ω) oσ Σg) as follows. Ele-

ments of the latter subgroup has representative functions supported at the

identity element of Σg. Such functions are killed by the derivations δj in the

definition of trc,µ, so C(Ω,Z)Γg is in the kernel of trc,µ.

We are also interested in the case of Γ = Γg,ν which has torsion elements.

The computation of the K•(C(Ω) oσ Γg,ν) becomes more involved, and we

leave this for a future work.
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