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A correspondence between three-dimensional flat connections and
constant curvature four-dimensional simplices is used to give a
novel quantization of geometry via complex SL(2,C) Chern-Simons
theory. The resulting quantum geometrical states are hence repre-
sented by the 3d blocks of analytically continued Chern-Simons
theory. In the semiclassical limit of this quantization the three-
dimensional Chern-Simons action, remarkably, becomes the dis-
crete Einstein-Hilbert action of a 4-simplex, featuring the appro-
priate boundary terms as well as the essential cosmological term
proportional to the simplex’s curved 4-volume. Both signs of the
curvature and associated cosmological constant are present in the
class of flat connections that give rise to this correspondence. We
provide a Wilson graph operator that picks out this class of con-
nections. We discuss how to promote these results to a model of
Lorentzian covariant quantum gravity encompassing both signs of
the cosmological constant. This paper presents the details for the
results reported in [1].
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1. Introduction and overview

Chern-Simons theory in 3-dimensions is the quintessential topological quan-
tum field theory and has been studied extensively since the 1980’s (see e.g.
[2]). In addition to its importance in the formulation of topological quantum
field theory [3], Chern-Simons theory has applications in many branches of
modern mathematics and physics. The celebrated work of Witten [4], ex-
posed the remarkable relation between Chern-Simons theory with compact
gauge group and knot theory. This exchange has continued to the present
day with, for example, Chern-Simons theory playing an important role in
the formulation of the Volume Conjecture, which relates knot polynomials
to the hyperbolic geometry of 3-manifolds [5–8]. Many aspects of String
theory, M-theory and Supersymmetric Gauge Theory also have close ties to
Chern-Simons theory (e.g. [11–16]). Most importantly for the present work,
Chern-Simons theory has furnished exact solutions to quantum gravity in
3-dimensions [9, 10], and provided interesting insights into Loop Quantum
Gravity (LQG) in 4 dimensions, both in its covariant formulation and in
black hole physics (e.g. [17–21]). Chern-Simons theory and its relation to
four-dimensional quantum gravity with a cosmological constant (of either
sign) will be the main focus of this paper.

Chern-Simons theories with a compact gauge group and their quantiza-
tion have become well understood after the intensive investigations of the
last 20 years. However, quantum Chern-Simons theory with complex gauge
group GC, with GC the complexification of a compact Lie group G, is still
a rather open subject. These Chern-Simons theories are noncompact and
hence qualitatively different from those with compact group. In general, the
Hilbert spaces associated to the complex case are infinite-dimensional [8, 22–
24], while the Hilbert spaces in the compact cases are finite-dimensional.
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Recently, there has been substantial progress in understanding the complex
gauge group case [6–8, 24, 25]. This is an active area of research.

This paper focuses on Chern-Simons theory with a complex SL(2,C)
gauge group on a compact oriented 3-manifold M3. The action for this
theory is

CS
[
M3 |A, Ā

]
=

t

8π

∫
M3

tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
(1)

+
t̄

8π

∫
M3

tr

(
Ā ∧ dĀ+

2

3
Ā ∧ Ā ∧ Ā

)
,

and might include boundary terms when M3 has a boundary. Here t = k + is
is the Chern-Simons coupling with k, s ∈ R, and t̄ is taken to be the complex
conjugate of t. The connection 1-form is A = Ajτj , where j ∈ {1, 2, 3}, τj =
− i

2σj are generators that take values in the complex Lie algebra sl2C, and
σj are the Pauli matrices. We will focus on a certain class of 3-manifolds
M3, the simplest example of which is the graph complement 3-manifold
M3 = S3 \ Γ5, where Γ5 is the graph with five 4-valent vertices and the
single essential crossing depicted in Fig. 1. For a graph embedded in S3, the
graph complement manifold is obtained by removing the graph as well as
the interior of its tubular neighborhood from S3. The boundary of S3 \ Γ5

is a genus-6 closed 2-surface, which we denote Σ6.

1

23

4

5

Figure 1: The Γ5 graph can be drawn with five 4-valent vertices, ten edges
`ab, and the curve `24 over-crossing `13. It can also be drawn with all vertices
being 3-valent by expanding each 4-valent vertex into two connected 3-valent
vertices, which results in 10 vertices and 15 edges. Both ways of drawing Γ5

lead to the same 3-manifold S3 \ Γ5.
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Chern-Simons theory with graph defects has been considered in [26] in
the case of a compact gauge group; and the volume conjecture has been gen-
eralized to quantum spin-networks with knotted graphs in [27, 30]. From the
mathematical point of view, the space of knotted graphs may be more inter-
esting than the space of knots—due to the fact that the space of trivalent
knotted graphs is finitely generated. This means that there is a finite (and
small) set of trivalent knotted graphs that can generate all trivalent knot-
ted graphs via just a few algebraic operations, while the space of knots is a
proper subset of the space of trivalent graphs [28]. A recent study of trivalent
knotted graphs, from the perspective of perturbative Vassiliev-Kontsevich
invariants, specifies these algebraic operations, [29].

Classically, the equations of motion for SL(2,C) Chern-Simons theory
are

(2) F = dA+A ∧A = 0, and F̄ = dĀ+ Ā ∧ Ā = 0,

that is, the connections A and Ā are flat on the 3-manifold M3. The moduli
space of flat connectionsMflat(M3, SL(2,C)) is the space of solutions. When
M3 has boundary a closed 2-surface Σg = ∂M3, of genus-g, the space of
boundary values of A ∈Mflat(M3, SL(2,C)) is a subvariety inside
Mflat(Σg,SL(2,C)), which is the moduli space of SL(2,C) flat connections
on the two-dimensional manifold Σg. In general,Mflat(Σg, SL(2,C)), known
as the Hitchin moduli space, is a hyper-Kähler variety of dimC = 6g − 6,
which has 3 distinct complex structures I, J, and K [31].1 The three cor-
responding Kähler forms are denoted ωI , ωJ , and ωK . When we think of
Mflat(Σg,SL(2,C)) as the phase space of SL(2,C) Chern-Simons theory,
the holomorphic Chern-Simons (Atiyah-Bott-Goldman) symplectic struc-
ture ωCS is given by

(3) ωCS =
t

4π

∫
Σg

tr [δ1A ∧ δ2A] =
t

π
[ωI − iωK ] ,

which comes from the holomorphic part of CS
[
M3 |A, Ā

]
. The space of

flat connections on M3 can be embedded as a subvariety LA of complex di-
mension dimC = 3g − 3 in Mflat(Σg,SL(2,C)) by considering the boundary

1The complex structure I is induced from that of Σg, J is from the complex
structure of the complex group SL(2,C), and K is obtained through K = IJ .
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values of these flat connections,

(4) LA 'Mflat(M3, SL(2,C)).

The subvariety LA is holomorphic with respect to the complex structure J ,
and is Lagrangian with respect to I and K, i.e. ωI and ωK , and hence ωCS ,
vanish on LA [32, 33].

The fact that LA is Lagrangian has a clear physical meaning as well.
Consider an analogy with particle mechanics, which can be seen as a field
theory over the time axis. The boundary values of a physical trajectory are
the phase space points at the initial and final times t0 and t. Introduce a
boundary phase space, which is just the Cartesian product of two copies of
the phase space one at each of these times. This doubled phase space has a
symplectic form Ω = dp ∧ dq − dp0 ∧ dq0. The sign on the second term indi-
cates that the initial space is to the past. The statement that the dynamics
is a canonical transformation, i.e. that dp ∧ dq is invariant under time evo-
lution, is precisely the statement that the space of orbits of the equations of
motion corresponds to a Lagrangian manifold of the doubled boundary phase
space. That is, Ω|LD

= 0, where LD is the subset of points of the boundary
phase space connected by a dynamical orbit. This mechanical analogy was
introduced by Tulcyjew precisely with the generalization to field theory in
mind [34]. The connections ofMflat(M3,SL(2,C)) provide dynamical inter-
polations of the boundary data. So, not only isMflat(Σg,SL(2,C)) of larger
dimension, e.g. there are non-contractible loops in Σg that are contractible in
M3, butMflat(M3,SL(2,C)) is exactly half-dimensional and is Lagrangian.

The complex Fenchel-Nielsen (FN) coordinates xm, ym ∈ C, m = 1, . . . ,
3g − 3 can be used to locally parametrize the connections of Mflat(Σg,
SL(2,C)) [35, 36], using a trinion (or pants) decomposition of the closed
2-surface Σg. Here the complex FN “length variable” xm is the eigenvalue of
the holonomy along a closed curve cm transverse to a tube of the trinion de-
composition. The complex FN “twist variable” ym is the conjugate variable
such that ωCS is written as

(5) ωCS =

(
− t

2π

) 3g−3∑
m=1

dym
ym
∧ dxm
xm

.

The explicit relation between ym and holonomies is given in e.g. [32, 36], and
is briefly reviewed in Section 3. In terms of {xm, ym}3g−3

m=1 , the holomorphic
Lagrangian subvariety LA 'Mflat(M3,SL(2,C)) can be expressed locally
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as a set of holomorphic polynomial equations

(6) Am(x, y) = 0, m = 1, . . . , 3g − 3.

When M3 is the complement of a knot, so that ∂M3 = T 2, we have

Mflat(T
2, SL(2,C)) ' C∗ × C∗/Z2,

and LA is the zero-locus of a single holomorphic polynomial A(x, y), known
as the A-polynomial [7, 37]. This provides an interesting and quite different
perspective on the quantum gravity quantizations discussed below.

1

23

4

5

1

23

4

5

Figure 2: The graph complement 3-manifold M3 after removing the thick-
ened Γ5-graph from S3. The 2d boundary Σ6 = ∂M3 of the graph com-
plement M3 is a genus-6 closed 2-surface. Left: The longitudinal paths (in
green) used below to calculate holonomies Gab. Right: A set of meridian
closed curves cab (in orange) defined on Σ6 such that Σ6 \ {cab} is a set of
4-holed spheres. These curves are used to calculate the holonomies Hb(a)
below. The vertices of the graph are labeled by a, b = 1, . . . , 5.

In this paper we use these tools to present a novel model of four-
dimensional Lorentzian quantum gravity based on a discretized path inte-
gral over gravitational holonomy variables where the cosmological constant
emerges as a consequence of our quantization procedure via complex Chern-
Simons theory. In particular, both signs of Λ are treated on an equal footing
in the model.

Our discretization of the path integral decomposes spacetime into a sim-
plicial complex, with each simplex of constant curvature Λ. We choose to
work with parallel transports along closed paths (holonomies) as they are
the most natural gravitational observables. They also fit nicely with the
use of constant curvature simplices, as we have shown previously [20, 38],
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whose geometry can be completely encoded in a finite number of these
holonomies. From the Chern-Simons perspective, these holonomies arise as
the non-contractible cycles of the particular graph complement manifold
M3 = S3 \ Γ5.

Because the tools used in this paper are drawn from different areas and
many will be unfamiliar to sections of our intended audience, we give a
detailed overview of the paper in the next few subsections. A brief outline
of the paper appears in Section 1.4 and pointers to the detailed arguments
of the main body of the paper can be found there.

1.1. Classical correspondence

Let us focus on the 3-manifold S3 \ Γ5 whose boundary is a genus-6 closed
surface Σ6 (see Fig. 2). We are interested in a subspace of LA =Mflat(S

3 \
Γ5, SL(2,C)) in which the SL(2,C) flat connections can be interpreted in
terms of simplicial 4-geometries. More precisely, a flat connection in this
particular subspace will determine the geometry of a convex 4-simplex in
4-dimensional Lorentzian constant curvature spacetime (de-Sitter or Anti-
de-Sitter).2 Fix the Lorentzian signature to (−,+,+,+). We will find that
all non-degenerate convex constant curvature 4-simplices with both Λ > 0
and Λ < 0 can be described by a class of SL(2,C) flat connections on the
graph complement 3-manifold S3 \ Γ5. In brief:

A class of (A, Ā) in Mflat

(
S3 \ Γ5, SL(2,C)

)
(7)

= constant curvature 4-simplex geometries.

The particular subspace of flat connections that determines 4-simplex ge-
ometries is specified by certain boundary conditions imposed on their bound-
ary values on Σ6. These boundary conditions are introduced in Section 2.2,
and can be summarized in the following way: Σ6 can be decomposed into five
4-holed spheres Sa=1,...,5 by cutting through the 10 meridian closed curves
on the right in Fig. 2. The boundary conditions require that the boundary
value of A ∈Mflat(S

3 \ Γ5, SL(2,C)) reduces to an SU(2) flat connection,
up to gauge transformations, when it is restricted to each of the 4-holed
spheres Sa. This does not imply that A is an SU(2) flat connection on all

2Four-dimensional simplices can be used as the elementary building blocks of the
simplicial decomposition of a 4-dimensional manifold. This is analogous to tetra-
hedral decompositions in 3 dimensions and triangulations in 2 dimensions. See
Figures 1 and 4 for two different projections of the 4-simplex that give some insight
into its combinatorial structure.
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of Σ6, since the different 4-holed spheres may correspond to different SU(2)
subgroups in SL(2,C).

These boundary conditions are motivated by a geometrical interpreta-
tion of the SU(2) flat connections on a 4-holed sphere Sa. Each of these
connections determines uniquely a convex tetrahedron in constant curva-
ture 3d space (spherical or hyperbolic). This holds for a dense subset of
Mflat(Sa, SU(2)), and only excludes the flat connections corresponding to
degenerate geometries. If we consider PSU(2) flat connections instead of
SU(2), the correspondence becomes 1-to-1 (see Theorem 2.1). This interpre-
tation of SU(2) flat connections on a 4-holed sphere was introduced in [20]
and is reviewed in Section 2.2 (see [38] for a thorough exploration).

A flat connection A ∈Mflat(S
3 \ Γ5,SL(2,C)) on the Γ5 graph com-

plement manifold that satisfies the above boundary conditions on the full
complement goes further and determines uniquely a convex 4-simplex geom-
etry in 4-dimensional Lorentzian spacetime with constant curvature Λ (see
Theorem 2.3 and the analysis of [20]). The closed boundary of the 4-simplex
determined by A is formed by 5 constant curvature tetrahedra, which are
congruent to the tetrahedral geometries determined by the boundary data
of A on the 4-holed spheres Sa. Again the statement holds up to those
flat connections that correspond to degenerate 4-simplex geometries. If we
consider PSL(2,C) flat connections instead of SL(2,C), the correspondence
once again becomes 1-to-1. In the following, we will refer to flat connections
satisfying the boundary conditions that put them into correspondence with
a 4-simplex geometry as simplicial flat connections.

A simple intuition lies behind the above correspondence between flat con-
nections on a 3-manifold and the geometry of a 4-manifold. The 1-skeleton
of a 4-simplex gives a triangulation of the 3-sphere, thought of as the bound-
ary of the 4-simplex. The Γ5 graph can be viewed as a “dual” graph of the
4-simplex skeleton, in the sense that the fundamental group of S3 \ Γ5 is
isomorphic to the fundamental group of the 4-simplex skeleton π1(simplex).
The isomorphism is unique under a few natural assumptions (see Lemma
2.2). On the one hand, an SL(2,C) flat connection on S3 \ Γ5 is a representa-
tion of the fundamental group π1(S3 \ Γ5) up to conjugation. On the other, if
the 4-simplex is embedded in a geometrical 4d spacetime (M4, gαβ), the spin
connection on M4 gives a representation up to conjugation of π1(simplex)
using holonomies. The isomorphism between π1(S3 \ Γ5) and π1(simplex)
identifies the flat connection on S3 \ Γ5 and the spin connection on the 4-
simplex. More precisely, it identifies the holonomies of the flat connection
along the loops in π1(S3 \ Γ5) and the holonomies of the spin connection
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along the closed paths of π1(simplex). In terms of a commutative diagram,

π1(S3 \ Γ5)
X←− π1(simplex)(8)

ωflat ↘ ↙ ωspin〈
{H̃ab∈SL(2,C)}a<b

∣∣ algebraic relations Eqs.(33a)− (27)
〉/

conjugation,

where X denotes the isomorphism between π1(S3 \ Γ5) and π1(simplex) and
ωflat and ωspin denote the representations by the flat connection on S3 \ Γ5

and the spin connection on M4, respectively. In this way, the SL(2,C)
flat connections on S3 \ Γ5 relate to the spin connections on a spacetime
(M4, gαβ). If we take (M4, gαβ) to be a Lorentzian spacetime with con-
stant curvature Λ, and all 10 triangles of the 4-simplex flatly embedded in
(M4, gαβ) (i.e. with vanishing extrinsic curvature), the holonomy of the spin
connection along a closed path in π1(simplex) enclosing a single triangle de-
termines the area of the triangle, as well as the embedding property of the
triangle, i.e. the 2 normal directions of the triangle embedded in M4. The
above relation between ωflat and ωspin, as well as the geometrical properties
of the spin connections, result in the correspondence between the SL(2,C)
flat connections on S3 \ Γ5 and the 4d geometry of constant curvature 4-
simplices.

Each geometrical flat connection A ∈Mflat(S
3 \ Γ5,SL(2,C)) is natu-

rally accompanied by an Ã ∈Mflat(S
3 \ Γ5, SL(2,C)), which is the complex

conjugate of A with respect to the complex structure J induced from the
complex group SL(2,C). The pair A and Ã determine the same 4-simplex
geometry but result in 2 opposite 4d orientations for the 4-simplex. We call
(A, Ã) a “parity pair,” because complex conjugation using J naturally re-
lates to a parity inversion in 4d spacetime [20]. This complex conjugation
leaves the SU(2) flat connections invariant, so A and Ã induce the same
SU(2) flat connections on the 4-holed spheres Sa=1,...,5. This is consistent
with the fact that the 4-simplex geometries determined by A and Ã are the
same, and give the same set of geometrical tetrahedra on the boundary.

Consider Mflat(S
3 \ Γ5, SL(2,C)) ' LA as a holomorphic Lagrangian

subvariety in Mflat(Σ6, SL(2,C)). Given A ∈Mflat(S
3 \ Γ5, SL(2,C)) cor-

responding to a constant curvature 4-simplex, the complex Fenchel-Nielsen
(FN) variables of A have direct interpretations in terms of the 4-simplex
geometry (see Section 3). The 10 length variables xab for the closed curves
cab in Fig. 2 relate respectively to the 10 areas aab of the triangles ∆ab in
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the 4-simplex. The 10 conjugate twist variables yab relate respectively to
the 10 hyperdihedral angles Θab of the 4-simplex. Each hyperdihedral angle
Θab between a pair of boundary tetrahedra is hinged by the triangle ∆ab

shared by the tetrahedra. Interestingly the canonical conjugacy of aab and
Θab that follows from the correspondence between flat connections and their
geometrical counterparts, relates to the canonical structure induced by the
4-dimensional Einstein-Hilbert action in General Relativity (GR), see [42]
for a derivation in the GR case. This further motivates the relation between
the flat connections on 3-manifolds and (simplicial) gravity on 4-dimensional
manifolds.

The phase space of flat connections has complex dimension

dimC[Mflat(Σ6, SL(2,C))] = 30.

In addition to the 20 coordinates {xab, yab}a<b, there are 5 pairs of vari-
ables {xa, ya}5a=1 that parametrize the SU(2) flat connections on Sa=1,...,5.
Geometrically they correspond to the shapes of the 5 constant curvature
tetrahedra on the boundary of the 4-simplex.

1.2. Quantum correspondence

Our correspondence between SL(2,C) flat connections on S3 \ Γ5 and the
constant curvature geometry of 4-simplices inspires a new understanding of
4-dimensional quantum simplicial geometry in terms of the quantization of
flat connections on a 3-manifold. For any 3-manifold M3 with boundary
Σg, the quantization of Mflat(Σg, SL(2,C)) with the symplectic structure
ωCS results in an operator algebra for the canonically conjugate variables,
e.g. the operators representing the complex FN variables x̂m and ŷm satisfy
x̂mŷm = e−

2πi~
t ŷmx̂m (~ ∈ R) and x̂mŷn = ŷnx̂m for n 6= m. The states are

represented as the wave functions Z(u), where u is the logarithmic coordi-
nate um = lnxm. The reader is referred to, e.g [39, 40], for details of quan-
tizingMflat(Σg, SL(2,C)). The quantization of the holomorphic Lagrangian
subvarietyMflat(M3, SL(2,C)) ' LA gives a set of operator constraint equa-
tions:

Âm(x̂, ŷ, ~)Z(u) = 0, m = 1, . . . , 3g − 3.(9)

The solutions Z(u) of the above operator constraint equations are the phys-
ical states of SL(2,C) Chern-Simons theory on M3. A basis of solutions
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Z
(α)
CS (u) can be found using semiclassical, WKB methods [6, 8, 25]:

Z
(α)
CS (u) = exp

[
i

~

∫ u,v(α)

C⊂LA

ϑ+ · · ·

]
.(10)

The leading term is completely determined by the classical phase space
and a Lagrangian subvariety within it. Here the Liouville 1-form ϑ satisfies
dϑ = ωCS and is integrated along a contour C in the Lagrangian subvari-
ety LA. The logarithmic coordinates um and vm are related to xm, ym by
xm = eum and ym = e−

2π

t
vm . The label α indexes the branches of LA. On

each of these branches the defining equation of the subvariety Am(x, y) = 0
can be solved to give a unique set of vm as functions of the um. The end point

of the contour C, which labels Z
(α)
CS (u), is a flat connection determined by

u, v(α) inMflat(M3, SL(2,C)) ' LA (or more precisely, in the cover space of

Mflat(M3, SL(2,C)) ' LA). Thus each Z
(α)
CS (u) is associated to a unique flat

connection A ∈Mflat(M3,SL(2,C)). The starting point of C is conventional

and corresponds to a choice of overall phase for Z
(α)
CS (u). The ellipsis “· · · ”

in Eq. (10) stands for the quantum corrections, which in principle can be
obtained recursively from the operator constraint equations. The semiclas-

sical wave function Z
(α)
CS (u), often called an holomorphic 3d block, can also

be formulated nonperturbatively as a “state-integral model,” see [8, 41].

The holomorphic 3d block Z
(α)
CS (u) can also be defined by a functional

integral of the holomorphic part of CS
[
M3 |A, Ā

]
over a certain integra-

tion cycle, known as a Lefschetz thimble [6]. The Lefschetz thimble is an
integration cycle that only contains a single critical point of the action; this

provides another way to understand the association between Z
(α)
CS (u) and a

single flat connection on M3.

The holomorphic 3d block Z
(α)
CS (u) plays a central role in the quan-

tum part of this work. We again specialize to the 3-manifold S3 \ Γ5 with
boundary Σ6 and impose boundary conditions on Σ6 to pick out the flat
connections inMflat(S

3 \ Γ5,SL(2,C)) corresponding to constant curvature
4-simplices. Given such an A ∈Mflat(S

3 \ Γ5,SL(2,C)), as well as its parity

partner Ã, we can construct an holomorphic 3d block Z
(α)
CS (u) associated

with A and using Ã as a reference. We simply let A be the end point of
the contour C and use Ã as its initial point. Our classical correspondence
between flat connections on S3 \ Γ5 and constant curvature 4-simplex ge-

ometries suggests that the so constructed Z
(α)
CS (u) is a wave function for the
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quantum 4d geometry of a constant curvature 4-simplex. Schematically,

Z
(α)
CS (u) with boundary conditions(11)

= quantum constant curvature 4-simplex geometry.

This quantum correspondence indicates that the asymptotic expansion of

Z
(α)
CS (u) in Eq. (10) should have the classical action for the simplicial 4d

geometry as its leading term. In particular, due to the relation between
the symplectic structures of flat connections and 4d simplicial gravity, it is
natural to expect that the leading term should give the action of 4d gravity
in the simplicial context.

This expectation is confirmed by the analysis in Section 3.3. We show

that the leading asymptotic behavior of Z
(α)
CS (u) is a simplicial discretization

of the four-dimensional Einstein-Hilbert action on a constant curvature 4-
simplex

(12) SΛ
Regge =

∑
a<b

aabΘab − ΛVolΛ4 ,

we call this the curved Regge action, and it is expressed here up to an
integration constant and a term depending on the lift to the logarithmic
variables (u, v). The coefficient Λ is the cosmological constant and can also
be identified as the constant curvature of the 4-simplex, while VolΛ4 is its 4-
volume. We refer the reader to, e.g. [43–46], for the derivation of the curved
4d Regge action through a discretization of the Einstein-Hilbert action (see
also [20] for a summary).

Because Z
(α)
CS (u) is holomorphic, its leading asymptotic behavior is not

necessarily an oscillatory phase. In studying the full SL(2,C) Chern-Simons
action CS

[
M3 |A, Ā

]
, including both holomorphic and anti-holomorphic

parts, we are interested in the 3d block Z
(α)
CS (u)Z

(α)
CS (ū), where Z

(α)
CS (ū) is as-

sociated to Ā. For a flat connection with corresponding 4-simplex geometry,

the leading asymptotic behavior of Z
(α)
CS (u)Z

(α)
CS (ū) is an oscillatory phase:

(13) Z
(α)
CS (u)Z

(α)
CS (ū) = exp

[
i

~
2Re

(
Λt

12πi

)
SΛ
Regge

+
i

~
2Re

(
Λt

6

)∑
a<b

Nabaab + iCint + · · ·

]
.
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This is shown in section 3. Thus we see that Z
(α)
CS (u)Z

(α)
CS (ū) is an analog

of the functional integral quantization of the Einstein-Hilbert action in the
simplicial context,

(14) ZEH(M4) = exp

[
i

2`2P

∫
M4

R− 2Λ + “Quantum Corrections”

]
.

With this analogy in mind, we identify the gravitational constant GN in
terms of Chern-Simons coupling t and cosmological constant Λ as

(15) GN =

∣∣∣∣ 3

2Im(t)Λ

∣∣∣∣ .
The quantity Cint ∈ R in (13) is an (integration) constant that is indepen-
dent of the 4-simplex geometry. The additional term i

~2Re
(

Λt
6

)∑
a<bNabaab

(Nab ∈ Z) in the leading asymptotics comes from the choice of lift of the FN
variables xm and ym to the logarithmic variables um and vm. This term dis-
appears trivially when t ∈ iR. However, for general complex t, the additional
term can also be made to disappear by imposing a quantization condition
on the triangle areas aab:

(16) 2Re

(
Λt

6

)∑
a<b

Nabaab ∈ 2π~Z.

Indeed, this quantization condition is natural: when the boundary conditions
on A ∈Mflat(S

3 \ Γ5, SL(2,C)) are imposed using a Wilson graph operator,
the quantization condition is automatically satisfied (see Section 4). The
quantization condition is also consistent with the discrete area spectrum in
Loop Quantum Gravity (LQG) [47, 94].

The bulk of this paper is devoted to the flat-connection-to-geometry cor-
respondences at the single 4-simplex level because this is the most crucial
step in building models for more general situations. The analysis is gener-
alized, in Section 6, to a simplicial complex with an arbitrary number of 4-
simplices. In the resulting simplicial geometry, the 4-simplices are of constant
curvature Λ, while the large simplicial geometry built by many 4-simplices
can approximate an arbitrary smooth geometry on a 4-manifold. However, a
generic A ∈Mflat(M3,SL(2,C)) that corresponds to a 4d simplicial geom-
etry may result in a non-uniform 4d orientation throughout the simplicial
complex, that is, different 4-simplices may obtain different 4d orientations.
For an orientable simplicial complex K4, we find the class of flat connections
on M3 that not only determine all possible (nondegenerate) 4-dimensional
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simplicial geometries, but also induce consistent global 4d orientations. Each
flat connection A in the class is accompanied by its global parity partner Ã.

We construct the Chern-Simons 3d block Z
(α)
CS

(
M3

∣∣u)Z(α)
CS

(
M3

∣∣ ū) associ-

ated with A (and reference Ã) in the same way as above. The asymptotic
expansion in ~ of the resulting 3d block generalizes Eq. (13) to the level of
a simplicial complex:

(17) Z
(α)
CS

(
M3

∣∣u)Z(α)
CS

(
M3

∣∣ ū) = exp

[
i

~
2Re

(
Λt

12πi

)
SΛ
Regge

+
i

~
2Re

(
Λt

6

)∑
∆

N∆a∆ + iCint + · · ·

]
,

where SΛ
Regge is the 4-dimensional Lorentzian Regge action on the entire

simplicial complex K4:

(18) SΛ
Regge =

∑
∆ internal

a(∆)ε(∆) +
∑

∆ boundary

a(∆)Θ(∆)− Λ
∑
σ

VolΛ4 (σ).

Here ∆ denotes a triangle in K4 and σ denotes a 4-simplex. If we denote
the hyperdihedral boost angle of ∆ in the 4-simplex σ by Θ∆(σ) (the same
as Θab above), then ε(∆) is the Lorentzian deficit angle defined by ε(∆) :=∑

σ,∆⊂σ Θ∆(σ) for ∆ an internal triangle, and Θ(∆) is the Lorentzian bound-
ary hyperdihedral angle defined by Θ(∆) :=

∑
σ,∆⊂σ Θ∆(σ) for ∆ a bound-

ary triangle. In Eq. (17) the additional term i
~2Re

(
Λt
12

)∑
∆ N∆a∆ (N∆ ∈ Z)

again disappears when t ∈ iR, or when the quantization condition Eq. (16)
is satisfied, for general t.

This asymptotic expansion in ~ suggests that the Chern-Simons 3d block

Z
(α)
CS (u)Z

(α)
CS (ū), which associates with a flat connection on M3 a corre-

sponding 4d simplicial geometry on K4, is a wave function for 4-dimensional
simplicial quantum gravity; its subleading terms in ~ should give the quan-
tum corrections to the classical Einstein-Hilbert action.

1.3. Wilson graph operator and loop quantum gravity

The analysis in the present paper is a continuation of the work done in
[20], where a class of Wilson graph operators are studied in SL(2,C) Chern-
Simons theory on S3. The Wilson graph operators are defined by a Γ5 graph
embedded in S3 colored by certain principle unitary irreducible representa-
tions of SL(2,C). The definition is summarized in Section 4. In [20], we
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have studied the Chern-Simons expectation value A of the Wilson graph
operators on S3, and in particular the asymptotic behavior of A in the
“double-scaling limit”, that is, when both the Chern-Simons coupling t and
the Wilson-graph representation labels are scaled to infinity, but their ra-
tio is kept fixed. In this double-scaling limit, the Chern-Simons expectation
value A of the Wilson graph operator again yields the 4d Regge action
SΛ
Regge of a constant curvature 4-simplex as its leading asymptotics,

(19) A = e
i

`2
P
SΛ
Regge+··· + e

− i

`2
P
SΛ
Regge+···

up to a possible overall phase factor. Here the ellipsis “· · · ” represent the
subleading terms in the double-scaling limit. These asymptotics and their
relation with simplicial gravity suggest that A can be viewed as a 4d gravity
analog of the quantum 6j-symbol in the Turaev-Viro model of 3d quantum
gravity [57, 58].3

The Chern-Simons expectation value A has a close relationship with
Loop Quantum Gravity (LQG). LQG is an attempt to make a background
independent, non-perturbative, quantization of 4-dimensional gravity; for
reviews, see [48–50]. The central objects in the covariant dynamics of LQG,
which adapts the idea of path integral quantization to the framework of
LQG, are the spinfoam amplitudes. A spinfoam amplitude is defined on a 4-
dimensional simplicial complex K4 and encodes the transition amplitude for
a given boundary quantum 3-geometry. In LQG, the quantum 3-geometries
are described by spin-network states. A spinfoam amplitude sums over the
history of spin-networks, and suggests a foam-like quantum spacetime struc-
ture. An important building block for a general spinfoam amplitude is the
Engle-Pereira-Rovelli-Livine (EPRL) partial 4-simplex amplitude AEPRL

associated to a 4-simplex σ in K4 [51].4 The Chern-Simons expectation value
A of the Wilson graph is a deformation of the EPRL 4-simplex amplitude,
in the sense that A approaches AEPRL asymptotically in the decoupling
limit, that is, when the Chern-Simons coupling t is scaled to infinity keeping
the Wilson graph representation labels fixed (see [20] or Section 5). This de-
formation is largely motivated by two streams of research: (1) studies of the
relation between LQG and Topological Quantum Field Theory [17, 18, 53]
and (2) the quantum group deformation of spinfoam amplitudes that in-
clude a cosmological constant [19, 54]. We have the following commutative

3The double-scaling limit of quantum 6j-symbol gives the 3d Regge action on a
constant curvature tetrahedron [58].

4It is also called the EPRL/FK amplitude, including Freidel and Krasnov, when
referring to the version for Euclidean gravity [52].
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diagram for the relations among A , AEPRL, and the Regge action SΛ
Regge

(or SRegge) with (or without) a cosmological constant term:

A
double-scaling limit−→ e

i

`2
P
SΛ
Regge + e

− i

`2
P
SΛ
Regge

y decoupling
y Λ→0

AEPRL
large-j limit−→ e

i

`2
P
SRegge

+ e
− i

`2
P
SRegge

(20)

The asymptotic behavior on the bottom line has been established for the
EPRL 4-simplex amplitude AEPRL in [55, 56]. The action SRegge that results
from the asymptotic analysis of AEPRL is the Regge action without cosmo-
logical constant for a flat 4-simplex, while the action SΛ

Regge that comes out
of the Chern-Simons expectation value A is the Regge action with cosmolog-
ical constant Λ for a constant curvature 4-simplex, that of Eq. (12). In this
sense A is a deformation of the spinfoam amplitude AEPRL that includes
the cosmological constant in the framework of LQG.

The 4-dimensional Lorentzian Regge action SΛ
Regge appears in both the

leading asymptotics of the Chern-Simons expectation value A of the Wilson

graph operator and in the Chern-Simons 3d block Z
(α)
CS (u)Z

(α)
CS (ū). This is

not a coincidence (see Section 4). Firstly it turns out that the double-scaling
limit of Chern-Simons theory on S3 with a Wilson graph insertion is the
same as the semiclassical limit ~→ 0 of Chern-Simons theory on the graph
complement, keeping the boundary data fixed. Secondly the Chern-Simons
expectation value A can be understood as an inner product

A =
〈
N(Γ5)

∣∣S3 \ Γ5

〉
,(21)

where |N(Γ5)〉 is the Chern-Simons state on the tubular neighborhood of
Γ5 excited by the Wilson graph operator, and |S3 \ Γ5〉 is the Chern-Simons
ground state on S3 \ Γ5. In the double-scaling limit, the Wilson graph op-
erators in [20] that define A impose the right boundary conditions on the
boundary Σ6 of S3 \ Γ5 (including the quantization condition Eq. (16)).
Right in the sense that these boundary conditions pick out the parity pair
of flat connections A & Ã on S3 \ Γ5 and determine a constant curvature
4-simplex geometry. In other words, the state |N(Γ5)〉 is a “semiclassical
state” peaked at the right phase space point inMflat(Σ6,SL(2,C)). The state

|S3 \ Γ5〉 is a linear combination of Chern-Simons 3d blocks Z
(α)
CS (u)Z

(α)
CS (ū)
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on S3 \ Γ5. The peakedness of |N(Γ5)〉 selects the pair of 3d blocks that as-

sociate to A and Ã respectively, and which have respectively e
i

`2
P
SΛ
Regge and

e
− i

`2
P
SΛ
Regge in their leading asymptotics.

Separate study of the Chern-Simons 3d block and the Wilson graph op-
erator clarify the different roles they play in the asymptotics of A . The
Regge-action asymptotic behavior of A crucially depends on the peaked-
ness of |N(Γ5)〉 created by the Wilson graph operator. However, different
Wilson graph operators can produce the same peaking in the phase space,5

and thus lead to the same asymptotics of A . The close relationship with
the EPRL 4-simplex amplitude motivates us to study the particular type of
Wilson graph operators in [20]. In principle other types of Wilson graph op-
erators could work equally well, as long as they produce the same peaking.6

However, independent of the choice of Wilson graph, the essential ingredient
leading to the Regge-action asymptotics of A is the Chern-Simons 3d block
on S3 \ Γ5 with the right boundary conditions imposed. This means that the

Chern-Simons 3d block Z
(α)
CS (u)Z

(α)
CS (ū) studied here plays an important role

in the covariant formulation of LQG. Both the classical and the quantum
correspondences between flat connections on 3-manifolds and simplicial ge-
ometries on 4-manifolds studied here may be viewed as a re-formulation of
covariant LQG that emphasizes its relationship with SL(2,C) Chern-Simons
theory.

In the quantum case, this correspondence suggests that the Chern-

Simons 3d block Z
(α)
CS (u)Z

(α)
CS (ū) is the wave function of simplicial quan-

tum gravity in 4 dimensions. Given its relation with LQG, this 3d block
may be understood as the physical wave function for LQG in 4 dimensions,
at least for simplicial geometries. In future research it will be interesting

to find the behavior of Z
(α)
CS (u)Z

(α)
CS (ū) under refinement of the simplicial

complex K4. This should shed light on the continuum limit in covariant
LQG.

The physical wave function of LQG describes quantum transitions in a
4-dimensional region that go between boundary quantum 3d geometries. In

this logic, the boundary data of Z
(α)
CS (u)Z

(α)
CS (ū), namely the flat connections

on the 2d boundary of the graph complement 3-manifold, should describe
the quantum 3d geometry in LQG. Indeed, as discussed in Section 5, the

5For instance, for an harmonic oscillator, different squeezed coherent state can
have the same peakedness.

6The different types of Wilson graphs having the same peakedness may relate to
the spinfoam amplitudes defined in [59].
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boundary data of Z
(α)
CS (u)Z

(α)
CS (ū) relate naturally to spin-network states,

which quantize 3d geometry in the kinematical framework of LQG.

1.4. Structure of the paper

The structure of the paper is as follows: Section 2 explains the classical cor-
respondence between the SL(2,C) flat connections on S3 \ Γ5 specified by
certain boundary conditions and constant curvature 4-simplex geometries
in 4 dimensions. Section 3 discusses the correspondence between quantum
SL(2,C) Chern-Simons theory on S3 \ Γ5 and quantum 4-simplex geometry.
After a brief review of quantum Chern-Simons theory, Fenchel-Nielsen coor-
dinates, and the holomorphic 3d block in Sections 3.1 and 3.2, we analyze,
in Section 3.3, the asymptotic expansion of the Chern-Simons 3d block. The
leading order asymptotics of this block gives the 4-dimensional Regge action
on a constant curvature 4-simplex and includes a cosmological constant. Sec-
tion 4 discusses the relation with [20], in which Wilson graph operators were
used to impose the correct boundary conditions. Section 5 treats the rela-
tionship between SL(2,C) Chern-Simons theory and Loop Quantum Gravity
in 4 dimensions. In Section 6, the correspondence is generalized from a single
4-simplex to a 4d simplicial complex. A particular class of Chern-Simons 3d
block is defined and the asymptotics of this block gives the 4d Regge action
on a full simplicial complex. The two Appendices go deeper into the mathe-
matical structure of (A) K2-Lagrangian subvarieties, alluded to in Section 3,
and (B) of the coadjoint orbit quantization used in Section 4.

2. From flat connections on a 3-manifold to 4d simplicial
geometry

In this section we explain the classical correspondence between SL(2,C) flat
connections on S3 \ Γ5 subject to a certain set of boundary conditions and
constant curvature 4-simplices in four-dimensions. In order to explain the
boundary conditions that allow us to achieve this correspondence, we begin
in Subsection 2.1 by explaining the Wirtinger algorithm for generating the
fundamental group of a graph complement manifold. The desired bound-
ary conditions on the flat connection are most easily expressed in terms of
the generators of this fundamental group and are made explicit in Subsec-
tion 2.2. This section concludes by connecting these boundary conditions to
our previous work on constant curvature tetrahedra [38] and hence estab-
lishes that these boundary conditions allow the reconstruction of geometrical
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constant curvature tetrahedra around each of the vertices of the graph. In
Subsection 2.3 these tetrahedral pieces are assembled into the full geometry
of a constant curvature 4-simplex. This section also provides a commuta-
tive diagram that helps explicate how such a correspondence is possible in
abstract terms. Finally Subsection 2.4 explains some discrete symmetries of
the reconstructed geometries that will be useful in what follows.

2.1. Flat connections on a graph-complement 3-manifold

Consider the embedding of the pentagon graph Γ5 in a 3-sphere S3, Figure 1,
and let N(Γ5) be (the interior of) its tubular neighborhood. Define the 3-
manifold M3 := S3 \N(Γ5), which has boundary ∂M3 = ∂N(Γ5). With a
slight abuse of notation we will often write

(22) M3 = S3 \ Γ5.

The moduli space of flat sl2C connections on M3 is defined as

(23) Mflat (M3,SL(2,C)) = Hom (π1(M3), SL(2,C))
/

conjugation,

i.e. as the space of representations ρ of the fundamental group of M3 in
the group SL(2,C), up to conjugation. As defined above, the moduli space
of flat connections is often badly behaved, e.g. it is non-Hausdorff. It is
customary—and enough for our purposes—to make a further restriction to
the so-called ‘character variety’, which is an algebraic variety. For details see
[60].

The fundamental group π1(M) of a graph complement M is easily char-
acterized via a generalized Wirtinger presentation [61]. This construction
proceeds in four steps: (i) Project the graph onto a plane; (ii) Take a point
∗ not lying in this plane as base point; (iii) Take as generators of π1(M)
the independent loops starting and ending at ∗. These go around each edge
once and cross the plane of the projected graph twice; (iv) Every crossing of
the initial graph breaks the original undergoing edge into two pieces in the
planar projection—the associated loops l(1) and l(2) should be considered as
independent generators.

The generators obtained in this manner are required to satisfy the fol-
lowing two sets of relations:

• When n edges meet at a vertex (all oriented ingoing for the moment),
we require
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(24) ln · · · l2 l1 = e,

*

1

2

n

,

where e denotes the identity in π1(M), and we have supposed them
to be numbered from 1 to n in a clockwise fashion on the projection
plane. To change the i-th edge from ingoing to outgoing, substitute li
with l−1

i ;

• If upon projection onto the plane an edge with generator l̃ over-crosses
another edge, then the latter is associated with two independent gen-
erators l(1) and l(2) as in point (iv) above (this situation is depicted in
the figure below). These three generators l̃, l(1), and l(2) are required
to satisfy

(25) l(1) = l̃ l(2)̃l−1, .

Using this algorithm, π1(M3 = S3 \ Γ5) can be computed in a straight-
forward manner; this is the task we take up now. To fix notation, label the
vertices of Γ5 as in Figure 1 with an index a ∈ {1, . . . , 5}, and call its (un-
oriented) edges `ab = `ba. The generators of π1(M3) are then the loops lab
associated to every edge `ab of Γ5 except `13, which is broken by a crossing,

and hence is associated to two distinct generators l
(1)
13 and l

(2)
13 . A representa-

tion ρ ∈ Hom (π1(M3),SL(2,C)) maps each of these generators to an element

of SL(2,C), i.e. ρ (lab) = H̃ab for every (ab) 6= (13) and ρ
(
l
(i)
13

)
= H̃

(i)
13 , for

i ∈ {1, 2}. The requirements of Eqs. (24) and (25), when expressed in terms
of these group elements (holonomies) are:

vertex 1 : H̃14H̃
(1)
13 H̃12H̃15 = 1,(26a)

vertex 2 : H̃−1
12 H̃24H̃23H̃25 = 1,(26b)

vertex 3 : H̃−1
23 (H̃

(2)
13 )−1H̃34H̃35 = 1,(26c)

vertex 4 : H̃−1
34 H̃

−1
24 H̃

−1
14 H̃45 = 1,(26d)

vertex 5 : H̃−1
25 H̃

−1
35 H̃

−1
45 H̃

−1
15 = 1,(26e)
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crossing : H̃
(1)
13 = H̃24H̃

(2)
13 H̃

−1
24 .(27)

Notice that all the above holonomies, collectively referred to as
{
H̃ab

}
, have

the same base-point ∗ ∈ S3 \ Γ5.
The moduli space Mflat (M3, SL(2,C)) is defined as the group elements{

H̃ab

}
modulo simultaneous conjugation by a g ∈ SL(2,C), i.e.

{
H̃ab

}
∼{

gH̃abg
−1
}

.

2.2. The boundary conditions and their geometrical
interpretation as curved tetrahedra

For our geometrical purposes, we are not interested in a generic connection
inMflat (M3, SL(2,C)). Rather, we want to restrict to connections satisfying
a certain type of boundary conditions on the graph complement manifold’s
boundary

(28) Σ6 := ∂M3 = ∂N(Γ5),

which is a closed 2-surface of genus 6. The restriction of a connection A ∈
Mflat (M3,SL(2,C)) to the boundary surface Σ6 gives an element of

Mflat (Σ6, SL(2,C)) .

In this sense one can write

(29) Mflat (M3, SL(2,C)) ⊂Mflat (Σ6,SL(2,C)) .

On Σ6, we specify 10 meridian curves {cab} each cutting one edge of Γ5

transversally. Hence,

(30) Σ6 \ {cab} =
⋃

a=1,...,5

Sa

where Sa ∼= S2 \ {4pts} is a four-punctured sphere associated to the a-th
vertex of Γ5. A representation σ ∈ Hom (π1(Σ6),SL(2,C)) when restricted
to Sa gives a representation σ|Sa ∈ Hom (π1(Sa),SL(2,C)) (defined up to
global SL(2,C) conjugation). We think of these punctured spheres as (the
boundaries of) tetrahedra whose ‘quanta of area’ are ‘concentrated’ at the
punctures in the form of defects. We want each of these tetrahedra to define
a three-dimensional space-like frame in (A)dS.
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With this geometrical picture in mind we define the following boundary
conditions: a representation σ ∈ Hom (π1(Σ6), SL(2,C)) is said to satisfy
geometric boundary conditions if there exists five elements ga ∈ SL(2,C),
such that

(31) ga (σ|Sa) g−1
a ∈ Hom (π1(Sa),SU(2)) .

In words, an SL(2,C) representation of the fundamental group of Σ6 is
said to satisfy the geometric boundary conditions if on each four-punctured
sphere Sa it restricts to an SU(2) representation up to conjugation by an
element ga ∈ SL(2,C):

(32) ∀a ∃ga ∈ SL(2,C) such that gaH̃abg
−1
a =: Hb(a) ∈ SU(2) ∀b, b 6= a.

We call the gauge associated to such a set of {ga}, the ‘time gauge’.
An immediate consequence of the geometric boundary conditions is that

Eqs. (26) can be written after conjugation by ga ∈ SL(2,C) as equations in
SU(2):

vertex 1 : H4(1)H3(1)H2(1)H5(1) = 1,(33a)

vertex 2 : H−1
1 (2)H4(2)H3(2)H5(2) = 1,(33b)

vertex 3 : H−1
2 (3)H−1

1 (3)H4(3)H5(3) = 1,(33c)

vertex 4 : H−1
3 (4)H−1

2 (4)H−1
1 (4)H5(4) = 1,(33d)

vertex 5 : H−1
1 (5)H−1

2 (5)H−1
3 (5)H−1

4 (5) = 1,(33e)

where again the argument of the parentheses indicates the vertex where
the holonomy is based, see Eq. (32). We will refer to these equations as the
‘closure equations’.

The missing information, with respect to Eqs. (26) and (27), can be
encoded in terms of a Gab ∈ SL(2,C) defined by

(34) Gba := g−1
b ga for all (ab), except G13 := g−1

1

[
g2H4(2)g−1

2

]
g3.

This information can be interpreted as a set of ‘parallel transport equations’
encoding the relation H̃ab = H̃ba through

(35) GabHb(a)Gba = Ha(b),
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and as a set of ‘bulk equations’ encoding the position of the crossing

GacGcbGba = 1 (abc) ∈ {125, 235, 345, 124, 234},(36a)

G13G32G21 = H4(2).(36b)

Connections satisfying the geometric boundary conditions are denoted

(37) MBC
flat(Σ6,SL(2,C)) ⊂Mflat(Σ6, SL(2,C)).

In section 3.3, we will come back to these boundary conditions and
express them in terms of a set of preferred coordinates, the complex Fenchel-
Nielsen coordinates. These are Darboux coordinates on Mflat(Σ6, SL(2,C))
with respect to the canonical Atiyah-Bott-Goldman symplectic structure
induced by the Chern-Simons theory.

As anticipated above, there is a precise correspondence between SU(2)
flat connections on a four-holed sphere and tetrahedral geometries flatly
embedded in S3 and H3. This result was proved and discussed in detail in
[20, 38], and hence in this paper we will limit ourselves to a brief account
of this geometry before connecting it with the boundary conditions just
discussed.

Theorem 2.1. There is a bijection between flat connections in

Mflat (Sa,PSU(2))

and the convex constant curvature tetrahedron geometries in 3d, excepting
degenerate geometries. Non-degenerate tetrahedral geometries are dense in
Mflat (Sa,PSU(2)).

The correspondence applies to both spherical and hyperbolic tetrahedra.
Both positive and negative constant curvature geometries are included in
Mflat (Sa,PSU(2)).

The theorem is primarily built on two observations: (i) the fundamental
group of the four-holed two-sphere is isomorphic to that of a tetrahedron’s
one-skeleton, and both are defined by a closure constraint; and (ii) in the
flat case, a tetrahedron’s geometry can be fully reconstructed from four
vectors that add up to zero, once these vectors’ directions are interpreted as
the tetrahedron’s face normals and their magnitudes as the respective face
areas. Observations (i) and (ii) are related: the spin-connection holonomy
around the boundary of a surface that is flatly-embedded in a homogeneous
space contains information about both the area and the orientation of the
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surface. This means that the curved-space closure constraint, e.g. any of the
Eqs. (33), could be a sound generalization of (ii).

Observation (ii) is a special case of a more general classic result due to
H. Minkowski [62], known as Minkowski’s theorem. This theorem states that
an N -tuple of vectors that sum to zero corresponds to the set of face vec-
tors of a unique convex polyhedron with N faces. The convexity hypothesis,
which primarily guarantees the uniqueness in the case of flat tetrahedra, is
particularly crucial in the curved-space generalization of Minkowski’s theo-
rem [38].

Before proceeding, let us further define what we mean by a flatly embed-
ded simplicial geometry. Take the case of a constant curvature tetrahedron
flatly embedded in a unit S3. The zero-simplices (vertices) are 4 points on S3.
The one-simplices are the shortest geodesic arcs connecting 2 zero-simplices.
These are given by arcs along great circles in S3. Notice that the restriction to
the shorter geodesic arc is because we are considering only convex simplices,
which will turn out to be crucial for the uniqueness part of the reconstruc-
tion theorem. Finally for faces, a triple of vertices identifies uniquely a great
2-sphere in S3 and the face is just the convex hull of the three vertices in
this two-sphere. As portions of a great two-sphere these surfaces are flatly
embedded in S3. In particular this means that vectors normal to the sur-
face remain so under parallel transport. Finally, the tetrahedron itself is the
convex hull defined by its four faces.

The simplest way to visualize this construction is to consider the unit
three-sphere as embedded in one more dimension. Then, the edges of the
tetrahedron are defined by intersection of the three-sphere with the unique
plane passing through the origin and two of the tetrahedron’s vertices. Simi-
larly, the tetrahedron’s faces are given by the intersection of the three-sphere
and the unique hyperplane passing through the origin and three of the tetra-
hedron’s vertices. This construction makes it obvious how to generalize the
definitions to the hyperpolic, higher dimensional, and Lorentzian cases.

Now we would like to relate this geometry to the output of the boundary
conditions from above. The idea is to find a relation between the holonomies
Uab of the spacetime spin connection ωspin around the faces of a flatly em-
bedded, constant curvature tetrahedron and the Hb(a)’s of Eq. (33). To
completely define the Uab label the vertices of a four-simplex flatly embed-
ded in (A)dS by a, b, . . . ∈ {1, . . . , 5}, and the tetrahedron opposite to vertex
a by the same label. The triangle ∆ab shared by tetrahedra a and b is thus
labeled by (ab). Call its boundary ∂∆ab. Make a partial gauge fixing at the
base point O, such that the tetrad components eα0 = δa0 are given by the unit
time-like normal to ∆ab, i.e. fix to time gauge. Then it is not hard to show
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Figure 3: The paths p1, . . . , p4 used to generate the fundamental group on a
constant curvature tetrahedron. The edge (2, 4), which is arbitrarily singled
out to base the path p4 at vertex 4, we call the “special edge”.

that

Uab ≡ U0
∂∆ab

(ωspin) = exp

[
Λ

3
aab n̂ab · ~τ

]
∈ SU(2),(38)

where aab is the area of the triangle (ab), n̂ab is its spacelike normal (ex-
pressed within the frame eIα at O), ~τ is a basis for the Lie algebra su(2), and
Λ ≷ 0 is the cosmological constant associated with (A)dS.

A mapping between the Uab and the Hb(a) can now be made explicit.
To do this we construct an isomorphism between the fundamental group of
the 4-holed sphere Sa and that of the a-th tetrahedron’s 1-skeleton τa. It is
important to notice that there is no canonical isomorphism. We will come
back to this point when dealing with the reconstruction of the 4-simplex
geometry. For the moment, we limit our study to a single tetrahedron, say
a = 5, and hence drop the relative label. This allows us to label triangles by
their opposite vertex within the tetrahedron.

Denote the to-be-constructed isomorphism between the fundamental
groups by I5, so that I5 : π1(τ5)→ π1(S5). To specify I5, consider the basis
of π1(τ5) formed by the set of four paths {pa} depicted in Figure 3. The
paths pa go around each face of the tetrahedron once. Hence, we require
these paths to be in 1-to-1 correspondence with the la introduced at the
beginning of this section, which circumnavigate each puncture of S5 once:

(39) I5(pa) = la.

This is possible thanks to the fact that both sets of paths satisfy the same
defining constraints

(40) p4p3p2p1 = e and l4l3l2l1 = e.
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Following [20, 38], we call the paths {pa}, ‘simple paths’. The name
comes from the fact that this is arguably the shortest set of paths satisfying
the defining constraint (up to relabeling of the vertices). It is also clear that
edge (42) is singled out by this choice of paths (see [20] for the explicit role
it plays in the reconstruction theorem). We call it the ‘special edge’.

Notice that the simple paths are such that the faces are traversed coun-
terclockwise (as seen from the outside of the tetrahedron). Adopting a right-
handed convention, this means that the normals to the triangles have to be
understood as outgoing.

This isomorphism allows us to interpret the holonomies of a flat connec-
tion ωflat on S5 as the parallel transports of a spin-connection ωspin on τ5:

π1(S5)
I5←− π1(τ5)

ωflat ↘ ↙ ωspin〈
U1, . . . , U4 ∈ SU(2)⊗4

∣∣U4 · · ·U1 = 1
〉/

conjugation(41)

at least provided we find a canonical lift of Ha ∈ PSU(2) to SU(2). The
prescription for the canonical lift is actually provided by the convexity con-
dition, as we now explain.

An element H ∈ PSU(2) is given by the equivalence class formed by the
following two elements of SU(2):

(42) exp [a n̂ · ~τ ] ∼ − exp [a n̂ · ~τ ] = exp [(2π − a) (−n̂) · ~τ ]

for some a ∈ [0, 2π] and n̂ ∈ S2. This correspondence suggests that we inter-
pret

(43) n̂, or − n̂, as sgn(Λ)n̂ and a, or (2π − a) respecitvely, as
|Λ|
3

a.

Using outward normal conventions set by the simple paths, and the
tetrahedron’s convexity, one sees that the triple products n̂a · (n̂b × n̂c), with
the labels {a, b, c} properly ordered, must all be positive (e.g. at vertex
4, n̂1 · (n̂2 × n̂3) > 0).7 It is hence clear that the convexity conditions fully
determine the lift from PSU(2) to SU(2), at least up to a global sign, equal to

7Notice that parallel transport of one of the vectors might be needed to make
sense of these vector products. This happens when one has to compare the normal
relative to face 4 to the others. However, since this is parallel transport of a 3-vector,
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sgn(Λ). Perhaps surprisingly, this final sign can also be determined from the
n̂a that we have just calculated. To do so, use the n̂a to calculate the scalar
products cos θab ≡ n̂a · n̂b.8 Notice that these quantities are insensitive to the
global sign ambiguity associated with sgn(Λ) itself. These scalar products
are nothing but the (external) dihedral angles of the tetrahedron. It is a
classical result in discrete geometry, that the Gram matrix

(44) (Gram)ab = − cos θab

contains all the information needed to reconstruct the tetrahedron’s geom-
etry. In particular

(45) sgn(det(Gram)) = sgn(Λ).

To conclude the proof of the reconstruction theorem, one only needs to
prove the consistency of the geometry reconstructed from the Gram matrix
and the areas implicitly contained in the original group elements. This can
be done for example via a counting argument. Again, for all the details of
the proof see [20].

For future reference, we note here the formula interpreting the transverse
holonomies Hb(a) as the spin-connection holonomies around the face (ab) of
the four-simplex:

(46) Hb(a) = exp

[
Λ

4
aabn̂ab · ~τ

]
.

2.3. Flat connections on 3-manifold and curved 4-simplex
geometries

This subsection discusses the reconstruction of a full 4-simplex geometry
from the flat connections on the graph complement manifold subject to the
boundary conditions of Subsection 2.2. There is little conceptual novelty

it makes use of the vector representation of the Ha’s, and hence is immune to the
ambiguity we are trying to solve here. See [20] for details.

8Again, in some cases a parallel transport of the normals is needed before taking
the scalar product. In this case, using the flat-embedding condition, it is not hard
to convince oneself that the only dihedral angle needing a ‘twisted’ formula is
cos θ24 = n̂4 · (H3n̂2). Here, H3 ∈ SO(3) is the vector representation of H3. See
[20].
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with respect to the reconstruction of the tetrahedron, although some in-
triguing subtleties arise, and this subsection can safely be skipped on a first
reading after taking a look at Theorem 2.3 below.

Analogously to the discussion surrounding the commuting diagram (41),
we consider the fundamental group for the 1-skeleton of an abstract 4-
simplex, see Figure 4, which we denote by π1(σ4), with σ4 denoting the
1-skeleton of the 4-simplex. Closed paths pab along the 1-skeleton and cir-
cling each triangle ∆ab specify a set of generators. A convenient choice of
paths, either pab or p−1

ab , is specified by the sets of simple paths for all 5
tetrahedra. All the paths pab can be based at the same point, which we
choose to be vertex 1 of the 4-simplex.

Figure 4: An abstract 4-simplex, whose vertices are labeled by 1̄, . . . , 5̄. We
denote τa the tetrahedron that does not have the vertex ā. The symbol ∆ab

(resp. ∆ba) denotes the triangle belonging to τa (resp. τb) shared by τa and
τb. The edges are denoted by (ā, b̄) oriented from b̄ to ā.

Explicitly, we choose the paths as follows: Tetrahedron τ2 has special
edge (31), and its closure relation is9

(47) p−1
21 p24p23p25 = e.

Tetrahedron τ3 has special edge (51), and its closure relation is

(48) p−1
32 p
−1
31 p34p35 = e.

Tetrahedron τ4 has special edge (31), and its closure relation is

(49) p−1
43 p
−1
42 p
−1
41 p45 = e.

9Note that all the paths p−1
21 , p24, p23, and p25 are closed paths circling around a

single triangle in a counter-clockwise fashion when viewed from the outside of the
tetrahedron. The same holds for Eqs. (48)–(51).
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Tetrahedron τ5 has special edge (31), and its closure relation is

(50) p−1
52 p
−1
53 p
−1
54 p
−1
51 = e.

Tetrahedron τ1 is the ‘special tetrahedron,’ which is non-adjacent to the base
vertex 1. All the paths associated to τ1 travel from 1 to 3 along (31), then
circle around the relevant triangle of τ1 as in Figure 3, and finally go back
from 3 to 1 along (13). When we draw the paths on τ1 starting and ending
at 3, the special edge is (53). The closure relation is then

(51) p14p13p12p15 = e.

The above list specifies all the (closed) paths pab. One can check the
following properties: pab = pba for (a, b) 6= (1, 3), and for p13 this relation
becomes [53][31]p13[13][35] = [51]p31[15], where [ab] indicates the path along
the edge ab. Equivalently,

(52) p13 = p24p31p
−1
24

where p24 = [13][35][51].
The fundamental group π1(σ4) is generated by the closed paths pab sub-

jected to the set of closure relations Eqs. (47)–(51) together with the relation
(52). A quick comparison shows that π1(σ4) is isomorphic to π1(S3 \ Γ5). In
fact, the relations above for the pab’s generating π1(σ4) are identical to the
relations associated to the generators lab of π1(S3 \ Γ5) (see Section 2.1).
The isomorphism maps the generators of π1(S3 \ Γ5) to the generators of
π1(simplex), which delivers the flat connection on S3 \ Γ5 to the spin con-
nection as a representation of π1(simplex).

If we require that the isomorphism I : π1(σ4)→ π1(S3 \ Γ5) maps the
counterclockwise simple paths (the pab) to the loop generators in π1(S3 \ Γ5)
oriented in a right-handed manner (the lab) according to the orientation of
the edges `ab ⊂ Γ5, then the isomorphism I is unique in the following sense:

Lemma 2.2. A map ι : a 7→ τa identifying a vertex in Γ5 with a tetrahe-
dron on the boundary of the 4-simplex, induces an identification between the
edges `ab of Γ5 and the triangles ∆ab = τa ∩ τb of the 4-simplex. Given an
isomorphism I : π1(σ4)→ π1(S3 \ Γ5) such that I(pab) = l′ab is a loop gen-
erator in π1(S3 \ Γ5) transverse to the edge `ab near the vertex a, requiring
that l′ab cycles `ab in a right-handed manner according to the orientation of
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`ab,
10 the isomorphism I is unique. Hence I(pab) = l′ab = lab is the generator

for the presentation in Section 2.1 associated to the projection of Γ5 on a
plane, Figure 2.

Proof. The set of loops I(pab) = l′ab, whose common base point could be
anywhere in S3 \ Γ5, can be understood as the generators of a generalized
Wirtinger presentation of π1(S3 \ Γ5) from a certain projection of Γ5 on a
plane, which could be different from that of Figure 2. However, pab = pba im-
plies l′ab = l′ba for (a, b) 6= (1, 3) because of the isomorphism I. This means
that in this projection of Γ5, the loops l′ab for (a, b) 6= (1, 3) can be con-
tinuously deformed along the whole edge `ab without meeting a crossing.
Therefore the crossing only occurs between `13 and `24. Then this new pro-
jection is either (a) as in Figure 2, with `24 over-crossing `13, or (b) as it
would appear if Figure 2 was viewed from the back, i.e. with `24 under-
crossing `13. Without loss of generality, we assume the base point of l′ab is
in front of the projected graph in both cases (a) and (b). Furthermore the
relations Eqs. (47)–(51) imply the same relations for l′ab up to cyclic per-
mutation. These relations for l′ab imply that in the case (a), each loop l′ab
circles `ab in a right-handed manner (as in Eq. (24)) with respect to the
orientation of `ab, while in case (b) each loop l′ab circles `ab in a left-handed

manner. Both (a) and (b) imply l′13 = l′24l
′
31l
′−1
24 . However, (b) is ruled out

by the requirement that l′ab cycles `ab in a right-handed manner. Therefore
we conclude that the case (a) is singled out, and l′ab = lab. �

The identification map ι : a 7→ τa produces the numbering of the tetra-
hedra (or vertices) of an abstract 4-simplex using the numbering of the Γ5

vertices and the convention that τa labels the tetrahedron not containing
vertex ā, as in Figure 4. Given such an identification, we have the follow-
ing diagram if the 4-simplex is embedded in a geometrical space with spin
connection ωspin:

π1(S3 \ Γ5)
I←− π1(σ4)

ωflat ↘ ↙ ωspin〈
{H̃ab}

∣∣ Eqs.(33a)− (27)
〉/

conjugation(53)

10The orientation condition for l′ab corresponds to the counter-clockwise choice
for the paths pab or p−1

ab in Eqs. (47)–(51).
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where the isomorphism I is unique in the sense of the previous Lemma. The
isomorphism I determines by restriction the isomorphisms Ia associated to
each of the five tetrahedra. This means that the isomorphisms Ia in the
diagram (41) are unique when determined by a 4-simplex.

The connection ωspin associates to the set of paths pab the holonomies
of an SL(2,C) spin connection:

(54) ωspin(pab) = Uab.

On the other hand, the flat connection representation on S3 \ Γ5 discussed
in Section 2.1, gives

(55) ωflat(lab) = H̃ab.

The above diagram shows that ±ωspin = ωflat ◦ I and hence

(56) ± Uab = H̃ab.

This relation allows us to interpret the holonomies of a flat connection H̃ab

as the holonomies of a spin connection along the paths pab around the 1-
skeleton of an embedded 4-simplex. The + or − sign comes from the fact
that Theorem 2.1 holds for PSU(2) flat connections, and Hab is identified
with the spin connection Uab up to a sign, as discussed in Section 2.2.

Here we are relating the flat connection A on S3 \ Γ5 to the geometry of a
4-simplex embedded in a constant curvature (Lorentzian) spacetime, whose
boundary tetrahedra are constant curvature spacelike tetrahedra with flatly
embedded surfaces. The flat connection A on S3 \ Γ5 is taken to satisfy
the boundary conditions of Section 2.2, which give us Hb(a) = g−1

a H̃abga ∈
SU(2) . In turn, the reconstruction theorem of that section establishes that

the equation
←−∏
bHb(a) = 1 associates to τa the geometry of a non-degenerate

convex spacelike tetrahedron with constant curvature Λa.
11 Hence the inter-

pretation of the Hb(a) in terms of face vectors aabn̂ab is

(57) Hb(a) = exp

[
Λa
3

aabn̂ab · ~τ
]
,

where Λa = ±a|Λ|. For future convenience we introduce

(58) νa = sgn Λa and ν = sgn Λ.

11We only consider the boundary data corresponding to nondegenerate tetrahe-
dral geometries. These data are dense in the space of all boundary data.
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The parameter Λ is a constant for all τa and its sign will be determined
shortly. This constant also introduces a unit of length. Once again aab are
the areas of the convex constant curvature tetrahedron. Note that at this
stage we do not know whether the boundary data induce a sign νa that is
constant throughout the 4-simplex. However, we will prove that this follows
from the requirement that the boundary data are given by the boundary
value of A.

If we let εabn̂ab be the outward-pointing normal to τa and choose the
time-like normal of tetrahedron a to be gauge fixed to (1, 0, 0, 0)T , then n̂ab =
νan̂ab is the spatial normal 3-vector to the triangle ∆ab, parallel transported
to the base point of pab, i.e. to the vertex 1 of the 4-simplex. In fact, a
parallel transport is only needed when ∆ab is not adjacent to 1 (depending
on the pattern of pab).

Up to this point we have studied only the geometry of the individual
tetrahedra that make up a 4-simplex. We turn now to assembling the full
geometry of the 4-simplex from these pieces, and show how this can be
achieved using the holonomies Hb(a) and Gab alone.

The group elements ±ga ∈ SL(2,C) that allow one to put each of the
simplex’s five tetrahedra into the time-gauge also specify the Lorentz frame
of the four surfaces contained in each tetrahedron. As argued at the end of
the last subsection H̃ab = gaHb(a)g−1

a can be interpreted as

(59) H̃ab = exp

[
Λa
3

aabEab(1)

]
where Eab(1̄) is the surface area bivector located at 1̄:

(60) Eab =
[
εαβeαeβ

]
+

(1) of ∆ab,

here the + subscript indicates the self-dual part of the bivector viewed as an
sl2C Lie algebra element. The sl2C algebra is viewed as a 6-dimensional real
Lie algebra with generators ~J := ~τ and ~K := −iτ ; the duality is ? ~J = − ~K
and ? ~K = ~J . Note that Eab(1) is related to n̂ab · ~τ by

(61) Eab(1) = −ga(n̂ab · ~τ)g−1
a .

The set of Eab(1) is defined up to a simultaneous adjoint action of SL(2,C),
which is a local Lorentz transformation in the base frame at 1.

Much like what happens for the n̂ab, a parallel transport (which depends
on the specific pattern of the pab) relates Eab(1) to the actual bivector on
∆ab, whenever ∆ab is not adjacent to 1. For the ∆ab’s adjacent to 3, their
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bivectors are given by Eab(3) = Ω[31]Eab(1)Ω[31]−1 where Ω[ā, b̄] ∈ SL(2,C)
is the holonomy of the spin connection ωspin along the edge (ab).

Finally note that the tetrahedral reconstructions do not automatically
guarantee that the areas of the triangles ∆ab as seen from tetrahedra a
and b coincide. This is because of the ambiguity between aab and 2π − aab
mentioned above. This potential ambiguity does not arise as shown in the
main reconstruction result of [38]:

Theorem 2.3. The flat connections A drawn from a dense subset of the
space MBC

flat (S3 \ Γ5,SL(2,C)), i.e. such that their restriction to the bound-
ary A ∈Mflat(Σ6, SL(2,C)) satisfy the boundary conditions corresponding
to 5 non-degenerate convex constant curvature tetrahedra, each determine a
unique non-degenerate convex Lorentzian 4-simplex geometry with constant
curvature Λ, whose boundary geometry is consistent with the tetrahedral ge-
ometries determined by A.

The proof of the theorem (see [38]) is analogous to that of the three-
dimensional case, and also employs the reconstruction of the 4-simplex’s
Gram matrix

(62) Gram4 ≡ cosh Θab,

where Θab are the boost dihedral angles of the four-simplex. This matrix
contains all the information needed to reconstruct the 4-simplex geometry,
and again this includes the sign of the reconstructed simplex’s curvature.
The Gram matrix is calculated via the equation

(63) cosh Θab = −uI(Ĝab)IJuJ ,

where uI = (1, 0, 0, 0)T , and Ĝab ∈ SO+(1, 3) is the vectorial representation
of Gab ∈ SL(2,C). The non-degeneracy condition corresponds to the require-
ment that the connection does not produce Gab such that uI(Ĝab)

I
Ju

J = 1.
Notice that the theorem implies in particular that all five of the boundary

tetrahedra share the same sign of the curvature, hence

(64) νa = ν = sgn Λ

is a global sign. The theorem also allows one to reconstruct the meaning of
the rotation part of Gab. This is associated to the plane of the triangle ∆ab,
and corresponds to the relative rotation by an angle θab between the frames
of ∆ab as seen from tetrahedra a and b.



i
i

“3-Haggard” — 2020/1/13 — 18:56 — page 1100 — #34 i
i

i
i

i
i

1100 Haggard, Han, Kaminski, and Riello

2.4. Parity pairs

In this final subsection we summarize the flat connection-geometry corre-
spondence and indicate relations between discrete symmetries of the recon-
structed geometry and properties of the flat connections.

The boundary conditions discussed in Section 2.2 require that the flat
connections in MBC

flat

(
S3 \ Γ5, SL(2,C)

)
restrict to flat connections on the

boundary of the graph complement manifold Σ6 = ∂M3, i.e. to connections
inMBC

flat (Σ6, SL(2,C)). In turn these boundary connections reduce to SU(2)
flat connections on each of the 4-holed spheres around the vertices of Γ5.
The boundary data on Σ6 are completely determined by specifying at the
same time:

i) the conjugacy class of the holonomies around a path `ab transverse to
each edge of Γ5. This is equivalent to specifying (one of) the eigenvalues
xab of these holonomies. In particular, the boundary conditions impose
that xab ∈ U(1), instead of being a general complex number;

ii) the eigenvalues xa and x′′a of the products of two pairs of holonomies
computed along the path pairs (cab, cab′) and (cab, cab′′), which encir-
cle three different edges adjacent to the same vertex a, see Figure 2.
Name the paths associated to the above compositions ca and c′′a. Again,
xa and x′′a must be complex numbers of unit norm, i.e. xa, x

′′
a ∈ U(1).

In the next section, we will discuss why it is far more convenient to
substitute x′′a with a coordinate ya, which turns out to be canonically
conjugated (in the sense of symplectic geometry) to xa. In terms of
these variables, known as the Fenchel-Nielsen length and twist respec-
tively, the boundary conditions reduce again to xa, ya ∈ U(1).

The boundary data {xab;xa, ya} ⊂ U(1) fully specify the SU(2) flat con-
nections on the five 4-punctured spheres {Sa}5a=1. The geometrical recon-
struction theorems discussed above imply that these same data encode
completely the geometry of five geometrical constant-curvature tetrahedra.
These tetrahedra are characterized by the fact that the value of their faces’
areas are shared by couples of tetrahedra. This is because, geometrically,
the {xab}b encode the areas of the faces of tetrahedron a. On the other hand
the {xa, ya} fix the remaning two degrees of freedom (a tetrahedron is deter-
mined by 6 independent numbers; think of the edge lengths). At this stage
nothing is enforcing the fact that the shapes of the equi-area faces of two
different tetrahedra are the same, more on this below.
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Note that at fixed areas, the space of tetrahedra parametrized by (xa, ya)
turns out to carry a natural symplectic structure [20], such that the loga-
rithms of these variables are conjugated. We will come back to this fact in
the next section.

Denote a given value of the boundary data {xab;xa, ya} by {x̊ab; x̊a, ẙa}.
The following questions and their answers turn out to be interesting and
useful in later analysis: Does a flat connection A ∈MBC

flat

(
S3 \ Γ5, SL(2,C)

)
that has boundary value consistent with a given set of the boundary data
{x̊ab; x̊a, ẙa} always exist? Provided such a consistent flat connection exists,
is it uniquely determined by the {x̊ab; x̊a, ẙa}?

Both of the above questions have negative answers. Let us explain why:
A generic flat connection inMBC

flat

(
S3 \ Γ5, SL(2,C)

)
satisfies the hypothesis

of Theorem 2.3 and hence corresponds to a geometric 4-simplex. However, as
we discussed above, within the boundary data {x̊ab; x̊a, ẙa} there is nothing
that guarantees the correspondence of the shapes of the triangular faces.
Hence, not every set of boundary conditions {x̊ab; x̊a, ẙa} is the boundary of
a flat connection in MBC

flat

(
S3 \ Γ5, SL(2,C)

)
.

Turning to uniqueness, consider a set of boundary data {x̊ab; x̊a, ẙa},
and a flat connection A ∈MBC

flat

(
S3 \ Γ5, SL(2,C)

)
consistent with them.

Theorem 2.3 states that A corresponds uniquely to a geometric 4-simplex
σ4. However, as the next theorem shows, it is easy to produce from A an-
other flat connection Ã ∈MBC

flat

(
S3 \ Γ5, SL(2,C)

)
whose boundary value

is also consistent with {x̊ab; x̊a, ẙa}. Notice that this does not mean that A
and Ã must have the same boundary values when restricted to Σ6, since
the data {x̊ab; x̊a, ẙa} do not contain information about the longitudinal
holonomies Gab. In fact, it turns out that A and Ã correspond to differ-
ent constant curvature 4-simplices σ4 and σ̃4 related by a parity inversion,

and G̃ab = G−1
ab

†
. In analogy with the previous discussion, we can introduce

the variables yab, conjugated to the xab, which supply a complete set of
coordinates on Mflat (Σ6, SL(2,C)). In these coordinates, the parity pair is

described by {x̊ab, ẙab; x̊a, ẙa} and
{
x̊ab, ˜̊yab; x̊a, ẙa}, where ˜̊yab = 1/ẙab, with

the bar indicating complex conjugation.

Theorem 2.4. Given a set of boundary data [̊xab; x̊a, ẙa] corresponding ge-
ometrically to 5 constant curvature tetrahedra forming the boundary of a
constant curvature 4-simplex, there exists exactly 2 flat connections A, Ã ∈
Mflat

(
S3 \ Γ5, SL(2,C)

)
on the graph complement 3-manifold, whose bound-

ary values are consistent with [̊xab; x̊a, ẙa]. The connections A and Ã corre-
spond to the constant curvature 4-simplices σ and σ̃ which have the same
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intrinsic geometry but different 4d orientations. The pair A & Ã are called
a “parity pair”.

The proof can be found in [20]. The existence of the parity pair A & Ã is
natural, because these connections are complex conjugated to one another
with respect to the complex structure onMflat(S

3 \ Γ5, SL(2,C)), which, in
turn, is induced from the complex group SL(2,C).12 So the boundary values
of A & Ã give the same SU(2) flat connection on each 4-holed sphere Sa;
this implies that they give the same data [̊xab; x̊a, ẙa].

3. Complex Chern–Simons theory: from quantization of a 3d
flat connection to 4d quantum gravity

In the previous sections we established a correspondence between a class
of SL(2,C) flat connections on M3 = S3 \ Γ5 and homogeneously-curved 4d
simplicial geometries. Since a natural way of quantizing flat connections on
M3 exists, and is given by Chern–Simons theory, such a correspondence
provides us a natural way to quantize 4d simplicial geometry. Somewhat
surprisingly, the resulting quantum states are related to discrete general rel-
ativity, in the sense of Regge. More precisely, one finds that the physical
Chern–Simons states induced by the boundary conditions discussed in pre-
vious sections reproduce semiclassically the Hamilton–Jacobi functional of
4d Regge gravity with a cosmological constant, as discretized on homoge-
neosuly curved 4-simplices.

In this section, we are going to prove the previous claims by means of
a WKB approximation of the 3d holomorphic blocks of SL(2,C) Chern–
Simons theory on M3, with the appropriate boundary conditions imposed.
The main technical tool to this end will be the Schläfli identities. Let us,
however, proceed in order.

The SL(2,C) Chern–Simons theory on M3 = S3 \ Γ5 is defined by the
following action [22]:

CS
[
M3

∣∣A, Ā] =
t

8π

∫
M3

tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
(65)

+
t̄

8π

∫
M3

tr

(
Ā ∧ dĀ+

2

3
Ā ∧ Ā ∧ Ā

)
+

t

8π

∫
∂M3

tr (A1 ∧A2) +
t̄

8π

∫
∂M3

tr
(
Ā1 ∧ Ā2

)
,

12Namely A = Ajτj and Ã = Ājτj .
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where A and Ā are the holomorphic and antiholomorphic parts of the
SL(2,C) connection, respectively, where holomorphicity is defined with re-
spect to the natural complex structure of SL(2,C). We will assume the
Chern–Simons couplings

(66) t = k + is and t̄ = k − is

are complex conjugates of one another, that is we will assume k, s ∈ R.
Notice that if k ∈ Z, then exp [i CS] is invariant under large gauge transfor-
mation. Nonetheless, in most of the following discussion, we will avoid this
requirement, and keep k an arbitrary real number [6].

The boundary terms of equation (65) are crucial for imposing the cor-
rect boundary conditions. Or, in other words, they are crucial for the path
integral on M3 to be a well-defined “wave-functional” on half of the Atiyah–
Bott–Goldman phase-space defined on Mflat(M3,SL(2,C)). For this, coor-
dinates (s1, s2) have been chosen on Σ6 = ∂M3, such that s1 is the meridian
direction of Γ5. Thus, in the boundary action, the Ai with i = 1, 2, are the
components of the SL(2,C) connection A along the directions defined by
si. The sign chosen in front of the boundary terms implies that it is the
values of (A1, Ā1), i.e. the meridian part of the connection form, which set
the boundary conditions for the path integral [66]. Loosely speaking, the
longitudinal part of the connection provides then the conjugate variable. As
is customary, all of this can be explicitly read from the boundary part of the
first variation of the action (65), that is, from the presymplectic13 potential
of the theory:

(67) δCS|∂ =
t

4π

∫
∂M3

tr(δA1 ∧A2) +
t̄

4π

∫
∂M3

tr(δĀ1 ∧ Ā2).

This leads us to define

(68) ZCS
(
S3 \ Γ5

∣∣A1, Ā1

)
=

∫
A1,Ā1

DADĀ e
i

~ CS
[
S3\Γ5

∣∣A,Ā]
,

where (A1, Ā1) set up the boundary conditions on Σ6, whereas the values
of (A2, Ā2) on the boundary are implicitly integrated over in the functional
integral.

13 Presymplectic means that gauge transformations have yet to be modded out
and hence that the ensuing presymplectic 2-form δ[1δ2]CS|∂ is degenerate.
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The prefactor to the action, 1/~ ∈ R, has to be viewed as a scaling
parameter for the couplings (t, t̄). In particular, the semiclassical limit ~→ 0
can be simply implemented by taking (t, t̄)→∞ uniformly.

In the formula above, ZCS
(
S3 \ Γ5

∣∣A1, Ā1

)
is viewed as a “wave-

functional” of Chern–Simons theory, i.e. it is viewed as a (possibly distri-
butional) state in the Hilbert space H(Σ6) defined on the boundary Σ6.
The Hilbert space H(Σ6) is a quantization of Mflat(Σ6, SL(2,C)), the mod-
uli space of SL(2,C) flat connections on the closed genus-6 2-surface Σ6

[7, 8, 24, 32, 67, 68]. In general, the moduli space of SL(2,C) flat connec-
tions on a closed genus-g 2-surface Σg,Mflat(Σg,SL(2,C)), is a hyper-Kähler
variety of dimC = 6g − 6, known as the Hitchin moduli space [31].

In order to study spaces of this type, it is convenient to decompose
them into fundamental units. These are given by “pair of pants”, or “trin-
ions”, which are nothing but 3-holed spheres. A closed 2-surface Σg can be
decomposed into pairs of pants by cutting through 3g − 3 closed meridian
curves {cm}3g−3

m=1 . A flat connection on Σg hence defines, along the merid-
ian cycles {cm}, a set of 3g − 3 holonomies {Hm} whose eigenvalues {xm}
can be used as (a maximal commuting subset of the) canonical coordi-
nates on Mflat(Σ6, SL(2,C)). These, together with their canonically con-
jugate variables {ym}, constitute the Fenchel–Nielsen (FN) coordinates on
Mflat(Σ6,SL(2,C)) [35]. They are commonly known as the length, {xm},
and twist, {ym}, FN coordinates.

When written in terms of the FN coordinates, the Atiyah–Bott–Goldman
symplectic 2-form on Mflat(Σg, SL(2,C)), which can be obtained by sym-
plectic reduction of the presymplectic form induced by the Chern–Simons
action (see footnote 13), reads simply:

(69) ωCS = − t

2π

3g−3∑
m=1

δym
ym
∧ δxm
xm

+ c.c.

We have used here the notation δym and δxm to emphasize that these are
coordinates on the moduli space of flat connections rather than on Σg. This
space is finite dimensional and so the symbol δ does not indicate here any
functional variation, just a standard differential on Mflat(Σg,SL(2,C)).

The construction of the FN coordinates and their relation to the 4-
simplex geometry is detailed in the next section. The reader not interested
in these details can safely skip it. For her, here is a very brief—heuristic—
account of this construction: from equation (67), one sees that the variable
canonically conjugated to the meridian holonomy must be related to the
longitudinal one; indeed, one can think of ym as being given by the eigenvalue
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of the longitudinal holonomies Gm transverse to Hm, once the source and
target frames of Gm have been appropriately fixed.

3.1. Complex Fenchel–Nielsen coordinates on Mflat(Σ6, SL(2,C))

In this section, we review the construction of FN coordinates on
Mflat(Σ6, SL(2,C)). After choosing a pair of pants (or trinion) decompo-
sition of Σ, we focus on two such pairs of pants Ta and Tb, and the cylinder
connecting them. At each pair of pants, we choose base points, oa and ob.
Starting and ending at these base points, we consider the holonomies Hab

and Hba, respectively, which encircle once the tube connecting Ta to Tb.
The holonomies Hab and Hba can then be diagonalized by an appropriate

choice of reference frame at oa,b. In formulas:

(70) Hab = Mab

(
xab 0

0 x−1
ab

)
M−1
ab , where Mab = (ξab, Jξab) ,

for some normalized spinors ξab ∈ C2. A spinor ξ is here said to be normal-
ized, iff 〈ξ, ξ〉 = 1, where

(71) 〈ξ, η〉 = ξ̄1η1 + ξ̄2η2,

and the spinor Jξ is orthogonal to ξ and is defiened by the aaction of the
antilinear map J :

(72) J

(
ξ1

ξ2

)
≡
(
−ξ̄2

ξ̄1

)
.

For connections satisfying our boundary conditions, i.e. for SL(2,C) connec-
tions that reduce to SU(2) connections in proximity of the graph vertices,
the eigenvalue xab must then satisfy xab ∈ U(1). Also, for the geometry to
be non-degenerate, xab 6= 1. The latter condition will be assumed in the
following.

Now, the parallel transport Gab is defined as the holonomy of the flat
connection A between ob to oa (holonomies compose from the right) along
the tube connecting Tb to Ta. Notice that there is no canonical choice of
path along which to define Gab.

From the flatness of the connection A, it follows immediately that

(73) Hab = GabHbaGba,
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and Gba ≡ G−1
ab . From this equation, and equation (70), one obtains

(74)

(
xab 0

0 x−1
ab

)
M−1
ab GabMba = M−1

ab GabMba

(
xab 0

0 x−1
ab

)
,

which in turn implies that M−1
ab GabMba is diagonal.14 This is readily proved

by expressing this matrix in the basis {1, σi} and commuting it with 1
2(xab +

x−1
ab ) + 1

2(xab − x−1
ab )σ3. Thus,

(75) M−1
ab GabMba =

(
λab 0

0 λ−1
ab

)
,

and so,

(76) Gabξba = λabξab.

The Fenchel–Nielsen twist coordinate yab is closely related to λab, but
the two are not precisely the same. They differ by a particular cross-ratio of
inner products between the {ξab′ , ξa′b}, where b′ ranges over the three links
emanating from Ta, and similarly for a′.

The cross ratios just guarantee scale invariance in the choice of a basis
at oa,b, while the inner products between the {ξab′ , ξa′b} are crucial to “pick
out the right components” of Gab in the Poisson brackets. In other words,
whereas the Hab start and end at the same point, and the trace is good
enough to select the invariant part of these holonomies, the Gab must be
sandwiched in between their starting and ending reference bases.

The construction proceeds as follows. Start by observing that the canon-
ical Atiyah–Bott–Goldman brackets (the Lie algebra basis is chosen to be
τi ≡ i

2σi)

(77) {Aiµ(x), Ajν(y)} = −8π

t
εµνδ

ijδ(2)(x, y),

induce the following brackets between the parallel transports Hab and Gba:

(78)
{
Gba ⊗, Hab

}
=

2π

t

(
G[ob, p]σjG[p, oa]

)
⊗
(
H[oa, p]σjH[p, oa]

)
where p is the (by construction) unique intersection point between the
paths defining Gba and Hab.

15 The point p, also splits these paths in two,

14Mab is not the inverse of Mba.
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and hence provides the decompositions Gba = G[ob, p]G[p, oa] and Hab =
H[oa, p]H[p, oa].

Defining the SL(2,C) invariant bi-linear inner product

(79) 〈ξ ∧ η〉 ≡ 〈Jξ, η〉 = εαβξ
αηβ,

we have, after a few lines of algebra,{
〈ξba′ ∧Gbaξab〉, tr(H)

}
=

2π

t
〈Gabξba′ ∧ σjξab〉 tr(σjHab),(80)

where we used the identity MσjM
−1 ⊗ σj = σj ⊗M−1σjM , and the fact

that the holonomy Hab(p), representing Hab with base point parallel trans-
ported to p, can be expressed in two equivalent ways (thanks to the flatness
of the connection A):

H[p, oa]H[oa, p] = Hab(p) = G[p, oa]HabG[p, oa]
−1.(81)

Now, at oa, Hab(oa) ≡ Hab, is diagonal precisely in the basis {ξab, Jξab}, thus
using equation (70) and the identity MabσjM

−1
ab ⊗ σj = σj ⊗M−1

ab σjMab, we
find {

〈ξba′ ∧Gbaξab〉, tr(H)
}

= (xab − x−1
ab ) 〈ξba′ ∧Gbaξab〉.(82)

Or, equivalently,

(83)
{

ln〈ξba′ ∧Gabξab〉, lnxab
}

= −2π

t
.

Thus, we see that the contraction above extracts the non-trivial part of
the brackets (78).

15Of course, according to our construction the paths defining Gba and Hab inter-
sect at the point oa, as well. However, it is not too hard to convince oneself that the
construction is invariant under homotopic deformations of the paths. This means
that one can regularize the paths for the Hab by choosing them to first follow the
path defining Gba out of oa and up to the point p, and then to abruptly depart
transversally. The only contributions to the Atiyah–Bott–Goldman brackets then
come from the loop leaving and arriving at p, while the tail to oa plays no role.
This trick can be used to regularize our expressions. Alternatively, one can consider
a homotopically equivalent loop to define Hab, which does not start at oa and only
intersects the path defining Gba at p. Since the result of the construction only in-
volves the eigenvalues of Hab, one can confidently extend this result to paths whose
base point is arbitrarily close to oa.
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To define the canonically conjugate FN coordinates we need to (i) sym-
metrize between the two choices of a′ in the above formula, i.e. between the
two punctures at Tb not touched by the parallel transport along the tube
connecting Tb to Ta, and (ii) find a combination of the inner products that
is invariant under meaningless rescaling of the basis vectors. These two re-
quirements are readily satisfied by the following definition of the FN twist
coordinate:

(84) τab = − 〈ξba′ ∧ ξba′′〉
〈ξba′ ∧Gbaξab〉 〈ξba′′ ∧Gbaξab〉

〈ξab′ ∧ ξab〉 〈ξab′′ ∧ ξab〉
〈ξab′ ∧ ξab′′〉

,

where a′, a′′ 6= a (respectively, b′, b′′ 6= b) label the two other punctures at
Tb (respectively, Ta). From this expression it is clear that only the two terms
in the first denominator contribute to the Poisson bracket {τab, xab}, while
the other factors just ensure the requirements above are satisfied.

Also, from the SL(2,C) invariance of the inner product 〈· ∧ ·〉, it readily
follows that the various factors entering τab can be computed at any point
of the surface, provided one defines the parallel transported sections sab, by
(d−A)sab = 0 and sab(p0) = s0

ab, for s0
ab an eigenvector (determined up to

complex rescaling) of Hab(p0) based at some point p0 on the tube connect-
ing Ta and Tb. Similar definitions are understood for all the other choices of
indices. We emphasize that both the complex normalization of s0

ab and the
point at which it is defined are completely irrelevant at this point (cf. foot-
note 15). This shows that the the FN coordinates can ultimately be defined
in a completely geometrical way, without reference to any basis. For our
purposes, however, it is easiest to work in the basis provided above, since it
allows for a direct translation to the underlying simplicial geometry.

One last technical consideration is in order: being “quadratic” in Gab, the
complex FN twist variable τab is actually a coordinate on the moduli space
of PSL(2,C) flat connections, rather than on the moduli space of SL(2,C)
flat connections. A lift to the coordinate yab, such that

(85) y2
ab = τab,

is then needed to complete the construction of the SL(2,C) FN twist coor-
dinate.

To summarize, given the eigenvalues of xab and λab of Hab and Gab,
respectively (the latter as expressed in the proper frame at each oa, defined
by {ξab, Jξab} as above), the SL(2,C) FN coordinates and their Poisson
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brackets are

(86) xab and yab = λab
√
χab(ξ) with

{
ln yab, lnxcd

}
=

2π

t
δ(ab),(cd),

where a branch of the square root has been arbitrarily chosen and χab(ξ)
stands for the cross ratio

(87) χab(ξ) = − 〈ξba′ ∧ ξba′′〉
〈ξba′ ∧ ξba〉 〈ξba′′ ∧ ξba〉

〈ξab′ ∧ ξab〉 〈ξab′′ ∧ ξab〉
〈ξab′ ∧ ξab′′〉

.

3.2. Holomorphic 3d blocks and quantum flatness

The previous analysis suggests the following definitions for Darboux coordi-
nates (um, vm):

(88) xm = eum and ym = e−
2π
t vm ,

where an arbitrary branch of the logarithm has been chosen. Analogous
equations are understood to define the complex conjugate variables (ūm, v̄m).
Hence, the Atiyah–Bott–Goldman symplecitc form on Mflat(Σg, SL(2,C)),
see equation (69), reads

(89) ωCS =

3g−3∑
m=1

δvm ∧ δum + c.c.,

or, in terms of Poisson brackets,

(90) {um, vn} = δmn = {ūm, v̄n}.

The above relations lead one to introduce the quantum operators (ûm, v̂m)
and (ˆ̄um, ˆ̄vm) with canonical commutation relations

(91)
[
ûm, v̂n

]
= i~δmn, and

[
ˆ̄um, ˆ̄vm

]
= i~δmn.

Equivalently, in terms of the operators (x̂m, ŷm), one finds

(92) x̂mŷm = e−
2πi~
t ŷmx̂m, and x̂nŷm = ŷmx̂n, when n 6= m,

with similar equations for (ˆ̄xm, ˆ̄ym).
The Hilbert space H(Σg) of “quantum flat-connections” can hence be

constructed as the (Schrödinger) L2-type representation of the above canon-
ical commutation relations: a state in H(Σg) is a wave function of (u, ū),
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on which (û, ˆ̄u) act by multiplication and (v̂, ˆ̄v) by derivation, e.g. v̂ =
−i~∂u. In particular, the path integral of equation (68) should be written
as ZCS (M3|u, ū).

The classical solutions to the Chern–Simons equations of motion F (A) =
0 = F (Ā) on M3 define a holomorphic Lagrangian subvariety LA(M3) in
Mflat(Σg = ∂M3,SL(2,C)) [32, 33]. At least locally in

Mflat(Σg = ∂M3, SL(2,C)),

this Lagrangian subvariety is described by a set of (Laurent) polynomial
equations,

(93) Am(x, y) = 0 m = 1, . . . , 3g − 3.

In quantum Chern–Simons theory, the holomorphic part of LA(M3) can
then be quantized via the introduction of an operator version of the above
equations,

(94) Âm(x̂, ŷ; ~)Ψ(u) = 0.

Here Âm(x̂, ŷ; ~) is the quantization of Am(x, y) defined by a specific op-
erator ordering [69], and consequently, Ψ ∈ H(∂M3) is the physical wave
function of the holomorphic part of SL(2,C) Chern-Simons theory asso-
ciated with M3. It is a holomorphic function of u as a consequence of the
holomorphicity of LA and Am(x, y) = 0.

The functional integral ZCS(M3|u, ū) of equation (65) must satisfy at
the same time the above operator constraint and its complex conjugate,

(95) Âm(x̂, ŷ, ~)ZCS
(
M3

∣∣u, ū) = 0 = Âm(ˆ̄x, ˆ̄y, ~)ZCS
(
M3

∣∣u, ū) .
It was shown in [6, 25] that ZCS

(
M3

∣∣u, ū) can be in fact written as a sum
over branches of factorized wave functions

(96) ZCS
(
M3

∣∣u, ū) =
∑
α,ᾱ

nα,ᾱ Z
(α)
CS

(
M3

∣∣u) Z(ᾱ)
CS

(
M3

∣∣ ū) .
This expression introduces the “holomorphic 3d blocks” Z

(α)
CS

(
M3

∣∣u) which
satisfy the holomorphic operator constraints:

(97) Âm (x̂, ŷ, ~)Z
(α)
CS (M3|u) = 0 ∀ α,
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and similarly for the antiholomorphic part

(98) Âm(ˆ̄x, ˆ̄y, ~)Z
(ᾱ)
CS (M3 | ū) = 0 ∀ ᾱ.

These are the central objects to be studied below. Each block, Z
(α)
CS (M3|u),

can be understood using Morse theory as a path integral of the holomorphic
SL(2,C) Chern-Simons theory, heuristically identified with the holomorphic
part of equation (65), as defined along a certain integration cycle which
encloses a single saddle point α, i.e. a classical solution in the form of a flat

connection on M3 [6]. Each of the integration cycles defining a Z
(α)
CS (M3|u)

is known as a “Lefschetz thimble” of the Chern-Simons path integral.
Most interestingly for the purposes of this paper, the holomorphic 3d

block, seen as an asymptotic expansion in ~, can also be understood from
the viewpoint of a systematic WKB analysis of the above operator constraint
equations. At lowest order in ~, this reads16

(99)

Z
(α)
CS

(
M3

∣∣u) = exp

 i~
(u,v(α))∫

(u0,v0)
C⊂LA

ϑ+ · · ·

 ,

Z
(ᾱ)
CS

(
M3

∣∣ ū) = exp

 i~
(ū,v̄(ᾱ))∫

(ū0,v̄0)
C⊂LA

ϑ̄+ · · ·

 .
where ϑ and ϑ̄ are the holomorphic and anti-holomorphic parts of the Liou-
ville 1-form (symplectic potential) onMflat(∂M3,SL(2,C)). As discussed in
the previous section, these can be written locally in terms of the Fenchel–
Nielsen coordinates (xm, ym) and (x̄m, ȳm) as

(100) ϑ =

(
− t

2π

) 3g−3∑
m=1

ln ym
δxm
xm

and ϑ̄ =

(
− t̄

2π

) 3g−3∑
m=1

ln ȳm
δx̄m
x̄m

.

16 In this equation, “· · · ” contains the subleading terms of log ~ and∑∞
n=0 S

(α)
n (u)~n. If M3 is a knot complement [71], known techniques related to

topological recursion allow one to recursively [25] compute all the quantum correc-
tions Sn(u)(α). The computation of coefficients nαᾱ in equation (96) is described in
[6]. Hence, the above discussion provides a perturbative definition of the holomor-

phic 3d block Z
(α)
CS

(
M3

∣∣u). A nonperturbative definition has also been proposed in
terms of a “state-integral model” [8, 25, 41].
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In these formulas, α labels the branches of the Lagrangian subvariety LA

that arise from solving Am(x, y) = 0 and on which the vm(α) are single-
valued functions of um.

The integral in equation (99) is performed along a contour C within the
Lagrangian subvariety LA connecting the flat connection (u, v(α)) in the
branch α to a reference flat connection (u0, v0). In our context, both flat
connections at the end points of C are covered by a single FN coordinate
chart. The last two equations provide the starting point of our semiclassical
analysis leading to 4d simplicial quantum gravity in the next section.

For now, we conclude this discussion with a series of more technical
remarks, which can be skipped on a first reading.

Overall phase. The freedom in fixing the overall phase of the wave func-
tion ZCS

(
M3

∣∣u, ū) is, of course, related to the choice of a reference flat-
connection (u0, v0), (ū0, v̄0). Let (u, ū) be the boundary values defining the
path integral ZCS

(
M3,

∣∣u, ū); we can choose the reference flat connection
to be a pair of solutions (u, v(α0)) , (ū, v̄(ᾱ0)) of Am(u, v) = 0, such that
(α0, ᾱ0) denote reference branches. Then, the phase difference between an-
other pair of flat connections (u, v(α)) , (ū, v̄(ᾱ)) in the branches α, ᾱ and
the reference pair (u, v(α0)) , (ū, v̄(ᾱ0)) will be given by

(101)

Z
(α)
CS

(
M3

∣∣u) = exp

 i~
(u,v(α))∫

(u,v(α0))
C⊂LA

ϑ+ · · ·

 ,

Z
(α)
CS

(
M3

∣∣ ū) = exp

 i~
(ū,v̄(α))∫

(ū,v̄(α0))
C⊂LA

ϑ̄+ · · ·

 .
Integer k. When Re(t) = k ∈ Z and ~−1 ∈ Z (once again, ~−1 is here
understood solely as a scaling parameter for the couplings (t, t̄)), the La-
grangian subvariety LA becomes quantizable, which means that the integrals
of equation (99) do not depend on the choice of the contour since

∮
ϑ ∈ 2π~Z

on LA. This fact has a beautiful algebraic K-theoretical interpretation: in-
deed, LA is Lagrangian in a stronger sense, i.e. it is a K2-Lagrangian subvari-
ety [33, 69, 72]. A very brief explanation of this fact is given in Appendix A.
In the case of knot-complement 3-manifolds, the fact that LA is quantizable
was understood very early on by [73–76].
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Logarithmic variables. Although the Lagrangian subvariety LA is de-
fined by Am(x, y) = 0 in terms of the variables (xm, ym), the holomorphic

3d block Z
(α)
CS (M3|u) is rather a function of the logarithmic coordinates um,

satisfying equation (97). This means that Z
(α)
CS (M3|u) need not, in general,

be a periodic function of u under u→ u+ 2πi. Therefore, Z
(α)
CS (M3|u) and

Z
(α′)
CS (M3|u) have to be considered two different 3d holomorphic blocks even

when v(α) and v(α′) give the same ym = e−
2π

t
vm . The reason is essentially

that Z
(α)
CS (M3|u) is defined by the path integral of an analytic continuation

of Chern–Simons theory with t extended to an arbitrary complex number
(see [6], as well as the second reference in [8]): by relaxing the requirement

that k ∈ Z, one defines Z
(α)
CS (M3|u) as a path integral on the covering space

of gauge equivalent classes of connections, which means that configurations
related by large gauge transformations should not be identified.

The integration contour C appearing in the formulas above strictly speak-
ing lies in the cover space of LA. In the analytic continued Chern–Simons
theory, we have

∮
v · δu = 0 on the cover space of LA, which is explained in

Appendix A. Hence, fix u, and consider (u, v(α)) and (u, v(α′)) two differ-
ent solutions corresponding to the same flat connection (x, y) on M3, where
v(α), v(α′) are different lifts of y = e−

2π

t
v to the cover space. Then, v(α) and

v(α′) differ by an integer multiple of it. Thus the classical terms in equation

(99), which are
∫ (u,v(α))

ϑ and
∫ (u,v(α′))

ϑ, must differ by an integer multiple
of it u. This can be used to show that there is no difference in the quantum

corrections between S
(α)
n (u) and S

(α′)
n (u) [25].

3.3. Asymptotics of holomorphic 3d block and simplicial
quantum gravity

After this general review on the quantization of flat connections on a three
manifold, we turn our attention back to those connections satisfying the
“geometricity” boundary conditions that we introduced in the first part of
this paper. These boundary conditions allow a one-to-one mapping between
flat connections and homogeneously curved 4d simplicial geometries.

The content of the needed boundary conditions is the following: in the
vicinity of each vertex of Γ5 ∈ S3, the SL(2,C) flat connection reduces to
an SU(2) flat connection. To express this conditions in terms of the FN
coordinates, we introduce an adapted pair of pants decomposition of Σ6,
the tubular neighborhood of Γ5. Since Σ6 is already naturally decomposed
into five 4-holed spheres Sa, a = 1, . . . , 5, we just need to split each of these
into two pairs of pants (Ta, T ′a). As a result, we obtain the following two sets



i
i

“3-Haggard” — 2020/1/13 — 18:56 — page 1114 — #48 i
i

i
i

i
i

1114 Haggard, Han, Kaminski, and Riello

of FN coordinates: {xab, yab}a>b which are attached to the tubes connecting
two 4-holed spheres Sa and Sb, and {xa, ya}a, which resolve the internal
structure of each 4-holed sphere Sa.

As a consequence of the boundary conditions, the FN lengths coordinates
must have unit norm, i.e.

(102) xab, xa ∈ U(1),

and, in addition, the pairs {xa, ya} have to parametrize an SU(2) flat con-
nection on Sa with given conjugacy classes {xab}b,b 6=a associated to its holes.

Thanks to the geometric correspondence explained in Section 2.3, a holo-
morphic 3d block Z(α)(M3|u) that solves the A-polynomial equation (97),
and moreover, satisfies the above boundary conditions can be readily in-
terpreted as a quantum state of a 4d simplicial geometry peaked around a
particular classical geometry. This peaking cannot be arbitrarily sharp, due
to the Heisenberg relations between xa and ya.

In this section, we analyze the asymptotic behavior of such a Z(α)(M3|u)
as ~→ 0, and find evidence that it corresponds to a physical state of sim-
plicial 4d Quantum Gravity.

Consider a set of boundary data [xab;xa, ya] satisfying the geometricity
(and non-degeneracy) conditions. Theorem 2.4 states that there are then
exactly two connections A and Ã in MBC

flat(M3 = S3 \ Γ5,SL(2,C)) that are
consistent with the boundary data, and which correspond precisely to the
two orientations of a geometric homogeneously curved 4-simplex.

These two bulk connections A and Ã in M3 = S3 \ Γ5, induce on the
boundary ∂M3 = Σ6 two different flat connections, which we call A and
Ã, respectively. The two connections, A = [xab, yab;xa, ya] and Ã = [xab, ỹab;
xa, ya], are covered by a single FN coordinate chart. The 10 twist variables
yab differ from ỹab by a parity transformation in the simplicial geometry, and
must therefore be related by a simple transformation. As the reconstruction
theorem of Section 2.3 suggests xab = euab , yab = e−

2π

t
vab and ỹab = e−

2π

t
ṽab

are related to the areas and (hyper)dihedral angles of the 4-simplex in the
following manner:

uab = −iνΛ

6
aab + iπsab + 2πiMab,(103)

vab(α) =
t

4π
νΘab +

it

2π
ν θab −

t lnχab(ξ)

4π
− itνN ′ab,(104)

ṽab(α̃) = − t

4π
νΘab +

it

2π
ν θab −

t lnχab(ξ)

4π
− itνÑ ′ab,(105)
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where the reader will recall ν ∈ {±1} is a global sign, sab ∈ {0, 1}, and
Mab, Nab, Ñab ∈ Z are arbitrary integers related to the (necessitated) lift
to logarithmic FN variables (u, v). The relation between u and the areas
and between v and the boost hyperdihedral angles are made more plausible
by Eqs. (59) and (63), for further details and a proof see [20].

A similar lift is presupposed for the variables [xa, ya], which parametrize
the shape of the five tetrahedra of fixed areas {aab}.17 In the following, an
important role will be played by the difference between vab(α) and ṽab(α̃).
This is given by

(106) vab(α)− ṽab(α̃) =
t

2π
ν
(

Θab + 2πiNab

)
,

where Nab = Ñ ′ab −N ′ab ∈ Z (note that the logarithm branches of α and α̃
need not be related).

As we have already discussed, there is an overall phase ambiguity in the
3d holomorphic blocks. Of course, this ambiguity cannot be removed, since
it is intrinsic to the quantum formalism. However, what really matters in the
WKB scheme discussed above, is the phase difference between the various
contributions. This quantity has an absolute meaning, and it is what we
evaluate. A convenient way of doing this is to fix the reference connection
in the integrals of equation (99) (or (101)) to be e.g. (u, v(α̃)). In this way,
the phase we are interested in calculating is the leading order of

Z(α)
(
M3

∣∣u) = exp

[
i

~
Iαα̃

(
u, v(α), v(α̃)

)
+ · · ·

]
(107)

with Iαα̃

(
u, v(α), v(α̃)

)
=

(u,v(α))∫
(u,v(α̃))
C⊂LA

ϑ.

For completeness, we recall here that the Liouville 1-form ϑ is given by

(108) ϑ =
∑
a<b

vabδuab +

5∑
a=1

vaδua,

where δ is a finite dimensional differential in the (u, v) space (we adopt this
notation to avoid confusion with the differential on M3 or Σ6).

17A tetrahedron is completely fixed by its 6 edges, therefore to the 4 areas 2
more parameters have to be added. See [38] for a detailed analysis of this fact in
the homogeneously curved case.
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To evaluate the integral above, it is useful to have a more geometric
picture in mind. Recall that the set of solutions to the operator constraint
of equation (97) defines a Lagrangian subvariety LA =Mflat(M3,SL(2,C))
within Mflat(∂M3,SL(2,C)). Theorem 2.4 can be rephrased as stating that
the plane P[xab;xa,ya] of constant [xab;xa, ya] intersects LA in precisely two
points, [xab, yab;xa, ya] and [xab, ỹab;xa, ya], corresponding to two 4-simplices
differing only be their parities. This is schematically represented in Figure 5.
The idea is that, instead of directly attempting the calculation of the integral
Iαα̃ (u, v(α), v(α̃)), we first evaluate its variation under a slight change of
the planes P[xab;xa,xa]—or more precisely of their lifts P[uab;ua,va]—and then
integrate this variation.

Figure 5: The Lagrangian subvariety LA and the plane P[xab;xa,ya] intersect
at 2 different points. The bent (green) curve is the integration contour C lying
in LA, and connects the pair of intersection points. The (orange) vertical
line represents the plane P[xab;xa,ya] and intersects C at 2 points. The dashed
(orange) vertical line represents the variation P[xab;xa,ya](η) from P[xab;xa,ya].
The second plane P[xab;xa,ya](η) intersects LA at a different pair of points,
which are also connected by the extended integration contour C(η). The 2
(green) segments in between the (orange) line and dashed (orange) line are
the curve extensions δC = c ∪ c̃. In this figure we suppress the coordinates
xa, ya.
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To do this, we introduce a one-parameter family of boundary data
[xab(η);xa(η), ya(η)], with η ∈ [0; 1], all compatible with some 4-simplex ge-
ometry. This family can be readily lifted to [uab(η);ua(η), va(η)]. The varia-
tions involved in this family being smooth, they do not allow for changes in

the lifts nor in the branches α and α̃ in which the intersections v
(α)
ab (η) and

v
(α̃)
a (η) live. Hence, we define the variation

(109) δηI
α
α̃ (η) = Iαα̃ (η + δη)− Iαα̃ (η)

where Iαα̃ (η) is a shorthand notation for Iαα̃

(
u(η), v(α)(η), v(α̃)(η)

)
. Because

LA is Lagrangian there is a freedom in the contour of integration C entering
the definition of Iαα̃ , we use this freedom to deform the contour so that it
contains the path parametrized by η, that is C ⊃ Cη where

(110) Cη =
⋃
η

(
LA ∩ P[uab(η);ua(η),va(η)]

)
.

Now, Cη is composed by two portions, Cη = c ∪ c̃, contained in the
branches α and α̃, respectively (see Figure 5). As a result, δηI

α
α̃ can be

expressed as the sum of two line integrals contained in c and c̃. Developing
these integrals at first order in δη, we find

δηI
α
α̃ =


δη∫

0
c⊂LA

−
δη∫

0
c̃⊂LA


(∑
a<b

vabδuab +
∑
a

vaδua

)
(111)

=
∑
a<b

(v(α)ab − v(ã)ab) δηuab + · · · .

Here the dots stand for second order corrections in δη2, while δηuab is the
first order development of uab(η + δη)− uab(η). Furthermore, we used the
fact that the contributions coming from the two branches to the integral of∑

a vaδua cancel each other (exactly). This is because the integrations along
each section have opposite orientation and va and ua are the same on each
portion because they are fixed by the boundary conditions.

Now, using the geometric correspondence of equation (105), one finds
that at first order

(112) δηI
α
α̃ =

(
Λt

12πi

)∑
a<b

Θabδηaab +

(
Λt

6

)∑
a<b

Nabδηaab.
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Since η was supposed to parametrize a continuous family of actual 4-simplex
geometries, the above variation can be integrated thanks to the Schläfli
identities, which state that for a continuous family of homogeneously curved
4-simplices,

(113) δηVolΛ4 = Λ−1
∑
a<b

aabδηΘab,

where VolΛ4 is the 4-volume of the homogeneously curved 4-simplex of cur-
vature Λ. Hence,

(114) Iαα̃ =

(
Λt

12πi

)(∑
a<b

aabΘab − ΛVolΛ4 + Cαα̃

)
+

(
Λt

6

)∑
a<b

Nabaab.

Notice that in this expression the dependence of branches α, α̃ is contained
in the integration constant Cαα̃ , as well as in the terms

(
Λt
6

)∑
a<bNabaab.

We will comment more about them in the later paragraphs. Proofs of the
Schläfli identity can be found in, e.g. [43, 79], see also [80] for a symplectic
and semiclassical perspective.

From the previous equations, we deduce the following leading order ex-
pression for the holomorphic 3d block with our boundary condition imposed,

Z
(α)
BC(M3|u):

Z
(α)
BC(M3|u) = exp

[
i

~

(
Λt

12πi

)(∑
a<b

aabΘab − ΛVolΛ4

)
(115)

+
i

~

(
Λt

12πi

)
Cαα̃ +

i

~

(
Λt

6

)∑
a<b

Nabaab + · · ·

]
.

To go further with our analysis, it is important to recall that—although
the holomorphic 3d block studied above is the fundamental unit of the CS
quantum state—the full quantum state is given by a sum of products of
holomorphic and antiholomorphic blocks, as in equation (96). In particu-
lar, the product of the holomorphic block above and its antiholomorphic
counterpart gives

Z
(α)
BC

(
M3

∣∣u)Z(ᾱ)
BC

(
M3

∣∣ ū)(116)

= exp

[
i

~
2Re

(
Λt

12πi

)(∑
a<b

aabΘab − ΛVolΛ4

)

+
i

~
2Re

(
Λt

12πi
Cαα̃

)
+
i

~
2Re

(
Λt

6

)∑
a<b

Nabaab + · · ·

]
.
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The anti-holomorphic block is defined by complex conjugation of (u, v(α))
with the reference being the complex conjugate of (u, ṽ(α̃)).

Given our phase convention, we find that at leading order in ~ the phase
of the above product vanishes for the branch given by α→ α̃. Therefore,
assuming that the coefficient nα,ᾱ in equation (96) is the same for α and α̃
(which is more than reasonable given the symmetry which relates the two
branches), we find that the total wave function—up to an irrelevant global
phase—is

ZBC(M3|u, ū) ∼ cos

[
ΛIm(t)

12π~

(∑
a<b

aabΘab − ΛVolΛ4

)
(117)

+ Im

(
Λt

12π~
Cαα̃

)
+ Re

(
Λt

6~

)∑
a<b

Nabaab + · · ·

]
.

This is our main result. A few comments are in order. First of all let us
explain the notation: ∼ highlights the fact that an irrelevant overall phase
has been neglected (and, conversely, the presence of a cosine highlights the
relevant interference between the two branches), whereas the ellipsis · · ·
indicates that, as usual, only the leading order in ~ has been taken into
account. Second, and most importantly, in the expression above we recognize
the appearance of the Hamilton–Jacobi functional for General Relativity on
a homogeneously curved 4-simplex. This is the on-shell Regge action for such
a 4-simplex [43, 81]:

(118) SRegge =
1

8πGN

(∑
a<b

aabΘab − ΛVolΛ4

)
.

This observation allows us to identify the (inverse) Newton constant with
the imaginary part of the CS coupling t:

(119) GN =

∣∣∣∣ 3

2ΛIm(t)

∣∣∣∣ .
Or, in terms of the (squared) Planck length `2Pl = 8π~GN,

(120)

∣∣∣∣ Im(t)

~

∣∣∣∣ =

∣∣∣∣ 12π

Λ`2Pl

∣∣∣∣ ,
where dimensionless quantities are now being compared. This relation with
the on-shell Regge action is what allows us to claim a relation between
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the quantization of SL(2,C) flat connections on S3 \ Γ5 with appropriate
boundary conditions and simplicial 4d Quantum Gravity with cosmological
constant.

The Regge action, though, is not the only term appearing in the lead-
ing order expression of ZBC(M3|u, ū). This takes us back to the integration
constant Cαα̃ , which—as such—must be independent of the geometry. This
constant is actually expected to depend on the behavior of LA at the singu-
larity yab = ỹab where the two branches meet, and the geometry degenerates.
These kinds of contributions have been studied extensively in the literature
on WKB and semiclassical approximations, where they are known as Maslov
indices [82, 83]. This term is similar to the phase offset which appears in the
asymptotics of the 3d Ponzano–Regge model with respect to the standard
3d Regge action [84–86]. Finally, we are left with the ambiguity associated
with the logarithmic lifts, which is given by

(121) Re

(
Λt

6~

)∑
a<b

Nabaab.

To start with, let us notice that this ambiguity does not affect the asymp-
totics if Re(t) = 0. However, requiring that this ambiguity is not present in
the generic case is equivalent to asking that the areas aab of the 4-simplex
triangles be quantized:

(122) aab ∈
12π~

ΛRe(t)
Z.

This corresponds to an equidistant spacing in the area spectrum given by

(123) ∆a =
Im(t)

Re(t)
`2Pl.

This condition will be analyzed again in the next section, where it will
acquire a special meaning in relation to an explicit imposition of the desired
boundary conditions inspired by Loop Quantum Gravity.

4. Wilson graph operator and boundary conditions

In the previous sections we studied complex Chern–Simons theory on the
Γ5 graph complement 3-manifold M3, with certain boundary conditions.
We also saw how our boundary conditions correspond to quantum states
of the Chern–Simons theory on ∂M3 = Σ6 encoding quantum 4-simplicial
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geometries with a semiclassical amplitude given by a discretized form of the
Einstein–Hilbert functional.

We now show how these precise boundary conditions can be imposed
by introducing a specific Wilson graph operator supported on Γ5 within the
complex Chern–Simons theory. In this section, we restrict our analysis to
the case where Re(t) = k ∈ Z and ~−1 ∈ Z.

The idea is the following: a general feature of topological quantum field
theory is that imposing specific boundary conditions on the path integral
(on M3) corresponds to evaluating the amplitude of a specific quantum state
in H(Σ6), associated to the boundary ∂M3 = Σ6 (see e.g. [8]). In formulas

(124) A [xab;xa, ya] :=
〈

ΨΓ5

[xab;xa,ya]

∣∣∣ZCS(M3)
〉
H(Σ6)

,

where ΨΓ5

[xab;xa,ya] ∈ H(Σ6) imposes the boundary conditions [xab;xa, ya].

More explicitly, the state ΨΓ5

[xab;xa,ya] can be defined via a path integral
through the insertion of a Wilson graph operator at the center of the tubular
neighborhood of Γ5, N(Γ5). Indeed the boundary of N(Γ5) is Σ̄6, i.e. iden-
tical to ∂M3, but with opposite orientation—a fact that ensures the above
contraction is natural.

Specifically, we consider SL(2,C) Chern–Simons theory on N(Γ5) and

define a knotted Wilson graph operator Γ
[jab,ξab]
5 [A, Ā] located at the core of

N(Γ5) [20], such that ΨΓ5

[xab;xa,ya] can be written as

(125) ΨΓ5

[xab;xa,ya]

(
A1, Ā1

)
:=

∫
A1,Ā1

DADĀ e
i

~ CS[N(Γ5) |A,Ā] Γ
[jab,ξab]
5 [A, Ā].

The relation between the operator labels [jab, ξab] and the state or bound-
ary condition labels [xab;xa, ya] will be spelled out soon. With the above
definitions, the properties of the inner product in H(Σ6) ensure that

(126) A [xab;xa, ya] =

∫
DADĀ e

i

~ CS[S3 |A,Ā] Γ
[jab,ξab]
5 [A, Ā].

We come now to the definition of the knotted Wilson graph operator

Γ
[jab,ξab]
5 [A, Ā] (see also [20]), which is conveniently presented as a list:

• Each edge `ab connecting two 4-valent vertices of the graph Γ5 is la-
beled by a unitary irreducible representaiton (“irrep”) of SL(2,C) in
the principal series (such irreps are necessarily infinite dimensional as
a consequence of the non-compactness of SL(2,C)). These represen-
tations are required to be of a specific form. Before specifying this
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form, let us recall that the unitary irreps of SL(2,C) in the principle
series depend on two parameters (j, ρ), with j ∈ 1

2Z
+ and ρ ∈ R [87].

Moreover, these irreps can be decomposed as an infinite tower of SU(2)
irreps, i.e. their Hilbert spaces decompose as V j,ρ = ⊕k≥jVk, where Vk
is the SU(2) irrep with spin k ∈ 1

2N. Using this decomposition, a basis
of V j,ρ is given by |(j, ρ); k,m〉. Coming back to our own Wilson graph

operator Γ
[jab,ξab]
5 , we require that the specific irreps attached to the

edges `ab have the form (jab, ρab) = (jab, γjab), for some fixed γ ∈ R.18

• Each of the two end points of an edge `ab in Γ5 is equipped with an
SU(2) Perelemov coherent state, |jab, ξab〉 ∈ Vjab , and |jba, ξba〉 ∈ Vjab ,
respectively. The state |j, ξ〉 is defined via an SU(2) action on the
highest weight vector |jab, jab〉 [88]. Specifically, denoting the Wigner
matrix of g in the SU(2) irrep Vj as Dj(g) : Vj → Vj , we have

(127) |j, ξ〉 := Dj(gξ)|j, j〉 where gξ ≡
(
ξ1 −ξ̄2

ξ2 ξ̄1

)
∈ SU(2),

for some normalized 2-spinor ξ, 〈ξ, ξ〉 = ξ̄1ξ1 + ξ̄2ξ2 = 1. The coherent
states |j, ξ〉 form an over-complete basis in Vj and provide the resolu-
tion of the identify

(128) 1j = (2j + 1)

∫
S2

dµ(ξ) |j, ξ〉〈j, ξ|.

Here, the integration domain is the coset space S2 = SU(2)/U(1), since
|j, ξ〉 7→ eiφ|j, ξ〉 = |j, eiφξ〉 leaves the integrand invariant. The phase
convention for ξ needs to be fixed by convention in order to define the
coherent state basis. Once the phase information is fixed, we can think
of |j, ξ〉 as labeled by a unit 3-vector n̂, rather than a spinor. Indeed, in
its spin 1 representation, gξ ∈ SU(2) rotates the 3-vector ẑ = (0, 0, 1)t

to the unit vector n̂ξ = 〈ξ, ~σξ〉, where ~σ is the vector of Pauli matrices.

Since the edges of Γ
[jab,ξab]
5 are labeled by irreps of SL(2,C), and thus

naturally carry SL(2,C) group elements, we need to produce states in
Hj,γj from the SU(2) coherent states just described. This is achieved

18In the next section we will see that γ corresponds to the Barbero–Immirzi
parameter of Loop Quantum Gravity.
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using the injection map

(129) Y : Vj ↪→ V j,γj , |j, ξ〉 7→ Y |j, ξ〉 := |(j, γj); j, ξ〉,

which identifies the SU(2) irrep Vj with the lowest subspace in the
tower V j,γj = ⊕k≥jVk. At the end of this construction, the two end
points of the edges `ab carry the two states |(jab, γjab); jab, ξab〉 and
|(jab, γjab); jab, ξba〉 in V jab,γjab .

• Finally, the Wilson graph operator Γ
[jab,ξab]
5 [A, Ā] is defined by a prod-

uct over all edges `ab of inner products in each V jab,γjab :19

(130) Γ
[jab,ξab]
5 [A, Ā] :=

[
5∏

a=1

∫
SL(2,C)

dga

]
×
∏
a<b

〈
(jab, γjab); jab, ξab

∣∣∣ g−1
a Gabgb

∣∣∣(jab, γjab); jab, ξba〉 ,
where

(131) Gab = P exp

∫
`ab

A

is the holonomy of A along `ab oriented from b to a. Note that

Γ
[jab,ξab]
5 [A, Ā] is gauge invariant thanks to the Haar integrals∏5
a=1

∫
SL(2,C) dga (in fact, one of these integrals is completely redun-

dant for this purpose, and has to be dropped to avoid meaningless
divergences). Importantly, these inner products are not holomorphic
functions on the complex group SL(2,C), since they come from unitary
irreps.

• In formulas (125) and (126), it is convenient to make a partial gauge
fixing. Making use of the invariance of e

i

~ CS under large gauge trans-
formation (when k ∈ Z), we are allowed to fix the ga = 1 for all a, while
at the same time dropping all the associated integrals. In the follow-
ing, we will abuse notation and, despite fixing ga ≡ 1, still denote the

Wilson graph operator (130) by Γ
[jab,ξab]
5 [A, Ā].

The knotted Wilson graph operator Γ
[jab,ξab]
5 [A, Ā] can be split into con-

tributions from the edges {`ab} and of those from the vertices {a}. To this

19This knotted Wilson graph operator is strictly related to the projected spin-
network functions of SL(2,C) [51, 89].
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purpose, we rewrite the inner products in (the gauge fixed) Γ
[jab,ξab]
5 [A, Ā] as

(132)

∫
(CP1)×2

dzabdzba

〈
(jab, γjab); jab, ξab

∣∣G(`ab)−1
a

∣∣zab〉
×
〈
zab
∣∣G′ab∣∣zba〉 〈zba∣∣G(`ab)

b

∣∣(jab, γjab); jab, ξba〉 ,
where the edge `ab has been split into three pieces, and the holonomy Gab
is, accordingly, written as the product G

(`ab)−1
a G′abG

(`ab)
b .

Let us further explain the notation used in Eq. (132). Here, we denote
the representation of the vector |f〉 ∈ V j,ρ by a homogeneous function of
two complex variables 〈z|f〉 =: f(z), i.e. f(z) ≡ f(z1, z2, z̄1, z̄2), such that
for any α ∈ C,

(133) V j,ρ 3 f(αz) = α−1+iρ+jᾱ−1+iρ−jf(z).

The inner product in V j,ρ is L2, i.e. 〈f |f ′〉 =
∫
CP1 dz f̄(z) f ′(z) with dz =

i
2(z1dz2 − z2dz1) ∧ (z̄1dz̄2 − z̄2dz̄1) an homogeneous measure on C2. For
details, see e.g. [87] (or also [90], for a brief summary). These equations
spell out the meaning of the integrals and of the first and last term in the
product. We are left with the factor

〈
zab
∣∣G′ab∣∣zba〉.

This can be written as a path integral that implements the SL(2,C)
coadjoint orbit quantization. The idea is that the unitary irreps of a Lie
group G can be obtained by geometric quantization of its coadjoint orbits.
For reviews see [91], or [24] for a nice summary, or the succinct account in
Appendix B.

To be more explicit, let us recall that the SL(2,C) coadjoint orbit as-
sociated to a generic element λ ∈ sl2C is the 4-dimensional manifold Ωλ =
SL(2,C)/U(1)C = T∗S2. The base space S2 can be identified with CP1 =
SL(2,C)/B, with B the Borel subgroup of invertible upper-triangular ma-
trices, and the CP1 here is the same one that appeared above. Hence, the
variable z ∈ CP1 is precisely the position variable of a Schrödinger repre-
sentation of Ωλ = T∗S2. This correspondence should clarify the meaning of〈
zab
∣∣G′ab∣∣zba〉, as well as its path integral representation

(134)
〈
zab
∣∣G′ab∣∣zba〉 ≡ 〈zab∣∣Pe∫`′ab A∣∣zba〉 =

∫ zab

zba

DgabDḡab eiS
′
ab[gab,ḡab;A,Ā],



i
i

“3-Haggard” — 2020/1/13 — 18:56 — page 1125 — #59 i
i

i
i

i
i

SL(2,C) Chern-Simons theory 1125

where the first-order action functional (here A and Ā should be understood
as external sources) is

, S′ab[gab, ḡab;A, Ā](135)

= −1

2

∫
`′ab

tr
[
(ν + κ)g−1

ab (d +AT )gab + (ν − κ)ḡ−1
ab (d + ĀT )ḡab

]
and the choice of weight λ is encoded in the matrices

(136) ν = −γjab
(

1 0
0 −1

)
and κ = ijab

(
1 0
0 −1

)
.

On a first encounter the bounds of integration of Eq. (134) may be
obscure. To clarify these bounds notice that although the path integral is
carried out over maps gab : `′ab → SL(2,C), a gauge symmetry is present that
effectively reduces the integration space to maps with range the coadjoint
orbit, i.e. `′ab → Ωλ = SL(2,C)/U(1)C = T∗S2. In this sense, the above path
integral can be consistently viewed as a quantum particle moving on its
“position space” CP1 3 z, with boundary conditions at the two end points
of `′ab given by zba and zab.

This rewriting of
〈
zab
∣∣G′ab∣∣zba〉 allows detailed study of the path in-

tegral defining the state ΨΓ5

[xab;xa,ya] in a tubular neighborhood N(`′ab) ⊂
N(Γ5) of `′ab. Topologically, N(`′ab)

∼= [0, 1]×D2, where D2 is a 2-disk. We
parametrize this space with (t, x1, x2), where t ∈ [0, 1] and (x1, x2) ∈ D2 so
that (x1, x2) = (0, 0) is the location of the Wilson line. Accordingly, the
Chern–Simons connection in N(`′ab) can be decomposed into a time compo-
nent At along `′ab and a spatial component A⊥. With this decomposition,
and after an integration by parts, the contribution of N(`′ab) to the action
CS[N(Γ5)|A, Ā] becomes

(137) CS
[
N(`′ab)

∣∣A, Ā] =
t

8π

∫
N(`′ab)

tr (A⊥ ∧ dA⊥) + 2tr (F⊥ ∧At) + c.c.,

where F⊥ = dA⊥ +A⊥ ∧A⊥ is the curvature of A⊥.20 Here, the boundary
term coming from the integration by parts cancels exactly the boundary
term present in the Chern–Simons action, i.e. t

8π

∫
∂N(`′ab)

tr (A1 ∧A2).

In the definition of ΨΓ5

[xab;xa,ya], the Chern–Simons theory on N(`′ab) ap-

pears to be coupled to the coadjoint orbit path integral of equation (134).

20On the boundary ∂N(`′ab)
∼= [0, 1]× S1, the two components of the connection

(A1, A2) are the pullbacks of (A⊥, At), respectively.



i
i

“3-Haggard” — 2020/1/13 — 18:56 — page 1126 — #60 i
i

i
i

i
i

1126 Haggard, Han, Kaminski, and Riello

The total action is linear in At and Āt. Thus, integrating these out we obtain
two functional delta functions on the space of (A⊥, Ā⊥), which constrain F⊥
and F̄⊥ to be given by

t

4π~
F T⊥ =

1

2
g (ν + κ) g−1δ(2)(x)dx1 ∧ dx2, and

t̄

4π~
F̄ T⊥ =

1

2
ḡ (ν − κ) ḡ−1δ(2)(x)dx1 ∧ dx2,(138)

where δ(2)(x) is a delta function on D2 such that for any 1-form f ,∫
N(`′ab)

δ(2)(x)dx1 ∧ dx2 ∧ f =

∫
`′ab

f.

These constraints fix the conjugacy class of the meridian holonomies Hab

and H̄ab, i.e.

(139) Hab ∼
(

qjab 0
0 q−jab

)
with q = e

2πi~
t

(1+iγ),

and similarly for H̄ab. Note that when the parameters t and γ satisfy

(140)
2π~
t

(1 + iγ) ∈ R,

the eigenvalues of Hab satisfy the boundary conditions of Section 2.2:

(141) xab = qjab ∈ U(1).

Reinserting the constrained value of F⊥ in the first term of CS
[
N(`′ab)

∣∣A, Ā]
in equation (137) and using the identity tr (A⊥ ∧ dA⊥) = tr (A⊥ ∧ F⊥), one
finds that this term vanishes identically since F⊥ is constrained to be pro-
portional to dx1 ∧ dx2.

As a result, the contribution coming from N(`′ab) to the wave function
ΨΓ5

[xab;xa,ya] gives a product of delta functions:

(142)
∏
a<b

δ
(
xab , qjab

)
δ
(
x̄ab , q̄jab

)
.

Therefore, we see that the boundary data xab = qjab is imposed strongly by
the Wilson graph operator.

In the previous section we studied the semiclassical behavior of the
Chern–Simons path integral with the geometric boundary conditions im-
posed. This was achieved in that context by simply sending ~→ 0. Here,
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the boundary conditions are imposed through the insertion of a Wilson
graph operator, and as a consequence the relation between the operator’s
labels and the boundary conditions is mediated by terms containing ~, as in
Eqs. (138)–(141). Therefore, in order to reproduce the semiclassical behav-
ior obtained in the previous section in this context, together with ~ being
sent to zero, the representation labels jab must be sent uniformly to infinity
in such a way that the boundary data xab = qjab = exp (2πi~(1 + iγ)jab/t)
stay fixed. Specifically, we see that the right semiclassial limit is now the
double-scaling limit

(143) ~→ 0 and jab →∞, while keeping ~jab = const.

We studied precisely this double scaling limit via stationary phase tech-
niques in [20]. Here we quickly review that analysis. Using the SL(2,C)
irreps described above, the full (gauge-fixed) Γ5 Wilson graph operator can
be written in the following integral form:

(144) Γ
[jab,ξab]
5 [A, Ā] =

∫
CP1

∏
a<b

dµ(zab) e
IΓ5 ,

where the measure is dµ(z) = dz/〈z, z〉2, and the “Wilson graph action” IΓ5

is
(145)

IΓ5
=

1

~
∑
a<b

~jab ln

〈
G†abzab, ξba

〉2
〈ξab, zab〉2〈

G†abzab, G
†
abzab

〉
〈zab, zab〉

+ iγ~jab ln

〈
G†abzab, G

†
abzab

〉
〈zab, zab〉

(by construction the choice of a branch for the logarithm is irrelevant). Using
the Cauchy–Schwarz inequality, it is immediate to see that Re(IΓ5

) ≤ 0.
This leads to study of the stationary points of IΓ5

coupled to Chern-
Simons theory on S3 in the double scaling limit, as in Eq. (126). Doing so,
one finds the following stationarity equations

Parallel Transport: From δzabIΓ5
= 0 and Re(IΓ5

) = max Re(IΓ5
) = 0,

one obtains the following parallel transport relations for the coherent
state labels ξab:

(146) ξab =
||zab||
||G†abzab||

eiθabGabξba, and Jξab =
||G†abzab||
||zab||

e−iθabGabJξba,

which relate the 2-spinors ξab and ξba at the two end-points of the
edge `ab.
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Monodromies: Variation with respect to the Chern-Simons connec-
tions A & Ā gives the distributional curvature on S3,

(147) εµρσF iρσ(x) =
8π~(1 + iγ)

t

∑
a<b

jab

〈
G†sbσi(G

†
sb)
−1ξba, ξba

〉
δ

(2) µ
`ab

(x).

As expected, F̄ satisfies the complex conjugate equation. Here, again

σi are the Pauli matrices, and δ
(2) µ
` (x) :=

∫ 1
0 δ

(3)(x− `(s))d`µ

ds ds. With
a slight abuse of notation, we use the parameter s ∈ [0, 1] to label
intermediate points on the edge `ab, so that

(148) Gsb = P exp

∫ s

0
Aµ(`(s′))

d`µab
ds′

δs′,

with the reasonable requirements `ab(s = 0) = b and `ab(s = 1) = a.
As expected, the curvature is only supported distributionally on the
graph Γ5, while F = F̄ = 0 on the graph complement S3 \ Γ5.

Integrating equation (147) over a disk using the non-Abelian Stokes
theorem, one obtains nontrivial holonomies along the non-contractible
cycles cab(s) transverse to `ab in the vicinity of the point `ab(s):

(149) Hab(s) = exp

[
4π~(1 + iγ)

t
jab

〈
G†sbσj(G

†
sb)
−1ξba, ξba

〉 iσj
2

]
, (a < b).

These holonomies should be thought of as being based at the vertex
b. Notice that the parallel transport equations for the ξab guarantee
consistency if one were to choose instead vertex a as the base point.
Notice also that the conjugacy class of Hab(s) is consistent with the
delta function equation (142).

So far, our analysis has focused mostly on the edges `ab. Let us now focus
on the neighborhood of a vertex a. Start by considering a 2-sphere with
radius s enclosing the vertex a, and denote Hl(s) = Habl(s) (l = 1, . . . , 4).
As a consequence of the flatness on the graph complement S3 \ Γ5, we obtain

(150) g4(s)H4(s)g4(s)−1g3(s)H3(s)g3(s)−1

× g2(s)H2(s)g2(s)−1g1(s)H1(s)g1(s)−1 = 1,

where gl ∈ SL(2,C) stands for the holonomy connecting the base point of
each Hl(s) to a common base point on the sphere (for details on a convenient
choice of paths and their relation to the framing of Γ5, see [20] ). Again
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because of the flatness in S3 \ Γ5, one finds

(151) gl(s)
−1gl−1(s) = G−1

aslGasl−1
.

On the other hand, using Eqs. (146) and (149), each Hl(s) can be brought to
an element of SU(2) using the adjoint action of G−1

asl . Of course, this holds
under the condition that the parameters t and γ satisfy equation (140),
2π~
t (1 + iγ) ∈ R, i.e.

(152) GasHab(s)G
−1
as = Hb(a) = exp

[
4π~(1 + iγ)

t
jabn̂ξab

iσj
2

]
,

where n̂ξ = 〈ξ, ~σξ〉 is the R3 unit vector encoded in the spinor ξ. Then,
equation (150) reduces to a product of four SU(2) matrices

(153)
←−−∏
b:b6=a

Hb(a) =
←−−∏
b:b 6=a

exp

[
4π~(1 + iγ)

t
jabn̂ab

iσj
2

]
= 1.

Recall from Section 2.2 that this equation is the starting point of the tetra-
hedral reconstruction.

Moreover, this equation shows that, after removing the intersection
points with the graph Γ5 (as well as a tubular neighborhood thereof), the
pull-back of the connection to the resulting 4-holed sphere is essentially an
SU(2) flat connection. These 4-holed spheres are essentially the {Sa=1,...,5} =
Σ6 \ {cab}a<b. Thus, we see that the full set of geometricity boundary con-
ditions in Section 2.2 derive naturally from the insertion of the Γ5 Wilson
graph operator, albeit part of it only in the semiclassical limit (i.e. in the
double-scaling limit). This fact was already expected: while the {xab} are
strongly fixed to be in U(1) (see Eq. (142)), due to the Heisenberg uncer-
tainty principle, the pairs of conjugated variables {xa, ya} cannot be rigidly
restricted at the same time. The latter restriction is the one ensuring that
on each Sa the SL(2,C) flat connection effectively restricts to an SU(2)
one. This restriction emerges strictly speaking only in the double scaling
limit. In this sense, the state ΨΓ5

[xab;xa,ya] can be viewed as the “semiclas-
sical” state that is on the one hand sharply peaked on the configuration
variables xab = qjab ∈ U(1), and on the other “coherently” peaked at some
phase space point (xa, ya) fully determined by the graph data [jab, ξab].

Summarizing, the stationary point equations deduced in the semiclas-
sical (i.e. double scaling) limit are found to define an SL(2,C) connection
on the graph complement M3 = S3 \ Γ5, which satisfies—in the limit—the
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geometricity boundary conditions. According to Theorem 2.4 there are ex-
actly two such connections A and Ã, which correspond to a parity related
pair of convex, Lorentzian, constant curvature 4-simplices. In particular, the
network of relations between jab and xab = euab , and between uab and the
triangle areas aab, implies that

(154) ν
Λ

6
aab = −2π~

t

(
1

γ
+ i

)
γjab + πsab mod 2π Z.

Although this relation seems to give a non-unique value for aab, the theorem
ensures that there is only one geometrically viable choice. Also, as we have
shown in the last section, the ambiguities above play no role in the evaluation
of the semiclassical action provided a specific quantization condition for the
areas is introduced (and k = Re(t) ∈ Z). It is, however, straightforward to
check that this quantization condition, Eq. (122), is automatically satisfied
when the boundary conditions are imposed by the Wilson graph insertion
studied in this section:

(155) 2π~Z 3 2Re

(
Λt

6

)
aab = 2π~

(
2jab + 2π~−1ksab + 4π~−1kZ

)
.

All these results, together with those established in the previous section,
imply that inserting the solution of the equations of motion (i.e. a flat con-
nection corresponding to a geometrical 4-simplex) back into the total action
IΓ5

+ i
~CS, we find that the leading behavior of A [xab;xa, ya] in the semi-

classical limit is the same as that of the 3d block of equation (116), which
in turn reproduces the 4-dimensional Regge action of the constant curva-
ture 4-simplex with a cosmological constant term. In this way, we see that,
while the Wilson graph operator imposes the geometricity boundary con-
dition, the asymptotic behavior of A [xab;xa, ya] is basically determined by
that of the Chern-Simons 3d block. A heuristic reason why Chern–Simons
theory on S3 \ Γ5 should “know” about 4-dimensional geometry is given in
[20, Sect. 3].

In [20], the following result is also shown: Under the double-scaling
limit ~→ 0, jab →∞ with jab~ fixed, the Chern-Simons expectation value
A [xab;xa, ya] of Γ5 graph operator in Eq. (126) has the following asymptotic
behavior

(156) A [xab;xa, ya] ∼ e
i

`2
P
SΛ
Regge+··· + e

− i

`2
P
SΛ
Regge+···

up to an overall phase factor. The two exponentials come from the two solu-
tions A and Ã respectively. The ellipsis · · · stand for quantum corrections.
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The constant curvature Regge action of simplicial gravity SΛ
Regge reads

(157) SΛ
Regge =

∑
a<b

aabΘab − ΛVolΛ4

and `−2
P = Re

(
Λt

12πi~
)
. We have assumed here the Chern-Simons couplings

t = k + is and t̄ = k − is satisfy k ∈ Z and s ∈ R. The parameter ~−1 is an
integer and just scales the parameters t and t̄.

In the semiclassical limit, A [xab;xa, ya] has the same asymptotic be-
havior as the sum of a pair of Chern-Simons 3d blocks (up to an overall
phase):

(158) A [xab;xa, ya] ∼ Z
(α)
CS (u)Z

(α)
CS (ū) + Z

(α̃)
CS (u)Z

(α̃)
CS (ū)

here ZαCS(u) and Zα̃CS(u) correspond to the pair of flat connection A and
Ã ∈Mflat(S

3 \ Γ5, SL(2,C)) with 2 arbitrary lifts α and α̃, respectively.
Note that the analysis in Section 3.3 has only a single exponential be-
cause we computed the phase difference (or ratio) between two 3d blocks

Z
(α)
CS (u)Z

(α)
CS (ū) and Z

(α̃)
CS (u)Z

(α̃)
CS (ū).

In addition, it is interesting that the cosmological constant term in
Eq. (156) comes from the evaluation of the Chern-Simons functional on
S3 at the connection A that satisfies the critical equations. This connection
is now viewed as a distributional connection on S3 (with a distributional
curvature supported on the graph) instead of being a flat connection on
S3 \ Γ5. The following difference between the evaluations at A and Ã gives
the constant curvature 4-volume of the 4-simplex:

(159) CS
[
S3
∣∣A,A]− CS[S3

∣∣Ã, Ã] =
2Λ

`2P
VolΛ4 + 2πiZ.

5. Relation with loop quantum gravity

If we take the asymptotic “decoupling limit” by turning off the Chern-
Simons coupling in A [uab;ua, va] via t, t̄→∞ while keeping jab fixed, the
path integral Eq. (126) is localized on the solution of Chern-Simons equa-
tions of motion F = F̄ = 0 on S3; this gives a trivial connection on S3.
The Wilson graph Γ5

[
jab, ξab

∣∣A, Ā] evaluated on the trivial connection gives
the Engle-Pereira-Rovelli-Livine (EPRL) spinfoam 4-simplex amplitude
AEPRL[jab, ξab] in LQG. This relation was the original motivation for the
definition of the Γ5 Wilson graph operator.
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The relations among Chern-Simons theory, 4-dimensional LQG and 4-
dimensional simplicial gravity can be summarized in the following diagram:

A [uab;ua, va]
~→0, j→∞, j~ fixed−→ e

i

`2
P
SΛ
Regge + e

− i

`2
P
SΛ
Regge

y t→∞
y Λ→0

AEPRL[jab, ξab]
j→∞−→ e

i

`2
P
SRegge

+ e
− i

`2
P
SRegge

(160)

where A [uab;ua, va], defined in Eq. (126), is the SL(2,C) Chern-Simons
evaluation of the Γ5 Wilson graph operator. The relation along the lower
line states that the large-j asymptotics of the EPRL spinfoam amplitude
reproduces the flat simplicial geometry and Regge action without cosmo-
logical constant Λ and was proved in [55, 56]. This diagram suggests that
the Chern-Simons expectation value A [uab;ua, va] can be viewed as a de-
formation of the EPRL spinfoam amplitude, which includes a cosmological
constant into the framework of LQG.

The 4-dimensional spinfoam amplitude of LQG, which defines a quan-
tum 4d geometry, describes the quantum transition between boundary states
for quantum 3d geometries. The boundary states of a 4-dimensional spin-
foam amplitude are SU(2) spin-network states. The latter states form the
kinematical framework of LQG (see [48, 49]) and describe quantum 3d ge-
ometries. A spin-network state is a triple (Γ,~j,~i) consisting of: an oriented
graph Γ; a map ~j = {j`}`∈E(Γ) from the set of graph edges E(Γ) to the

space of unitary irreps of SU(2) labeled by j`; and ~i = {iv}v∈V (Γ), a map
from the set of graph vertices V (Γ) to the invariant tensors (intertwiners)
v 7→ iv ∈ InvSU(2)(Vj1 ⊗ · · · ⊗ Vjn), where j1, . . . , jn are the spin labels on the
edges incident to v. The spin-network states are a basis for the LQG Hilbert
space and diagonalize the geometrical operators, e.g. quantum area and vol-
ume operators. The discrete spectrum of the area operator is parametrized
by the spins j` (and is linear in j` when j` � 1), and the discrete spec-
trum of volume is parametrized by both the spins j` and the invariant ten-
sors iv [47, 94]. The invariant tensor iv carries even more information, it
parametrizes the space of quantum (zero curvature) polyhedra with face
areas being proportional to the incident j` [93, 95].

The spin-network data (Γ,~j,~i) is well adapted to the framework in the
present paper and can be identified with the boundary data of the flat
connections we have been discussing. The identification of the spin-network
graph with Γ5 is immediate since it appears in the definition of the Wilson
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graph operator and its Chern-Simons evaluation A [uab;ua, va]. The spin
j` is mapped by Y to an SL(2,C) principle series irrep (j`, γj`) for each
edge, where γ is the Barbero-Immirzi parameter of LQG. At each vertex,
we employ the SU(2) coherent state basis and consider iv to be a coherent
intertwiner, which is mapped by Y to an SL(2,C) invariant tensor in the
Wilson graph operator.

Given a graph, e.g. Γ5 in our context, and its tubular neighborhood
N(Γ5), let us consider the quantization of SU(2) flat connections on the
closed 2-surface Σ6 = ∂N(Γ5). By specifying the meridian closed curves
cab as in Section 2.2, we arrive at a set of local symplectic coordinates for
Mflat(Σ6, SU(2)): xab = euab , yab = e−

π

k
vab ∈ U(1) with {uab, vab} = 1. Quan-

tizing these coordinates, as well as the flat connections Mflat(Sa,SU(2)) of
the 4-holed spheres with fixed conjugacy class xab at each hole will provide a
quantization for the full spaceMflat(Σ6,SU(2)). The quantization of xab, yab
is a quantization of S1 × S1. The prequantum line bundle over S1 × S1

has a curvature ω = − k
πd lnxab ∧ d ln yab. Weyl’s integrality criterion then

implies that k ∈ Z. We choose the polarization such that the wave func-
tion is written as f(uab) and satisfies both periodicity and Weyl invariance
f(uab) = f(−uab) = f(uab + 2πi). Periodicity in both uab and vab directions
implies that uab can only take k + 1 discrete values uab = 0, iπk ,

2iπ
k , . . . , iπ,

i.e.

(161) xab = e
2πi

k
jab , with jab = 0,

1

2
, . . . ,

k

2
.

The quantization of the flat connections Mflat(Sa, SU(2)) with fixed con-
jugacy classes xab results in the Hilbert space H(Sa) spanned by Wess-
Zumino-Witten (WZW) conformal blocks F(ia) of level k ∈ Z on a 4-holed
sphere [66]. Each conformal block F(ia) is associated with a 4-valent SU(2)
intertwiner ia with the above spins jab. A restricted subclass of SU(2) in-
tertwiners is allowed because of the restrictions on the ranges of the spins
jab and the spin in the recoupling channel. The dimension of the inter-
twiner space, H(Sa), consequently is given by the famous Verlinde formula
[96]. As a result, we obtain the Hilbert space for the full quantization of
Mflat(Σ6, SU(2)); it is spanned by the basis

(162) ψ(Γ5,~j,~i)
=
∏
a<b

δ(xab, e
2πi

k
jab)

5∏
a=1

F(ia).

The above discussion can be straightforwardly generalized to arbitrary
graphs Γ. Now we see that the quantization of SU(2) flat connections on
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Σg = ∂N(Γ) for any graph Γ naturally gives the spin-network data (Γ,~j,~i)
with j ≤ k/2 and a restricted subclass of intertwiners. The restricted class
of spin-network data is likely to be the right subclass for LQG when a cos-
mological constant is included.

By the analysis in Section 2.2, the SU(2) flat connections on a 4-holed
sphere with fixed conjugacy classes xab correspond to constant curvature
tetrahedral geometries with fixed face areas. Therefore the Hilbert space
H(Sa) of conformal blocks is the space of “quantum constant curvature
tetrahedra” with “quantum areas” proportional to jab. We may consider
an overcomplete coherent state basis ψkxa,ya peaked at the phase space point
with conjugate coordinates (xa, ya). For these coherent states and Γ = Γ5 the
spin-network data (Γ,~j,~i) can be mapped to the SL(2,C) flat connection
data (xab;xa, ya) on Σ6 = ∂S3 \ Γ5 subject to the restriction of spins and
intertwiners just discussed.

In order to be the boundary data of an SL(2,C) Chern-Simons theory,
we make the following identification:

(163) xab = e
2πi

k
jab = e

2πi

t
(1+iγ)jab

where Eq. (142) has been used (and we have set ~ = 1). Here k ∈ Z has been
identified with Re(t), and both γ and 1

t (1 + iγ) have been assumed to be real
numbers, so that γ = s/k. Given that (xab;xa, ya) come from spin-network
data, the boundary condition in Section 2.2 and the quantization condition
Eq. (122) are satisfied following the same argument as given in Section 4. It
is interesting to notice that when t is purely imaginary (k = 0 or γ →∞),
the spectrum of xab is not discrete anymore, while the quantization condition
Eq. (122) is satisfied trivially. This possibility is beyond the regime of spin-
network data, but still well-controlled by the 3d blocks of Chern-Simons
theory discussed in Section 3.3.21

The discussion above provides a map from spin-network data to the
boundary data (xab;xa, ya) of SL(2,C) Chern-Simons theory satisfying the
boundary condition in Section 2.2. When there exists an SL(2,C) flat con-
nection A on S3 \ Γ5 whose boundary value is consistent with the boundary
data (xab;xa, ya), we may use these data to construct a Chern-Simons 3d

block Z
(α)
CS (u)Z

(α)
CS (ū). The Chern-Simons 3d block Z

(α)
CS (u)Z

(α)
CS (ū) studied

21SL(2,C) Chern-Simons theory with purely imaginary t relates to the quantum
Lorentz group with real q [23]. The 3d blocks of Chern-Simons theory with our
boundary conditions implemented may relate to the spinfoam model defined in
[54].
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in Section 3.3 may play an interesting role in LQG as could the amplitude
A [uab;ua, va] (compare AEPRL[jab, ξab]).

As we have seen in Section 4, the Regge-action asymptotic behavior of
A [uab;ua, va] crucially depends on the peakedness of the Chern-Simons state
created by the Wilson graph operator. However, different Wilson graph oper-
ators may produce the same peakedness in the boundary data, and thus lead
to the same asymptotics of A [uab;ua, va]. The close relationship with the
EPRL 4-simplex amplitude has led us to study the particular type of Wilson
graph operators Γ5[jab, ξab|A, Ā]. Independent of the choice of Wilson graphs,

the Chern-Simons 3d block Z
(α)
CS (u)Z

(α)
CS (ū) on S3 \ Γ5 with the right bound-

ary condition imposed is the essential ingredient behind the Regge-action

asymptotics of A [uab;ua, va]. Although we have defined Z
(α)
CS (u) perturba-

tively on the cover space parametrized by the logarithmic data u instead
of x, it can be defined non-perturbatively, as in [77, 78]. These references

show that the non-perturbative Z
(α)
CS (u) manifestly depends on x = exp(u).

Therefore Z
(α)
CS (u)Z

(α)
CS (ū) depends on the boundary or spin-network data in

the desired manner.
When we generalize our framework from a 4-simplex to a generic sim-

plicial manifold, the class of 3d blocks Z
(α)
CS (u)Z

(α)
CS (ū) that asymptotically

reproduce classical gravity may ultimately span the physical Hilbert space
HPhys in LQG. The operator constraint equation that quantizes the La-
grangian subvariety LA,

(164) Âm(x̂, ŷ, ~)Z
(α)
CS (u) = 0,

may relate to the quantization of the Hamiltonian constraint equation in
LQG [97–99], provided the proper boundary conditions are implemented.

There is a perspective that we would like to point out before we conclude
this section. In [101], it is suggested that the simplicial 4d geometries corre-
spond to the dynamical vacua of LQG, namely, to solutions of the critical
equations of the spinfoam amplitude. In the present work and in [20], we have
made the correspondence between simplicial 4d geometry and SL(2,C) flat
connections on the graph complement 3-manifold S3 \ Γ5 explicit, and shown
that the solutions of the critical point equations arising from A [uab;ua, va]
give the SL(2,C) flat connections on S3 \ Γ5. Therefore we suggest that the
moduli space of LQG dynamical vacua can be embedded into the moduli
space Mflat(S

3 \ Γ5,SL(2,C)), where the image of the embedding map is
specified by the boundary condition in Section 2.2. We expect that the dy-
namical properties of the LQG vacua, including the perturbative behavior
of LQG, should be largely controlled by SL(2,C) Chern-Simons theory.
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6. Beyond a single 4-simplex

The above analysis is primarily about the geometry of a single 4-simplex
and its correspondence with flat connections on S3 \ Γ5. This analysis can
be generalized to an arbitrary simplicial decomposition of a 4-dimensional
manifold into an arbitrary number of simplices. In this section we give the
idea of the construction and results, more details appear in [78].

A 4-dimensional simplicial complex K4 is built by gluing 4-simplices σ.
The simplicial geometry of K4 is made up of the constant curvature geometry
of each 4-simplex together with the distributional curvature located at the
2d hinges at the 4-simplex-gluing interfaces. The simplicial geometries on
K4 again correspond to a class of SL(2,C) flat connections on a 3-manifold
M3. The 3-manifold M3 is obtained by gluing N copies of S3 \ Γ5, where N
is the number of 4-simplices in K4, as in Fig. 6.

Figure 6: Left: Two copies of the graph complement 3-manifold S3 \ Γ5

viewed from 4 dimensions. Each S3 \ Γ5 is drawn by suppressing 1 dimen-
sion. The 3-manifold S3 \ Γ5 has five “big boundary” components, which
are 4-holed spheres and correspond to the five vertices of Γ5. The manifold
S3 \ Γ5 also has ten “small boundary” components, which are ten cylinders
and correspond to the ten edges of Γ5. Removing the tubular neighborhoods
of the 10 edges results in the red ‘tunnel’ curves that connect the holes in
the big boundary components. The tunnels give the 10 small boundary com-
ponents. The union of big and small boundary components gives the closed
2-surface Σ6 = ∂(S3 \ Γ5). Right: The graph complement 3-manifolds can
be glued through a pair of big boundary components, i.e. a pair of 4-holed
spheres, via an identification of the holes. After gluing, some of the tunnels
are continued from one S3 \ Γ5 to the other. Note that in this figure, the
properties of crossings are not shown.
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The 3-manifold M3 can be constructed in the following way (see Fig. 6):
Corresponding to gluing a pair of 4-simplices in 4d through a pair of tetra-
hedra, a 3-manifold is constructed by gluing a pair of S3 \ Γ5 through a pair
of 4-holed spheres. The boundary Σ6 of S3 \ Γ5 can be decomposed into 2
types of components: the “big boundaries”, which here consist of five 4-holed
spheres that resulted upon removing the neighborhood of the five vertices
in Γ5, and the “small boundaries”, which here consist of the 10 cylinders
that resulted upon removing the tubular neighborhood of the 10 edges of
Γ5.22 When a pair of S3 \ Γ5 are glued through a pair of 4-holed spheres via
a certain identification of holes, the resulting 3-manifold is a graph comple-
ment S3 \ (Γ5#Γ5) of a bigger graph. The graph sum Γ5#Γ5 is obtained by
removing a vertex in each Γ5, and connecting the resulting 4 pairs of open
edges. Using this procedure repeatedly, we obtain

(165) M3 = (S3 \ Γ5) ∪ · · · ∪ (S3 \ Γ5)︸ ︷︷ ︸
N copies

= X3 \ Γ#N
5 .

Here N is the number of 4-simplices in the 4-manifold and X3 is, in general,
a more complicated closed 3-manifold than S3. For example, π1(X3) may be
nontrivial, as can be seen when we glue 2 pairs of 4-holed spheres between
2 copies of S3 \ Γ5.

We impose the boundary conditions of Section 2.2 to specify the SL(2,C)
flat connection on M3, i.e. the flat connections restricted to the big boundary
components of M3 become SU(2) flat connections on 4-holed spheres. How-
ever, in addition to the boundary condition, we have to require that on the
4-holed sphere that serves as the interface for the gluing of the (S3 \ Γ5)’s,
the SL(2,C) flat connection has to reduce to SU(2) as well. This is required
so that the flat connection in each copy of (S3 \ Γ5) determines a constant
curvature 4-simplex geometry. Given an SL(2,C) flat connection on M3 sat-
isfying the above requirements, it determines a convex constant curvature
4-simplex geometry for each copy of S3 \ Γ5 by Theorem 2.3.

The fundamental group of M3 is obtained simply by forming the product
of π1(S3 \ Γ5)’s and identifying the generators corresponding to the 4-holed
spheres that serve as the gluing interface. In terms of holonomies, there
may be need for a parallel transport between the base points of loops lab
in different copies of S3 \ Γ5. Given a pair of glued S3 \ Γ5, the uniqueness
Lemma 2.2 guarantees that the isomorphisms Eq. (53) gives identifications
between the loops in the two copies of S3 \ Γ5 and the simple paths in the

22The two types of boundary components are also called “geodesic boundaries”
and “generalized cusps”.
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two 4-simplices. These isomorphisms induce 2 isomorphisms S1 and S2, as in
Eq. (41), between the identified loops and the simple paths in the two tetra-
hedra from the two 4-simplices. Since the loops are identified, the composed
map S1 ◦ S−1

2 identifies the simple paths in the two tetrahedra. This SL(2,C)
flat connection in M3 gives an SU(2) flat connection on the interface 4-holed
sphere, which determines uniquely a convex constant curvature tetrahedron
by Theorem 2.1. This tetrahedron is shared by the 2 geometrical 4-simplices,
since the simple paths of the tetrahedra seen from each side of the gluing
have been identified. Therefore the geometrical 4-simplices determined by
each copy of S3 \ Γ5 glue geometrically and form a large simplicial geometry.
All 4-simplices and tetrahedra have the same constant curvature Λ.

Note that the large simplicial geometry on the simplicial complex is
not necessarily constant curvature. It can approximate arbitrary Lorentzian
geometry on a 4-dimensional manifold because of the hinging at 4-simplex
interfaces; this is just as in Regge calculus [44].

In a single copy of S3 \ Γ5, an SL(2,C) flat connection A correspond-
ing to 4-simplex geometry is always accompanied by its parity partner Ã,
which determines the same geometry but with different 4d orientation by
Theorem 2.4. The pair A & Ã are related by complex conjugation with re-
spect to the complex structure of SL(2,C) and therefore A & Ã give the
same SU(2) flat connection on 4-holed spheres. On an M3 formed by glu-
ing N copies of S3 \ Γ5 there are 2N parity-related flat connections, which
determine the same geometry on the simplicial complex. Each of the 2N

flat connections associates with a choice of 2 possible orientations in each
individual 4-simplex.23 All of the parity-related flat connections give the
same set of SU(2) flat connections on all 4-holed spheres, including the big
boundary components and gluing interfaces. Among the 2N parity-related
flat connections, there are only 2 flat connections associated with the 2 pos-
sible uniform 4d orientations on the entire simplicial complex, which we call
the global parity pair and denote again by A & Ã.

In terms of complex FN coordinate onMflat(∂M3,SL(2,C)), the global
parity pair A, Ã ∈Mflat(M3, SL(2,C)) can be written as

(166) A = [x`, y`;xB, yB], and Ã = [x`, ỹ`;xB, yB],

23The same phenomena happens in the asymptotics of LQG spinfoam models
[56].
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where x` and y` are the complex length and twist variables of a small
boundary component `.24 Here xB and yB are the canonical coordinates
of Mflat(4-holed sphere, SU(2)) at a big boundary component and the vari-
ables [x`;xB, yB] are treated as the boundary data.

A small boundary component ` corresponds to a unique triangle ∆` in
the simplicial complex K4.25 The coordinate x` relates to the triangle area
a` of ∆` in the same way as before, e.g. in Eq. (105). The relation between
y` and the hyperdihedral angles is given by a sum over all the 4-simplices
sharing ∆`, i.e.

ln y` = −1

2
ν sgn(V4)

∑
σ,∆`⊂σ

Θ`(σ)(167)

− iν θ` +
lnχ`(ξ)

2
mod 2πiN`, N` ∈ Z,

where Θ`(σ) is the hyperdihedral (boost) angle in the 4-simplex σ hinged by
∆`. The sign sgn(V4) is a global sign determined by the uniform 4d orienta-
tion and y` and ỹ` relate to two different signs, sgn(V4) = ±1 respectively.

We define the logarithmic variables u, v in the same way as before, and
choose a canonical lift to the cover space for the boundary data [x`;xB, yB] 7→
[u`;uB, vB]. We also choose two arbitrary lifts α, α̃ for y` 7→ vα` and ỹ` 7→ ṽα̃` .

The holomorphic 3d block Z
(α)
CS

(
M3

∣∣u) of SL(2,C) Chern-Simons theory on
M3 can be constructed in the same way as Eq. (99), for (A,α) with the
reference (Ã, α̃). The Liouville 1-form is now given by

(168) ϑ =
∑
`

v`du` +
∑
B

vBduB.

The integration contour of
∫
C
ϑ is in LA 'Mflat(M3, SL(2,C)), which is a

holomorphic Lagrangian subvariety in Mflat(∂M3,SL(2,C)).

The semiclassical asymptotic behavior of Z
(α)
CS

(
M3

∣∣u) can be analyzed
in the same way as in Section 3.3, which leads to the following generalization

24When the small boundary component ` is a torus cusp, x`, y` are simply the
eignvalues of meridian and longitude loop holonomies.

25The triangle ∆` is an internal triangle when ` is a torus cusp and a boundary tri-
angle when ` is a cylinder connecting 2 big boundary components. If the 4-manifold
is closed and the simplicial complex does not have boundary, the corresponding M3

has only torus cusps.
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of Eq. (116)

Z
(α)
CS

(
M3

∣∣u)Z(α)
CS

(
M3

∣∣ ū)(169)

= exp

 i
~

2Re

(
Λt

12πi

)∑
`

a`
∑

σ,∆`⊂σ
Θ`(σ)− Λ

∑
σ

VolΛ4 (σ)


× exp

[
i

~
2Re

(
Λt

12πi
Cαα̃

)
+
i

~
2Re

(
Λt

6

)∑
`

∆N`a` + · · ·

]
,

where the lift-independent term

(170) SΛ
Regge =

∑
`

a`
∑

σ,∆`⊂σ
Θ`(σ)− Λ

∑
σ

VolΛ4 (σ)

is the Lorentzian Regge action of Einstein gravity on the simplicial com-
plex K4 [44–46]. The sum

∑
σ,∆`⊂σ Θ`(σ) is the Lorentzian deficit angle

when ∆` is an internal triangle in K4, while it is a hyperdihedral boost an-
gle when ∆` is a boundary triangle of K4. The gravitational constant GN

is given by Eq. (119) and Cαα̃ is again an integration constant. The term
i
~2Re

(
Λt
6

)∑
` ∆N`a` is lift-dependent and takes discrete values. This term

disappears when the quantization condition 2Re
(

Λt
6

)∑
` ∆N`a` ∈ 2π~Z or

t ∈ iR is satisfied.
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Appendix A. K2-Lagrangian subvariety

In this appendix, we provide a very brief introduction to the notion of K2-
Lagrangian subvariety, and explain its relation to quantizability. The dis-
cussion here follows [67]. See also [33, 72] for more detailed discussions.

Let C∗ = C \ {0}, we define the Abelian group C∗ ∧ C∗ = ∧2C generated
by a ∧ b, with a, b ∈ C∗ and the relations

(A.1) a ∧ b = −b ∧ a, (ab) ∧ c = a ∧ c+ b ∧ c.

LetM be a complex variety, and denote the set of holomorphic functions
Uα → C∗ on the chart Uα as C∗(Uα) . A K2-symplectic structure onM is an
element ωKα ∈ C∗(Uα) ∧ C∗(Uα) on every coordinate chart Uα, such that on
Uα ∩ Uβ, ωKα − ωKβ =

∑
I zI ∧ (1− zI) for some zI ∈ C∗(Uα ∩ Uβ). In other

words, A K2-symplectic structure onM belongs to the group K2(C), which
is the quotient of C∗ ∧ C∗ by the subgroup generated by z ∧ (1− z).

We define a map d ln∧d ln from C∗ ∧ C∗ to the space of holomorphic
2-forms Ω2(C) by

(A.2) d ln∧d ln : x ∧ y 7→ d lnx ∧ d ln y.

It is easy to see that d ln∧d ln is essentially a map from K2(C)→ Ω2(C),
since d ln z ∧ d ln(1− z) = 0. Moreover, given a K2-symplectic structure
ωK =

∑
m xm ∧ ym, the map

d ln∧d ln :
∑
m

xm ∧ ym 7→
∑
m

d lnxm ∧ d ln ym

is a closed 2-form (pre-symplectic form) on the complex variety M.
Let M be a complex variety with a K2-symplectic form ωK ∈ K2(C)

such that [d ln∧d ln] (ωK) = ω is a symplectic structure. A K2-Lagrangian
subvariety LK ∈M is a subvariety with dimLK = 1

2 dimM and

(A.3) ωK |LK =
∑
I

zI ∧ (1− zI),

for some holomorphic functions zI on M. References [33, 68, 72] show
that, at least on the generic part of Mflat(Σg,SL(2,C)) that is of interest,

the symplectic structure ω =
∑

m
dxm
xm
∧ dym

ym
has a K2-avatar ωK ∈ K2(C)

such that [d ln∧d ln] (ωK) = ω. The moduli spaceMflat(M3, SL(2,C)) = LA

with ∂M3 = Σg is a K2-Lagrangian subvariety in Mflat(Σg,SL(2,C)), i.e.
ωK |LA

=
∑

I zI ∧ (1− zI) for some holomorphic functions zI .
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Define two homomorphisms ϑk and ϑσ from K2(C(LA)) to H1(LA,R)
(up to a 4π2Z covering for ϑk) by

ϑσ : x ∧ y 7→ ϑσ(x ∧ y) := ln |y|d(arg x)− ln |x|d(arg y), and

ϑk : x ∧ y 7→ ϑk(x ∧ y) := ln |y|d(ln |x|) + arg x d(arg y).(A.4)

Having chosen a polarization, the Lagrangian subvariety LA is quantizable
when the following conditions are satisfied for all closed path α ∈ LA (when
the real part of Chern-Simons coupling Re(t) = k ∈ Z) [7]:

(A.5)

∮
α
ϑσ(ωK |LA

) = 0, and

∮
α
ϑk(ω

K |LA
) ∈ 4π2Q.

Since LA is a K2-Lagrangian subvariety with respect to ωK , then ϑσ(ωK)
is given by

ϑσ(ωK |LA
) =

∑
I

ln |1− zI | d(arg zI)− ln |zI | d(arg(1− zI))(A.6)

= −
∑
I

dD(zI),

where D(zI) is the Bloch-Wigner dilogarithm function

(A.7) D(z) = ln |z| arg(1− z) + Im (Li2(z)) .

Then
∮
α ϑσ(ωK |LA

) = 0 is satisfied since D(z) is a continuous function on
C. Similarly,

ϑk(ω
K |LA

) =
∑
I

ln |1− zI | d(ln |zI |) + arg zI d(arg(1− zI))(A.8)

= −
∑
I

d [Re (Li2(zI))− arg zI arg(1− zI)] .

The real part of the dilogarithm Re (Li2(zI)) is also a continuous function
on C, while

∑
I

∮
α d [arg zI arg(1− zI)] ∈ 4π2Z. Thus

∮
α ϑk(ω

K |LA
) ∈ 4π2Q

indeed holds. We conclude that LA being K2-Lagrangian implies that LA is
quantizable. In addition, the fact that the 1-forms ϑk(z ∧ (1− z)) and ϑσ(z ∧
(1− z)) are exact up to 4π2Z shows that they are indeed homomorphisms
from K2(C(LA)) to H1(LA,R) up to a 4π2Z covering for ϑk.

When we consider the analytic continuation of Chern-Simons theory
with generic non-integer k, the Lagrangian subvariety LA has to be replaced
by its cover space LA, on which ln zI is single-valued. This is because we do
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not quotient out large gauge transformation for the analytically continued
Chern-Simons theory. So, the 1-forms ϑk(z ∧ (1− z)) and ϑσ(z ∧ (1− z))
are indeed exact on the cover space LA, i.e.

∮
α ϑσ =

∮
α ϑk = 0 on LA.

Appendix B. Quantization of coadjoint orbit, unitary
representations of SL(2,C), and a path integral formula

for the Wilson line

In this appendix, we give a brief review of the geometric quantization of the
coadjoint orbits of SL(2,C), which gives the unitary irreducible representa-
tions of SL(2,C). We also give a quick review of the path integral formula
for unitary Wilson line, which is a consequence of the coadjoint orbit quan-
tization. More extensive reviews of these topics can be found in [91] (see also
[24] for a nice summary).

As a complex Lie algebra, sl2C is generated by the basis

(B.9) H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, and F =

(
0 0
1 0

)
.

If sl2C is viewed as a real Lie algebra, it is generated by {E, F, H, Ẽ =
iE, F̃ = iF, H̃ = iH}. Given sl2C (viewed as a real Lie algebra) and its
complexification (sl2C)C ' sl2C× sl2C, a nondegenerate trace form 〈 , 〉 :
(sl2C)C × sl2C→ C is given by

(B.10) 〈(XL, XR), Y 〉 =
1

2
tr(XLY ) +

1

2
tr(XRȲ ),

where XL, XR, and Y are 2× 2 matrices. The trace form is a complexifica-
tion of the invariant bilinear form of sl2C. Using the trace form, a weight
λ ∈ (sl2C∗)C can be identified as a pair of 2× 2 matrices (λL, λR) in (sl2C)C.
The coadjoint orbit is defined by

(B.11) (Ωλ)C := {g(λL, λR)g−1}g∈SL(2,C)C ' SL(2,C)/HLλ × SL(2,C)/HRλ

where HL,Rλ is the stabilizer HL,Rλ = {h ∈ SL(2,C) |hλL,Rh−1 = λL,R}. Here
the stabilizer is precisely the Cartan subgroup (or maximal torus) Hλ = TC,
thus the coadjoint orbit is given by

(Ωλ)C = SL(2,C)/TC × SL(2,C)/TC ' T ∗S2 × T ∗S2,(B.12)

with Ωλ = SL(2,C)/TC = T ∗S2.
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For our present purposes it is sufficient to consider the real form Ωλ of the
coadjoint orbit; this is achieved by viewing the second copy of T ∗S2 as the
complex conjugate of the first copy.

Let ν, κ ∈ (sl2C∗)C be the linear functionals defined by ν(H) = −iw,
κ(H̃) = m (w, n ∈ C), and ν(H̃) = κ(H) = 0, while both ν and κ annihilate
E,F, Ẽ, F̃ . The above trace form results in the identification ν ←→ (ν, ν)
and κ←→ (κ,−κ) with ν and κ the 2× 2 matrices

(B.13) ν = − iw
2

(
1 0
0 −1

)
, and κ = − im

2

(
1 0
0 −1

)
.

The weight λ satisfies λ = ν ⊕ κ←→ (λL, λR) = (ν + κ, ν − κ). The coad-
joint orbit Ωλ has a natural SL(2,C) invariant symplectic structure:

(B.14) ων,κ =
1

2
tr
[
(ν + κ)g−1dg ∧ g−1dg

]
+

1

2
tr
[
(ν − κ)g−1dg ∧ g−1dg

]
.

To proceed with geometric quantization, a line-bundle L→ Ωλ must be
defined over the phase space Ωλ, with ων,κ the curvature of L. Due to the
compact cycle S2 ⊂ Ωλ, Weyl’s integrality criterion requires ων,κ to have
m ∈ Z in order that L is prequantizable. Reality of the curvature ων,κ im-
plies w ∈ iR. The prequantum line-bundle L can be obtained by taking the
quotient of C× SL(2,C) by the representation Hλ = TC acting on C. The
representation is given by (f, x) 7→ (σ(h)f, xh), so that the quotient is given
by the identification:

(f, xh) = (σ(h−1)f, x) or f(xh) = σ(h−1)f(x),(B.15)

with f ∈ C, x ∈ SL(2,C), h ∈ TC.

The representation σ(h−1) is given by e(iν+ρ)⊕iκ(h−1). Here ρ ∈ sl2C∗ is the

restricted positive root ρ(H) = 2, ρ(H̃) = 0 (ρ annihilates E,F, Ẽ, F̃ ). The
above quotient gives the prequantum line-bundle L→ Ωλ where SL(2,C)
acts on the sections f by

(B.16) g B f(x) = f(gTx).

An element of SL(2,C) can be written as

(B.17) g =

(
z1 −x2

z2 x1

)
with z1x1 + z2x2 = 1.

In the coadjoint orbit SL(2,C)/TC there is an equivalence (z1, z2, x1, x2) ∼
(αz1, αz2, α−1x1, α−1x2) for α ∈ C∗. We use a polarization such that the
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resulting sections of L depend only on the projective coordinate z1/z2. Be-
cause of the above quotient procedure Eq. (B.15), the sections transform in
the following way:26

f(αz1, αz2, ᾱz̄1, ᾱz̄2)(B.18)

= α−
1

2
(w+m)−1ᾱ−

1

2
(w−m)−1f(z1, z2, z̄1, z̄2), α ∈ C∗.

This transformation is precisely the scaling property of the homogeneous
function/section in the principle series representation when w ∈ iR and m ∈
Z. In our analysis of knotted graph operators, the parameters w,m are given
by

(B.19) w = −2iγjab, m = −2jab, and jab ∈ Z/2.

The group action of Eq. (B.16) gives the representation:(
a b
c d

)
B f(z, z̄) =

(
bz + d

)− 1

2
(w+m)−1

(B.20)

×
(
bz + d

)− 1

2
(w−m)−1

f

(
az + c

bz + d

)
,

where z = z1/z2 is a projective coordinate on CP1. The space of these sec-
tions on CP1, completed using the L2 inner product with measure dz =
i
2(z1dz2 − z2dz1) ∧ (z̄1dz̄2 − z̄2dz̄1), carries the principle series unitary ir-
reducible representation of SL(2,C) labeled by (m,w). The carrier space is
denoted by Hm,w or Hj,ρ with m = −2j and w = −2iρ. There is an isomor-
phism between the representations with labels (m,w) and (−m,−w).

In the above representation, expressed in terms of sections on CP1, the
variables z1 and z2 are “position variables” and correspond to multiplica-
tion operators on (a dense domain of) Hm,w. The variable x1 and x2 are
“momentum variables” and correspond to the derivative operators:

(B.21)

x1 =

(
2

w +m

)
∂

∂z1
, x2 =

(
2

w +m

)
∂

∂z2
,

x̄1 =

(
2

w −m

)
∂

∂z̄1
, x̄2 =

(
2

w −m

)
∂

∂z̄2
.

26Let h = etH with t ∈ C, we have
[
(iν + ρ)⊕ iκ

]
(tH) = 1

2 tr [(iν + iκ+ ρ)tH] +
1
2 tr [(iν − iκ+ ρ)t̄H] = t

2 (w + k + 2) + t̄
2 (w − k + 2), where the 2× 2 matrix ρ

equals ν when w = 2i.
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The scaling property of Eq. (B.18) implies

(B.22)
z1 ∂

∂z1
+ z2 ∂

∂z2
= −1

2
(w +m)− 1,

z̄1 ∂

∂z̄1
+ z̄2 ∂

∂z̄2
= −1

2
(w −m)− 1.

Note that the unitary irrep constructed above is an induced representation

ind
SL(2,C)
B (σ) on the sections of a line-bundle over the coset SL(2,C)/B '

CP1. Here B is the Borel subgroup of upper-triangular matrices, whose Lie
algebra is generated by H, H̃,E, Ẽ. The sections are obtained from the func-
tions f on SL(2,C) that satisfy

f(xb) = σ(b−1)f(x),(B.23)

where b ∈ B, x ∈ SL(2,C), and σ is given by σ = e(iν+ρ)⊕iκ, viewed as a
representation of B.

The Wilson line in the unitary irrep (m,w) can be written as a path
integral. When we consider its matrix element in the z-space representation
(z is the projective coordinate of CP1):

(B.24)
〈
z
∣∣Pe∫` A ∣∣z′〉

Hm,w
=

∫ z

z′
DgDḡ eiS[g,ḡ;A,Ā],

where the action S[g, ḡ;A, Ā] is given by:
(B.25)

S[g, ḡ;A, Ā] = −1

2

∫
`
tr
[
(ν + κ)g−1(d +AT )g + (ν − κ)ḡ−1(d + ĀT )ḡ

]
.

The path integral has a first-order Lagrangian depending on the SL(2,C)-
valued functions g : `→ SL(2,C). The boundary condition for the path inte-
gral is that the “position variables” g at the source and target of ` are equal
to z′ and z. The above path integral can be viewed as a quantum particle
moving through the “position space” CP1.

However there is a gauge symmetry of the action, i.e. S[g, ḡ;A, Ā] is
invariant under g 7→ gh with h ∈ Hλ = TC when h is trivial on the bound-
ary. Therefore the path integral is essentially defined over the maps g : `→
SL(2,C)/TC = Ωλ, where Ωλ is the coadjoint orbit, except for the integral
at the boundary of `. If we consider the gauge transformation g 7→ gh with
h ∈ Hλ = TC non-trivial on the boundary, the path integral Eq. (B.24) trans-
forms non-trivially. Evaluation of the path integral defines a section in the
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line-bundle over CP1 × CP1. Indeed, let us consider an arbitrary gauge trans-
formation g 7→ gh with h = eτH , τ ∈ C. The action S transforms as

(B.26) S[g, ḡ;A, Ā] 7→ S[g, ḡ;A, Ā] +
i

2
(w +m)

∫
`
dτ +

i

2
(w −m)

∫
`
dτ̄ .

Under the transformation g 7→ gh the coordinates z1, z2, x1, x2 for the quo-
tient SL(2,C)/TC scale as

(B.27)

(
z1 −x2

z2 x1

)(
α 0
0 α−1

)
=

(
αz1 −α−1x2

αz2 α−1x1

)
, where α = eτ .

Eq. (B.26) implies that the path integral transforms in the same way as
Eq. (B.18), which has to be the case in order that Eq. (B.24) is correct and
the L2 inner product with dz is scale invariant, i.e.

(B.28)

∫ λz

z′
DgDḡ eiS[g,ḡ;A,Ā] = α−

1

2
(w+m)−1ᾱ−

1

2
(w−m)−1

∫ z

z′
DgDḡ eiS[g,ḡ;A,Ā]∫ z

λz′
DgDḡ eiS[g,ḡ;A,Ā] = α

1

2
(w+m)−1ᾱ

1

2
(w−m)−1

∫ z

z′
DgDḡ eiS[g,ḡ;A,Ā].

Note that a factor α−1ᾱ−1 above comes from the path integral measure at
the boundary.

Using the boundary conditions on z and z′, the variational equations of
motion can be derived from S:

(B.29)
[
ν + κ, g−1(d +AT )g

]
= 0, and

[
ν − κ, ḡ−1(d + ĀT )ḡ

]
= 0,

which implies that g is the gauge transformation diagonalizing the compo-
nent of At along the curve `, or,

(B.30)
d

dt
g +ATt g ∝C gH, and

d

dt
ḡ + ĀTt ḡ ∝C ḡH.

Again expressing g using the coordinates z1, z2, x1, x2, we find that d
dtz +

ATt z ∝C z (and similarly for z̄) where z = (z1, z2)T . Then the on-shell rela-
tion for the boundary data z, z′ of the path integral is:

(B.31) z ∝C Pe−
∫
`
AT z′.
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Hamiltonian analysis of S[g] reproduces the symplectic structure ων,κ of
Eq. (B.14), and gives the Hamiltonian H = p · ∂tq − L:

(B.32) H =
1

2
tr
[
(ν + κ)g−1ATt g + (ν − κ)ḡ−1ĀTt ḡ

]
,

where At is the component of A along the curve `. We replace the variables
in g by the corresponding operators in the z-space representation to define
the Hamiltonian operator Ĥ. Here At is treated as an external variable, so
its components in an sl2C basis are treated as c-numbers. Consequently, it
can be shown that, the resulting Hamiltonian operator −iĤ is precisely the
representation of At : `→ sl2C in the unitary irrep as an operator on Hm,w.
In other words, if we expand the 2 matrix At = aH + bE + cF , then

−iĤ = aĤ + bÊ + cF̂ ,(B.33)

where Ĥ, Ê and F̂ are the differential operators representing H,E, and
F ∈ sl2C and generating infinitesimally the representation Eq. (B.20). As
a result, the path integral of Eq. (B.24) for Wilson line follows from the
quantum mechanical relation:〈

z
∣∣Te−i ∫ Ĥ dt

∣∣z′〉 =

∫ z

z′
DgDḡ eiS[g,ḡ;A,Ā],(B.34)

where T denotes the time-ordering corresponding to the path ordering P of
the Wilson line.
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