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symplectically rigid monodromy tuples
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We define an iterative construction that produces a family of el-
liptically fibered Calabi-Yau n-folds with section from a family of
elliptic Calabi-Yau varieties of one dimension lower. Parallel to the
geometric construction, we iteratively obtain for each family with
a point of maximal unipotent monodromy, normalized to be at
t = 0, its Picard-Fuchs operator and a closed-form expression for
the period holomorphic at t = 0, through a generalization of the
classical Euler transform for hypergeometric functions. In partic-
ular, our construction yields one-parameter families of elliptically
fibered Calabi-Yau manifolds with section whose Picard-Fuchs op-
erators realize all symplectically rigid Calabi-Yau differential op-
erators with three regular singular points classified by Bogner and
Reiter, but also non-rigid operators with four singular points.
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1. Introduction

The study of Calabi-Yau manifolds, i.e., compact Kähler manifolds with
trivial canonical bundle, has been an active field in algebraic geometry and
mathematical physics ever since their christening by Candelas et al. [15] in
1985. For every positive integer n, the vanishing set of a non-singular ho-
mogeneous polynomial of degree n+ 2 in the complex projective space Pn+1

is a compact Calabi-Yau manifold of n complex dimensions, or Calabi-Yau
n-fold for short. The construction yields for n = 1 an elliptic curve, while
for n = 2 one obtains a K3 surface. In two complex dimensions K3 surfaces
are the only simply connected Calabi-Yau manifolds. The classification of
Calabi-Yau threefolds remains an open problem. Results of tremendous on-
going activity in physics that included systematic computer searches have
given us a better idea of the landscape of Calabi-Yau threefolds [50, 75]. For
example, the work has impressively demonstrated the near omnipresence of
elliptic fibrations on Calabi-Yau threefolds. Unfortunately, it has also been
revealed that it is generally quite difficult to construct examples of families
of Calabi-Yau threefolds with small Hodge number h2,1 by specialization of
multi-parameter families.

The mathematical study of mirror symmetry essentially began with the
example of the quintic and mirror quintic family of Candelas, de la Ossa,
Green and Parkes [14]. The quintic family is a generic quintic hypersurface
X ⊂ P5 , e.g., the Fermat quintic

X5
0 + · · ·+X5

4 = 0,

which is a Calabi-Yau threefold with Hodge numbers h1,1 = 1 and h2,1 =
101. The mirror family has a flipped Hodge diamond h2,1 = 1 and h1,1 = 101
and can be constructed via the Greene-Plesser orbifolding construction from
the Dwork pencil

X5
0 + · · ·+X5

4 + 5λX0X1 · · ·X4 = 0.
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The mirror quintic family is a one-dimensional family of Calabi-Yau three-
folds defined over the base P1\{0, 1,∞} and has exactly three singular fibers:
the large complex structure limit, the Gepner point, and the stacky point
(the first two describe the discriminant locus of “bad” N = (2, 2)-SCFT).
There are some further properties coming from the “special geometry” of
the moduli space. The family has played a crucial role in the spectacular
computations which suggested that mirror symmetry could be used to solve
long-standing problems in enumerative geometry. These remarkable observa-
tions led to an enormous mathematical activity which both tried to explain
the observed phenomena and to establish similar mirror recipes and results
for other families of Calabi-Yau threefolds. For example, Batyrev described
in [4] a way to construct the mirror of Calabi-Yau hypersurfaces in toric
varieties via dual reflexive polytopes, and a proof of the so-called mirror
theorem was given by Givental in [38] and Lian, Liu, and Yau in [52]. How-
ever, most of the standard recipes fail to consistently produce families with
the desired properties. The goal of this paper is to present a construction
which rectifies that.

The quintic-mirror family gives rise to a variation of Hodge structure
and an associated Picard-Fuchs differential equation. In turn, the solutions
to the differential equation, called periods, determine this variation of Hodge
structure. Doran and Morgan [34] classified certain one-parameter varia-
tions of Hodge structure which arise from families of Calabi-Yau threefolds
with one-dimensional rational deformation space, i.e., families of Calabi-
Yau threefolds resembling the quintic-mirror family. It is worth pointing out
that their result was achieved not by constructing families of Calabi-Yau
threefolds, but by classifying all integral weight-three variations of Hodge
structure which can underlie a family of Calabi-Yau threefolds over a thrice-
punctured sphere P1\{0, 1,∞} — subject to certain conditions on the mon-
odromy coming from mirror symmetry. Calabi-Yau threefolds with large
complex structure limit and h2,1 = 1 have since emerged in a pivotal role
for both mathematics and physics, where classical geometric, toric, and an-
alytical methods are used in their investigation. The Picard-Fuchs equations
for other families of Calabi-Yau threefolds were constructed by Batyrev, van
Straten and others in [6, 7] which lead to a general definition of a Calabi-Yau
differential operator by Almkvist, van Enckevort, van Straten and Zudilin,
rooted purely in the theory of differential operators; see [2, 77]. A large num-
ber of these are known today (currently over 500!) but they are mostly found
via computer searches. The reason for the name is that they are conjectured
to come from families of Calabi-Yau threefolds having a large complex struc-
ture limit and h2,1 = 1.
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This paper addresses part of the conjecture. We devise an iterative geo-
metric construction that finds explicit families of elliptically fibered Calabi-
Yau manifolds whose Picard-Fuchs operators realize a big class of Calabi-Yau
differential operators, including the so-called symplectically rigid operators,
but also non-rigid operators.

2. Summary of results

The main result of this article is an iterative twist construction that produces
projective families π : X → B = P1\{0, 1,∞} of elliptically fibered Calabi-
Yau n-folds Xt = π−1(t) with t ∈ B = P1\{0, 1,∞} with section from fami-
lies of elliptic Calabi-Yau varieties with the same properties in one dimension
lower, for n = 1, 2, 3, 4. In this paper we will always restrict ourselves to el-
liptic fibrations with sections, so-called Jacobian elliptic fibrations. These
families are then presented as Weierstrass models which are ubiquitous in
the description of families of elliptic curves and K3 surfaces. In fact, Gross
proved [46] that there are only a finite number of distinct topological types
of elliptically fibered Calabi-Yau threefolds up to birational equivalence. For
an elliptically fibered Calabi-Yau threefold, the existence of a global sec-
tion makes it then possible to find an explicit presentation as a Weierstrass
model [62]. For example, our iterative procedure constructs from extremal
families of elliptic curves1 with rational total space, families of Jacobian el-
liptic K3 surfaces of Picard rank 18 or 19, and in turn from these elliptically
fibered Calabi-Yau threefolds with h2,1 = 1, and can be continued further
on. Moreover, all families are iteratively constructed from a single geometric
object, the mirror family of Fermat quadrics in P1\{1,∞} given by

(2.1) X2
0 +X2

1 + 2 tX0X1 = 0.

The broad range of families of Jacobian elliptic Calabi-Yau manifolds ob-
tained by our iterative construction includes the following noteworthy fam-
ilies with generic fibers of dimension n:

[n = 1] the universal families of elliptic curves over the modular curves for
Γ0(k) with k = 1, 2, 3, 4, 5, 6, 8, 9,

1An elliptic fibration π : X → P1 is called extremal if and only if for the group of
sections we have rank MW(π) = 0 and the associated elliptic surface has maximal
Picard number.
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[n = 2] families of Mk-lattice polarized K3 surfaces over the modular curves for
Γ0(k)+ with k = 1, 2, 3, 4, 5, 6, 8, 9, and families of M -lattice polarized
K3 surfaces (and closely related lattices of Picard rank 18),

[n = 3] families of Calabi-Yau threefolds with h2,1 = 1 realizing all 14 one-
parameter variations of Hodge structure classified by Doran and Mor-
gan in [34],

[n = 4] families of Calabi-Yau fourfolds over a one-dimensional rational defor-
mation space realizing all 14 hypergeometric one-parameter variations
of Hodge structure of weight four and type (1, 1, 1, 1, 1),

[n ∈ N] mirror families of Dwork pencils in Pn+1.

Katz discovered that linearly rigid monodromy tuples are obtained as
tensor products and convolutions of rank-one local systems [51]; Doran and
Morgan [34] classified all possible fourteen linearly rigid monodromy-tuples
that could come from a B-side variation of Hodge structures. As it turns
out, every single one of them admits geometric realization as hypersurfaces
or complete intersections in a Gorenstein toric Fano variety or as Calabi-
Yau threefolds fibered by high rank K3’s by Clingher et al. [21]. Within
the class of irreducible Fuchsian differential operators of Calabi-Yau type,
the symplectically rigid differential operators with three regular singular-
ities constitute an important subclass and were classified by Bogner and
Reiter [12]. In addition to the 14 linearly rigid examples in [34], this class
includes all operators whose associated monodromy representation is sym-
plectically rigid. Following the results of Deligne [25] and Katz [51], there is
a necessary and sufficient arithmetic criterion for the generalized rigidity of
a monodromy tuple within any irreducible reductive algebraic subgroup of
GL(n,C): choosing the subgroup to be GL(n,C) returns the aforementioned
notion of linear rigidity, whereas choosing Sp(n,C) ⊂ GL(n,C) provides us
with the more general notion of symplectic rigidity. We know that the el-
ements of monodromy tuples induced by a rank-four Calabi-Yau operator
must lie in Sp(4,C). Bogner and Reiter showed that all of the symplectically
rigid monodromy tuples of quasi-unipotent elements admit a decomposition
into a sequence of middle convolutions and tensor products of Kummer
sheaves of rank one [12]. In particular, they are constructible using only tu-
ples of rank-one. Among them, 60 tuples are associated with symplectically
rigid Calabi-Yau operators having a maximal unipotent element; they are
available in the database of Almkvist et al. [2], or AESZ database for short.

These results suggest that there should be a geometric explanation for
the Bogner and Reiter result, and therefore some kind of “iterated fibration”
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construction, starting with the rank-one Picard-Fuchs operator of the fam-
ily (2.1), realizing all symplectically rigid Calabi-Yau operators. The main
result of this article is the following:

Theorem 2.1. All symplectically rigid Calabi-Yau operators having a max-
imal unipotent element are the Picard-Fuchs operators of families of Jaco-
bian elliptic Calabi-Yau varieties π : X → P1\{0, 1,∞}. The families are ob-
tained by the iterative twist construction applied to the quadric pencil (2.1).
In particular, for each symplectically rigid differential operator Lt the iter-
ative twist construction produces (1) a family of transcendental cycles Σ(t),
obtained iteratively from a lower dimensional cycle using a warped product,
(2) a holomorphic top-form ηt on each fiber Xt = π−1(t), represented as a
closed differential form, such that the period

ω(t) =

ˆ
Σ(t)

ηt

is holomorphic on the unit disk about the maximal unipotent monodromy
point t = 0, and solves the Picard-Fuchs equation Ltω(t) = 0.

We point out that the restriction to symplectically rigid differential op-
erators in Theorem 2.1 was chosen to simplify this exposition. For example,
our iterative construction also provides a geometric realization of all rank-
four, non-rigid Calabi-Yau operators with four regular singular points that
were found in [13].

The outline of this paper is as follows: in Section 3 we recall crucial
definitions and properties related to hypergeometric differential operators
and Calabi-Yau operators, their behavior under the exterior square oper-
ation and the Hadamard product, as well as the notion of rigidity. The
details of the proof of our main theorem are quite involved, but the basic
idea is simple and already present in a series of examples that we present
in Section 4. In Section 5, we describe the construction of twisted fami-
lies with generalized functional invariant in full generality, including several
modified variants needed later, and the computation of period integrals. In
Section 6 we demonstrate that families of Calabi-Yau manifolds obtained by
our iterative construction include universal families of elliptic curves over
the modular curves for Γ0(k), families of Mk-lattice polarized K3 surfaces
over the modular curves for Γ0(k)+, and other prominent families of lattice
polarized K3 surfaces. In Section 7 we show that a sequence of generalized
functional invariants captures all key features of the mirror families of the
deformed Fermat pencils, including the existence of (new) elliptic fibrations
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and relations among their holomorphic periods. In Section 8 we apply lin-
ear and quadratic transformations to the rational parameter spaces of the
twisted families of elliptic curves and K3 surfaces already obtained in pre-
vious sections. As we use our twist construction iteratively, applying base
transformations between twists turns out to be a crucial step in order to
construct a complete set of families realizing all symplectically rigid mon-
odromy tuples. The proof of Theorem 2.1 will be completed in Section 9.
In Section 10, we show that 30 non-rigid Calabi-Yau operators with four
singular points are readily obtained by our twist construction as well.
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3. Hypergeometric and Calabi-Yau type operators

3.1. Hypergeometric functions

The higher hypergeometric functions nFn−1 were introduced by Thomae [76]
as series

(3.1) nFn−1

(
α1, . . . , αn
β1, . . . , βn−1

∣∣∣∣ t) =

∞∑
k=0

(α1)k · · · (αn)k
(β1)k · · · (βn−1)k

tk

k!
,

where (α)k = Γ(α+ k)/Γ(α) is the Pochhammer symbol. When n = 2 this
is the classical Gauss hypergeometric function. We always assume that we
have rational parameters α1, . . . , αn ∈ (0, 1) ∩Q and β1, . . . , βn−1 ∈ (0, 1] ∩
Q such that αi 6= βj . The rank-n and degree-one2 differential equation sat-
isfied by nFn−1 is given by

(3.2)
[
θ(θ + β1 − 1) · · · (θ + βn−1 − 1)− t (θ + α1) · · · (θ + αn)

]
ω(t) = 0,

2degree refers to the highest power in t
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where θ = t ddt and there are three regular singular points t = 0, 1,∞. The
differential operator has the Riemann symbol

(3.3) P



0 1 ∞
1− β1 0 α1

1− β2 1 α2
...

...
...

1− βn−1 n− 2 αn−1

0
∑n−1

j=1 βj −
∑n

j=1 αj αn

∣∣∣∣∣∣∣∣∣∣∣∣∣
t


.

From now on we shall denote the hypergeometric equation (3.2) by

(3.4) L
(n)
t

(
(α1, . . . , αn); (β1, . . . , βn−1)

)
ω(t) = 0.

In general, given a rank-n differential operator Lt with coefficients in
C(t) and singular locus S with finite cardinality |S| = r + 1, normalized to
include t = 0 as a singular point, there is an induced rank-n local system L
of solutions on P1\S. If all singularities of Lt are regular, we call the operator
a Fuchsian differential operator. We fix a base point t0 ∈ P1\S to obtain the
monodromy representation of the fundamental group given by

π1(P1\S, t0)→ H ⊂ GL(Lt0) ∼= GL(n,C).

An operator is irreducible if the image of its monodromy representation is an
irreducible subgroup. If we also fix an orientation and a set of based simple
loops, i.e., {

γs : (S1, ∗)→
(
P1\S, t0

)}
s∈S

,

each circling a single point in the singular locus exactly once and an ordering
of S, we obtain monodromy matrices g1, . . . , gr+1 for the simple loops γs
around the corresponding points together with the relation g1 · · · gr+1 = I.
The latter follows because the product of all paths is a path encircling all
of S, whence homotopic to the trivial path. The collection of monodromy
matrices T = (g1, . . . , gr+1) is called a monodromy tuple of rank n. Clearly,H
is determined by the tuple of matrices T = (g1, . . . , gr+1) with gi ∈ GL(n,C)
whose product is the identity, up to global conjugation, i.e., mapping gi 7→
h · gi · h−1 for a single h ∈ GL(n,C). We call a monodromy representation
linearly rigid if the elements of the monodromy tuple are quasi-unipotent,
generate an irreducible subgroup, and are completely determined by their
individual conjugacy classes, i.e., Jordan forms.



i
i

“3-Doran” — 2020/2/5 — 18:15 — page 1279 — #9 i
i

i
i

i
i

Calabi-Yau realizing symplectically rigid monodromy 1279

For the generalized hypergeometric function this is the case if αi − βj 6∈
Z for all i, j; see [9]. Therefore, we have the following:

Theorem 3.1 ([9]). The operator L
(n)
t

(
(α1, . . . , αn); (1, . . . , 1)

)
with αi ∈

(0, 1) ∩Q and βj = 1 in Equation (3.2) is a rank-n Fuchsian differential
operator with the three regular singular points t = 0, 1,∞ such that t = 0 is a
point of maximally unipotent monodromy and the monodromy representation
is linearly rigid.

For rank n = 1, we have

(3.5) 1F0(α| t) =
(
1− t

)−α
,

and the differential operator L
(1)
t (1/2; ) gives rise to a monodromy tuple of

rank one, with monodromies 1,−1, and −1 around the points t = 0, 1,∞.
The monodromy representation for the differential operator (3.4) and

the corresponding differential Galois group — which carries all information
about algebraic relations between the solutions — were classified by Beukers
and Heckman [9].

3.2. Convolution formulas

The Hadamard product of two power series f(t) =
∑

n≥0 fn t
n and g(t) =∑

n≥0 gn t
n is defined by (f ? g)(t) :=

∑
n≥0 fn gn t

n. Using the Hadamard
product, the following cancellation in the coefficients of convergent hyper-
geometric series is easily observed:

nFn−1

(
α1, . . . , αn

ρ1, . . . , ρl, β1, . . . , βn−l−1

∣∣∣∣ t) ? mFm−1

(
ρ1, . . . , ρl, α

′
1, . . . , α

′
m−l

γ1, . . . , γm−1

∣∣∣∣ t)
= m+n−lFm+n−l−1

(
α1, . . . , αn, α

′
1, . . . , α

′
m−l

β1, . . . , βn−l−1, γ1, . . . , γm−1, 1

∣∣∣∣ t)(3.6)

with αi, α
′
i′ 6= βj , γj′ . The Hadamard product is used in explicit formulas for

certain integral convolutions. We have the following:

Lemma 3.2. For a function ω(t) which is holomorphic on the disc of radius
1 about t = 0 and has the absolutely convergent series ω(t) =

∑
k≥0 fkt

k for
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|t| < 1 and α ∈ (0, 1) ∩Q, we have the following convolution formulas:

ˆ 1

0

dv

v1−α (1− v)α
ω(tv) = π csc (πα)

∑
n≥0

fn (α)n
n!

tn(3.7)

= π csc (πα) 1F0(α| t) ? ω(t),

and

(3.8)

ˆ 1

−1

dv√
1− v2

ω(tv) = π
∑
n≥0

f2n

(
1
2

)
n

n!
t2n = π 1F0

(
1

2

∣∣∣∣ t2) ? ω(t).

Proof. The first identity easily follows from

ˆ 1

0
ta−1(1− t)b−1 =

Γ(a)Γ(b)

Γ(a+ b)
,

where Re(a),Re(b) > 0, the formula (1 + z)−k =
∑

l≥0
Γ(l+k)

Γ(k)Γ(l+1)(−z)l, and

the reflection formula Γ(α)Γ(1− α) = π csc (πα). For the second equation
we observe that

(3.9)

ˆ 1

−1

dv√
1− v2

ω(tv) =

ˆ 1

0

dw

2
√
w(1− w)

(
ω(t
√
w) + ω(−t

√
w)
)
.

�

The integral convolution in Equation (3.7) and (3.8) is also called Euler
transform. That is, the Euler transform is an integral transform with pa-
rameter that relates (the holomorphic solution of) a Fuchsian differential
equation of rank n with three regular singularities to a Fuchsian differen-
tial equation of rank (n+ 1) with three regular singularities. We have the
following:

Corollary 3.3. In the situation above, we have

n+1Fn

( α1 . . . αn+1

1 . . . 1

∣∣∣ t) = 1F0(α1| t) ? nFn−1

( α2 . . . αn+1

1 . . . 1

∣∣∣ t)(3.10)

= 1F0(α1| t) ? · · · ? 1F0(αn+1| t)(3.11)

=

[
n∏
i=1

1

π csc (παi)

ˆ 1

0

dzi

z1−αi
i (1− zi)αi

]
(1− t z1 · · · zn−1)−αn+1 .(3.12)

�
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The Hadamard product in Equation (3.10) of the hypergeometric func-
tion nFn−1 with 1F0 turns the holomorphic solution of

L
(n)
t ((α2, . . . , αn+1); (1, . . . , 1))ω(t) = 0

into the holomorphic solution of L
(n+1)
t ((α1, . . . , αn+1); (1, . . . , 1)) ω̃(t) = 0.

There is a corresponding notion of the Hadamard product (cf.[12, Def. 4.11])
for the differential operators involved: the Hadamard product of the differ-

ential operator L
(1)
t (α1; ) with the operator L

(n)
t ((α2, . . . , αn+1); (1, . . . , 1))

yields the differential operator L
(n+1)
t ((α1, . . . , αn+1); (1, . . . , 1)). In [12], this

was denoted by Hα1
(L

(n)
t ) = L

(n+1)
t , and a corresponding operation, known

as middle Hadamard product, was introduced for the monodromy tuple in-
duced by a differential operator such that the monodromy tuple induced

by L
(n+1)
t becomes a sub-factor in the middle Hadamard product of the

monodromy tuple induced by L
(n)
t . We make the following:

Definition 3.4. Differential operators are said to be of geometric origin
if they are Picard-Fuchs operators annihilating the periods of a family of
complex algebraic varieties. A monodromy tuple is of geometric origin, if it
is induced by a differential operator of geometric origin.

Equation (3.11) decomposes the local system of

L
(n+1)
t ((α1, . . . , αn+1); (1, . . . , 1))

into the convolution of n+ 1 local systems of rank one, each with a holo-
morphic solution of the type in Equation (3.5) with α = αi. This is a special
case of a general classification result by Katz [51] that applies to every
linearly rigid local system; see also [12]. In fact, Katz proved that every
linearly rigid local system is obtained as tensor products and convolutions
of rank-one local systems associated with the holomorphic solution (3.5).
More general, it is known that these operations on the level Fuchsian local
systems and monodromy tuples preserve the geometric origin of an opera-
tor; see [26]. However, as we will prove in this article, such a decomposition
into rank-one local systems is not necessarily meaningful in terms of geome-

try. For example, the classical rank-two local system for L
(2)
t ((µ, 1− µ); (1))

with µ ∈ {1
3 ,

1
4 ,

1
6} is decomposed using Katz’ procedure into two rank-one

systems using the Hadamard product

(3.13) 2F1

(
µ, 1− µ

1

∣∣∣∣ t) = 1F0(µ| t) ? 1F0(1− µ| t) .
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However, this decomposition is not the one to be used if one wants to relate
a period of a zero-dimensional family of Calabi-Yau manifolds to a period of
a family of elliptic curves. Instead one has to use the decomposition formula

(3.14) 2F1

(
µ, 1− µ

1

∣∣∣∣ t) = 2F1

(
µ, 1− µ

1
2

∣∣∣∣ t) ? 1F0

(
1

2

∣∣∣∣ t) .
Equation (3.14) then allows to build directly families of elliptic curves whose

Picard-Fuchs operator is L
(2)
t ((µ, 1− µ); (1)) for every µ ∈ {1

3 ,
1
4 ,

1
6} from a

single geometric object, the family in Equation (6.1) with Picard-Fuchs op-

erator L
(1)
t (1/2; ), using a generalized functional invariant which determines

µ; see Lemma 6.1.

3.3. Rigid Calabi-Yau operators

Doran and Morgan classified in [34] all integral weight-three variations of
Hodge structure which can underlie a family of Calabi-Yau threefolds over
the thrice-punctured sphere P1\{0, 1,∞} — subject to conditions on mon-
odromy coming from mirror symmetry — through the irreducible mon-
odromy representation generated by the local monodromies around the punc-
tures of the base space. The monodromy representations turned out to
be identical with the linearly rigid monodromy groups associated with the

univariate generalized hypergeometric operators L
(4)
t ((α1, . . . , α4); (1, . . . , 1))

with certain rational coefficients α1, . . . , α4.
Each case was realized as a family of, possibly singular, Calabi-Yau three-

folds constructed as hypersurfaces or complete intersections in a Gorenstein
toric Fano variety and Calabi-Yau threefolds fibered by high rank K3’s by
Clingher et al. [21] — where a non-generic geometric transition was needed
in one of the cases. The construction of the 14 cases lead to the following
definition of a Calabi-Yau type differential operator (or Calabi-Yau operator
for short) by Almkvist, van Enckevort, van Straten and Zudilin:

Definition 3.5. A rank-n Calabi-Yau operator is an irreducible Fuchsian

differential operator L
(n)
t of rank n with coefficients in C(t) and singular

locus S (with only regular singular points), normalized to include t = 0,

such that (1) the monodromy at t = 0 is maximally unipotent, (2) L
(n)
t is

self-adjoint, i.e., there is a function h(t) 6= 0 algebraic over Q(t) such that

L
(n)
t h(t) = (−1)nh(t)L

(n) †
t where L

(n) †
t denotes the adjoint of L

(n)
t , and (3)

L
(n)
t ω(t) = 0 has an N -integral holomorphic solution ω(t) =

∑
k≥0 fkt

k at

t = 0, i.e., there exists N ∈ N such that fkN
k ∈ N for all k.
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Remark 3.6. Condition (1) is equivalent to all exponents of the Riemann

symbol for L
(n)
t at t = 0 being zero. For a general linear, rank-n, Fuchsian

differential operator in the variable t, given by

L
(n)
t = ∂n +

n−1∑
i=0

ai(t) ∂
i,

with ∂ = d
dt and suitable rational coefficient functions ai(t) for 1 ≤ i ≤ n− 1,

the formal adjoint operator is

L
(n) †
t = ∂n +

n−1∑
i=0

(−1)n+i ∂iai(t).

The condition of being self-adjoint implies, as a necessary condition, that
the function h(t) satisfies the differential equation

h′(t) = − 2

n
an−1(t)h(t).

Condition (2) implies that for n even the differential Galois group of L
(n)
t is

contained in Sp(n,C). Condition (3) implies that the monodromy matrices
at each singular points are quasi-unipotent.

For a monodromy r-tuple T = (g1, . . . , gr) with gi ∈ G where G is a
reductive complex algebraic group, we define the rigidity index of T in G as

(3.15) iG(T ) =

r∑
i=1

codimCG(gi)− 2 dimG+ 2 dimZG,

where CG(gi) denotes the centralizer of gi in G, and ZG denotes the center
of G. Deligne and Katz gave the following criterion:

Proposition 3.7 ([51]). For G = GL(n,C) the monodromy r-tuple T =
(g1, . . . , gr) is linearly rigid if and only if iG(T ) = 0.

Therefore, one can extend the notion of rigidity from GL(n,C) to any
reductive complex algebraic group G by considering the monodromy tuples
with iG(T ) = 0. In particular, since elements of monodromy tuples induced
by a fourth order Calabi-Yau differential operator lie in Sp(4,C), we inves-
tigate those Calabi-Yau operators inducing an Sp(4,C)-rigid monodromy
representation, or symplectically rigid for short.
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Bogner and Reiter [12] proved that all Sp(4,C)-rigid monodromy tu-
ples consisting of quasi-unipotent elements can be constructed using ten-
sor products, rational pullbacks and the middle convolution [12, Thm. 3.1]
of rank-one local systems associated with the holomorphic solution of the
type in Equation (3.5). Simpson had already classified in [71] all irreducible,
Sp(4,C)-rigid monodromy tuples with quasi-unipotent elements and one
maximally unipotent matrix. It turns out [71, Thm. 4] that these tuples
necessarily have three matrices, analogous to Picard-Fuchs operators of fami-
lies of Calabi-Yau threefolds over the thrice-punctured sphere P1\{0, 1∞}—
subject to conditions on monodromy coming from mirror symmetry. More-
over, Simpson divided up these tuples into four families, called the hyper-
geometric, odd, even, and extra family. Bogner and Reiter found that these
tuples are realized as monodromy tuples of Fuchsian differential operators.
We have the following:

Corollary 3.8 ([12]). There are 60 rank-four Calabi-Yau operators with
three singularities whose associated symplectically rigid monodromy repre-
sentations are generated by tuples T = (g0, g1, g∞) with quasi-unipotent el-
ements, having one maximally unipotent matrix, and satisfy iG(T ) = 0 for
G = Sp(4,C).

Remark 3.9. The 60 symplectically rigid Calabi-Yau operators with
three singularities are found in the AESZ database [2]. Among them, 14
Calabi-Yau operators are univariate generalized hypergeometric operators

L
(4)
t

(
(α1, . . . , α4); (1, . . . , 1)

)
with certain rational coefficients α1, . . . , α4 de-

termined by Doran and Morgan [34].

Remark 3.10. As we demonstrate in Section 10, our geometric twist con-
struction can also produce families of Calabi-Yau threefolds whose Picard-
Fuchs operators realize all monodromy tuples of low degree with four quasi-
unipotent elements and one maximally unipotent matrix. On the other hand,
there are families of Calabi-Yau threefolds whose Picard-Fuchs operators
have no point of maximally unipotent monodromy and do not underlie vari-
ations of Hodge structure of type (1, 1, 1, 1) [37].

The decomposition of the Sp(4,C)-rigid monodromy tuples by Bogner
and Reiter suffers from the same problem the decomposition of linearly
rigid systems by Katz does — we demonstrated that with Equation (3.13)
versus Equation (3.14): whereas it does imply that the symplectically rigid
operators are of geometric origin, the decomposition is not constructive in
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the sense that it produces families of Calabi-Yau manifolds whose Picard-
Fuchs operators realize them. In contrast, our iterative twist construction
in Section 5 will build from a single geometric object, a family that we
will present in Equation (6.1), the families of Calabi-Yau varieties using
a generalized functional invariant such that their Picard-Fuchs operators
realize all 60 cases in Corollary 3.8.

3.3.1. The Yifan-Yang pullback. As explained above, among the 60
rank-four Calabi-Yau operators with three singularities and symplectically
rigid monodromy, 14 Calabi-Yau operators belong to the univariate gener-
alized hypergeometric operators. Another 14 rank-four Calabi-Yau opera-
tors are uniquely determined by the fact that they are of degree two in t
and their exterior squares are the univariate rank-five hypergeometric op-

erators L
(5)
t

(
(α1, α2, 1/2, α3, α4); (1, . . . , 1)

)
for certain rational coefficients

α1, . . . , α4.

For a linear differential operator L
(n)
t with linearly independent solutions

y1(t), . . . , yn(t), the exterior square is the linear differential operator of
minimal rank with solutions yi(t)y

′
j(t)− y′i(t)yj(t) for all 1 ≤ i < j ≤ n. The

exterior square of a general differential operator L
(4)
t is a rank-six differential

operator of the form ∂6 + 1
M(t)

∑5
i=0 bi(t) ∂

i where M(t) is the right side of

Equation (3.16). If M(t) = 0 for all t, then we say that the exterior square

of L
(4)
t is a rank-five operator.

For a general rank-four differential operator L
(4)
t = ∂4 +

∑3
i=0 ai(t) ∂

i we
have the following:

Lemma 3.11. The following statements are equivalent:

1) The operator L
(4)
t is self-adjoint.

2) The exterior square of L
(4)
t is a rank-five operator.

3) The monodromy group of the operator L
(4)
t is a discrete subgroup of

Sp(4,R).

4) The following condition for the coefficients of L
(4)
t holds

0 = 8 a1(t)− 8
da2(t)

dt
+ 4

d2a3(t)

dt2
(3.16)

− 4 a2(t) a3(t) + 6 a3(t)
da3(t)

dt
+ a3(t)3.

Proof. The equivalence of (1), (2), (4) follows by an explicit computation.
The equivalence with condition (3) was proved in [12]. �
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Similarly, for a general rank-five differential operator

L
(5)
t = ∂5 +

4∑
i=0

bi(t) ∂
i

we have the following:

Lemma 3.12. The following statements are equivalent:

1) The operator L
(5)
t is self-adjoint.

2) The operator L
(5)
t is the exterior square of a rank-four self-adjoint

operator.

3) The monodromy group of the operator L
(5)
t is a discrete subgroup of

Sp(4,R).

4) The following two conditions for the coefficients of L
(5)
t hold:

b2(t) =
3

2

db3(t)

dt
+

3

5
b4(t) b3(t)(3.17)

− d2b4(t)

dt2
− 6

5
b4(t)

db4(t)

dt
− 4

25
b4(t)3

and

b0(t) =
1

5

d4b4(t)

dt4
− 1

4

d3b3(t)

dt3
+

2

5
b4(t)

d3b4(t)

dt3
− 3

10
b4(t)

d2b3(t)

dt2
(3.18)

+

(
8

25
b4(t)2 +

4

5

db4(t)

dt
− 1

10
b3(t)

)
d2b4(t)

dt2
+

1

2

db1(t)

dt

+

(
− 3

25
b4(t)2 − 3

10

db4(t)

dt

)
db3(t)

dt
+

12

25
b4(t)

(
db4(t)

dt

)2

+

(
− 3

25
b3(t) b4(t) +

16

125
b4(t)3

)
db4(t)

dt
− 2

125
b3(t) b4(t)3

+
1

5
b1(t) b4(t) +

16

3125
b4(t)5.

Proof. The equivalence of (1), (2), (4) follows by an explicit computation.

Yang and Zudilin [81] proved that L
(5)
t has a projective monodromy group

that is a discrete subgroup of Sp(4,R) if and only if L
(5)
t satisfies condi-

tions (3.17) and (3.18). In fact, we have the following identification with the
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polynomials p1, p2, and p3 used in [81, Theorem 4]:

p1(t)

t
=

1

10
b4(t)− 1

t
,

p2(t)

t2
=

1

5
b3(t)− 1

5

db4(t)

dt
− 7

100
b4(t)2,

p3(t)

t4
=

1

250
b3(t) b4(t)2 − 3

10
b4(t)

db3(t)

dt
+

1

50
b3(t)

db4(t)

dt

+
17

50

(
db4(t)

dt

)2

+
2

5

d3b4(t)

dt3
+

29

125
b4(t)2db4(t)

dt

+
14

25
b4(t)

d2b4(t)

dt2
+

9

1250
b4(t)4 − 2

25
b3(t)2

+
1

2
b1(t)− 9

20

d2b3(t)

dt2
.

(3.19)

�

We make the following:

Remark 3.13. The D-module associated with the differential operator L
(4)
t

underlies a variation of Hodge Structure V of rank four and weight three,
corresponding to the standard representation of its Mumford-Tate group

Sp(4,R). Since the exterior square of L
(4)
t decomposes into a product of rank-

five and rank-one operator, the exterior square of the D-module decomposes
into a five-dimensional irreducible and a one-dimensional irreducible repre-
sentation, and ∧2V decomposes accordingly. The five-dimensional sub-factor
has weight six but level four, so the Tate twist ∧2V(1) has weight four and
type (1, 1, 1, 1, 1).

We obtain the following:

Corollary 3.14. For a self-adjoint rank-five operator

L
(5)
t = ∂5 +

4∑
i=0

bi(t) ∂
i,

a rank-four self-adjoint differential operator L
(4)
t whose exterior square equals

L
(5)
t is given by
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a3 (t) =
2

5
b4 (t) ,

a2 (t) = −7 b4 (t)2

50
− 2

5

d

dt
b4 (t) +

1

2
b3 (t) ,

a1 (t) = −9 b4 (t)3

250
−

12 b4 (t) d
dtb4 (t)

25
+

1

10
b4 (t) b3 (t)

− 3

5

d2

dt2
b4 (t) +

1

2

d

dt
b3 (t) ,

a0 (t) = −2

5

d3

dt3
b4 (t) +

3

8

d2

dt2
b3 (t)−

23 b4 (t) d2

dt2 b4 (t)

50

+
1

5
b4 (t)

d

dt
b3 (t)−

27
(
d
dtb4 (t)

)2
100

+

(
−18 b4 (t)2

125
− 1

20
b3 (t)

)
d

dt
b4 (t)− 19 b4 (t)4

10000

− 3 b4 (t)2 b3 (t)

200
+

1

16
b3 (t)2 − 1

4
b1 (t) .

(3.20)

Proof. The proof follows from an explicit computation using Lemmas 3.11
and 3.12. �

For a self-adjoint rank-five operator L
(5)
t satisfying conditions (3.17) and

(3.18), we denote the rank-four, self-adjoint, linear differential operator L
(4)
t

in Corollary 3.14 by L
(4)
t = ∨2L

(5)
t . Following [1], the latter is also called the

Yifan-Yang pullback of L
(5)
t . The following is easy to check:

Lemma 3.15. The rank-five operator L
(5)
t satisfies conditions (3.17) and

(3.18) if and only if for any algebraic function g(t) the operator

L
(5), 〈2g(t)〉
t := e2 g(t) L

(5)
t e−2 g(t)

does. Moreover, the operator ∨2L
(5), 〈2g(t)〉
t coincides with L

(4), 〈g(t)〉
t :=

eg(t) L
(4)
t e−g(t).

Proof. The proof follows by an explicit computation. �

We then have the following:
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Proposition 3.16. The hypergeometric operator

L
(5)
t

(
(α1, . . . , α5);

(
1, . . . , 1)

)
with α1 = 1− α5, α2 = 1− α4, α3 = 1

2 , and α1 = p, α2 = q, p, q ∈ (0, 1) ∩Q
is a rank-five, self-adjoint differential operator whose Yifan-Yang pullback

L
(4), 〈g(t)〉
t is given by

θ4 − 1

4
t
(

8 θ4 + 16 θ3 − 2 (p2 + q2 − p− q − 9) θ2(3.21)

− 2 (p2 + q2 − p− q − 5) θ + 2 + p+ q

− pq − p2 − q2 + p2q + p q2 + p2q2
)

+
1

16
t2 (2 θ + 2 + p− q)

× (2 θ + 1 + p+ q) (2 θ + 2− p+ q) (2 θ + 3− p− q) ,

with exp (−g(t)) = 4
√
t2 (t− 1)3. In particular, exp (−g(t)) = 4

√
t2 (t− 1)3 is

the unique non-trivial function (up to scaling) that minimizes the degree (in

t) of L
(4), 〈g(t)〉
t .

Proof. Using Lemma 3.12 and 3.15, the proof follows from an explicit com-
putation. �

4. First examples from quadratic twists

The details of the proof of Theorem 2.1 are quite involved, but the basic
idea is simple and present in the following series of examples for our iterative
construction: One starts with a family of pairs of points and produces, by a
quadratic twist, a family of elliptic curves whose total space is an extremal
rational surface. One continues by constructing a family of Jacobian elliptic
K3 surfaces of Picard rank 19, and in turn, a family of Calabi-Yau threefolds
with h2,1 = 1 from the family of Jacobian elliptic K3 surfaces by two more
quadratic twists. If one allows for the Picard rank of the K3 surfaces in the
intermediate step to drop from 19 to 18, one can also construct a second,
closely related family of Calabi-Yau threefolds with h2,1 = 1. The Picard-
Fuchs operators for the two families of threefolds realize two simple rank-
four and degree-one symplectically rigid Calabi-Yau operators in the AESZ
database [2].

The construction of these examples was motivated by physics, in partic-
ular the embedding of gauge theory into F-theory [55–57]. An interpretation
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from the point of view of variations of Hodge structure might be provided
by methods in [24, 40, 41]. The idea of using a quadratic twist to construct
an isomorphism between different types of moduli problems also appeared
in the work of Besser and Livné in [8].

4.1. A sequence of quadratic twists

We start with a pencil of ‘dimension zero’ Calabi-Yau manifolds which con-
sists of the ramified family of pairs of points ±y0 given by

(4.1) y2
0 = 1− t

for t ∈ C. For this family, we define Σ0(t) to be the point t, take the branch
cut branch cut along { t | 1 ≤ t ≤ ∞}, and consider the holomorphic 0-form
1/y0 and the period

(4.2) ω(t) =

ˆ
Σ0(t)

1

y0
=

2

y0
= 2 1F0

(
1

2

∣∣∣∣ t) = 2
(
1− t

)− 1

2 ,

which is a solution of the hypergeometric differential equation L
(1)
t (1

2 ; )ω(t) =
0.

To obtain from the family of points (4.1) a pencil of elliptic curves, one
promotes the family parameter t to an additional complex variable x and
carries out the quadratic twist y2

0 7→ −y2
1/[x(x− t)] in Equation (4.1). This

yields the classical Legendre pencil of elliptic curves given by

(4.3) y2
1 = x (x− 1) (x− t),

where t ∈ P1\{0, 1,∞} and π : Xt → P1 is the corresponding projection. The
polarized Hodge filtration on HZ = H1(Xt,Z) of the elliptic curve Xt has
two steps, F 0 and F 1 defining a pure Hodge structure of weight one and
type (1, 1) in {

HZ, Q, F
1 ⊂ F 0 = HZ ⊗ C

}
.

Here, F 0 is the entire cohomology group, and F 1 is H1,0(Xt), the one-
dimensional space of holomorphic harmonic one-forms. The polarization Q
is the natural non-degenerate, integer, bilinear form on HZ derived from the
cup product and varies holomorphically. The homology group of the elliptic
curve is free of rank two, and the periods of dx/y1 satisfy a second-order
differential equation. In fact, Equation (4.3) defines a double covering of P1

branched at the four points x = 0, 1, t,∞. We cut the Riemann sphere from
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0 to 1 and from t to ∞. The two cuts are opened up into two ovals, and the
two y-sheets are glued with opposite orientations to obtain an elliptic curve.
The A-cycle Σ1(t) projects onto the closed cycle encircling the branching
points at x = 0 and x = t. Then, flattening out the cycle, we obtain

ω(t) =

˛
Σ1(t)

dx

y1
= 2

ˆ t

0

dx√
x (x− 1) (x− t)

(4.4)

= 2

ˆ 1

0

dx√
x (1− x) (1− tx)

,

that is, the Euler integral representation of (2π) 2F1(1
2 ,

1
2 ; 1|t) and satisfies

the differential equation L
(2)
t ((1

2 ,
1
2); (1))ω(t) = 0. Alternatively, we can take

a Pochhammer contour C{0,1} around x = 0 and x = 1 to obtain

˛
C{0,1}

dx√
x (1− x) (1− tx)

= π
∑
n≥0

(
1
2

)
n
tn

n!

˛
C{0,1}

dx xn−
1

2 (1− x)−
1

2(4.5)

= 4π2
2F1

( 1
2 ,

1
2

1

∣∣∣∣ t) ,
where we used Equation (4.13).

A fundamental observation is the following: the quadratic twist has
turned the zero-dimensional family (4.1) into the family of elliptic curves
(4.3); the holomorphic period for the family of elliptic curves is the Hadamard
product of the function 1F0 — which accounts for the quadratic twist —
and the holomorphic period (3.5) of the zero-dimensional family. That is,
for |t| < 1 we obtain

(4.6)

˛
Σ1(t)

dx

y1
= 2π 1F0

(
1

2

∣∣∣∣ t) ? 1F0

(
1

2

∣∣∣∣ t) = 2π 2F1

( 1
2 ,

1
2

1

∣∣∣∣ t) ,
where we used Equation (3.6).

To obtain from the family of elliptic curves in Equation (4.3) a family
of K3 surfaces, one again promotes the parameter t to an additional com-
plex variable u and carries out the quadratic twist y2

1 7→ y2
2/[u(u− t)] in

Equation (4.3). This yields the twisted Legendre pencil given by

(4.7) y2
2 = x (x− 1) (x− u)u (u− t).

Equation (4.14) defines the Néron model for a family of elliptically fibered
K3 surfaces Xt of Picard rank 19 with section over P1 3 [u : 1]. Hoyt [48]
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and Endo [36] extended arguments of Shimura and Eichler [35] to show that
on the parabolic cohomology group HZ ∼= Z3 associated with π : Xt → P1

there is a natural polarized Hodge filtration given by{
HZ, Q, F

2 ⊂ F 1 ⊂ HZ ⊗ C
}
.

Here, HZ ⊗ C consists of cohomology classes spanned by suitable meromor-
phic differentials of the second kind, and Q is a non degenerate Q-valued
bilinear form determined by period relations of the holomorphic two-form
du ∧ dx/y2 [49]. The period point lies on the cone Q = 0. In the situation
of Equation (4.7), it follows Q = 2z2

1 + 2z2
2 − 2z2

3 , the local system R2π∗CX
of middle cohomology is irreducible, and the cohomology group HZ carries
a pure Hodge structure of weight two and type (1, 1, 1).

A basis of transcendental cycles is constructed from cycles in the el-
liptic fiber and carefully chosen curves in the base connecting the cusps
0, 1, t,∞ [48]. As in Shimura [69], for continuously varying families of closed
one-cycles Σ1(u), Σ̌1(u), that form bases of the first homology of the fiber,
the expression

(4.8)

ˆ u

t
du

( ´
Σ1(u)

dx
y2´

Σ̌1(u)
dx
y2

)

defines a vector-valued holomorphic function that converges as u approaches
the cusps at u = 0, 1,∞. It was shown by Cox and Zucker [23] that the com-
ponents of (4.8) are Q-linear combinations of periods of associated meromor-
phic two-forms on X that are of the second kind and holomorphic on singu-
lar fibers; they represent generalized cusp forms of weight three associated
with Equation (4.7). In particular, periods of the holomorphic two-form du ∧
dx/y2 satisfy the third-order differential equation L

(3)
t ((1

2 ,
1
2 ,

1
2); (1, 1))ω(t) =

0. Since the singular fiber over u = 0 and u = t is of Kodaira-type I∗2 and
I∗0 , respectively — the latter having monodromy −I independent of the cho-
sen homological invariant — there is a unique A-cycle that is transformed
into itself as a path encircles the cusps at u = 0 or u = t. One obtains a
transcendental two-cycle Σ2(t) on Xt by tracing out this A-cycle Σ1(u) in
the fiber over the line segment between the cusps at u = 0 and u = t in the
base. Then, one integrates the holomorphic two-form du ∧ dx/y2 over the
two-cycle Σ2(t) to obtain
(4.9)‹

Σ2(t)
du ∧ dx

y2
= 2π

ˆ t

0

du√
u (u− t) 2F1

( 1
2 ,

1
2

1

∣∣∣∣u) = 2iπ2
3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣ t) ,
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where we used Equation (3.6) and Lemma 3.2.
To obtain from the family of K3 surfaces (4.7) a family of Calabi-Yau

threefolds, one promotes the parameter t to an additional complex variable
v and carries out yet another quadratic twist y22 �→ y23/[v(v − t)] in Equa-
tion (4.7). One obtains the family

(4.10) y23 = x (x− 1) (x− u)u (u− v) v (v − t).

This family constitutes a pencil of elliptically fibered Calabi-Yau threefolds,
denoted by π : Xt → P1. Each member Xt of the family is fibered by K3 sur-
faces of Picard rank 19 over P1 with affine coordinate u. As a consequence,
the local system R3π∗CX of middle cohomology is irreducible and the tran-
scendental cohomology group HZ carries a pure Hodge structure of weight
three and type (1, 1, 1, 1).

The natural Hodge structure on the parabolic cohomology group of Xt

can be described in terms of periods of the holomorphic three-form dv ∧ du ∧
dx/y3. A transcendental three-cycle Σ3(t) on each threefold Xt is obtained
as Lefschetz thimble by tracing out the two-cycle Σ2(v) in the K3 fiber over
the line segment between the cusps v = 0 and v = t. If one integrates the
holomorphic three-form dv ∧ du ∧ dx/y2 over the cycle Σ3(t), one obtains
for the holomorphic period

(4.11)
Σ3(t)

dv ∧ du ∧ dx

y3
= −2π3

4F3

( 1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1

∣∣∣∣ t
)
,

where we have used Equation (3.6) and Lemma 3.2. The period is annihilated
by the rank-four and degree-one Picard-Fuchs operator

(4.12) L
(4)
t

((1
2
,
1

2
,
1

2
,
1

2

)
; (1, 1, 1)

)
= θ4 − t

(
θ +

1

2

)4

.

The Picard-Fuchs operator (4.12) is one of the 14 original Calabi-Yau op-
erators mentioned in the introduction and was labelled “(3)” in the AESZ
database [2]. We make the following:

Remark 4.1. For the construction of the cycles Σn we employed two dif-
ferent strategies, namely the use of either Pochhammer cycles or Lefschetz
thimbles. For n = 1, we used a family of A-cycles equivalent to a Pochham-
mer contour. For n = 2 and n = 3, we used a Lefschetz thimbles to form
transcendental cycles with a non-trivial (n− 1)-cycle in the elliptic or K3
fiber over a line segment between cusps. The reason can be traced back
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to the equivalent ways of defining Euler’s beta function. The beta function
is B(α, β) =

´ 1
0 t

α−1(t− 1)β−1dt for Re(x),Re(y) > 0. The beta function is
then analytically continued for all values of α and β. This is achieved by
converting the Euler integral into an integral over a Pochhammer contour
C{0,1} around t = 0 and t = 1 to obtain

(4.13)
(
1− e2πiα

)(
1− e2πiβ

)
B(α, β) =

˛
C{0,1}

tα−1(t− 1)β−1dt.

In the context of our iterative construction (see Section 5) it turns out that
contour integration is easier to describe in the general setting.

4.2. Closely related examples

To obtain from the family of elliptic curves in Equation (4.3) a family of K3
surfaces of Picard rank 18 instead of Picard rank 19, one again promotes the
family parameter t to an additional complex variable u, but carries out the
quadratic twist y2

1 7→ y2
2/[u

2 − t2] in Equation (4.3). One obtains a twisted
Legendre pencil given by

(4.14) y2
2 = x (x− 1) (x− u) (u2 − t2).

The equation defines the Weierstrass model for a family of elliptically fibered
K3 surfaces Xt of Picard rank 18 with section over P1, denoted by π : Xt →
P1. We define a transcendental two-cycle Σ̂2(t) by by tracing out the A-cycle
Σ1(u) in the fiber over the line segment between the cusps at u = −t and
u = t (avoiding u = 0 by using a small arc). Using Lemma 3.2 we obtain for
the period integral

‹
Σ̂2(t)

du ∧ dx
y2

= 2π

ˆ t

−t

du√
u2 − t2 2F1

( 1
2 ,

1
2

1

∣∣∣∣u)(4.15)

= 2iπ2
1F0

(
1

2

∣∣∣∣ t2) ? 2F1

( 1
2 ,

1
2

1

∣∣∣∣ t) .
The quadratic twist has turned Equation (4.3) into (4.14) and, similarly, the
holomorphic period for the family of K3 surfaces is the Hadamard product
of the function 1F0(t2) — which accounts for the modified quadratic twist —
and the holomorphic period (4.6). The Hadamard product can be evaluated
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explicitly and yields

1F0

(
1

2

∣∣∣∣ t2
)
� 2F1

( 1
2 ,

1
2

1

∣∣∣∣ t
)

= 4F3

(
1
4 ,

1
4 ,

3
4 ,

3
4

1, 1, 12

∣∣∣∣∣ t
2

)
.

The period (4.15) annihilated by the rank-four and degree-two Picard-Fuchs
operator

θ3 (θ − 1)− t2

16
(2 θ + 3)2 (1 + 2 θ)2 .

To obtain from the family of K3 surfaces in Equation (4.14) a family of
Calabi-Yau threefolds, one promotes the family parameter t to an additional
complex variable v and carries out a quadratic twist y22 �→ y23/[v

2 − t2]. One
obtains the family

(4.16) y23 = x (x− 1) (x− u) (u2 − v2) (v2 − t2),

that constitutes a non-trivial pencil of elliptically fibered Calabi-Yau three-
folds, denoted by π : Xt → P1. As before, the natural Hodge structure on
the parabolic cohomology group of Xt can be described in terms of peri-
ods and period relations of the holomorphic three-form dv ∧ du ∧ dx/y3. We
construct a transcendental three-cycle Σ̂3(t) on Xt as Lefschetz thimble by
tracing out the cycle Σ̂2(v) in the K3 fiber over the line segment between the
cusps v = −t and v = t (avoiding v = 0 by using a portion of a small circle).
If one integrates the holomorphic three-form dv ∧ du ∧ dx/y2 over the cycle
Σ̂3(t), one obtains for the holomorphic period

(4.17)
Σ̂3(t)

dv ∧ du ∧ dx

y3
= −2π3

4F3

( 1
4 ,

1
4 ,

3
4 ,

3
4

1, 1, 1

∣∣∣∣ t2
)
,

where we have applied the cancellation formula (3.6) to conclude

1F0

(
1

2

∣∣∣∣ t2
)
� 4F3

(
1
4 ,

1
4 ,

3
4 ,

3
4

1, 1, 12

∣∣∣∣∣ t
2

)
= 4F3

( 1
4 ,

1
4 ,

3
4 ,

3
4

1, 1, 1

∣∣∣∣ t2
)
.

The period (4.17) is annihilated by the fourth-order and degree-two Picard-
Fuchs operator (rescaled by 24)

(4.18) L
(4)
t2

((1
4
,
1

4
,
3

4
,
3

4

)
; (1, 1, 1)

)
= θ4 − t2

16
(2 θ + 1)2 (2 θ + 3)2 .
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The Picard-Fuchs operator (4.18) is another of the 14 original Calabi-Yau
operators mentioned in the introduction and was labelled “(10)” in the AESZ
database [2].

5. The twist construction

In this section we describe the construction of twisted families with gen-
eralized functional invariant in full generality, including several modified
variants needed later, and the computation of period integrals.

5.1. Elliptic fibrations

In this section we will recall facts about the geometry of elliptically fibered
varieties; we refer to the papers [16, 27, 62] for details. We also adopt the
definition of terminal, canonical, and log-terminal singularity of a projective
variety from aforementioned articles.

We define an elliptic fibration π : X → S to be a proper surjective mor-
phism with connected fibers between normal complex varieties X and S
whose general fibers are nonsingular elliptic curves. We assume that π is
smooth over an open subset S0 whose complement is a divisor with only nor-
mal crossings. Then, the local system H i

0 := Riπ∗ZX |S0 forms a variation of
Hodge structure over S0. There is a canonical bundle formula for the elliptic
fibration: with the fundamental line bundle denoted by L :=

(
R1π∗OX

)−1
,

the canonical bundles ωωωX := ∧topT ∗X and ωωωS := ∧topT ∗S are related by

(5.1) ωωωX ∼= π∗
(
ωωωS ⊗ L

)
⊗OX(D),

where D is a certain effective divisor on X that only depends on divisors of
S over which π has multiple fibers and divisors of X that give (−1)-curves in
the fibers of π. The existence of a section for the elliptic fibration π : X → S
prevents the presence of multiple fibers. And the presence of (−1)-curves
in the fibers is avoided by imposing a minimality criterion. In the case of
an elliptic surface, we assume that the fibration is relatively minimal, i.e.,
that there are no (−1)-curves in the fibers of π. In the case of an elliptic
threefold, we assume that no contraction of a surface in X is compatible
with the fibration. X is a Calabi-Yau manifold if hi(X,OX) = 0 for 0 <
i < dimX and ωωωX ∼= OX . It is known [39] that for any elliptic fibration
on a Calabi-Yau threefold, the base surface can have at worst log-terminal
orbifold singularities. In this article we will take the base surface S always
to be a blow-up of P2 or a Hirzebruch surface Fk.
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It is a well-known that for any elliptic fibration π : X → S with section
σ : S → X, there always exists a Weierstrass model W over S, i.e., there is
a complex variety W and a proper flat surjective morphism p : W → S with
canonical section whose fibers are irreducible cubic curves in P2 together
with a birational map from X to W that maps σ to the canonical section of
the Weierstrass model. The map from X to W blows down all components
of fibers which do not intersect σ(S). It is also known that for a relatively
minimal elliptic fibration with section, the morphism on the Weierstrass
model is in fact a resolution of the singularities of W .

5.2. Weierstrass models

Let L be a line bundle on S, and g2 and g3 sections of L4 and L6, re-
spectively, such that the discriminant ∆ = g3

2 − 27 g2
3 is a section of L12

not identically zero. Define P := P(OS ⊕ L2 ⊕ L3) and let p : P→ S be the
natural projection and OP(1) be the tautological line bundle. We denote
by x, y, and z the sections of OP(1)⊗ L2, OP(1)⊗ L3, and OP(1), respec-
tively, which correspond to the natural injections of L2, L3, and OS into
π∗OP(1) = OS ⊕ L2 ⊕ L3. We denote by W the projective variety in P de-
fined by the equation

(5.2) y2z = 4x3 − g2xz
2 − g3z

3.

Its canonical section σ : S →W is given by the point [x : y : z] = [0 : 1 : 0]
such that Σ := σ(S) ⊂W is a Cartier divisor on W , and its normal bundle
is isomorphic to the fundamental line bundle by p∗OP

(
−Σ
) ∼= L. It then

follows that W is normal if S is normal; and W is Gorenstein if S is, and
the formula (5.1) for the dualizing sheaf reduces to

(5.3) ωωωW = π∗
(
ωωωS ⊗ L

)
.

Thus, the total space is a Calabi-Yau variety if and only if the line bundle
L is the anti-canonical bundle of the base, i.e., L = ωωω−1

S = OS(−KS). For
the Weierstrass model p : W → S of an elliptic fibration π : X → S with
section we can compare the discriminant locus ∆(π), i.e., the points over
which Xp is singular, with the vanishing locus of ∆(p) = g3

2 − 27 g2
3. We

then have ∆(p) ⊂ ∆(π). In fact, the morphism from X to W is a resolution
of singularities if and only if ∆(p) = ∆(π) in which case it is also a small
resolution.
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We call a Weierstrass model minimal if there is no prime divisor D on S
such that div(g2) ≥ 4D and div(g3) ≥ 6D. We call two minimal Weierstrass
models that are smooth over an open subset S0 ⊂ S equivalent if there is an
isomorphism of the Weierstrass models over S0 which preserves the canonical
sections. Every Weierstrass fibration is birationally isomorphic to a minimal
Weierstrass fibration. A criterion for W having only rational singularities
can then be stated as follows: If the reduced discriminant divisor (∆)red has
only normal crossings, then W has only rational Gorenstein singularities if
and only if the Weierstrass model is minimal.

5.3. Families of Weierstrass models

We now turn to projective families of Calabi-Yau n-folds over B =
P1\{0, 1,∞} which we denote by π : X → B. Each element Xt = π−1(t)
of the family is a compact complex n-fold with trivial canonical bundle
ωωωXt
∼= OXt and is assumed to be elliptically fibered with section over a fixed

normal complex variety S. Such a family is described as a family of minimal
normal Weierstrass models. That is, each complex n-fold πt : Xt → S is given
as a minimal Weierstrass model pt : Wt → S. For each t ∈ P1\{0, 1,∞} and
the affine coordinate chart u = (u1, . . . , un−1) ∈ Cn−1 ⊂ S, the Weierstrass
model Wt has the form

(5.4) y2z = 4x3 − g2 (t, u) xz2 − g3 (t, u) z3.

There is a holomorphic sub-bundle H → B of the vector bundle V =
Rnπ∗CX → B whose fibers are H0(ωωωXt) ⊂ Hn(Xt,C). The vector bundle
V = V ⊗OB carries a canonical flat connection ∇, called the the Gauss-
Manin connection [42–45]. Representing the family Xt as the family of
Weierstrass models Wt determines an explicit meromorphic section η ∈
Γ(B,V) such that such that ηt ∈ Hn(Xt,C) can be represented by the closed
differential form

(5.5) ηt = du1 ∧ · · · ∧ dun−1 ∧
dx

y
,

in the affine chart z = 1 on Wt. A local parallel section Σ of the dual bundle
H∗ for some open U ⊂ B is represented by a closed transcendental n-cycle
Σ(t) on each fiber Xt with t ∈ U . The period sheaf Π(H, η)→ B is the sheaf
whose stalks are generated by local analytic functions obtained by paring
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the global section η with local parallel sections of H∗, i.e., of the form

(5.6) t ∈ U 7→ ω(t) = 〈Σ, η〉 =

˛
Σ(t)

ηt,

for open U ⊂ B and the fiberwise Poincaré pairing 〈., .〉. We call the local
non-vanishing analytic function ω(t) a period integral or period over Σ(t).

The Picard-Fuchs differential equation is then obtained as follows: we
fix a meromorphic vector field d

dt on the curve B for the choice of affine
coordinate t on P1. The vector field d

dt induces a covariant derivative op-
erator ∇d/dt on V. Since V has rank n, the meromorphic section η and its
derivatives ∇id/dtη for 1 ≤ 1 ≤ n must be linearly dependent over the field
of meromorphic functions on B, and there is a relation

m∑
i=0

ai(t)∇id/dtη = 0,

where m ≤ n and we always normalize to have am = 1. Since ∇ vanishes
on the parallel section Σ of H∗, it follows that the period ω(t) satisfies the
differential equation

dm

dtm
ω(t) +

m−1∑
i=0

ai(t)
di

dti
ω(t) = 0.

5.4. Twisted family of Weierstrass models

We define a generalized functional invariant to be a triple (i, j, α) with i, j ∈
N such that 1 ≤ i, j ≤ 6 and α ∈ {1

2 , 1}. The general notion of generalized
functional invariant was first introduced in [30]. A generalized functional
invariant defines a family of ramified covering maps P1 → P1 of degree i+ j
given by

(5.7) [v0 : v1] 7→
[
cijv

i+j
1 t̃ : vi0(v0 + v1)j

]
,

which is totally ramified over 0, ramified to degrees i and j over∞, and has
a simple ramification point over t̃.

For a family π : X → B with Weierstrass model (5.4) such that

0 ≤ degt (g2) ≤ min
(4

i
,
4α

j

)
, 0 < degt (g3) ≤ min

(6

i
,
6α

j

)
,(5.8)
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we construct a new family π̃ : X̃ → B such that each element X̃t̃ = π̃−1(t̃) is
a compact complex (n+ 1)-fold and also elliptically fibered with section over
P1 × S. We call this new family the twisted family with generalized functional
invariant (i, j, α) of X → B. For t̃ ∈ B, there is a local coordinate chart
{[v0 : v1], (u1, . . . , un−1) ∈ P1 × S} such that the Weierstrass model W̃t̃ for
X̃t̃ is given by

ỹ2z̃ = 4 x̃3 − g2

(
cij t̃v

i+j
1

vi0(v0 + v1)j
, u

)
v4

0v
4−4α
1 (v0 + v1)4αx̃z̃2(5.9)

− g3

(
cij t̃v

i+j
1

vi0(v0 + v1)j
, u

)
v6

0v
6−6α
1 (v0 + v1)6α z̃3

with cij = (−1)i ii jj/(i+ j)i+j . The Weierstrass model (5.9) is smooth over
the open subset D0 × S0 where D0 is the complement in P1 of the curves
v0 = 0, v1 = 0, v0 + v1 = 0, and cij t̃v

i+j
1 − vi0(v0 + v1)j = 0. Conditions (5.8)

ensure that the Weierstrass model is minimal and normal if the original
Weierstrass model (5.4) is. Over the new base S̃ = P1 × S, the fundamental
line bundle and canonical bundle are given by

(5.10) L̃ =M� L, ωωωS̃ = ωωωP1 �ωωωS .

Here the external tensor productM� L = pr∗1M⊗ pr∗2 L denotes the tensor
product on S̃ = P1 × S of the two pullback bundles to S̃, along the canon-
ical projection maps pr1 : S̃ → P1 and pr2 : S̃ → S. Two C∗-group actions,
acting on Equation (5.9), are given by assigning weights to the defining
variables as listed in Table 1 where deg denotes the total weight of Equa-
tion (5.9) and sum denotes the sum of weights of the defining variables.
Since the total weight equals the sum of weights of the variables, we have
M⊗ωωωP1 ∼= OP1 . Therefore, the Calabi-Yau condition L̃ = ωωω−1

S̃
is satisfied

for the new family π̃ : X̃ → B such that ωωωX̃t̃
∼= OX̃t̃ , if it is satisfied for the

original family (5.4).

C∗ deg x y z v0 v1 Σ

λ1 3 1 1 1 0 0 3
λ2 12 4 6 0 1 1 12

Table 1: Weights of variables in Weierstrass equation.
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5.4.1. Period integrals of twisted family. The differential form ηt in
Equation (5.5) defines a flat section η ∈ Γ(B,H) for the family in Equa-
tion (5.4). A flat section η̃ ∈ Γ(B, H̃) for the twisted family (5.9) is then
given by the differential form

(5.11) η̃t̃ = dv ∧ du1 ∧ · · · ∧ dun−1 ∧
dx̃

ỹ
,

in the affine chart [v0 : v1] = [v : 1] and z̃ = 1, such that

(5.12) η̃t̃ =
dv

v(v + 1)α
∧ ηt,

where we have used x̃ = v2
0v

2−2α
1 (v0 + v1)2αx and ỹ = v3

0v
3−3α
1 (v0 + v1)3αy.

Thus, if ω(t) is a local section of the period sheaf Π(H, η)→ B, a section of
the new period sheaf Π(H̃, η̃)→ B̃ is given by

(5.13) ω̃(t̃) =

˛
C

dv

v(v + 1)α
ω

(
cij t̃

vi(v + 1)j

)
,

where C is a non-contractible loop in the punctured v-plane. We have the
following:

Proposition 5.1. Let ω(t) be a period integral for the family (5.4) with ab-
solutely convergent series ω(t) =

∑
k≥0 fkt

k for |t| < 1, and the twisted fam-
ily (5.9) with generalized functional invariant (i, j, α) satisfy conditions (5.8).
Let C1/2(0) be the circle |v| = 1

2 in the v-plane with counterclockwise orien-
tation. For every t̃ ∈ C with |t̃| < 1/(2i+j+1|cij |) and cij = (−1)i ii jj/(i+
j)i+j, the period integral (5.13) for C = C1/2(0) has an absolutely conver-
gent series given by the Hadamard products:

if α = 1: ω̃(t̃) = (2πi) i+j−1Fi+j−2

(
1
i+j . . . i+j−1

i+j

1
i . . .

i−1
i

1
j . . .

j−1
j

∣∣∣∣∣ t̃
)
? ω(t̃),

if α =
1

2
: ω̃(t̃) = (2πi) i+jFi+j−1

(
α
i+j . . . α+i+j−1

i+j

1
i . . .

i−1
i

α
j . . . α+j−1

j

∣∣∣∣∣ t̃
)
? ω(t̃).

(5.14)

Proof. For |v| = 1
2 and |t̃| < 1/(2i+j+1|cij |) we have |t| = | cij t̃

vi(v+1)j | < 1. We

use the absolutely and uniformly convergent series ω(t) =
∑

k≥0 fkt
k and
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carry out a term-by-term integration to obtain

˛
|v|= 1

2

dv

v(v + 1)α
ω

(
cij t̃

vi(v + 1)j

)
=
∑
k≥0

fk
(
cij t̃
)k ˛

|v|= 1

2

dv

vik+1(v + 1)jk+α
.

Using the formula (1 + z)−k=
∑

l≥0
Γ(l+k)

Γ(k)Γ(l+1)(−z)l, we obtain from a residue
computation the identity

∑
k≥0

fk
(
cij t̃
)k∑

l≥0

Γ(jk + l + α)

Γ(jk + α) Γ(l + 1)
(−1)l

˛
|v|= 1

2

dv

vik−l+1
(5.15)

= (2πi)
∑
k≥0

fk

∏i+j−1
m=0

(
α+m
i+j

)
k

k!
∏i−1
m=1

(
m
i

)
k

∏j−1
m=0

(
m+α
j

)
k

t̃k,

where we used Gauss’ multiplication formula for the Gamma function

(5.16) Γ(nz) = (2π)(1−n)/2nnz−
1

2

n−1∏
r=0

Γ
(
z +

r

n

)
.

Since we also have |t̃| < 1 Equation (5.4.1) can be further simplified using
Gamma-function identities and the Hadamard product. We obtain

(2πi)
∑
k≥0

fk

∏i+j−1
m=0

(
α+m
i+j

)
k

k!
∏i−1
m=1

(
m
i

)
k

∏j−1
m=0

(
m+α
j

)
k

t̃k(5.17)

= (2πi) i+jFi+j−1

(
α
i+j , . . . α+i+j−1

i+j

1
i , . . . ,

i−1
i ,

α
j , . . . ,

α+j−1
j

∣∣∣∣∣ t̃
)
? ω(t̃).

The remaining equation is obtained by setting α = 1 and observing an ob-
vious cancellation in the coefficients of the hypergeometric series. �

5.5. Variants of the twist construction

5.5.1. Twists with two parameters and subfamilies. The twist con-
struction with generalized functional invariant (i, j, α) = (1, 1, 1) can be gen-
eralized in a way that introduces two parameters. It is based on the two-
parameter family of ramified covering maps P1 → P1 of degree two given
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by

(5.18) [v0 : v1] 7→
[
4av0(v0 + v1) + (a− b)v2

1 : 4v0(v0 + v1)
]
,

which is totally ramified over a and b. For a = 0 and b = t̃, this family coin-
cides with the covering maps used in the twist construction with generalized
functional invariant (i, j, α) = (1, 1, 1) in Equation (5.7).

We restrict the two-parameter family to the locus a = −b = t̃ instead,
and obtain a new family π̃ : X̃ → B such that each element X̃t̃ = π̃−1(t̃)
is a compact complex (n+ 1)-fold with trivial canonical bundle and also
elliptically fibered with section over P1 × S. The Weierstrass model W̃t̃ for
X̃t̃ is given by

ỹ2z̃ = 4 x̃3 − g2

(
a+

(a− b)v2
1

4v0(v0 + v1)
, u

)
v4

0(v0 + v1)4x̃z̃2(5.19)

− g3

(
a+

(a− b)v2
1

4v0(v0 + v1)
, u

)
v6

0(v0 + v1)6 z̃3 ,

where we have set a = −b = t̃. Thus, if ω(t) is a local section of the period
sheaf Π(H, η)→ B, a section of the new period sheaf Π(H̃, η̃)→ B̃ is given
by

(5.20) ω̃(t̃) =

˛
C

dv

v(v + 1)
ω

(
t̃
(
1 +

1

2v(v + 1)

))
,

where C is a non-contractible loop in the punctured v-plane. We have the
following:

Proposition 5.2. Let ω(t) be a period integral for the family (5.4) with
absolutely convergent series ω(t) =

∑
k≥0 fkt

k for |t| < 1, and the twisted
family (5.19) with generalized functional invariant (i, j, α) = (1, 1, 1) and
a = −b = t̃ satisfy conditions (5.8). Let C1/2(0) be the circle in the v-plane

|v| = 1
2 oriented counterclockwise. For every t̃ ∈ C with |t̃| < 1/2, the period

integral (5.20) for C = C1/2(0) has an absolutely convergent series given by
the Hadamard product

ω̃(t̃) = (2πi)
∑
n≥0

f2n

(
1
2

)
n

n!
t2n = (2πi) 1F0

(
1

2

∣∣∣∣ t2) ? ω(t).(5.21)



i
i

“3-Doran” — 2020/2/5 — 18:15 — page 1304 — #34 i
i

i
i

i
i

1304 C. F. Doran and A. Malmendier

Proof. The proof is analogous to the proof of Proposition 5.1, where we use
the additional identity

(5.22)

n∑
l=0

(
n

l

)(
2l

l

)(
−1

2

)l
=

{
0 if n is odd,
( 1

2)
k

k! if n = 2k is even.
�

5.5.2. Relation to quadratic twists. Let π : X → B be a family with
Weierstrass model (5.4) such that

0 ≤ degt (g2) ≤ 4, 0 < degt (g3) ≤ 6 .(5.23)

The quadratic-twist family π̂ : X̂ → B is constructed by promoting the fam-
ily parameter t to an additional complex variable and carrying out a quadratic
twist. Each element X̂t̃ = π̂−1(t̃) is a compact complex (n+ 1)-fold and also
elliptically fibered with section over P1 × S. For t̃ ∈ B and local coordinate
chart {[w0 : w1], (u1, . . . , un−1) ∈ P1 × S}, the Weierstrass model Ŵt̃ for X̂t̃

is given by

ŷ2ẑ = 4 x̂3 − g2

(
t̃
w0

w1
, u

)
w4

1w
2
0(w0 − w1)2 x̂ẑ2(5.24)

− g3

(
t̃
w0

w1
, u

)
w6

1w
3
0(w0 − w1)3 ẑ3 .

The Weierstrass model (5.9) is smooth over an open subset of the form
D0 × S0 where D0 is the complement in P1 of w0 = 0, w1 = 0, and w0 −
t̃w1 = 0. Conditions (5.23) ensure that the Weierstrass model is minimal
and normal if the Weierstrass model (5.4) is. Moreover, a similar argument
as in Section 5.4 shows that the Calabi-Yau condition is satisfied such that
ωωωX̂t̃
∼= OX̂t̃ . We have the following:

Lemma 5.3. The quadratic-twist family π̂ : X̂ → B with Weierstrass model
(5.24) is birationally equivalent to the twisted family π̃ : X̃ → B with gener-
alized functional invariant (i, j, α) = (1, 1, 1) and Weierstrass model (5.9).
In particular, the periods of the two families coincide.

Proof. Setting

w = − 1

4v(v + 1)
, x̂ =

(1 + 2v)2x̃

24v4(v + 1)4
, ŷ =

(1 + 2v)3x̃

26v6(v + 1)6
,

in the affine charts w1 = ẑ = v1 = z̃ = 1, w0 = w and v0 = v, transforms
Equation (5.24) into Equation (5.9) such that η̂t̃ = η̃t̃. �
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Remark 5.4. The sequence of examples from Section 4.1 is precisely based
on iteratively applying Equation (5.24) in the affine chart ẑ = 1 and [w0 :
w1] = [u : t] (or [w0 : w1] = [v : t], etc.)

There is also a two-parameter family with Weierstrass models Ŵa,b given by

ŷ2ẑ = 4x̂3 − g2

(
w0

w1
, u

)
w4

1(w0 − aw1)2(w0 − bw1)2 x̂ẑ2(5.25)

− g3

(
w0

w1
, u

)
w6

1(w0 − aw1)3(w0 − bw1)3 ẑ3 .

The quadratic-twist family with Weierstrass model (5.25) is isomorphic to
the family with Weierstrass model (5.19). This is seen by setting
(5.26)

w = a+
a− b

4 v (v + 1)
, x̂ =

(b− a)2(1 + 2v)2x

24v4(v + 1)4
, ŷ =

(b− a)3(1 + 2v)3y

26v6(v + 1)6
.

in the affine charts w1 = ẑ = v1 = z̃ = 1, w0 = w and v0 = v.
Let us explain the geometric relationship between the quadratic-twist

family and twisted family with generalized functional invariant (i, j, α) =
(1, 1, 1) for a K3 surface. Let X → P1 be the Jacobian rational elliptic surface
given by

y2z = 4x3 − g2(t)xz2 − g3(t) z3.

If the map f : P1 → P1 is given by f(v) = a+ (a− b)/(4v(v + 1)), then the
pull-back t = f(v) of the rational elliptic surface is a two-parameter family of
Jacobian elliptic K3 surface X̃ → P1. On X̃, we have the deck transformation
ı given by v 7→ −v − 1 and the elliptic involution −id. The composition  =
−id ◦ ı is a Nikulin involution leaving the holomorphic two-form invariant,
and the minimal resolution of the quotient X̃/ is the Jacobian elliptic K3
surface X̂ → P1 given by

ŷ2ẑ = 4x̂3 − g2(t) (t− a)2(t− b)2x̂ẑ2 − g3(t) (t− a)3(t− b)3ẑ3.

That is, the K3 surface X̂ is the quadratic-twist family of X having fibers
of Kodaira-type I∗0 over the two ramification points of f . The situation is
summarized in Figure 1. For each pair of K3 surfaces obtained as quadratic-
twist family and twisted family with generalized functional invariant, we
can easily check that the determinants of the discriminant groups of their
transcendental lattices always differ by a square of the form (1/2)2α with
0 ≤ α ≤ 2. As the transcendental lattices are related by the isometry given
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X̃

X P1 X̂

P1 P1

f f

Figure 1: Relation between quadratic-twist family and twisted family.

in Equation (5.26) and is generally not a Hodge isometry, this is in perfect
agreement with a general result obtained by Mehran [59].

Remark 5.5. The Picard-Fuchs systems for the full two-parameter family
in Equations (5.19) and (5.25) are coupled linear partial differential equa-
tions in two complex variables; see [66, 67]. For families of elliptic curves,
the Picard-Fuchs systems are obtained from the generalized hypergeomet-
ric system satisfied by the Appell function F1 by rational pullback. For K3
surfaces, the Picard-Fuchs systems are obtained from the generalized hyper-
geometric system satisfied by the Appell function F2 by rational pullback.
Some explicit examples were determined in [22, 58].

5.5.3. Twists by rational surfaces. A rational elliptic surface X ′ →
B = P1\{0, 1,∞} has a singular fiber of Kodaira-type IV ∗, III∗, or II∗

over t =∞, if and only if its Weierstrass model is given by

(5.27) y2z = 4x3 − g′2(t)xz2 − g′3(t) z3,

and the degrees of the polynomials g′2(t) and g′3(t) are at most 1 and 2,
respectively. In fact, we will focus on three cases X ′k for k = 1, 2, 3 in Ta-
ble 2 where the rational elliptic surfaces are extremal and given in Table 5;
the surfaces themselves will be discussed in Section 6.1, and the number µ
associated with each X ′k surface will be explained in Corollary 6.8.

We fix any such rational surface X ′k. Given a second rational elliptic
surface X → B with Weierstrass model

(5.28) y2z = 4x3 − g2(t)xz2 − g3(t) z3,
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k X ′k µ fiber at t =∞ degt(g2) degt(g3)

4 X ′4 = X431
1
3 IV ∗ 1 2

3 X ′3 = X321
1
4 III∗ 1 1

2 X ′2 = X211
1
6 II∗ 0 1

Table 2: Rational surfaces used for twisting.

with degrees of g2(t) and g3(t) being at most 4 and 6, respectively, we de-
fine a family of Gorenstein threefolds π̃ : X̃ → B such that each element
X̃t̃ = π̃−1(t̃) is a compact complex threefold and also elliptically fibered
with section over the Hirzebruch surface Fn. We call this family the twist
family of X → B with X ′k → B. Here, the Hirzebruch surface is given by
Fn = P(OP1(−n)⊕OP1) with n = 0, . . . , k.

We define polynomials

(5.29) g2(t, u, v) := h(u, v)4v4g2

(
t

v

)
, g3(t, u, v) := h(u, v)6v6g3

(
t

v

)
,

where we have used h(u, v)2 = 4u3 − g′2(v)u− g′3(v). We consider Fn the
quotient space of C4\{u0 = u1 = v0 = v1 = 0} by the action of C∗ × C∗ given
by

(λ2, λ3) · [u0 : u1 : v0 : v1] = [λ3u0 : λ3u1 : λn3λ2v0 : λ2v1],

It follows that F0 = P1 × P1, and F1 is the non-minimal surface obtained
as the blow-up of P2 in one point. For t̃ ∈ P1 and coordinates [u0 : u1 : s0 :
s1] ∈ Fn and [x̃ : ỹ : z̃] ∈ P(2, 3, 1), let the Weierstrass model W̃t̃ for X̃t̃ be
given by

ỹ2z̃ = 4x̃3 − g2

(
t̃,
u0

u1
,
v0

v1 un1

)
u

4(n+2)
1 v8

1x̃ z̃
2(5.30)

− g3

(
t̃,
u0

u1
,
v0

v1 un1

)
u

6(n+2)
1 v12

1 z̃
3,

with g2(t, u, v) and g3(t, u, v) given in Equation (5.29). We have the follow-
ing:

Lemma 5.6. In the situation above, Equation (5.30) is a minimal and
normal Weierstrass model over Fn for n = 0, . . . , k such that ωωωX̃t̃

∼= OX̃t̃ for

t̃ ∈ B.
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Proof. The first part follows by checking that the Weierstrass model ob-
tained for each rational elliptic surface X ′k in Table 2 is minimal. Then, three
C∗-group actions on the defining variables in Equation (5.30) are given by
the weights listed in Table 3 where deg denotes the total weight of Equa-
tion (5.30) and sum denotes the sum of weights of the defining variables. If
the condition is satisfied that the total weight of Equation (5.30) equals the
sum of weights of the defining variables for each acting C∗ in Equation (5.30),
then a Calabi-Yau threefold is obtained by removing the loci {u0 = u1 = 0},
{v0 = v1 = 0}, {x = y = z = 0} from the solution set of Equation (5.30),
and taking the quotient (C∗)3. Details are explained in [61]. �

C∗ deg x y z v0 v1 u0 u1 sum

λ1 3 1 1 1 0 0 0 0 3
λ2 12 4 6 0 1 1 0 0 12
λ3 6(n+ 2) 2(n+ 2) 3(n+ 2) 0 n 0 1 1 6(n+ 2)

Table 3: Weights of variables in Weierstrass equation.

The differential one-form ηt = dx/y (and η′t = dx/y) defines a flat sec-
tion of the conormal bundle for the family in Equation (5.28) (resp. Equa-
tion (5.27)) in the affine chart z = 1. A flat section η̃ ∈ Γ(P1, H̃) for the
twisted family (5.30) is then given by the differential form

(5.31) η̃t̃ = dv ∧ du ∧ dx̃
ỹ
,

in the affine chart [u0 : u1 : v0 : v1] = [u : 1 : v : 1] and z̃ = 1, such that

(5.32) η̃t̃ =
dv

v
∧ du

h(u, v)
∧ ηt̃/v =

dv

v
∧ η′v ∧ ηt̃/v.

Thus, if ω(t) (and ω′(t)) is a local section of the period sheaf of the ratio-
nal elliptic surface X → P1 (resp. X ′ → P1), a section of the period sheaf
Π(H̃, η̃)→ P1 is given by

(5.33) ω̃(t̃) =

˛
C

dv

v
ω′(v) ω

(
t̃

v

)
,

where C is a non-contractible loop in the punctured v-plane. We have the
following:
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Proposition 5.7. Let ω(t) (and ω′(t)) be a period integral for the rational
elliptic surface X → P1 (resp. X ′ → P1 with a singular fiber of type IV ∗,
III∗, or II∗ at t =∞) with absolutely convergent series ω(t) =

∑
k≥0 fkt

k

(resp. ω′(t) =
∑

k≥0 f
′
kt
k) for |t| < 1. Let C1/2(0) be the circle |v| = 1

2 in the

v-plane with counterclockwise orientation. For every t̃ ∈ C with |t̃| < 1/2,
the period integral (5.33) for C = C1/2(0) has an absolutely convergent series
given by the Hadamard product

ω̃(t̃) = (2πi) ω′(t̃) ? ω(t̃).(5.34)

Proof. The proof is analogous to the proof of Proposition 5.1. For C =
C1/2(0) a simple residue computation in Equation (5.33) yields

ω̃(t̃) =
∑
m,n

f ′mfnt
n

˛
C

dv

v1−m+n
= (2πi)

∑
m

f ′m fmt
m,

�

6. Modular elliptic families and related families

In this section, we will show that all extremal, modular elliptic families of
elliptic curves or K3 surfaces with three singular fibers are in fact twisted
families for some generalized functional invariant (i, j, α). In our iterative
construction, the universal starting point is always the same pencil π : X →
B of ‘dimension zero’ Calabi-Yau manifolds, namely the ramified family of
pairs of points encountered before {±y} ∈ Xt = π−1(t) given by

(6.1) y2 = 1− t

with t ∈ C. For the family (6.1), we define Σ0(t) to be the point t for t ∈
B, take the branch cut branch cut along { t | 1 ≤ t ≤ ∞}, and consider the
holomorphic 0-form 1/y0 with the period

(6.2)

ˆ
Σ0(t)

1

y0
=

2

y0
= 2 1F0

(
1

2

∣∣∣∣ t) = 2
(
1− t

)− 1

2 ,

which is a solution to the hypergeometric differential equation L
(1)
t (1

2 ; )ω(t)
= 0.
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6.1. Extremal families of elliptic curves

Applying our twist construction to the family (6.1), we obtain families of
one-dimensional Calabi-Yau manifolds, namely modular families of elliptic
curves. We have the following:

Lemma 6.1. For (i, j, α) with 1 ≤ i ≤ 2, 1 ≤ j ≤ 2α and α ∈ {1
2 , 1}, the

twisted families with generalized functional invariant (i, j, α) given by

(6.3) ỹ2 =

(
1− cij t̃

x̃i(x̃+ 1)j

)
x̃2 (x̃+ 1)2α,

are families of genus-one curves. For (i, j, α) = (1, 1, 1), (2, 1, 1), (1, 1, 1
2),

and (2, 1, 1
2), the families admit a C(t̃)-rational Weierstrass point. The cor-

responding families of elliptic curves are rational elliptic surfaces with singu-
lar fibers given in Table 4; the explicit Weierstrass models and Mordell-Weil
groups are given in Table 5.

Proof. The result follows by explicit computation. �

Remark 6.2. The points of maximal unipotent monodromy for an elliptic
surface comprise the support of singular fibers of type In for n ≥ 1 [29,
Cor. 1].

Remark 6.3. The names of the Jacobian elliptic surfaces used in Table 4
and Table 5 coincide with the classical notation used by Herfurtner [47].

(i, j, α) µ singular fibers notation

(1, 1, 1) 1
2 I∗1 (t̃ =∞), I4(t̃ = 0), I1(t̃ = 1) X141

(2, 1, 1) 1
3 IV ∗(t̃ =∞), I3(t̃ = 0), I1(t̃ = 1) X431

(1, 1, 1
2) 1

4 III∗(t̃ =∞), I2(t̃ = 0), I1(t̃ = 1) X321(
2, 1, 1

2

)
1
6 II∗(t̃ =∞), I1(t̃ = 0), I1(t̃ = 1) X211

Table 4: Families of elliptic curves.
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Remark 6.4. Conditions (5.8) allow for a fifth case with (i, j, α) = (2, 2, 1).
In this remaining case, the twisted family with generalized functional invari-
ant (i, j, α) = (2, 2, 1) is a family of genus-one curves whose relative Jaco-
bians coincide with the elliptic curves obtained for the twisted family with
(i, j, α) = (1, 1, 1

2).

name, µ,G g2, g3,∆, J ramification of J and singular fibers

MW(π, σ) sections t J m(J) fiber

X141 g2 = 1
3

(
4t2 − 64 t+ 64

)
8± 4

√
3 0 3 smooth

µ = 1
2 g3 = 8

27

(
2− t

)(
32− 32t− t2

)
−16± 12

√
2, 2 1 2 smooth

Γ0(4) ∆ = −256 t4 (t− 1) 0 ∞ 4 I4 (A3)

J = − (t2−16t+16)3

108t4(t−1) 1 ∞ 1 I1

Z/4Z (X,Y )1 = (2
3 t−

4
3 , 0) ∞ ∞ 1 I∗1 (D5)

(X,Y )2,3 = (−1
3 t−

4
3 ,±4 i t)

X431 g2 = 27− 24 t ∞ 0 1 IV ∗ (E6)

µ = 1
3 g3 = 27− 36 t+ 8 t2 9

8 0 3 smooth

Γ0(3) ∆ = −1728 t3 (t− 1) 9
4 ±

3
√

3
4 1 2 smooth

J = (−9+8 t)3

64 t3(t−1) 0 ∞ 3 I3 (A2)

Z/3Z (X,Y )1,2 = (−3
2 ,±2

√
2 i t) 1 ∞ 1 I1

X321 g2 = 16
3 − 4 t 4

3 0 3 smooth

µ = 1
4 g3 = −64

27 + 8
3 t

8
9 1 2 smooth

Γ0(2) ∆ = −64 t2 (t− 1) ∞ 1 1 III∗ (E7)

J = (−4+3t)3

27 t2(t−1) 0 ∞ 2 I2 (A1)

Z/2Z (X,Y ) = (2
3 , 0) 1 ∞ 1 I1

X211 g2 = 3 ∞ 0 2 II∗ (E8)

µ = 1
6 g3 = −1 + 2 t 1

2 1 2 smooth

Γ0(1) ∆ = −108 t (t− 1) 0 ∞ 1 I1

{I} J = − 1
4 t (t−1) 1 ∞ 1 I1

Table 5: Extremal rational fibrations.

A Jacobian elliptic surfaces is called extremal if the rank of its Mordell-Weil
group of sections vanishes. We have the following:

Corollary 6.5. The elliptic surfaces in Table 4 and Table 5 constitute all
extremal families of elliptic curves with three singular fibers and rational
total space (up to quadratic twist and two-isogeny). Moreover, t̃ = 0 is a
point of maximal unipotent monodromy for each family.
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Proof. The extremal families of elliptic curves with three singular fibers were
classified in [60, Tab. 5.2]. The surface X411 in [60] is obtained from X141

by quadratic twist. Similarly, X222 is obtained from X411 by fiberwise two-
isogeny. The point of maximal unipotent monodromy in the base curve of
the elliptic surfaces is the support of the singular fiber of type In for n ≥ 1
[29, Cor. 1]. �

Application of results in [70] yields the following:

Corollary 6.6. The families of elliptic curves in Table 4 with fiber of type
In for n = 2, 3, 4 and n = 1 are the universal families of elliptic curves over
the genus-zero modular curves for the congruence subgroups Γ0(n), and for
n = 1 for the unique normal subgroup of index 2 in PSL(2,Z) denoted by
Γ0(1). The family parameter t̃ is the corresponding Hauptmodul of the mod-
ular curve.

The twist construction also provides us, near t = 0, with a family of
non-contractible one-cycles for each family in Lemma 6.1. We have:

Lemma 6.7. For t̃ ∈ C with |t̃| < 1/(2i+j+1|cij |), the circle C = C1/2(0),

given by |x̃| = 1
2 in the x̃-plane with counterclockwise orientation, determines

a family of non-contractible A-cycles Σ1(t̃) for each family of genus-one
curves in Lemma 6.1.

Proof. For |t̃| < 1/(2i+j+1|cij |), each family X̃ → P1 3 t̃ of genus-one curves
in Lemma 6.1 has two branch points with |x̃| < 1

2 and two branch points

with |x̃| > 1
2 . Therefore, there is a non-contractible one-cycle Σ1(t̃) ⊂ X̃t̃

that projects onto the circle C = C1/2(0), i.e., |x̃| = 1
2 with counterclockwise

orientation, and varies continuously for |t̃| < 1/(2i+j+1|cij |). At t̃ = 0, the
two branch points inside C coalesce, and Σ1(t̃) constitutes a family of A-
cycles. �

We then have the following:

Corollary 6.8. For the twisted families in Lemma 6.1 with generalized
functional invariant (i, j, α) = (1, 1, 1), (2, 1, 1), (1, 1, 1

2), or (2, 1, 1
2), the pe-

riod integral (5.13) is annihilated by the Picard-Fuchs operator L
(2)

t̃

(
(µ, 1−

µ); (1)
)
. In particular, the period over Σ1(t̃) is holomorphic at t̃ = 0 and
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given by

(6.4) ω(t̃) = (2πi) 2F1

(
µ, 1− µ

1

∣∣∣∣ t̃)
with µ = α

i+j .

Proof. The proof follows by application of Proposition 5.1 for the period
integral ω(t) = 1F0(1

2 |t) and generalized functional invariant (i, j, α). �

6.2. Families of Mn-lattice polarized K3 surfaces

The procedure described in Section 5.5.2 allows us to construct the quadratic
twists of the rational elliptic surfaces in Lemma 6.1. The four resulting fam-
ilies of K3 surfaces realize precisely the families of K3 surfaces considered by
Hoyt in [49]. These K3 surfaces are not modular elliptic surfaces, but rather
rational covers of them. To obtain modular elliptic K3 surfaces, we consider
the twisted families with generalized functional invariant (i, j, α) = (1, 1, 1)
of the Jacobian elliptic surfaces in Lemma 6.1 instead. We denote by Mn

the lattices Mn = H ⊕ E8 ⊕ E8 ⊕ 〈−2n〉 for n ∈ N. We have the following:

Lemma 6.9. For (n, µ) ∈
{

(1, 1
6), (2, 1

4), (3, 1
3), (4, 1

2)
}

, the twisted families
with generalized functional invariant (i, j, α) = (1, 1, 1) given by

Y 2 = 4X3 − g2

(
− t

4u(u+ 1)

) (
u (u+ 1)

)4

︸ ︷︷ ︸
=: g2(t,u)

X(6.5)

− g3

(
− t

4u(u+ 1)

) (
u (u+ 1)

)6

︸ ︷︷ ︸
=: g3(t,u)

,

with g2(t) and g3(t) determined by (n, µ) in Table 5, define families of Ja-
cobian elliptic K3 surfaces of Picard rank 19 with two singular fibers of
Kodaira-type II∗, III∗, IV ∗, or I∗1 at u = 0 and u = −1, a fiber of Kodaira-
type I2n at u =∞, and two singular fibers of type I1 at u = −1/2±

√
1− t/2.

The families are families of Mn-lattice polarized K3 surfaces for n = 1, . . . , 4.

Proof. The proof amounts to checking the Kodaira-types of singular fibers
from G2, G3,∆ and comparing with the list of all Jacobian elliptic surfaces
given in the Shimada classification [68] of Jacobian elliptic K3 surfaces.
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The fact that the constructed families of K3 surfaces are Mn-polarized was
explained by Dolgachev in [28]. Moreover, it is easy to see that all torsion
sections of the rational elliptic surfaces survive the mixed-twist construction.
The torsion sections are listed in Table 6. �

Λ torsion sections

M4 [4] (X,Y )1 =
(
−1

6 (u+ 1)u
(
8u2 + t+ 8u

)
, 0
)

(X,Y )2,3 =
(

1
12 (u+ 1)u

(
−16u2 + t− 16u

)
,±itu2 (u+ 1)2

)
M3 [3] (X,Y )1,2 =

(
−3

2 u
2 (u+ 1)2 ,± i

2

√
2tu2 (u+ 1)2

)
M2 [2] (X,Y ) =

(
2
3 u

2 (u+ 1)2 , 0
)

M1 [1] −

Table 6: Torsions sections of Equation (6.5).

The configurations of singular fibers, the Mordell-Weil groups, the determi-
nants of the discriminant groups, and the lattice polarizations are summa-
rized in Table 7.

derived from ρ Configuration of singular fibers MW(π, σ) discQ Λ

Srfc µ u =∞ u2 + u+ t/4 u = 0,−1

X141
1
2 19 I8 (A7) 2 I1 2 I∗1 (2D5) [4] 23 M4

X431
1
3 19 I6 (A5) 2 I1 2 IV ∗ (2E6) [3] 2 · 3 M3

X321
1
4 19 I4 (A3) 2 I1 2 III∗ (2E7) [2] 22 M2

X211
1
6 19 I2 (A1) 2 I1 2 II∗ (2E8) [1] 2 M1

Table 7: K3 surfaces from extremal rational surfaces.

Let us denote by Γ0(n)+ the modular group Γ0(n) extended by the
Fricke involution, i.e., the element corresponding to τ 7→ −1/(nτ). It is a
classical result due to Dolgachev that the moduli spaces of pseudo-ample
Mn-polarized K3 surfaces are isomorphic to the rational modular curves
that are the compactification of the curves H/Γ0(n)+ [28]. We therefore
have the following:
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Corollary 6.10. The twisted families with generalized functional invariant
(1, 1, 1) of the families of elliptic curves in Lemma 6.1 are families of Mn-
lattice polarized K3 surfaces over the rational modular curves H/Γ0(n)+ for
n = 1, 2, 3, 4.

Proof. The proof follows directly by checking that the singular fibers and
Mordell-Weil groups for the families constructed in Lemma 6.9 agree with
the ones given by Dolgachev in [28]. �

For each twisted family in Equation (6.5), we define a family of closed
two-cycles Σ2(t) as follows: for t ∈ C with |t| < 1/2 let C = C1/2(0) be the

circle |u| = 1
2 in the u-plane with counterclockwise orientation. For every

u ∈ C, a cycle Σ′1(t, u) in the elliptic fiber is obtained from Σ1(− t
4u(u+1))

— where Σ1(t) was defined in Lemma 6.7 — by rescaling (X,Y )→ (u2(u+
1)2X,u3(u+ 1)3Y ). For t ∈ C with |t| < 1/2, we obtain a continuously vary-
ing family of closed two-cycles as a warped product Σ2(t) = C ×u Σ′1(t, u).
By warped product we mean that the cycle Σ1(− t

4u(u+1)) is warped, i.e. it is
rescaled by a function of the affine coordinate u. We then have the following:

Corollary 6.11. For the twisted families with generalized functional in-
variant (1, 1, 1) in Lemma 6.9, the period integral (5.13) is annihilated by

the Picard-Fuchs operator L
(3)
t ((µ, 1/2, 1− µ); (1, 1)). In particular, the pe-

riod over Σ2(t) is holomorphic at t = 0 and given by

(6.6) ω = (2πi)2
3F2

(
µ, 1

2 , 1− µ
1, 1

∣∣∣∣ t) .
Proof. Application of Proposition 5.1 for the period integral ω(t) =

2F1

(
µ, 1− µ; 1

∣∣ t) and the twisted families of Weierstrass models in Equa-
tion (6.5) yields the following formula

(6.7) 1F0

(
1

2

∣∣∣∣ t) ? 2F1

(
µ, 1− µ

1

∣∣∣∣ t) = 3F2

(
µ, 1

2 , 1− µ
1, 1

∣∣∣∣ t) .
�

By Clausen’s identity each period in Corollary 6.11 is a perfect square,
namely

(6.8) 3F2

(
µ, 1

2 , 1− µ
1, 1

∣∣∣∣ t) =

[
2F1

(
µ
2 ,

1−µ
2

1

∣∣∣∣∣ t
)]2

.
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Ratios of solutions of the hypergeometric differential equation with holomor-
phic solution 2F1

(µ
2 ,

1−µ
2 ; 1

∣∣ t) are so-called Schwarzian s-maps, and the cor-
responding triangle groups are the modular groups Γ0(n)+ in Corollary 6.10
and listed in Table 8. The so-called Kummer identity relates the hypergeo-

n µ triangle group

n µ (2, 2
1−2µ ,∞)

1 1
6 (2, 3,∞)

2 1
4 (2, 4,∞)

3 1
3 (2, 6,∞)

4 1
2 (2,∞,∞)

Table 8: Triangle groups.

metric function on the right hand side of (6.8) back to the original period,
i.e., for t = 4T (1− T ) it follows

(6.9) 2F1

(
µ
2 ,

1−µ
2

1

∣∣∣∣∣ t
)

= 2F1

(
µ, 1− µ

1

∣∣∣∣T) .
The geometric origin of Equation (6.8) and (6.9) is the fact that an

Mn-polarized K3 surface admits a Shioda-Inose structure relating it to a
Kummer surface associated with the product of two isogenous elliptic curves;
see [29].

6.3. Families of K3 surfaces of Picard-rank 18

The twisted families with generalized functional invariant (1, 1, 1) of the el-
liptic surfaces in Lemma 6.1 are restrictions of two-parameter families of
K3 surfaces with affine parameters a, b ∈ C, as explained in Section 5.5.1.
The families of Section 6.2 are obtained for a = 0. The restriction a = −b
yields different one-parameter families of K3 surfaces of Picard rank 18. We
denote the relevant rank-18 lattices by M = H ⊕ E8 ⊕ E8, M̃ = H ⊕ E⊕ 2

7 ⊕
A⊕ 2

1 /Z2, M ′ = H ⊕ E⊕ 2
6 ⊕A⊕ 2

2 /Z3, and M̃ ′ = H ⊕D⊕ 2
5 ⊕A⊕ 2

3 /Z4. We
have the following:

Lemma 6.12. For (n, µ) ∈
{

(1, 1
6), (2, 1

4), (3, 1
3), (4, 1

2)
}

, the twisted fami-
lies with generalized functional invariant (i, j, α) = (1, 1, 1) and a = −b = t
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given by

Y 2 = 4X3 − g2

(
t
(

1 +
1

2u(u+ 1)

)) (
u (u+ 1)

)4

︸ ︷︷ ︸
=: g2(t,u)

X(6.10)

− g3

(
t
(

1 +
1

2u(u+ 1)

)) (
u (u+ 1)

)6

︸ ︷︷ ︸
=: g3(t,u)

,

with g2(t) and g3(t) determined by (n, µ) in Table 5, define families of
Jacobian elliptic K3 surfaces of Picard rank 18 with two singular fibers
of Kodaira-type II∗, III∗, IV ∗, or I∗1 at u = 0 and u = −1, two fibers of
Kodaira-type In at 2u2 + 2u+ 1 = 0, and two singular fibers of type I1 at the
roots of p(t, u) = 2(t− 1)u(u+ 1) + t. The families are polarized K3 surfaces
with lattice polarization M , M̃ , M ′, and M̃ ′ for n = 1, . . . , 4.

Proof. The proof amounts to checking the Kodaira-types of singular fibers
from G2, G3,∆ and comparing with the list of all Jacobian elliptic surfaces
given in the Shimada classification [68] of Jacobian elliptic K3 surfaces. The
torsion sections for the families in Equation (6.10) are listed in Table 9. �

Λ torsion sections

M4 [4] (X,Y )1 =
(

1
3 (u+ 1)u

(
2 tu2 + 2 tu− 4u2 + t− 4u

)
, 0
)

(X,Y )2,3 =
(
−1

6 (u+ 1)u
(
2 tu2 + 2 tu+ 8u2 + t+ 8u

)
,

±it (2u+ 1 + i) (−2u− 1 + i)u2 (u+ 1)2
)

M3 [3] (X,Y )1,2 =
(
−3

2 u
2 (u+ 1)2 ,

± i
2

√
2t (2u+ 1 + i) (−2u− 1 + i)u2 (u+ 1)2

)
M2 [2] (X,Y ) =

(
2
3 u

2 (u+ 1)2 , 0
)

M1 [1] −

Table 9: Torsions sections of Equation (6.10).

The configurations of singular fibers, the Mordell-Weil groups, the deter-
minants of the discriminant groups, and lattice polarizations are summarized
in Table 10. We make the following:

Remark 6.13. Families of lattice polarized K3 surfaces in Lemma 6.12 are
restrictions of the general two-parameter families introduced in Section 5.5.1.
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derived from ρ Configuration of singular fibers MW(π, σ) discQ Λ

Srfc µ 2u2 + 2u+ 1 p(t, u) = 0 u = 0,−1

X141
1
2 18 2 I4 (2A3) 2 I1 2 I∗1 (2D5) [4] 24 M̃ ′

X431
1
3 18 2 I3 (2A2) 2 I1 2 IV ∗ (2E6) [3] 32 M ′

X321
1
4 18 2 I2 (2A1) 2 I1 2 III∗ (2E7) [2] 22 M̃

X211
1
6 18 2 I1 2 I1 2 II∗ (2E8) [1] 1 M

Table 10: K3 surfaces from extremal rational surfaces.

The two-parameter family of M -lattice polarized K3 surfaces X̃ admits a
Shioda-Inose structure, relating it to Kummer surfaces X̂ associated with
two non-isogenous elliptic curves [20]. In fact, the latter admit a Jacobian
elliptic fibration with singular fibers 2I∗0 , II

∗, 2I1. It turns out that the dou-
ble cover induced by the degree-two map (5.18) on the base P1 induces a
Hodge isometry between transcendental lattices TX̃(2) ∼= TX̂ ; see Figure 1.

Thus, in the case of M -lattice polarized K3 surfaces X̃ the period domain
is (

PSL(2,Z)× PSL(2,Z)
)
o Z/2Z\

(
H×H

)
,

the moduli space of two elliptic curves, with a generator of Z/2Z acting on
PSL(2,Z)× PSL(2,Z) by exchanging the two sides.

For each twisted family with generalized functional invariant (i, j, α) =
(1, 1, 1) and a = −b = t in Equation (6.10), we define a family of closed
two-cycles Σ2(t) as follows: for t ∈ C with |t| < 1/2 let C = C1/2(0) be

the circle given by |u| = 1
2 in the u-plane with counterclockwise orienta-

tion. For every u ∈ C, a cycle Σ′1(t, u) in the elliptic fiber is obtained from
Σ1(t(1 + 1

2u(u+1))) — where Σ1(t) was defined in Lemma 6.7 — by rescal-

ing (X,Y )→ (u2(u+ 1)2X,u3(u+ 1)3Y ). For t ∈ C with |t| < 1/2, we ob-
tain a continuously varying family of closed two-cycles as a warped product
Σ2(t) = C ×u Σ′1(t, u). We have the following:

Corollary 6.14. For the twisted families in Lemma 6.12 with general-
ized functional invariant (i, j, α) = (1, 1, 1) and a = −b = t, the period in-
tegral (5.13) is annihilated by the Picard-Fuchs operator

L
(4)
t2

((
µ

2
,
1− µ

2
,
1 + µ

2

)
;

(
1, 1,

1

2

))
.
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In particular, the period over Σ2(t) is holomorphic at t = 0 and given by

(6.11) ω = (2πi)2
4F3

(
µ
2 ,

1−µ
2 , 1+µ

2 , 1− µ
2

1, 1, 1
2

∣∣∣∣∣ t2
)
.

Proof. We apply Proposition 5.2 to the period integral ω(t) = 2F1

(
µ, 1−

µ; 1
∣∣ t) and the twisted families in Equation (6.5), and use the identity

(6.12) 1F0

(
1

2

∣∣∣∣ t2) ? 2F1

(
µ, 1− µ

1

∣∣∣∣ t) = 4F3

(
µ
2 ,

1−µ
2 , 1+µ

2 , 1− µ
2

1, 1, 1
2

∣∣∣∣∣ t2
)
.

�

7. Elliptic fibrations on the mirror families

Non-trivial generalized functional invariants can be used to analyze elliptic
fibrations on the mirror families obtained from the Dwork pencil, i.e., the
one-parameter family of deformed Fermat hypersurfaces in Pn = P(X0, . . . ,
Xn) given by

(7.1) Xn+1
0 +Xn+1

1 + · · ·+Xn+1
n + (n+ 1)λX0X1 · · ·Xn = 0.

For each integer n ∈ N, Equation (7.1) constitutes a family of (n− 1)-

dimensional Calabi-Yau hypersurfaces X
(n−1)
λ . For n = 4 Equation (7.1) is

the quintic family of Candelas et al. [14]. For the family (7.1) the discrete
group of symmetries for the Greene-Plesser orbifolding procedure is easily
identified: it is generated by the action (X0, Xj) 7→ (ζnn+1X0, ζn+1Xj) for
1 ≤ j ≤ n with ζn+1 = exp ( 2πi

n+1). In virtue of the fact that the product of
all generators multiplies the homogeneous coordinates by a common phase,
the symmetry group is Gn−1 = (Z/(n+ 1)Z)n−1. The new affine variables

t =
(−1)n+1

λn+1
, x1 =

Xn
1

(n+ 1)X0 ·X2 · · ·Xn λ
,

x2 =
Xn

2

(n+ 1)X0 ·X1 ·X3 · · ·Xn λ
, . . . ,

are invariant under the action of Gn−1. Hence, they descend to coordinates

on the quotient X
(n−1)
λ /Gn−1. A second family of hypersurfaces Y

(n−1)
t is
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then defined in terms of the new variables x1, . . . , xn by the remaining rela-
tion between those, namely the equation

(7.2) fn(x1, . . . , xn, t) = x1 · · ·xn
(
x1 + · · ·+ xn + 1

)
+

(−1)n+1 t

(n+ 1)n+1
= 0.

It was proved in [5] that the family of special Calabi-Yau hypersur-

faces Y
(n−1)
t of degree (n+ 1) in Pn obtained from Equation (7.2) is in

fact the mirror family of a general hypersurface Pn of degree (n+ 1) and

co-dimension one in Pn. The subspace of the cohomology Hn−1(X
(n−1)
λ ,Q)

invariant under the obvious action of Gn−1 or, equivalently, the cohomology

Hn−1(Y
(n−1)
t ,Q) has dimension n and the Hodge numbers (1, . . . , 1). We

have the following:

Lemma 7.1. For every n ≥ 2 the family of hypersurfaces Y
(n−1)
t given by

Equation (7.2) is a fibration over P1 by hypersurfaces Y
(n−2)

t̃
where xn is

the affine base coordinate, and

(7.3) t = − nn

(n+ 1)n+1xn (xn + 1)n
t̃.

Proof. For each xn 6= 0,−1 substituting x̃i = xi/(xn + 1) for 1 ≤ i ≤ n− 1
and t̃ = −nn t/((n+ 1)n+1xn (xn + 1)n) defines a fibration of the hypersur-
face (7.2) by fn−1(x̃1, . . . , x̃n−1t̃) = 0 since

(7.4) fn(x1, . . . , xn, t) = xn (xn + 1)n fn−1(x̃1, . . . , x̃n−1, t̃ ) = 0.
�

The rational function on the right hand side of Equation (7.3) relating t
to t̃ has precisely the characteristic form of a generalized functional invari-

ant (5.7) with (i, j) = (n, 1). The unique holomorphic (n− 1)-form on Y
(n−1)
t

is given by

(7.5) η
(n−1)
t =

dx2 ∧ dx3 ∧ · · · ∧ dxn
∂x1

fn(x1, . . . , xn, t)
.

One defines an (n− 1)-cycle Σ(n−1) on Y
(n−1)
t by requiring that the period

integral of ηt over Σ(n−1) emerges as residue in x1 in the integral over the
torus Tn = S1 × · · · × S1. The corresponding section of the period sheaf is
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given by

ωn−1(t) =

˛
Σn−1

dx2 ∧ · · · ∧ dxn
∂x1

fn(x1, . . . , xn, t)
.(7.6)

We have the following:

Proposition 7.2. For n ≥ 1 and |t| ≤ 1, there is a transcendental (n− 1)-

cycle Σn−1 on Y
(n−1)
t such that

(7.7) ωn−1(t) =

˛
Σn−1

η
(n−1)
t = (2πi)n−1

nFn−1

( 1
n+1 . . . n

n+1

1 . . . 1

∣∣∣∣ t) .
The iterative relation (7.3) induces an iterative relation between periods,
namely

ωn−1(t) = (2πi) nFn−1

(
1

n+1 . . . n
n+1

1
n . . . n−1

n

∣∣∣∣∣ t
)
? ωn−2(t) for n ≥ 2.(7.8)

where the cycle Σn−1 is determined by Tn(rn) := n
n+1 ·

(
Tn−1(rn−1)× S1

rn−1

)
where rn = 1− n

n+1 and n
n+1 ·

(
Tn−1(rn−1)× S1

rn−1

)
means rescaling by n

n+1 .

Proof. Rescaling and writing Equation (7.2) in the form 1− τφ(w1, . . . , wn)

= 0 with τ = 1
n+1 t

1

n+1 and φ = w1 + · · ·+ wn + 1
w1···wn leads to the residue

period

ωn−1

(2πi)n−1
=

1

(2πi)n

˛
Tn

dw1

w1
∧ · · · ∧ dwn

wn

1− τ φ(w1, . . . , wn)
=
∑
l≥0

[φl]0 τ
l,

where [φl]0 for the constant term in φl. Using Equation (5.16) we obtain the
series expansion of the hypergeometric function in Equation (7.7).

For xn 6= 0,−1 the coordinate transformation x̃i = xi/(xn + 1) for 1 ≤
i ≤ n− 1 and t̃ = −nn t/((n+ 1)n+1xn (xn + 1)n) yields

(7.9) η
(n−1)
t = η̃

(n−2)

t̃
∧ dxn
xn(xn + 1)

.

For any xn on S1
rn with rn = 1− n

n+1 write 1/(xn + 1) = Reiϕ with n+1
n+2 ≤

R ≤ n+1
n , the transformation x̃i = xi/(xn + 1) maps the circle x̃i = rn−1e

it
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to the circle xi = Rrn−1e
i(t+ϕ) with 0 < Rrn−1 ≤ n+1

n2 < 1 as n ≥ 2. We
obtain

ˆ
. . .

ˆ
︸ ︷︷ ︸
Tn(rn)

dx1 ∧ · · · ∧ dxn
fn(x1, . . . , xn, t)

=

˛
|xn|= 1

2

dxn
xn(xn + 1)

(7.10)

×
ˆ
. . .

ˆ
︸ ︷︷ ︸

Tn−1(rn−1)

dx̃1 ∧ · · · ∧ dx̃n−1

fn−1(x̃1, . . . , x̃n−1, t̃)
.

Using Proposition 5.1 Equation (7.8) follows. �

Remark 7.3. The iterative relation between periods in Equation (7.8) in
the special case n = 4, i.e., the series expansion of the equation

(7.11) 4F3

( 1
5 ,

2
5 ,

3
5 ,

4
5

1, 1, 1

∣∣∣∣ t) = 4F3

(
1
5 ,

2
5 ,

3
5 ,

4
5

1
4 ,

2
4 ,

3
4

∣∣∣∣∣ t
)
? 3F2

( 1
4 ,

2
4 ,

3
4

1, 1

∣∣∣∣ t) ,
was the “surprise found [. . . ] when the coefficients are calculated and sub-
stituted” in [14, Eq. (3.7)]. Our Lemma 7.1 explains that this is in fact a
general feature of the iterative fibration structure on the mirror family of
the Dwork pencil.

7.1. Mirror family of pairs of points

For n = 1 the family Y
(0)
t is a family of pairs of points in P1 given in an

affine chart by the equation

(7.12) x1

(
x1 + 1

)
+
t

4
= 0

with t ∈ P\{0, 1,∞}. For n = 1 the deformed quadratic Fermat pencil Xλ

and Yt are equivalent. That is, the family in Equation (7.12) satisfies, X
(0)
λ
∼=

Y
(0)
t with t = λ2. Moreover, if we set x1 = (y0 − 1)/2 in Equation (7.12), we

obtain Equation (4.1), that is, precisely the universal starting point of our
twist construction.
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7.2. Mirror family of elliptic curves

For n = 2 the family Y
(1)
t is equivalent to the elliptic modular surface over

the rational modular curve for Γ0(3). In fact, using the birational transfor-
mation

(7.13) x1 =
4 t

3 (2X + 3)
, x2 =

i
√

2Y − 4 t

6 (2X + 3)
− 1

2

in Equation (7.2), we recover the Weierstrass normal form given by

(7.14) Y 2 = 4X3 − (27− 24 t)︸ ︷︷ ︸
g2(t)

X − (27− 36 t+ 8 t2)︸ ︷︷ ︸
g3(t)

.

Equation (7.14) is the Weierstrass model for X431 obtained in Lemma 6.1.
Corollary 6.8 proves that the period integral of dX/Y over a suitable family
of one-cycles Σ1(t) equals the hypergeometric function

(7.15)
ω(t)

2πi
= 2F1

(
µ, 1− µ

1

∣∣∣∣ t)

with µ = 1
3 . In other words, the extremal family of elliptic curves X431 is

obtained from the family of pairs of points in Equation (4.1) using our
twist construction with generalized functional invariant (i, j, α) = (2, 1, 1)
as proved in Lemma 6.1. On the level of periods, this fact manifests as
application of the cancellation formula (3.6) in the Hadamard product

(7.16) 2F1

( 1
3 ,

2
3

1

∣∣∣∣ t) = 2F1

(
1
3 ,

2
3

1
2

∣∣∣∣∣ t
)
? 1F0

(
1

2

∣∣∣∣ t) .
Since the transformation (7.13) maps the holomorphic one-form 3

√
2idX/Y

to ηt = dx2/f2,x1
in Equation (7.5), the period (7.15) is the period for the

mirror cubic family.
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7.3. Mirror families of K3 surfaces

For n = 3 the family Y
(2)
t is equivalent to a family of minimal Weierstrass

models given by the equation

Y 2 = 4X3 − g2

(
− 33 t

44 u3(u+ 1)

)(
u(u+ 1)

)4

︸ ︷︷ ︸
= g2(t,u)

X(7.17)

− g3

(
− 33t

44 u3(u+ 1)

)(
u(u+ 1)

)6

︸ ︷︷ ︸
= g3(t,u)

,

where we choose for g2(t) and g3(t) the Weierstrass coefficients in Equa-
tion (7.14). This is seen by applying the birational transformation

x1 = − 9 (u+ 1) t

64 (3u4 + 6u3 + 3u2 + 2X)
,

x2 =
−64 i

√
2Y + 9

(
64u5 + 128u4 + 64u3 +

(
3t+ 128

3

)
u+ t

)
(u+ 1)

1152
(
u4 + 2u3 + u4 + 2

3 u
)

(u+ 1)
,

x3 = − (u+ 1),

(7.18)

in Equation (7.2). We have the following:

Lemma 7.4. Equation (7.17) defines a family of M2-polarized K3 surfaces.

Proof. Equation (7.17) defines a family of Jacobian elliptic K3 surfaces of
Picard rank 19 with a singular fiber of Kodaira-type IV ∗ over u = 0, a sin-
gular fiber of Kodaira-type I12 over u =∞, and four fibers of Kodaira-type
I1. The Mordell-Weil group is pure three-torsion generated by the sections
(X,Y ) = (−3/2u2 (u+ 1)2 , ±27 i

128

√
2tu2). It follows that the determinant of

the discriminant group equals 3 · 12/32 = 22. �

In other words, the family of Jacobian elliptic K3 surfaces in Equa-
tion (7.17) is the twisted family with generalized functional invariant
(i, j, α) = (3, 1, 1) of the elliptic curves in Equation (7.14). Application of
Proposition 5.1 together with the cancellation formula (3.6) proves that the
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period integral of the holomorphic two-form du ∧ dX/Y over a suitable two-
cycle Σ2(t) equals the hypergeometric function

ω(t)

(2πi)2
= 3F2

( 1
4 ,

2
4 ,

3
4

1, 1

∣∣∣∣ t) = 3F2

(
1
4 ,

2
4 ,

3
4

1
3 ,

2
3

∣∣∣∣∣ t
)
? 2F1

( 1
3 ,

2
3

1

∣∣∣∣ t) .(7.19)

Since the transformation (7.18) maps the holomorphic two-form 3
√

2idu ∧
dX/Y to ηt = dx2 ∧ dx3/f3,x1

in Equation (7.5), the period in Equation (7.19)
is the period for the mirror quartic family. We make the following:

Remark 7.5. Equation (7.17) defines a family of M2-lattice polarized
K3 surfaces Y with transcendental lattice T (Y ) = H ⊕ 〈4〉. Following Dol-
gachev [28] its mirror partner Y ∨ is the family of generic quartic surfaces
in P3 with NS(Y ∨) = 〈4〉 since T (Y ) = H ⊕NS(Y ∨). Equivalently, it was
proved in [63] that the mirror quartic is the family of the Calabi-Yau va-
rieties arising from the polytope P ∗0 in dimension 3. The family X is the
family of the Calabi-Yau varieties arising from the reflexive polytope P0 and
is the family of generic quartic surfaces in P3.

7.4. Mirror families of Calabi-Yau threefolds

For n = 4 the family Y
(3)
t is equivalent to the family of minimal Weierstrass

models given by the equation

Y 2 = 4X3 − g2

(
33 t

55 u(u+ 1) v3 (v + 1)2

) (
u (u+ 1) v (v + 1)

)4

︸ ︷︷ ︸
=: g2(t,u,v)

X(7.20)

− g3

(
33 t

55 u (u+ 1) v3 (v + 1)2

) (
u (u+ 1) v (v + 1)

)6

︸ ︷︷ ︸
=: g3(t,u,v)

,

where we choose for g2(t) and g3(t) the Weierstrass coefficients in Equa-
tion (7.14). This is seen by applying the birational transformation

x1 =
36 t u(u+1)

9375 v2(v+1)2u4+18750 v2(v+1)2u3+9375 v2(v+1)2u2+6250X
,

x2 =
−3125 i

√
2Y+28125 (v3(v+1)2u4+2 v3(v+1)2u3+(v5+2 v4+v3− 12 t

3125)u2− 12ut

3125
+ 2

3
v X)(u+1)u(v+1)

(56250 v2(v+1)2u4+112500 v2(v+1)2u3+56250 v2(v+1)2u2+37500X)(u+1)u(v+1)
,

x3 = u (v + 1) , x4 = −(u+ 1) (v + 1),

(7.21)
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in Equation (7.2). Equation (7.20) defines a family of minimal Weierstrass
models over the two-dimensional base P1 × P1 with affine coordinates u and
v. Restricted to any generic v-slice we obtain a family of Jacobian elliptic
K3 surfaces with M3-polarization.

By inspection, the family in Equation (7.20) is obtained from the fam-
ily of elliptic curves in Equation (7.14) by applying a sequence of twists,
with generalized functional invariant (i, j, α) = (1, 1, 1) first, and (i, j, α) =
(3, 2, 1) second. Application of Proposition 5.1 and the cancellation for-
mula (3.6) proves that the period integral of the holomorphic three-form
dv ∧ du ∧ dX/Y over a suitable three-cycle Σ3(t) equals the hypergeometric
function

ω(t)

(2πi)3
= 4F3

( 1
5 ,

2
5 ,

3
5 ,

4
5

1, 1, 1

∣∣∣∣ t)(7.22)

= 4F3

(
1
5 ,

2
5 ,

3
5 ,

4
5

1
3 ,

2
3 ,

1
2

∣∣∣∣∣ t
)
? 1F0

(
1

2

∣∣∣∣ t) ? 2F1

( 1
3 ,

2
3

1

∣∣∣∣ t) .
Since the transformation (7.21) maps the holomorphic two-form 3

√
2idv ∧

du ∧ dX/Y to ηt = dx2 ∧ dx3 ∧ dx4/f4,x1
in Equation (7.5), the period in

Equation (7.22) is the period for the mirror quintic family. The period in
Equation (7.22) is annihilated by the fourth-order Picard-Fuchs operator

L
(4)
t

(
(1

5 , . . . ,
4
5); (1, . . . , 1)

)
. The Picard-Fuchs operator is one of the 14 orig-

inal Calabi-Yau operators mentioned in the introduction and labelled “(1)”
in the AESZ database [2].

Remark 7.6. It was shown in [14] that the family of Calabi-Yau threefolds

Y
(3)
t has a general fiber with Hodge numbers h2,1(Y

(3)
t ) = 1 and h1,1(Y

(3)
t ) =

101. Following [14] its mirror Y ∨ is the general family of quintic surfaces in
P4 with Hodge numbers h1,1(Y ∨) = 1 and h2,1(Y ∨) = 101.

8. Combining twists and base transformations

In this section, we apply linear and quadratic transformations to the rational
parameter space of the twisted families of elliptic curves, K3 surfaces, and
Calabi-Yau threefolds already constructed.

8.1. Transformations of extremal families of elliptic curves

We apply the linear transformation t 7→ t
t−1 to the rational deformation

space of any extremal family of elliptic curves in Lemma 6.1 to obtain the
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Weierstrass models

(8.1) Y 2 = 4X3 − g2

(
t

t− 1

)
(1− t)4︸ ︷︷ ︸

=: g̃2(t)

X − g3

(
t

t− 1

)
(1− t)6︸ ︷︷ ︸

=: g̃3(t)

,

where g2(t) and g3(t) are given in Table 5. The transformation produces
isomorphic families of elliptic curves that we denote by X̃141, X̃431, X̃321,
and X̃211. They have the same number/type of singular fibers and Mordell-
Weil groups as the families X141, X431, X321, and X211, but with the singular
fibers over t = 1 and t =∞ interchanged. The families X141, X431, X321, or
X211 (and hence X̃141, X̃431, X̃321, or X̃211) are labelled by µ = 1

2 ,
1
3 ,

1
4 ,

or µ = 1
6 (and by µ̃ = 1

2 ,
1
3 ,

1
4 , or µ̃ = 1

6). Let Σ̃1(t) be the family of one-
cycles obtained from Σ1(t̃) in Lemma 6.7 with t̃ = t

t−1 by rescaling (X,Y ) 7→
((1− t)2X, (1− t)3Y ). For t ∈ C with |t̃| < 1/2, Σ̃1(t) defines a family of A-
cycles on X̃141, X̃431, X̃321, and X̃211 in the neighborhood of t = 0. We have
the following:

Corollary 8.1. For the families of elliptic curves X̃141, X̃431, X̃321, and
X̃211 in Equation (8.1), period integrals of dX/Y are annihilated by the
Picard-Fuchs operator

(8.2) L̃
(2)
t = θ2 − t

(
2 θ2 + 2 θ + µ̃2 − µ̃+ 1

)
+ t2

(
θ + 1

)2
.

In particular, the period over Σ̃1(t) is holomorphic at t = 0 and given by

(8.3) ω̃ =
2πi

(1− t)1−µ̃ 2F1

(
µ̃, µ̃

1

∣∣∣∣ t

t− 1

)
with µ̃ ∈ {1

2 ,
1
3 ,

1
4 ,

1
6}.

Proof. The proof follows from the following well-known identity for the
Gauss hypergeometric function, namely

2πi

1− t 2F1

(
µ̃, 1− µ̃

1

∣∣∣∣ t

t− 1

)
=

2πi

(1− t)1−µ̃ 2F1

(
µ̃, µ̃

1

∣∣∣∣ t

t− 1

)
.

�

Remark 8.2. For the above families of elliptic curves, twisted families
can be constructed as in Section 6.2. The twisted families with generalized
functional invariant (i, j, α) = (1, 1, 1) of X̃141, X̃431, X̃321, and X̃211 are
families of Mn-lattice polarized K3 surfaces. A continuously varying family
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of closed two-cycles Σ̃2(t) can be constructed in each case such that the
period over Σ̃2(t) is given by

(8.4) ω̃ = (2πi)2
1F0

(
1

2

∣∣∣∣ t) ? ( 1

1− t 2F1

(
µ̃, 1− µ̃

1

∣∣∣∣ t

t− 1

))
with µ̃ ∈ {1

2 ,
1
3 ,

1
4 ,

1
6}.

8.2. Transformations of lattice polarized K3 surfaces

We apply a linear or quadratic transformations, denoted by t 7→ fk(t) with
k = 1, . . . , 5, to the rational parameter space of the families of Mn-lattice
polarized K3 surfaces in Lemma 6.1 to obtain new Weierstrass models given
by

(8.5) Y 2 = 4X3 − g2

(
fk(t), u

)
hk(t)

2︸ ︷︷ ︸
=: g̃

(k)
2 (t,u)

X − g3

(
fk(t), u

)
hk(t)

3︸ ︷︷ ︸
=: g̃

(k)
3 (t,u)

,

where g2(t, u) and g3(t, u) are given in Lemma 6.5, and the polynomials

fk(t) and hk(t) are given in Table 11. It is readily checked that g̃
(k)
2 (t, u)

and g̃
(k)
3 (t, u) define families of minimal Weierstrass model. By construction,

these new families remain families of Mn-lattice polarized K3 surfaces.
Let Σ̃2(t) be the family of two-cycles obtained from the family Σ2(fk(t))

— where Σ2(t) was given in Section 6.2 — by rescaling

(u,X, Y ) 7→ (u, hk(t)X,hk(t)
3/2Y ).

For t ∈ C with |fk(t)| < 1/2, Σ̃2(t) defines a continuously varying family of
two-cycles. We have the following:

Corollary 8.3. For the families of elliptic K3 surfaces in Equation (8.5),
the period integrals of du ∧ dX/Y are annihilated by the Picard-Fuchs oper-
ator

L̃
(3)
t = θ3 − t (2 θ + 1)

(
θ2 + θ + 2pq − p− q + 1

)
(8.6)

+ t2 (θ + 1) (θ + 1 + q − p) (θ + 1− q + p) .

In particular, the period over Σ̃2(t) is holomorphic at t = 0 and given by

(8.7) ω̃ = (2πi)2

(
1

(1− t)
1−p−q

2

2F1

( p, q
1

∣∣∣ t))2

,
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k fk(t) ω̃/(2πi)2

(p, q) hk(t)

1 t 1√
1−t 3F2

(
µ, 1− µ, 1

2 ; 1, 1
∣∣∣ t)(

µ
2 ,

1−µ
2

)
1− t =

(
1

(1−t)
1−µ/2−(1−µ)/2

2
2F1

(
µ
2 ,

1−µ
2 ; 1

∣∣∣ t))2

2 t
t−1

1√
1−t 3F2

(
µ, 1− µ, 1

2 ; 1, 1
∣∣∣ t
t−1

)
(
µ
2 ,

1+µ
2

)
1− t =

(
1

(1−t)
1−µ/2−(1+µ)/2

2
2F1

(
µ
2 ,

1+µ
2 ; 1

∣∣∣ t))2

3 4t(1− t) 3F2

(
µ, 1− µ, 1

2 ; 1, 1
∣∣∣ 4 t (1− t)

)
(µ, 1− µ) 1 =

(
1

(1−t)
1−µ−(1−µ)

2
2F1 (µ, 1− µ; 1| t)

)2

4 t2

4(t−1)
1√
1−t 3F2

(
µ, 1− µ, 1

2 ; 1, 1
∣∣∣ t2

4(t−1)

)
(
µ, 1

2

)
1− t =

(
1

(1−t)
1−µ−1/2

2
2F1

(
µ, 1

2 ; 1
∣∣ t))2

5 − 4 t
(1−t)2

1
1−t 3F2

(
µ, 1− µ, 1

2 ; 1, 1
∣∣∣ − 4 t

(1−t)2

)
(µ, µ) (1− t)2 =

(
1

(1−t)
1−µ−µ

2
2F1 (µ, µ; 1| t)

)2

Table 11: Rational transformations and periods of new family.

where µ and (p, q) for k = 1, . . . , 5 are given in Table 11.

Proof. The construction is an application of the general construction in Sec-
tion 5.4. The proof amounts to checking some classical and well-known hy-
pergeometric function identities listed in Table 11. The identities allow us
to write each period as a symmetric square. �
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8.3. Threefolds by combining twists and base transformations

To obtain families of elliptic Calabi-Yau threefolds, we start with a family
of Jacobian elliptic K3 surfaces X → P1, given as Weierstrass model

(8.8) Y 2 = 4X3 − g2(t, u)X − g3(t, u).

We will restrict ourselves to the cases where this K3 surface is chosen
from Section 6.2, Section 8.2, or Remark 8.2. Applying our twist construc-
tion, we obtain new Weierstrass models for twisted families with gener-
alized functional invariant (k, l, β) with 1 ≤ k, l ≤ 6, β ∈ {1

2 , 1}, and ckl =
(−1)k kk ll/(k + l)k+l that are families of Gorenstein threefolds. We have the
following:

Lemma 8.4. For every family of elliptic K3 surfaces from Section 6.2,
Section 8.2, or Remark 8.2, the twisted family with generalized functional
invariant (k, l, β), given by the Weierstrass equation

Y 2 = 4X3 − g2

(
cklt

vk(v + 1)l
, u

)
v4(v + 1)4β︸ ︷︷ ︸

=: g2(t,u,v)

X(8.9)

− g3

(
cklt

vk(v + 1)l
, u

)
v6(v + 1)6β︸ ︷︷ ︸

=: g3(t,u,v)

,

defines a family (over B) of Jacobian elliptic Calabi-Yau threefolds over
P1 × P1. For K3 surfaces from Lemma 6.9, we assumed 1 ≤ k ≤ 1/µ and 1 ≤
l ≤ β/µ with β ∈ {1

2 , 1}, and for K3 surfaces from Section 8.2 or Remark 8.2
we set (k, l, β) = (1, 1, 1).

Proof. The construction is an application of the general construction in Sec-
tion 5.4. �

For each twisted family in Equation (8.9), we define a family of closed
three-cycles Σ3(t) as follows: For t ∈ C with |t| < 1/(2k+l+1|ckl|), we start
with the circle C = C1/2(0), given by |v| = 1

2 in the v-plane with counter-
clockwise orientation. For every v ∈ C, a two-cycle Σ′2(t, v) in the K3-fiber
is obtained from Σ2( cklt

vk(v+1)l ), where Σ2(t) was defined in Section 6.2, by

rescaling (u,X, Y )→ (u, v2(v + 1)2βX, v3(v + 1)3βY ). For t ∈ C with |t| <
1/(2i+j+1|cij |), we obtain a continuously varying family of closed three-cycles
as a warped product Σ3(t) = C ×v Σ′2(t, v).
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8.3.1. Calabi-Yau operators of the hypergeometric case. Applying
our twist construction to the elliptic K3 surfaces from Section 6.2, we obtain
the following:

Corollary 8.5. For the twisted families in Lemma 8.4 with generalized
functional invariant (k, l, β) of the Mn-lattice polarized K3 surfaces from
Section 6.2, the period integral (5.13) is annihilated by the Picard-Fuchs
operator

(8.10) 1L
(4)
t (p, q) = θ4 − t

(
θ + p

)(
θ + q

)(
θ + 1− q

)(
θ + 1− p

)
.

In particular, the period over Σ3(t) is holomorphic at t = 0 and given by

(8.11) ω = (2πi)3
4F3

(
p, q, 1− q, 1− p

1, 1, 1

∣∣∣∣ t) .
The values (p, q) resulting from a twist with generalized functional invariant
(k, l, β) of a family Mn-lattice polarized K3 surface with 1 ≤ n ≤ 4 are given
in Table 12.

Proof. The proof follows by applying Equation (5.14) to the periods ω(t)
computed in Corollary 6.11. One then checks for which generalized func-
tional invariants (k, l, β) within the range provided by Lemma 8.4, the
Hadamard product in Proposition 5.1 produces a hypergeometric function
of type 4F3 using Equation (3.6). �

Twisted families of the Jacobian elliptic K3 surfaces from Section 6.3 can
also be obtained from generalized functional invariants (k, l, β) = (m2 ,

m
2 , 1)

in Equation (8.9) where m is an odd integer. In fact, if we set

(8.12) v = − 1

1 + ṽ2
, X =

ṽ2X̃

(1 + ṽ2)4
, Y =

ṽ3Ỹ

(1 + ṽ2)6
,

we obtain dv ∧ du ∧ dX/Y = 2dṽ ∧ du ∧ dX̃/Ỹ , and Equation (8.9) becomes
the minimal and normal Weierstrass model given by

Ỹ 2 = 4X̃3 − g2

(
t(1 + ṽ2)m

(2ṽ)m
, u

)
ṽ4︸ ︷︷ ︸

=: g̃2(t,u,ṽ)

X̃ − g3

(
t(1 + ṽ2)m

(2ṽ)m
, u

)
ṽ6︸ ︷︷ ︸

=: g̃3(t,u,ṽ)

.
(8.13)

We have the following:
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Lemma 8.6. For every family of elliptic K3 surfaces from Section 6.3,
the twisted family with generalized functional invariant (k, l, β) = (m2 ,

m
2 , 1),

given by the Weierstrass equation (8.13), defines a family of elliptic Calabi-
Yau threefolds over P1 × P1. Here, we set m = 1, except for the family of
M ′-lattice polarized K3 surfaces in Lemma 6.10 where we have m ∈ {1, 3}.

The construction of a continuously varying family of closed three-cycles
Σ̃3(t) is analogous to the construction of Σ3(t) above. We also have the
following:

Corollary 8.7. For the twisted families in Lemma 8.13 with generalized
functional invariant (k, l, β) = (m2 ,

m
2 , 1) of the elliptic K3 surfaces from Sec-

tion 6.3, the period integral of dṽ ∧ du ∧ dX̃/Ỹ is annihilated by the Picard-
Fuchs operator

(8.14) 1L
(4)
t2 (p, q) = θ4 − t2

(
θ + 2p

) (
θ + 2q

) (
θ + 2− q

) (
θ + 2− p

)
.

In particular, the period over Σ̃3(t) is holomorphic at t = 0 and given by

(8.15) ω̃ = (2πi)3
4F3

(
p, q, 1− q, 1− p

1, 1, 1

∣∣∣∣ t2) ,
for the values (p, q) given in Table 12.

Proof. We evaluate the period of the holomorphic three-from dṽ ∧ du ∧
dX̃/Ỹ over Σ̃3(t) by a residue computation. By construction of Σ̃3(t), it
follows that for |t| < 1 and (ṽ, u, X̃, Ỹ ) ∈ Σ̃3(t) we have∣∣∣∣ t (1 + ṽ2)m

(2ṽ)m

(
1 +

1

2u (u+ 1)

)∣∣∣∣ , ∣∣∣∣ t (1 + ṽ2)m

(2ṽ)m

∣∣∣∣ < 1.

Using Corollary 6.14, we obtain the period integral from the following com-
putation

ω̃

(2πi)3
= =

1

2πi

˛
C1/2(0)

dṽ

ṽ
4F3

(
µ
2 ,

1−µ
2 , 1+µ

2 , 1− µ
2

1, 1, 1
2

∣∣∣∣∣ t2 (1 + ṽ2)2m

(2ṽ)2m

)(8.16)

= 4+mF3+m

(
µ
2 ,

1−µ
2 , 1+µ

2 , 1− µ
2 ,

1
2m ,

3
2m , . . . ,

2m−1
2m

1
2 ,

1
m ,

2
m , . . . ,

m
m , 1, 1

∣∣∣∣∣ t2
)
.

We observe that for the given parameters m,µ there is a cancellation in the
coefficients of the hypergeometric series, and we obtain Equation (8.15). For
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m = 1, or m = 3, µ = 1
3 , the hypergeometric series reduce to

4F3

(
µ
2 ,

1−µ
2 , 1+µ

2 , 1− µ
2

1, 1, 1

∣∣∣∣∣ t2
)
, or 4F3

( 1
6 ,

1
6 ,

5
6 ,

5
6

1, 1, 1

∣∣∣∣ t2) .
�

Remark 8.8. The Calabi-Yau operators (8.10) obtained in Corollary 8.5
and 8.7 for parameters (p, q, q′ = 1− q, p′ = 1− p), with their classification
number in the AESZ database [2], are summarized in Table 12. The Calabi-
Yau operators have degree one and are called Calabi-Yau operators of the
hypergeometric case. In particular, Table 12 includes the generalized func-
tional invariants that were found in [31] to construct threefolds fibered by
Mn-polarized K3 surfaces using toric geometry.

Remark 8.9. It was proved in [34] that the regular singular points t =
0, 1,∞ of the Picard-Fuchs operator in Equation (8.10) correspond to the
conifold limit, large complex structure limit, and the orbifold point, respec-
tively. In particular, the monodromy around t =∞ is maximally unipotent.

8.3.2. Calabi-Yau operators in the extra case. Applying our twist
construction to the elliptic K3 surfaces in Corollary 8.3, we obtain the fol-
lowing:

Corollary 8.10. For the twisted families in Equation (8.9) with gener-
alized functional invariant (k, l, β) = (1, 1, 1) of the elliptic K3 surfaces in
Corollary 8.3, the period integral (5.13) is annihilated by the Picard-Fuchs
operator

2L
(4)
t (p, q) = θ4 − 2t

(
θ +

1

2

)2(
θ2 + θ + 2pq − p− q + 1

)
(8.17)

+ t2
(
θ +

1

2

)(
θ +

3

2

)(
θ + 1 + p− q

)(
θ + 1− p+ q

)
.

In particular, the period over Σ3(t) is holomorphic at t = 0 and given by

ω = (2πi)3
1F0

(
1

2

∣∣∣∣ t) ?
(

1

(1− t)
1−p−q

2

2F1

( p, q
1

∣∣∣ t))2

,(8.18)

for the values (p, q) given in Table 13.
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AESZ (p, q) twist with
(
k, l, β = 1

)
twist with

(
k, l, β = 1

2

)
twist with

(
m
2 ,

m
2 , 1

)
M4 M3 M2 M1 M4 M3 M2 M1 M̃ ′ M ′ M̃ M

(3)
(

1
2 ,

1
2

) (
1, 1
)

(5)
(

1
3 ,

1
2

) (
2, 1
) (

1, 1
)

(4)
(

1
3 ,

1
3

) (
2, 1
)

(6)
(

1
4 ,

1
2

) (
2, 2
) (

3, 1
) (

1, 1
) (

1, 1
)

(11)
(

1
4 ,

1
3

) (
2, 2
) (

2, 1
) (

1, 1
)

(10)
(

1
4 ,

1
4

) (
2, 2
) (

1, 1
) (

1
)

(14)
(

1
6 ,

1
2

) (
3, 3
) (

1, 1
) (

2, 1
) (

1, 2
)

(8)
(

1
6 ,

1
3

) (
4, 2
) (

2, 1
) (

2, 1
) (

1
)

(12)
(

1
6 ,

1
4

) (
2, 2
) (

2, 1
) (

1, 1
)

(13)
(

1
6 ,

1
6

) (
2, 1
) (

3
)

(1)
(

1
5 ,

2
5

) (
3, 2
) (

4, 1
)

(7)
(

1
8 ,

3
8

) (
4, 4
) (

3, 1
) (

2, 2
) (

1, 3
) (

1
)

(2)
(

1
10 ,

3
10

) (
4, 1
) (

2, 3
)

(9)
(

1
12 ,

5
12

) (
4, 2
) (

1
)

Table 12: Twist parameters for operators 1L
(4)
t (p, q) in the ‘hypergeometric

case’.

Proof. The proof follows by applying Equation (5.14) to the periods ω(t)
computed in Corollary 8.3. �

Remark 8.11. The Calabi-Yau operators (8.17) obtained in Corollary 8.10
for parameters (p, q), with classification number (and any alternative name
used) in the AESZ database [2], are summarized in Table 13. The Calabi-Yau
operators are called Calabi-Yau operators of the extra case.

8.3.3. Calabi-Yau operators in the even case. Applying our twist
construction to the elliptic K3 surfaces in Remark 8.2, we obtain the follow-
ing:
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# AESZ Name (p, q) twist of K3 with (Mn, k)

1 (17) 35, 3∗
(

1
2 ,

1
2

)
(M4, 3), (M4, 4), (M4, 5)

2 − −
(

1
3 ,

1
2

)
(M3, 4)

3 (66) 6∗
(

1
4 ,

1
2

)
(M2, 4)

4 − 14∗
(

1
6 ,

1
2

)
(M1, 4)

5 (39) 4∗
(

1
3 ,

1
3

)
(M3, 5)

6 (20) 46, 4∗∗
(

1
3 ,

2
3

)
(M3, 3)

7 (45) 8∗
(

1
6 ,

1
3

)
(M3, 1)

8 (34) 8∗∗
(

1
6 ,

2
3

)
(M3, 2)

9 (38) 10∗
(

1
4 ,

1
4

)
(M2, 5), (M4, 1)

10 (32) 111, 10∗∗
(

1
4 ,

3
4

)
(M2, 3), (M4, 2)

11 (40) 13∗
(

1
6 ,

1
6

)
(M1, 5)

12 (21) 47, 13∗∗
(

1
6 ,

5
6

)
(M1, 3)

13 (44) 7∗
(

1
8 ,

3
8

)
(M2, 1)

14 (41) 7∗∗
(

1
8 ,

5
8

)
(M2, 2)

15 (43) 9∗
(

1
12 ,

5
12

)
(M1, 1)

16 (42) 9∗∗
(

1
12 ,

7
12

)
(M1, 2)

Table 13: Twist parameters for operators 2L
(4)
t (p, q) in the ‘extra case’.

Corollary 8.12. For the twisted families in Lemma 8.9 with generalized
functional invariant (k, l, β) = (1, 1, 1) of the Mn-lattice polarized K3 sur-
faces in Remark 8.2, the period integral (5.13) is annihilated by the Picard-
Fuchs operator

3L
(4)
t

(
µ, µ̃

)
= θ4 − t

(
2 θ2 + 2θ + µ̃2 − µ̃+ 1

)
(θ + µ) (θ − µ+ 1)(8.19)

+ t2 (θ + 2− µ) (θ + 1 + µ) (θ + µ) (θ + 1− µ)

with µ = 1
2 and µ̃ ∈ {1

2 ,
1
3 ,

1
4 ,

1
6}. In particular, the period over Σ3(t) is holo-

morphic at t = 0 and given by

(8.20) ω = (2πi)3
2F1

( 1
2 ,

1
2

1

∣∣∣∣ t) ? ( 1

1− t 2F1

(
µ̃, 1− µ̃

1

∣∣∣∣ t

t− 1

))
.
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Proof. The proof follows by applying Equation (5.14) to the periods ω(t)
computed in Remark 8.2, and then using Equation (3.6). �

To obtain the Calabi-Yau operators in Equation (8.19) with µ = 1
3 ,

1
4 ,

1
6

as Picard-Fuchs operators, we use the variant of our twist construction in
Section 5.5.3. For the families of elliptic curves X = X̃141, X̃431, X̃321, X̃211,
and X ′k in Table 2, we already constructed families of A-cycles Σ̃1(t) and
Σ1(t), respectively, for |t| < 1.

For the twisted family in Equation (5.30), we define a family of closed
three-cycles Σ̂3(t) as follows: Applying Lemma 6.7 to the elliptic curve
h2 = 4u3 − g′2(v)u− g′3(v), we obtain a family of A-cycles Σ1(v) 3 (u, h),
such that Σ1(v) projects onto the circle Cu = C1/2(0), i.e., the circle |u| = 1

2
in the u-plane with counterclockwise orientation, for every |v| < 1. For t ∈ C
and every (v, u) ∈ Cv × Cu, a cycle Σ̂1(t, v, u) in the elliptic fiber of Equa-
tion (5.30) is obtained from Σ̂1( tv ), by rescaling (X,Y )→ (h2v2X,h3v3Y )
such that (u, h) ∈ Σ1(v). For t ∈ C with |t| < 1/2, we obtain a continu-
ously varying family of closed three-cycles as a warped product Σ̂3(t) =
Cv × Cu ×(v,u) Σ̂1(t, v, u). We have the following:

Corollary 8.13. For X = X̃141, X̃431, X̃321, or X̃211, the twist family of X
with X ′k in Table 2 given by Equation (5.30) for k = 2, 3, 4, is a family over
B of Jacobian elliptic Calabi-Yau threefolds over Fn with n = 0, . . . , k. The

period integral (5.33) is annihilated by the Picard-Fuchs operator 3L
(4)
t

(
µ, µ̃

)
in Equation (8.19). In particular, the period over Σ̂3(t) is holomorphic at
t = 0 and given by

(8.21) ω̂ = (2πi)3
2F1

(
µ, 1− µ

1

∣∣∣∣ t) ? ( 1

1− t 2F1

(
µ̃, 1− µ̃

1

∣∣∣∣ t

t− 1

))
with µ ∈ {1

3 ,
1
4 ,

1
6} and µ̃ ∈ {1

2 ,
1
3 ,

1
4 ,

1
6}.

Proof. The proof follows by applying Proposition 5.7 and Equation (5.34)
to the periods ω(t) computed in Corollary 8.1. �

Remark 8.14. The Calabi-Yau operators (8.19) obtained in Corollary 8.12
and Corollary 8.13 for parameters (µ, µ̃), with their classification number
(and any alternative name used) in the AESZ database [2], are summarized
in Table 14. The Calabi-Yau operators are called Calabi-Yau operators of
the even case.
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# AESZ Name (µ, µ̃)

1 (32) 111
(

1
2 ,

1
2

)
2 (31) 110

(
1
3 ,

1
2

)
3 (15) 30

(
1
4 ,

1
2

)
4 (33) 112

(
1
6 ,

1
2

)
5 (34) 141, 8**

(
1
2 ,

1
3

)
6 (35) 142

(
1
3 ,

1
3

)
7 - 196

(
1
4 ,

1
3

)
8 (36) 143

(
1
6 ,

1
3

)

# AESZ Name (µ, µ̃)

9 (41) 189, 7**
(

1
2 ,

1
4

)
10 (46) 194

(
1
3 ,

1
4

)
11 (48) 197

(
1
4 ,

1
4

)
12 (50) 199

(
1
6 ,

1
4

)
13 (42) 190, 9**

(
1
2 ,

1
6

)
14 (47) 195

(
1
3 ,

1
6

)
15 (49) 198

(
1
4 ,

1
6

)
16 (23) 61

(
1
6 ,

1
6

)
Table 14: Twist parameters for the operators 3L

(4)
t (p, q) in the ‘even case’.

8.4. Calabi-Yau operators in the odd case

In this section we describe a fourth step in our iterative construction that
produces families of (singular) elliptic Calabi-Yau fourfolds with section over
P1 × P1 × P1 that realize all 14 one-parameter variations of Hodge structure
of weight four and type (1, 1, 1, 1, 1) over a one-dimensional rational defor-
mation space of the so-called odd case. The families arise as twisted families
of the elliptic Calabi-Yau threefolds of the hypergeometric case, previously
obtained in Section 8.3.1. Applying our twist construction, we obtain their
Weierstrass model as twisted families with generalized functional invariant
(m,n, γ) = (1, 1, 1). We have the following:

Lemma 8.15. For every family of threefolds from Section 8.3.1, the twisted
family with generalized functional invariant (1, 1, 1), given by the Weier-
strass equation

Y 2 = 4X3 − g2

(
− t

w(w + 1)
, u, v

)
v4(v + 1)4︸ ︷︷ ︸

=: g2(t,u,v,w)

X(8.22)

− g3

(
− t

w(w + 1)
, u

)
w6(w + 1)6︸ ︷︷ ︸

=: g3(t,u,v,w)

,
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defines a family (over B) of Jacobian elliptic Calabi-Yau fourfolds over P1 ×
P1 × P1.

Proof. The construction is an application of the general construction in Sec-
tion 5.4. One first checks that Equation (8.22) defines a minimal Weierstrass
model for every family of threefolds from Section 8.3.1 with affine coordi-
nates u, v, w ∈ C and t ∈ B = P1\{0, 1,∞}. The Weierstrass equation (8.22)
extends to P1 × P1 × P1, since we obtain a minimal and normal Weierstrass
equation when introducing projective variables [u0 : u1] ∈ P1, [v0 : v1] ∈ P1,
[w0 : w1] ∈ P1, and [x : y : z] ∈ P(2, 3, 1) and writing each fiber as the hyper-
surface

y2z = 4x3 − g2

(
t,
u0

u1
,
v0

v1
,
w0

w1

)
u8

1v
8
1w

8
1xz

2(8.23)

− g3

(
t,
u0

u1
,
v0

v1
,
w0

w1

)
u12

1 v
12
1 w

12
1 z

3.

Four C∗-groups act on the defining variables in Equation (8.23) and are given
by the weights listed in Table 15 where deg denotes the total weight of Equa-
tion (8.23) and sum denotes the sum of weights of the defining variables.
Since the conditions are satisfied that for each C∗-group the total weight
equals the sum of weights, a Calabi-Yau fourfold is obtained by removing
the loci {s0 = s1 = 0}, {u0 = u1 = 0}, {v0 = v1 = 0}, {x = y = z = 0} from
the solution set of Equation (8.23) and taking the quotient (C∗)4. �

C∗ deg x y z u0 u1 v0 v1 w0 w1 Σ

λ1 3 1 1 1 0 0 0 0 0 0 3
λ2 12 4 6 0 1 1 0 0 0 0 12
λ3 12 4 6 0 0 0 1 1 0 0 12
λ4 12 4 6 0 0 0 0 0 1 1 12

Table 15: Weights of variables in Weierstrass equation.

For each twisted family in Equation (8.22), we define a family of closed
four-cycles Σ4(t) as follows: For t ∈ C with |t| < 1/2, we start with the circle
C = C1/2(0), given by |w| = 1

2 in the w-plane with counterclockwise orien-
tation. For every w ∈ C, a three-cycle Σ′3(t, v) in the fiber is obtained from
Σ3(− t

w(w+1)), Σ3(t) was defined in Section 8.3, by rescaling (u, v,X, Y )→
(u, v, w2(w + 1)2X,w3(w + 1)3Y ). For t ∈ C with |t| < 1/2, we obtain a con-
tinuously varying family of closed four-cycles as a warped product Σ4(t) =
C ×w Σ′3(t, w). We have the following:
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Corollary 8.16. For the twisted families in Lemma 8.15 with generalized
functional invariant (1, 1, 1), the period integral (5.13) is annihilated by the
self-adjoint, rank-five Picard-Fuchs operator

(8.24) L
(5)
t (p, q) = θ5 − t

(
θ +

1

2

)(
θ + p

)(
θ + q

)(
θ + 1− p

)(
θ + 1− q

)
.

In particular, the period over Σ4(t) is holomorphic at t = 0 and given by

(8.25) ω = (2πi)4
5F4

(
p, q, 1

2 , 1− q, 1− p
1, 1, 1, 1

∣∣∣∣ t)
for the values (p, q) given in Table 12.

Proof. The proof follows by applying Equation (5.14) to the periods ω(t)
computed in Corollary 8.5. One then checks that the Hadamard product
in Proposition 5.1 produces a hypergeometric function of type 5F4 using
Equation (3.6). �

We have the following:

Corollary 8.17. The differential operators 4L
(p,q)
t , given by

4L
(4)
t (p, q) = θ4 − 1

4
t
(

8 θ4 + 16 θ3 − 2 (p2 + q2 − p− q − 9) θ2(8.26)

− 2 (p2 + q2 − p− q − 5) θ + 2 + p+ q

− pq − p2 − q2 + p2q + p q2 + p2q2
)

+
1

16
t2 (2 θ + 2 + p− q) (2 θ + 1 + p+ q)

× (2 θ + 2− p+ q) (2 θ + 3− p− q) ,

are the Yifan-Yang pullbacks of the operators L
(5)
t (p, q) in Corollary 8.16 of

minimal degree (in t), for the values (p, q) given in Table 16.

Proof. The proof follows directly from Proposition 3.16. �

Remark 8.18. The Calabi-Yau operators (8.26) obtained in Corollary 8.17
for parameters (p, q), with their classification number (and any alternative
name used) in the AESZ database [2], are summarized in Table 16. The
Calabi-Yau operators are called Calabi-Yau operators of the odd case.
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# AESZ Name (p, q)

1 (51) 3̃, 204
(

1
2 ,

1
2

)
2 (92) 5̃

(
1
3 ,

1
2

)
3 (91) 4̃

(
1
3 ,

1
3

)
4 (93) 6̃

(
1
4 ,

1
2

)
5 (98) 1̃1

(
1
4 ,

1
3

)
6 (97) 1̃0

(
1
4 ,

1
4

)
7 (101) 1̃4

(
1
6 ,

1
2

)

# AESZ Name (p, q)

8 (95) 8̃
(

1
6 ,

1
3

)
9 (99) 1̃2

(
1
6 ,

1
4

)
10 (100) 1̃3

(
1
6 ,

1
6

)
11 (89) 1̃

(
1
5 ,

2
5

)
12 (94) 7̃

(
1
8 ,

3
8

)
13 (90) 2̃

(
1
10 ,

3
10

)
14 (96) 9̃

(
1
12 ,

5
12

)
Table 16: Twist parameters for the operators 4L

(4)
t (p, q) in the ‘odd case’.

9. Proof of Theorem 2.1

In Section 5 we have defined an iterative construction that produces fam-
ilies of elliptically fibered Calabi-Yau n-folds with section from families of
elliptic Calabi-Yau varieties of one dimension lower by a combination of a
quadratic twist and a rational base transformation encoded in the gener-
alized functional invariant. Moreover, all Weierstrass models are obtained
through a sequence of constructions that start with the quadric pencil in
Equation (2.1). Each step n = 1, 2, 3, 4 of our iterative construction has also
provided a family of a closed transcendental n-cycle for each family of n-folds
as the warped product of the corresponding transcendental cycle in dimen-
sion n− 1. Upon integration of this cycle with the holomorphic n-form we
obtain a period for the family of elliptically fibered Calabi-Yau n-folds with
section. By construction, the period is holomorphic on the unit disk about
the point t = 0 of maximally unipotent monodromy. Each holomorphic pe-
riod is then annihilated by a Picard-Fuchs operator which is a Calabi-Yau
operator in the sense of [3].

The proof of Theorem 2.1 proceeds as follows: Bogner and Reiter classi-
fied all Sp(4,C)-rigid, quasi-unipotent local systems which have a maximal
unipotent element and are induced by fourth-order Calabi-Yau operators. In
particular, they obtained explicit expressions for all Calabi-Yau operators
and closed formulas for special solutions of them. We prove that we have
realized all of these operators and holomorphic periods. There are the four
cases:
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1) The hypergeometric case consist of 14 operators called P1(4, 10, 4) [12,
Theorem 6.1]. These operators precisely coincide with the 14 operators
of Equations (8.10) and (8.14) obtained by the twist construction for
parameters given in Table 12.

2) The extra case consist of 16 operators called P2(4, 6, 6) [12, Theo-
rem 6.3]. These operators precisely coincide with the 16 operators
of Equation (8.17) obtained by the twist construction for parameters
listed in Table 13.

3) The even case consist of 16 operators called P2(4, 6, 8) [12, Theo-
rem 6.4]. These operators precisely coincide with the 16 operators
of Equation (8.20) obtained by the twist construction for parameters
listed in Table 14.

4) The odd case consist of 14 operators called P1(4, 8, 4) [12, Theorem 6.2].
These operators precisely coincide with the Yifan-Yang pullbacks in
Equations (3.21) of the 14 operators of Equations (8.24) obtained by
the twist construction for the parameters listed in Table 16. �

Remark 9.1. We constructed all symplectically rigid Calabi-Yau operators
as Picard-Fuchs operators of families of Calabi-Yau varieties. These opera-
tors are rank-four, degree-two, irreducible Calabi-Yau operators with three
regular singular points. In addition to these operators, there are four ad-
ditional rank-four, degree-two, irreducible Calabi-Yau operators with three
regular singular points in the AESZ database [2]. The additional cases, 84,
254, 255, 406, have as degree-one term an irreducible polynomial (over Q[t])
of degree four; see Remark 10.5.

10. Beyond symplectically rigid Calabi-Yau operators

10.1. Calabi-Yau operators from Heun’s equation

Heun’s equation is the rank-two, linear ordinary differential equation of the
form

(10.1)

(
d2

dt2
+

(
γ

t
+

δ

t− 1
+

ε

u− a

)
d

dt
+

αβt− q
t(t− 1)(t− a)

)
ω(t) = 0,

such that ε = α+ β − γ − δ + 1 to ensure that the point at infinity is a reg-
ular singular point. The parameter q ∈ C is called the accessory parameter.
For a ∈ C and a 6= 0, 1, Heun’s equation has four regular singular points at
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0, 1, a,∞ and the Riemann symbol

(10.2) P

 0 1 a ∞
1− γ 1− δ 1− ε α

0 0 0 β

∣∣∣∣∣∣ t
 .

Every rank-two linear ordinary differential equation with at most four reg-
ular singular points can be transformed into this equation by a change of
variable. The function H`(a, q;α, β, γ, δ |t) is the unique solution of Heun’s
differential equation that is holomorphic and 1 at the singular point t = 0.
We have the following:

Lemma 10.1. The function ω(t) = H`(a, q; 1, 1, 1, 1 |t) is the unique solu-

tion of L
(2)
t ω(t) = 0, holomorphic and 1 at t = 0, with

(10.3) L
(2)
t

(
a, q
)

= θ2 − t

a

(
(a+ 1)θ2 + (a+ 1)θ + q

)
+
t2

a

(
θ + 1

)2
.

For α ∈ (0, 1) ∩Q, the function ω(t) = H`(a, q4 ;α, 1− α, 1, 1
2 |t)

2 is the unique

solution of L
(3)
t ω(t) = 0, holomorphic and 1 at t = 0, with

L
(3)
t

(
α; a, q

)
= θ3 − t

2a

(
2θ + 1

)(
(a+ 1)θ2 + (a+ 1)θ + q

)
(10.4)

+
t2

a

(
θ + 2α

)(
θ + 2(1− α)

)(
θ + 1

)
.

We also have the following identity involving a Hadamard product:

(10.5) H`

(
a,
q

4
;
1

4
,
3

4
, 1,

1

2

∣∣∣t)2

= 1F0

(
1

2

∣∣∣∣ t) ? H`(a, q; 1, 1, 1, 1 |t).

Proof. The proof follows by explicit computation. �

To obtain Calabi-Yau operators, the following lemma is essential:

Lemma 10.2. For α ∈ (0, 1) ∩Q, the function

ω(t) = 1F0

(
1

2

∣∣∣∣ t) ? H`(a, q4;α, 1− α, 1, 1

2

∣∣∣t)2
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is the unique solution of 1L
(4)
t ω(t) = 0, holomorphic and 1 at t = 0, with

1L
(4)
t

(
α; a, q

)
= θ4 − t

4a

(
2θ + 1

)2(
(a+ 1)θ2 + (a+ 1)θ + q

)
(10.6)

+
t

4a

(
2θ + 1

)(
2θ + 3

)(
θ + 2β

)(
θ + 2(1− β)

)
.

For α ∈ (0, 1) ∩Q, the function

ω(t) = 2F1

(
α, 1− α

1

∣∣∣∣ t) ? H`(a, q; 1, 1, 1, 1 |t)

is the unique solution of 2L
(4)
t ω(t) = 0, holomorphic and 1 at t = 0, with

2L
(4)
t

(
α; a, q

)
= θ4 − t

a

(
θ + α

)(
θ + 1− α

)(
(a+ 1)θ2 + (a+ 1)θ + q

)
(10.7)

+
t2

a

(
θ + α

)(
θ + 1− α

)(
θ + α+ 1

)(
θ + 2− α

)
.

Proof. The proof follows by explicit computation. �

The rank-four operators in Equations (10.6) and (10.7) have four regular
singular points at 0, 1, a,∞. In particular, they are not symplectically rigid
operators. Notice that rescaling t 7→ λat leaves the operator θ invariant and
allows us to clear denominators. We then have the following:

Proposition 10.3. The rank-four operators iL
(4)
λat

(
α; a, q

)
with i = 1, 2 in

Equation (10.6) and Equation (10.7), with parameters (α; a; q;λ) given in
Table 17 and 18, constitute all 33 rank-four, degree-two Calabi-Yau operators
in the AESZ database [2] with four regular singular points whose degree-one
term is not an irreducible polynomial (over Q[t]) of degree four.

Proof. The proof follows by explicit computation. �

Remark 10.4. The fact that there are two solutions for each entry in
Table 17 and 18 is due to the following identity for Heun functions

H`(a, q; 1, 1, 1, 1|t) = H`

(
1

a
,
q

a
; 1, 1, 1, 1

∣∣∣ t
a

)
.

Remark 10.5. In the AESZ database [2], there are 36 rank-four, degree-
two, irreducible Calabi-Yau operators with four regular singular points.
Three additional cases, 18, 182, 205, that do not appear in Table 17 and 18
have as degree-one term an irreducible polynomial (over Q[t]) of degree four.
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AESZ (α; a, q;λ) in 1L
(4)
λat

(
α; a, q

)
16

(
1
2 , 4, 2, 64

)
,
(

1
2 ,

1
4 ,

1
2 , 16

)
29

(
1
2 , 577± 408

√
2, 170± 120

√
2, 68± 48

√
2
)

41
(

1
2 ,

17
81 ± i

56
81

√
2, 14

27 ± i
8
27

√
2, 28± i 16

√
2
)

42
(

1
2 , 17± 12

√
2, 6± 4

√
2, 48± 32

√
2
)

184
(

1
2 ,

117
125 ± i

44
125 ,

22
25 ± i

4
25 , 44± i 8

)
185

(
1
2 ,−7± 4

√
3,−2± 4

3

√
3, 36∓ 24

√
3
)

25
(

1
4 ,
−123±55

√
5

2 , −33±15
√

5
2 , 88∓ 40

√
5
)

36
(

1
4 , 2, 1, 128

)
,
(

1
4 ,

1
2 ,

1
2 , 64

)
45

(
1
4 ,−8,−2, 128

)
,
(

1
4 ,−

1
8 ,

1
4 ,−16

)
58

(
1
4 , 9, 3, 144

)
,
(

1
4 ,

1
9 ,

1
3 , 16

)
133

(
1
4 ,

1±i
√

3
2 , 3±i

√
3

6 , 72± 34 i
√

3
)

137
(

1
4 ,

9
8 ,

3
4 , 144

)
,
(

1
2 ,

8
9 ,

2
3 , 128

)
18

(
3
8 ,−4,−1, 64

)
,
(

1
2 ,−

1
4 ,

1
4 ,−16

)
183

(
3
8 ,

4
3 , 1, 64

)
,
(

3
8 ,

3
4 ,

3
4 , 48

)
26

(
1
3 ,−27,−8, 108

)
,
(

1
3 ,−

1
27 ,

8
27 ,−4

)
Table 17: Non-rigid Calabi-Yau operators from Lemma 10.2.

10.2. Realizing non-rigid Calabi-Yau operators

The twisted families of Section 6.1 are precisely the extremal families of
elliptic curves with three singular fibers and rational total space (up to
quadratic twist and two-isogeny) classified in [60, Tab. 5.2]. Miranda and
Persson also classified the extremal families of elliptic curves with rational
total space and four singular fibers, the highest number that can occur, in
[60, Tab. 5.3]. There are six of them, in the notation of Herfurtner denoted
as X5511, X6321, X4422, X8211, X3333, and X9111. Analogous to Corollary 6.6,
they are the modular elliptic surfaces for the subgroups Γ1(5), Γ0(6), Γ0(4) ∩
Γ(2), Γ0(8), Γ(3), and Γ0(9), respectively.

The latter four, X4422, X8211, X3333, and X9111, are easily understood
in terms of the construction in Section 8. For example, X8211 and X9111
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AESZ (α; a, q;λ) in 2L
(4)
λat

(
α; a, q

)
48

(
1
3 , 2, 1, 216

)
,
(

1
3 ,

1
2 ,

1
2 , 108

)
38

(
1
4 , 2, 1, 512

)
,
(

1
4 ,

1
2 ,

1
2 , 256

)
65

(
1
6 , 2, 1, 3456

)
,
(

1
6 ,

1
2 ,

1
2 , 1728

)
134

(
1
3 ,

1±i
√

3
2 , 3±i

√
3

6 , 243±81 i
√

3
2

)
135

(
1
4 ,

1±i
√

3
2 , 3±i

√
3

6 , 288± 96 i
√

3
)

136
(

1
6 ,

1±i
√

3
2 , 3±i

√
3

6 , 1944± 648 i
√

3
)

24
(

1
3 ,
−123±55

√
5

2 , −33±15
√

5
2 , 297∓135

√
5

2

)
51

(
1
4 ,
−123±55

√
5

2 , −33±15
√

5
2 , 352∓ 160

√
5
)

63
(

1
6 ,
−123±55

√
5

2 , −33±15
√

5
2 , 2376∓ 1080

√
5
)

15
(

1
3 ,−8,−2, 216

)
,
(

1
3 ,−

1
8 ,

1
4 ,−27

)
68

(
1
4 ,−8,−2, 512

)
,
(

1
4 ,−

1
8 ,

1
4 ,−64

)
62

(
1
6 ,−8,−2, 3456

)
,
(

1
6 ,−

1
8 ,

1
4 ,−432

)
70

(
1
3 , 9, 3, 243

)
,
(

1
3 ,

1
9 ,

1
3 , 27

)
69

(
1
4 , 9, 3, 576

)
,
(

1
4 ,

1
9 ,

1
3 , 64

)
64

(
1
6 , 9, 3, 3888

)
,
(

1
6 ,

1
9 ,

1
3 , 432

)
138

(
1
3 ,

9
8 ,

3
4 , 243

)
,
(

1
3 ,

8
9 ,

2
3 , 216

)
139

(
1
4 ,

9
8 ,

3
4 , 576

)
,
(

1
4 ,

8
9 ,

2
3 , 512

)
140

(
1
6 ,

9
8 ,

3
4 , 3888

)
,
(

1
6 ,

8
9 ,

2
3 , 3456

)
Table 18: Non-rigid Calabi-Yau operators from Lemma 10.2.

are pull-backs of modular elliptic surfaces X141 or X431 in Table 5, along
the map t 7→ tk with k = 2 or k = 3, respectively. Similar arguments apply
to X4422 and X3333. Weierstrass models for the elliptic surfaces X5511 and
X6321 for subgroups Γ1(5), Γ0(6) are given in Table 19.

It is straight forward to work out corresponding versions of Corollary 6.8.
In fact, the period integral of dX/Y over a family of suitable A-cycles Σ1(t)
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name, G g2, g3,∆, J , sections Ramification of J and singular fibers

MW(π, σ) t J m(j) fiber

X5511 g2 = 3
4c

4t4 − 9c3t3 + 21
2 c

2t2 + 9ct+ 3
4 p1(ct) = 0 0 3 smooth

Γ0(5) g3 = −1
6c

6t6 + 9
4c

5t5 − 75
8 c

4t4 − 75
8 c

2t2 − 9
4ct−

1
8 ± i

c 1 2 smooth

∆ = 729 c5t5(c2t2 − 11ct− 1) p2(ct) = 0 1 2 smooth

J = (c4t4−12c3t3+14c2t2+12ct+1)3

1728 c5t5(c2t2−11ct−1) 0,∞ ∞ 5 2 I5 (A4)

Z/5Z (X,Y )1,2 = (1
4c

2t2 + 3
2ct+ 1

4 ,±3
√

3c2t2) (t2 − 11t− 1 = 0)/c ∞ 1 2 I1

(X,Y )3,4 = (1
4c

2t2 − 3
2ct+ 1

4 ,±3
√

3ct)

X6321 g2 = 3
4

(
t− 4

)(
t3 + 12t2 + 48t− 64

)
4, 4(1− 3

√
2) 0 3 smooth

Γ0(6) g3 = −1
8

(
t2 + 4t− 8

)(
t4 + 8t3 + 512t− 512) −2 3

√
2(1± i

√
3)− 4 0 3 smooth

∆ = −729 t6
(
t− 1

)(
t+ 8

)2
4
(
t4 + 2t3 + 8t− 2 = 0

)
1 2 smooth

J = − (t−4)3(t3+12t2+48t−64)3

1728t6(t−1)(t+8)2 2± 2
√

3 1 2 smooth

Z/6Z (X,Y )1 = (−1
2 t

2 − 2t+ 4, 0) 0 ∞ 6 I6 (A5)

(X,Y )2,3 = (1
4 t

2 − 2t+ 4,±3
√

3t2) 1 ∞ 1 I1

(X,Y )4,5 = (1
4 t

2 + 4t+ 4,±3
√

3t(t+ 8)) −8 ∞ 2 I2 (A1)

∞ ∞ 3 I3 (A2)

Table 19: Extremal rational fibrations (with polynomials p1(t) = t4 −
12t3 + 14t2 + 12t+ 1, p2(t) = t4 − 18t3 + 74t2 + 18t+ 1 and c = 11∓5

√
5

2 ,

c′ = 11±5
√

5
2 ).

in the neighborhood of t = 0 are Heun functions, and we use rational trans-
formations on the parameter curve to re-arrange the four singular points if
necessary. We have the following:

Corollary 10.6. For the families of elliptic curves over P1\{0, 1, a,∞},
X5511, X6321, X8211, and X9111, the period integrals of dX/Y are annihilated

by the Picard-Fuchs operator L
(2)
t (a, q) in Equation (10.3). For each family,

the period over Σ1(t) is ω(t) = H`(a, q; 1, 1, 1, 1 |t) and holomorphic at t = 0,
with parameters (a, q) and singular fibers at t = 0, 1, a,∞ given in Table 20.

Proof. For the families of Weierstrass models we use dX/Y as the holo-
morphic one-form on each regular fiber. It is well-known (cf. [73]) that the
Picard-Fuchs equation is given by the Fuchsian system

(10.8)
d

dt

(
ω1

η1

)
=

 − 1
12
d ln ∆
dt

3 δ
2 ∆

−g2 δ
8 ∆

1
12
d ln ∆
dt

 · ( ω1

η1

)
,

where ω1 =
¸

Σ1

dX
Y and η1 =

¸
Σ1

X dX
Y for each one-cycle Σ1 and with δ =

3 g3 g
′
2 − 2 g2 g

′
3. The rest follows by explicit computation. �
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(a, q) Configuration Surface

(2, 1) I1(t = 0)⊕ I2(t = 1)⊕ I1(t = a)⊕ I8(t =∞) X8211(
1
2 ,

1
2

)
I8(t = 0)⊕ I2(t = 1)⊕ I1(t = a)⊕ I1(t =∞) X8211(

1±i
√

3
2 , 3±i

√
3

6

)
I1(t = 0)⊕ I1(t = 1)⊕ I1(t = a)⊕ I9(t =∞) X9111(

−(c′)2,−3
c

)
I5(t = 0)⊕ I1(t = 1)⊕ I1(t = a)⊕ I5(t =∞) X5511

c = 11∓5
√

5
2 , c′ = 11±5

√
5

2

(−8,−2) I6(t = 0)⊕ I1(t = 1)⊕ I2(t = a)⊕ I3(t =∞) X6321(
−1

8 ,
1
4

)
I3(t = 0)⊕ I1(t = 1)⊕ I2(t = a)⊕ I6(t =∞) X6321

(9, 3) I1(t = 0)⊕ I6(t = 1)⊕ I2(t = a)⊕ I3(t =∞) X6321(
1
9 ,

1
3

)
I3(t = 0)⊕ I6(t = 1)⊕ I2(t = a)⊕ I1(t =∞) X6321(

9
8 ,

3
4

)
I2(t = 0)⊕ I6(t = 1)⊕ I1(t = a)⊕ I3(t =∞) X6321(

8
9 ,

2
3

)
I2(t = 0)⊕ I1(t = 1)⊕ I6(t = a)⊕ I3(t =∞) X6321

Table 20: Parameters of Heun functions for extremal elliptic surfaces.

Analogous to Lemma 6.5, it follows that twisted families with generalized
functional invariant (i, j, α) = (1, 1, 1) of X5511, X6321, X8211, and X9111 are
families of Mn-lattice polarized K3 surfaces with n = 5, 6, 8, 9, respectively.
As before, we also obtain a continuously varying family of closed two-cycles
Σ2(t). We therefore have the following:

Corollary 10.7. The twisted families with generalized functional invariant
(i, j, α) = (1, 1, 1) given by Equation (6.5), of the families in Corollary 10.6
are families over the rational modular curves H/Γ0(n)+ of Mn-lattice polar-
ized K3 surfaces with n = 5, 6, 8, 9. For each family, the period integral (5.13)

is annihilated by the Picard-Fuchs operator L
(3)
t (1

4 ; a, q) in Equation (10.4).
In particular, the period over Σ2(t) is holomorphic at t = 0 and given by

(10.9) ω = (2πi)2
1F0

(
1

2

∣∣∣∣ t) ? H`(a, q; 1, 1, 1, 1 |t),

where parameters (a, q) and singular fibers over t = 0, 1, a,∞ (before twist-
ing) are given in Table 20.

Proof. The proof follows directly by checking that the singular fibers and
Mordell-Weil groups for the families constructed in Lemma 6.9 agree with



i
i

“3-Doran” — 2020/2/5 — 18:15 — page 1348 — #78 i
i

i
i

i
i

1348 C. F. Doran and A. Malmendier

the ones given by Dolgachev in [28]. The rest of the proof is analogous to
the proof of Corollary 6.11. �

Remark 10.8. Identity (10.5) reflects the well-known decomposition of the
Picard-Fuchs operator into a symmetric square for families of Mn-lattice
polarized K3 surfaces of Picard-rank 19. If one considers non-rigid, smooth
Calabi-Yau threefolds (non-isotrivially) fibered by K3 surfaces admitting a
Mn-lattice polarization, then it wash shown in [33] that 1 ≤ n ≤ 11, n 6= 10
and that all such n can be realized. Our twist construction provides explicit
examples for such Calabi-Yau threefolds for n ∈ {1, 2, 3, 4, 5, 6, 8, 9}.

Applying our twist construction again yields families of Calabi-Yau three-
folds whose Picard-Fuchs operators realize non-rigid Calabi-Yau operators
with four regular singular points. As in Section 8.3, we also obtain a contin-
uously varying family of closed three-cycles Σ3(t). We have the following:

Corollary 10.9. The twisted families with generalized functional invariant
(k, l, β) = (1, 1, 1), given by Equation (8.9), of the elliptic K3 surfaces in
Corollary 10.7 are families over P1\{0, 1, a,∞} of Jacobian elliptic Calabi-
Yau threefolds over P1 × P1. For each family, the period integral (5.13) is

annihilated by the Picard-Fuchs operator 1L
(4)
t (1

4 ; a, q) in Equation (10.6).
In particular, the period over Σ3(t) is holomorphic at t = 0 and given by

ω = (2πi)3
1F0

(
1

2

∣∣∣∣ t) ? H`(a, q4;
1

4
,
3

4
, 1,

1

2

∣∣∣t)2

(10.10)

with parameters (a, q) given in Table 20.

Proof. The proof is analogous to the proof of Lemma 8.4 and Corollary 8.5.
�

Applying base transformations between twists again greatly improves
the scope of our twist construction. We make the following:

Remark 10.10. Special function identities for the Heun function can be

used to realize Picard-Fuchs operators 1L
(4)
t (α; a, q) in Equation (10.6) for

values other than α = 1
4 in Table 19. As an example, we consider the case

α = 1
2 where we use a sequence of identities for the Heun function found
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in [54]. For β ∈ (0, 1) ∩Q and a 6= 1, we use the linear identity

H`
(
a, q; 1, 1, 1, 1

∣∣∣x) =
1

1− x
a

H`
(

1− a, 1− q; 1, 1, 1, 1
∣∣∣T1(x)

)
(10.11)

with T1(x) = (1−a)x
x−a , the quadratic identity

(10.12) H`

(
a,
q

4
;β, 1− β, 1, 1

2

∣∣∣T2(x)

)
= (1− x)β H`

(
a′, q′; 2β, 1, 1, 2β

∣∣∣x)
with T2(x) = Rx (a−x)

1−x , where a and a′ are related by

(10.13) (a′)2 (1− a)2 − 16 (1− a′) a = 0,

and q = 4R (q′ − βa′) andR = 1+a
2(2−a′) , combined with the bi-quadratic quar-

tic identity

H`

(
a,
q

4
;
1

4
,
3

4
, 1,

1

2

∣∣∣T4(x)

)
=

(
1− x2

a

)1/2

H`
(
a, q; 1, 1, 1, 1

∣∣∣x) ,(10.14)

with T4(x) = 4 a x (1−x) (a−x)
(a−x2)2 . This implies that a Heun function of the form

H`

(
a,
q

4
;
1

2
,
1

2
, 1,

1

2

∣∣∣T2(x)

)
is related to the Heun function

√
1− x

(1− x
a )
√

1− T1(x)2/a
H`

(
1− a′, 1− q′

4
;
1

4
,
3

4
, 1,

1

2

∣∣∣T4

(
T1(x)

))
.

In turn, the latter is realized as holomorphic period of an extremal rational
surface after pullback by a base transformation and twist. The Picard-Fuchs
operator of the twisted family, constructed analogously to Corollary 10.9,

then realizes the Calabi-Yau operators 1L
(4)
t (1

2 ; a, q) for parameters (a, q)
given in Table 20.

Applying the variant of the twist construction for Section 5.5.3 yields
other families of Calabi-Yau threefolds whose Picard-Fuchs operators realize
more non-rigid Calabi-Yau operators with four regular singular points. As in
Section 8.3.3, we also obtain a continuously varying family of closed three-
cycles Σ̂3(t). We have the following:
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Corollary 10.11. For every family X → P1\{0, 1, a,∞} in Corollary 10.6,
the twist family of X with X ′k in Table 2 given by Equation (5.30) for
k = 2, 3, 4, is a family over P1\{0, 1, a,∞} of Jacobian elliptic Calabi-Yau
threefolds over Fn with n = 0, . . . , k. The period integral (5.33) is annihilated

by the Picard-Fuchs operator 2L
(4)
t (µ; a, q) in Equation (10.7). In particular,

the period over Σ̂3(t) is holomorphic at t = 0 and given by

ω̂ = (2πi)3
2F1

(
µ, 1− µ

1

∣∣∣∣ t) ? H`(a, q; 1, 1, 1, 1 |t),(10.15)

where parameters (a, q) are given in Table 20 and µ ∈ {1
3 ,

1
4 ,

1
6}.

Proof. The proof is analogous to the proof of Corollary 8.13 in Section 8.3.3.
�

Remark 10.12. Corollary 10.9, Corollary 10.11, and Remark 10.10 re-
alize 30 non-rigid Calabi-Yau operators with four regular singular points
as Picard-Fuchs operators of families of Calabi-Yau threefolds obtained by

our twist construction, namely all operators 1L
(4)
t (µ; a, q) in Equation (10.6)

with µ ∈ {1
2 ,

1
4} and operators 2L

(4)
t (µ; a, q) in Equation (10.7) with µ ∈

{1
2 ,

1
3 ,

1
4 ,

1
6}, for parameters (a, q) given in Table 20 up to rescaling t 7→ λat

of the affine base coordinate according to Table 17 and 18.

11. Discussion and outlook

We introduced a twist construction to iteratively obtain families of Calabi-
Yau n-folds over P1\{0, 1∞}, internally elliptically fibered by Calabi-Yau
(n− 1)-folds. Our construction is a geometric generalization of Katz’s mid-
dle convolution combined with an additional rational pullback operation on
the internal fibration. By computing the periods of a holomorphic top-form
over explicit topological cycles and expressing the results in hypergeomet-
ric terms, we produced Weierstrass models whose Picard-Fuchs operators
realize all 60 Calabi-Yau operators inducing Sp(4,C)-rigid, quasi-unipotent
local systems of weight three and rank four having a maximal unipotent
element. This is important because the usual middle convolution only is
guaranteed to produce the GL(4,C)-rigid monodromy tuples. Our iterative
construction provides a unifying construction for many examples of elliptic
curves, K3 surfaces, and Calabi-Yau threefolds considered in the context
of mirror symmetry, e.g., families considered in [32, 63, 80] and examples
in [82]. Moreover, by restricting the family parameter to special values one
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readily obtains elliptic curves, K3 surfaces, and Calabi-Yau threefolds with
properties such as CM, admitting a Shioda-Inose structure associated with
abelian surfaces with quaternionic multiplication, or rigidity. Some of these
arithmetic properties were investigated in [78], and their fiberwise Picard-
Fuchs equations were computed in [79]. These results are all reproduced by
our iterative construction.

We also used our iterative construction to obtain families with four sin-
gular fibers, such as all extremal Jacobian rational elliptic surfaces with four
singular fibers from the Miranda-Persson list [60], and models for families
of Mn-lattice polarized K3 surfaces for n ≤ 9 with n 6= 7. On the level of
periods, the role of the Gauss hypergeometric function was then replaced by
the Heun function. Identities for the hypergeometric function were replaced
by identities for the Heun equation, for example relations found in [54, 74].
In this way, our iterative construction again provided a unified geometric ap-
proach for many differential equations associated with K3 surfaces studied
in isolation [10, 11, 64, 65, 72]. Our iterative construction also reproduced
many of the classical examples of threefolds investigated in the context of
mirror symmetry, for example in [52, 53]. We hope that the obtained new
families and our iterative technique itself could be of interest for “global
mirror symmetry” frameworks, e.g., see [18, 19], curve-counting on 3-folds,
F-theory, for studying thin vs. arithmetic monodromy, and maybe in the
future even homological mirror symmetry.

However, the geometric realization of the Calabi-Yau operators in the
odd case in Theorem 2.1 is not yet completely satisfactory: instead of produc-
ing families of threefolds whose Picard-Fuchs operators realize the fourth-
order Calabi-Yau operators of the odd case directly, we constructed families
of fourfolds instead, such that the Yifan-Yang pullback of their rank-five
Picard-Fuchs operators realized the Calabi-Yau operators. The observant
reader might have noticed that a similar situation already occurred at lower
dimension in our iterative construction. The twist construction applied to
any family of elliptic curves from Table 5 produced families of K3 sur-
faces whose Picard-Fuchs operators were symmetric squares of rank-two and
degree-one Calabi-Yau operators. In fact, Clausen’s identity (6.8) expresses
the holomorphic K3 periods as squares of Gauss hypergeometric functions.
Using the hypergeometric function identity (6.9), we were able to relate
the (symmetric) square root back to the holomorphic solution of the Picard-
Fuchs equation before the twist. In this sense, carrying out a twist and taking
a (symmetric) square root is equivalent to carrying out a quadratic transfor-
mation on the parameter space of the original family. Hodge-theoretically
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this is due to the fact that the K3 surfaces of Picard-rank 19 or 18 ad-
mit Shioda-Inose structures relating them to Kummer surfaces associated
to products of elliptic curves. We have already proved that, at least in one
case, a similar Hodge-theoretic interpretation exists for the exterior square
root of the simplest Calabi-Yau operator in the odd case as well.

Moreover, we expect that our iterative construction of a transcendental
cycle for the holomorphic period can be extended to obtain a full basis of
transcendental cycles. Such bases would in turn allow us to construct the
integral monodromy matrices for each family. This is important because the
full period lattices are a powerful tool to distinguish examples of different
geometric variations of Hodge structure over Z that are isomorphic over R.
For example, the quintic-mirror and the quintic-mirror twin family share
the exact same Picard-Fuchs equation, but they have different ranks in the
even dimensional cohomologies [34]. These results will be the subject of a
forthcoming article.
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QC, 1999), CRM Proc. Lecture Notes 30 (2001), 253–268.

[80] Helena A. Verrill and Noriko Yui, Thompson series, and the mirror
maps of pencils of K3 surfaces, in: The Arithmetic and Geometry of Al-
gebraic Cycles (Banff, AB, 1998), CRM Proc. Lecture Notes 24 (2000),
399–432.

[81] Yifan Yang and Wadim Zudilin, On Sp4 modularity of Picard-Fuchs
differential equations for Calabi-Yau threefolds, Gems in Experimental
Mathematics, Contemp. Math. 517 (2010), 381–413.

[82] Noriko Yui, Arithmetic of certain Calabi-Yau varieties and mirror
symmetry, Arithmetic Algebraic Geometry (Park City, UT, 1999),
IAS/Park City Math. Ser. 9 (2001), 507–569.



i
i

“3-Doran” — 2020/2/5 — 18:15 — page 1359 — #89 i
i

i
i

i
i

Calabi-Yau realizing symplectically rigid monodromy 1359

Department of Mathematics, University of Alberta

Edmonton, Alberta T6G 2G1, Canada

E-mail address: charles.doran@ualberta.ca

Dept. of Mathematics & Statistics, Utah State University

Logan, UT 84322, USA

E-mail address: andreas.malmendier@usu.edu



i
i

“3-Doran” — 2020/2/5 — 18:15 — page 1360 — #90 i
i

i
i

i
i


	Introduction
	Summary of results
	Hypergeometric and Calabi-Yau type operators
	First examples from quadratic twists
	The twist construction
	Modular elliptic families and related families
	Elliptic fibrations on the mirror families
	Combining twists and base transformations
	Proof of Theorem 2.1
	Beyond symplectically rigid Calabi-Yau operators
	Discussion and outlook
	References

