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Embeddings of complex supermanifolds

Kowshik Bettadapura

In this article we present a study of embeddings of complex su-
permanifolds. We are broadly guided by the question: when will
a submanifold of a split supermanifold itself be split? As an ap-
plication of our study, we will address this question for certain
superspace embeddings over rational normal curves.
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Introduction

One of the central questions in complex supermanifold theory, pertaining
to classification, is the splitting question: given a complex supermanifold, is
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1428 Kowshik Bettadapura

it split or non-split? To address this question it suffices to show that any
obstruction to the existence of a splitting will vanish. These obstructions are
certain cohomology classes concentrated in degree one and can be directly
related to glueing data. Hence they can form a basis on which to classify
complex supermanifolds.

From treatments of the splitting question, as in [Man88], one learns that
representatives for obstruction classes can be obtained by suitably differen-
tiating transition functions. Transition functions can however be laborious
to derive and depend on a host of extraneous data, such as a covering and
chart maps. To get further insight on the splitting question, it would be
desirable to find alternative methods to describe these obstructions. The
method promoted in this article is the following: if we have a supermanifold
Y and want to show it is split, embed it into a split supermanifold X and
try to inherit a splitting of Y from the given splitting of X.

The central ideas in this article can find their inspiration in the work of
Donagi and Witten in [DW12], where they prove non-splitness of the moduli
space of super Riemann surfaces (SRS). There, it is derived the following cor-
respondence of obstruction classes: those of a given supermanifold with those
of its submanifolds. By viewing deformations of an SRS as supermanifolds
embedded in the corresponding (punctured) moduli space, the obstruction
classes of the moduli space can be related to those of the deformation—the
latter being significantly easier to describe. We note that Donagi and Witten
were concerned with the splitting problem of the ambient supermanifold by
reference to its submanifolds. In this article we consider, in a sense, a reverse
picture. We are concerned instead with the splitting problem of submani-
folds by reference to the ambient supermanifold, which we are at liberty to
assume is split.

This article culminates in Theorem 7.3 which addresses the splitting
question for embeddings over rational normal curves. In degree two this
embedding is the superspace quadric, which is a classical example of a non-
split supermanifold. It was originally described by Green in [Gre82] and
considered in more detail by Onishchik and Bunegina in [BO96]. Witten in
[Wit12, p. 8] gives a heuristic argument as to why the superspace quadric is
non-split. Our deduction of non-splitness of this quadric in Theorem 7.3(i),
which is based ultimately on Lemma 5.4 and (5.5.2), follows in spirit the
argument given by Witten.
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Embeddings of complex supermanifolds 1429

Remark

In a subsequent paper [Bet18b], we argue that non-splitness of quadrics is a
generic feature.

Article Summary and Main Results

We begin with some preliminary theory and establish definitions relevant for
our purposes in this article. Generally speaking, we look to describe obstruc-
tion classes of submanifolds Y of a given, complex supermanifold X with a
prescribed splitting type. Depending on the splitting type of X relative to
that of Y, we show that the obstruction classes of Y can be reduced to com-
puting global sections of certain sheaves. This is the content of Theorem 3.12.
We show how these sheaves are related to certain, twisted conormal sheaves
in Theorem 4.4. Subsequently, we propose a correspondence between ideal
sheaves and submanifolds of supermanifolds in (5.2.1). This is clarified in
Theorem 5.5 for ‘even’ embeddings. We conclude our study of embeddings
with Theorem 5.6, relating generators for ideal sheaves with the obstruc-
tion classes to splitting. There are two classes of applications we provide in
this article. In Section 6, we obtain some general characterisations of (even)
embeddings. In Theorem 6.1 we partially address the splitting question for
embeddings which motivated this article. This leads to the notion of split
embeddings of models, introduced Definition 6.2. We apply a classical result
to deduce the existence of such embeddings in Example 6.4. In Section 7,
we consider subvarieties of projective superspace. Our main result is The-
orem 7.3 where we argue that certain superspace embeddings over rational
normal curves can non-split only in degree two and are otherwise split. This
article concludes with remarks on potential directions for future work. In
brief: the ideas in this article should be applicable in studying certain sub-
varieties of projective and weighted projective superspaces which appear in
[Set94, AV04] as proposed candidates for mirrors of rigid, Kähler manifolds
in Landau-Ginzberg sigma models. We address this proposal in a subsequent
article [Bet18b].

Conventions

We work over the field of complex numbers. Pairs (X,T ∗X,−) are referred to
as ‘models’. They comprise a complex manifold X (usually compact) and
a holomorphic vector bundle T ∗X,−. We view X as a locally ringed space
with structure sheaf OX and T ∗X,− as a locally free sheaf of OX -modules.
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1430 Kowshik Bettadapura

Morphisms are always holomorphic and so pulling back and pushing forward
along them will define exact functors on the respective module categories.
We refer to [GR84] for the general theory of complex manifolds and sheaves
on them. We reference [Man88, DM99] for foundational aspects of complex
supermanifold theory. The morphisms of supercommutative algebras con-
sidered here are required to preserve the parity and so, in this sense, are
always ‘even’.

1. Preliminaries

1.1. Green’s automorphism groups

Fix a model (X,T ∗X,−). Green’s sheaf of non-abelian groups G(2)
T ∗X,−

is defined

the kernel of the surjective morphism of sheaves of groups Aut ∧• T ∗X,− →
AutOX

T ∗X,−. More generally, set J <kT ∗X,−
= ⊕k−1

j=1 ∧j T ∗X,−. Green’s ‘higher’

sheaves of groups G(k)
T ∗X,−

are defined as the kernel ofAut ∧• T ∗X,−→AutJ
<k
T ∗X,−

.

As a set:

G(k)
T ∗X,−

=
{
α ∈ Aut ∧• TX,− | α(u)− u ∈ J kT ∗X,−

}
.(1.1.1)

where JT ∗X,−
= ⊕j≥1 ∧j T ∗X,− and J kT ∗X,−

= ⊕j≥k ∧j T ∗X,−.

Definition 1.1. Let (X,T ∗X,−) be a model. For all k ≥ 2, elements of the

Čech cohomology set Ȟ
1(
X,G(k)

T ∗X,−

)
will be referred to as (k − 1)-split super-

manifolds modelled on (X,T ∗X,−). Furthermore:

• X is referred to as the reduced space;

• T ∗X,− is referred to as the odd, conormal bundle;

• A (k − 1)-split supermanifold X is said to have of splitting type (k − 1).

Definition 1.2. The basepoint in Ȟ
1(
X,G(2)

T ∗X,−

)
will be denoted e(X,T ∗X,−).

It is referred to as the split model associated to (X,T ∗X,−).1

1As a point of clarification, unlike the model (X,T ∗X,−), the split model is a
supermanifold.
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1.2. Primary obstructions

From (1.1.1) it is clear that G(k+1)
T ∗X,−

⊂ G(k)
T ∗X,−

for any k ≥ 2. A fundamental re-

sult underpinning the obstruction theory for supermanifolds is the following
by Green, proved in [Gre82].

Lemma 1.3. For any model (X,T ∗X,−) and each k ≥ 2,

(i) G(k+1)
T ∗X,−

is a sheaf of normal subgroups of G(k)
T ∗X,−

;

(ii) the quotient Q(k)
T ∗X,−

:= G(k)
T ∗X,−

/G(k+1)
T ∗X,−

is a sheaf of abelian groups.

We will take (i) as given and prove (ii) as it will be referenced in a subsequent
section.

Proof of Lemma 1.3(ii). The following general fact from group theory will
be useful: for N ≤ G a normal subgroup, the quotient G/N is abelian if
and only if N contains the commutator subgroup [G,G]. We now claim[
G(k)
T ∗X,−

,G(k)
T ∗X,−

]
⊂ G(4k)

T ∗X,−
. This is easiest to see at the Lie algebra level. Firstly,

the Lie algebra g
(k)
T ∗X,−

of G(k)
T ∗X,−

can be identified with the sheaf of deriva-

tions ∧•T ∗X,− → ∧•T ∗X,− of degree k, i.e., those derivations sending ∧lT ∗X,− →
∧l+kT ∗X,− for all l. This is a nilpotent Lie algebra so therefore the formal

exponential map g
(k)
T ∗X,−

→ G(k)
T ∗X,−

will be a bijection of sheaves of sets. Hence

for any α1, α2 ∈ G(2)
T ∗X,−

we can write α1 = ex1 and α2 = ex2 for x1, x2 ∈ g
(k)
T ∗X,−

.

Note α−1
i = e−xi . From the Campbell-Baker-Hausdorff formula:

α1 ◦ α2 = ex1ex2 = ex1+x2+ 1

2
[x1,x2]+....

Thus the commutator is:

[α1, α2] = α1α2α
−1
1 α−1

2

= ex1ex2e−x1e−x2

= e
1

8
[x1,[x2,[x1,x2]]]+...(1.2.1)

It remains to note that the term [x1, [x2, [x1, x2]]] in (1.2.1) is a derivation of

∧•T ∗X,− of degree-(4k). Hence
[
G(k)
T ∗X,−

,G(k)
T ∗X,−

]
⊂ G(4k)

T ∗X,−
. Since G(k+1)

T ∗X,−
contains

G(4k)
T ∗X,−

it will contain the commutator subgroup [G(k)
T ∗X,−

,G(k)
T ∗X,−

]. Assuming (i)

we know that G(k+1)
T ∗X,−

⊂ G(k)
T ∗X,−

is normal. Hence the quotient is abelian. �
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Definition 1.4. For any model (X,T ∗X,−), the quotient sheaf Q(k)
T ∗X,−

will

be referred to as the k-th obstruction sheaf. The sheaf cohomology group

H1
(
X,Q(k)

T ∗X,−

)
will be referred to as the k-th obstruction space.

The short exact sequence of sheaves of groups,

{1} // G(k+1)
T ∗X,−

// G(k)
T ∗X,−

// Q(k)
T ∗X,−

// {1}

induces a long exact sequence (of pointed sets) on Čech cohomology con-
taining the piece:

· · · −→ Ȟ
1(
X,G(k+1)

T ∗X,−

)
−→ Ȟ

1(
X,G(k)

T ∗X,−

) ω−→ H1
(
X,Q(k)

T ∗X,−

)
.(1.2.2)

Hence to any (k − 1)-split supermanifold X we have a cohomology class
ω(X).

Definition 1.5. The class ω(X) of a (k − 1)-split supermanifold X modelled
on (X,T ∗X,−) will be referred to as the primary obstruction of X.

To justify the terminology in the above definition we have the following,
which is essentially a restatement of the fact that (1.2.2) is exact.

Lemma 1.6. A (k − 1)-split supermanifold is k-split if and only if its pri-
mary obstruction vanishes.

In the interests of classification we give the following definition. It is an
adaption of non-splitness as one might traditionally find in the literature.

Definition 1.7. A supermanifold is said to be non k-split if it is (k − 1)-
split with non vanishing primary obstruction.

1.3. Classifying supermanifolds

For completeness we give a brief summary here of complex supermanifolds
as one might traditionally find in the literature, such as in [Man88, DM99].
The view of supermanifolds promoted in this article, in Definition 1.1, is
as certain classes in a Čech cohomology set. More classically, with a fixed
model (X,T ∗X,−), a supermanifold modelled on (X,T ∗X,−) is defined as locally
ringed space X = (X,OX) with OX a sheaf of supercommutative algebras,
locally isomorphic to ∧•T ∗X,−. This means there exists a cover (Ui) of X
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such that OX(Ui) ∼= ∧•T ∗X,−(Ui). The sheaf OX is the structure sheaf of X.
One says X is split if OX is globally isomorphic to ∧•T ∗X,−. Since OX is

supercommutative, it is globally Z2-graded and we write OX = O+
X ⊕O

−
X .

The odd part O−X is an O+
X-module. It is a submodule of OX and the ideal

in OX it generates is denoted JX. It satisfies:

OX/JX = O+
X/JX = OX and O−X/J

2
X = O−X/J

2
X = T ∗X,−.(1.3.1)

In particular JX/J 2
X is locally free. Note OX/J 2

X = OX ⊕ T ∗X,−.2 There is a
useful criterion for splitting which we can obtain directly from the descrip-
tions in (1.3.1). Consider rewriting these descriptions as exact sequences:

(1.3.2)
0→ JX → OX → OX → 0 and

0→ J 2
T ∗X,−

→ JT ∗X,−
→ T ∗X,− → 0.

We have:

Lemma 1.8. If the sequences in (1.3.2) are both split exact, then X is split.

Proof. This is a well-known characterisation of splitting for supermanifolds.
For completeness we provide a proof in Appendix A. �

In the paper by Green in [Gre82] it is shown that Ȟ
1(
X,G(2)

T ∗X,−

)
classifies

complex supermanifolds (as the locally ringed spaces described above) up
to an appropriate equivalence. Up to isomorphism, supermanifolds are clas-

sified by their image in Ȟ
1(
X,Aut ∧• T ∗X,−

)
under the natural map induced

on cohomology by the inclusion G(2)
T ∗X,−

⊂ Aut ∧• T ∗X,−. A supermanifold is

split if and only if its image in Ȟ
1(
X,Aut ∧• T ∗X,−

)
coincides with the base-

point. Otherwise, it is non-split.

It is generally quite difficult to find classes which obstruct the existence
of a splitting. As such we consider instead the notion of ‘(k − 1)-splitting’
as in Definition 1.1. In the terminology of Definition 1.7, we have: any non
2-split supermanifold is in fact non-split. This is a classical result and a
proof is given in the appendix in [Bet18a]. The analogous statement for non
k-split supermanifolds for k > 2 does not necessarily hold. We refer again to
[Bet18a] for further discussions on this point.

2If X is split then JX ∼= ⊕j>0 ∧j T ∗X,−.
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2. Embeddings

2.1. Definitions

Consider models (Y, T ∗Y,−) and (X,T ∗X,−). Suppose we have an holomor-

phic embedding of spaces i : Y ⊂ X and a surjection of sheaves f ] : T ∗X,− →
i∗T
∗
Y,−. If these maps exist we will say there exists a holomorphic embed-

ding of models f : (Y, T ∗Y,−) ⊂ (X,T ∗X,−), where f = (i, f ]). Since the taking
the exterior algebra is right-exact, it follows that ∧•T ∗X,− → ∧•f∗T ∗Y,− is sur-
jective. We denote the kernel by IT ∗Y,−;T ∗X,−

. Now, not every automorphism
of ∧•T ∗X,− will induce an automorphism of ∧•T ∗Y,−. Only those automor-
phisms preserving IT ∗Y,−;T ∗X,−

. Let AutT ∗Y,−;T ∗X,−
denote the subgroup of such

automorphisms and set

G(k)
T ∗Y,−;T ∗X,−

:= G(k)
T ∗X,−
∩ AutT ∗Y,−;T ∗X,−

.

We have natural homomorphisms of sheaves of groups:

G(k)
T ∗Y,−;T ∗X,−

r

��

u // G(k)
T ∗X,−

G(k)
T ∗Y,−

(2.1.1)

where u is the inclusion and r is the restriction of a group element to the
submanifold Y ⊂ X. The maps in (2.1.1) induce a similar picture on Čech
cohomology:

Ȟ
1(
X,G(k)

T ∗Y,−;T ∗X,−

)
r∗
��

u∗ // Ȟ
1(
X,G(k)

T ∗X,−

)

Ȟ
1(
Y,G(k)

T ∗Y,−

)
(2.1.2)

Hence to any element in Ȟ
1(
X,G(k)

T ∗Y,−;T ∗X,−

)
we can assign (k − 1)-split super-

manifolds modelled on (Y, T ∗Y,−) and (X,T ∗X,−) respectively.

Definition 2.1. Let Y and X be (k − 1)-split supermanifolds modelled
on (Y, T ∗Y,−) and (X,T ∗X,−) respectively. Fix a holomorphic embedding f :
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(Y, T ∗Y,−) ⊂ (X,T ∗X,−) of models. We say there exists a holomorphic embed-
ding of Y in X over f , or simply an embedding (with f understood) if and

only if there exists some Z ∈ Ȟ
1(
X,G(k)

T ∗Y,−;T ∗X,−

)
such that

r∗(Z) = Y and u∗(Z) = X.

We denote an embedding by
(
Z : Y ⊂ X

)
.

Definition 2.2. Let f : (Y, T ∗Y,−) ⊂ (X,T ∗X,−) be an embedding of mod-

els. Elements of Ȟ
1(
X,G(k)

T ∗Y,−;T ∗X,−

)
are referred to as (k − 1)-split embeddings

over f , or simply (k − 1)-split embeddings with f understood. Following Def-

inition 1.1, we will refer to elements of Ȟ
1(
X,G(k)

T ∗Y,−;T ∗X,−

)
as having splitting

type (k − 1).

From the definition of an embedding it is clear that if Y and X are super-
manifolds and

(
Z : Y ⊂ X

)
is a (k − 1)-split embedding, then Y and X must

both be (k − 1)-split.

Remark 2.3. Note that the diagram in (2.1.2) was constructed only from
the data of an embedding f : (Y, T ∗Y,−) ⊂ (X,T ∗X,−). Hence if there exists
such an embedding f , there will exist an embedding of split, (k − 1)-split
(i.e., k-split) supermanifolds for all k. This is simply because u∗ and r∗
in (2.1.2) are maps of pointed sets and so map basepoints to basepoints.
Hence, using the notation in Definition 1.2, we see that an embedding of
models (Y, T ∗Y,−) ⊂ (X,T ∗X,−) gives an embedding of respective split models
e(Y,T ∗Y,−) ⊂ e(X,T ∗X,−).

2.2. Splitting types

For any k′ ≥ k there exists a natural map G(k′)
T ∗Y,−;T ∗X,−

→ G(k)
T ∗Y,−;T ∗X,−

induced

from the inclusion G(k′)
T ∗X,−

⊂ G(k)
T ∗X,−

. This leads to the following commutative

diagram:
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G(k′)
T ∗Y,−;T ∗X,−

�� %%

// G(k′)
T ∗X,−

##

G(k′)
T ∗Y,−

%%

G(k)
T ∗Y,−;T ∗X,−

��

// G(k)
T ∗X,−

G(k)
T ∗Y,−

(2.2.1)

And hence on cohomology:

Ȟ
1(
X,G(k′)

T ∗Y,−;T ∗X,−

)
�� ((

// Ȟ
1(
X,G(k′)

T ∗X,−

)
((

Ȟ
1(
Y,G(k′)

T ∗Y,−

)
((

Ȟ
1(
X,G(k)

T ∗Y,−;T ∗X,−

)
��

// Ȟ
1(
X,G(k)

T ∗X,−

)

Ȟ
1(
Y,G(k)

T ∗Y,−

)
The above diagram shows that it is possible for there to exist an embedding(
Z : Y ⊂ X

)
with Y and X having different splitting types. This leads to

the following definition.

Definition 2.4. The total splitting type of an embedding
(
Z : Y ⊂ X

)
is

the triple of integers (k; k′, k′′), each greater than 1, and where:

(i) (k − 1) is the splitting type of Z;

(ii) (k′ − 1) is the splitting type of Y and;

(iii) (k′′ − 1) is the splitting type of X.

Remark 2.5. In this article we will be interested in embeddings of total
splitting type (k; k, k + 1). Such embeddings subsume, for instance, subman-
ifolds of split supermanifolds, which is the setting for our intended applica-
tions.
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3. Obstructions

3.1. Normality

Central to the classical obstruction theory for supermanifolds is Green’s
normality result in Lemma 1.3. We will prove an analogous result for the

sheaves G(k)
T ∗Y,−;T ∗X,−

.

Lemma 3.1. For each k≥2 there exists an embedding G(k+1)
T ∗Y,−;T ∗X,−

⊂G(k)
T ∗Y,−;T ∗X,−

realising G(k+1)
T ∗Y,−;T ∗X,−

as a sheaf of normal subgroups of G(k)
T ∗Y,−;T ∗X,−

.

Proof. We will use the following classical result about groups and normal
subgroups:

(?) let G be a group; H < G a subgroup and N ≤ G a normal subgroup.
Then H ∩N is a normal subgroup of H.

Green’s lemma states G(k+1)
T ∗X,−

is a normal subgroup of G(k)
T ∗X,−

. Now, by def-

inition G(k)
T ∗Y,−;T ∗X,−

= G(k)
T ∗X,−
∩ AutT ∗Y,−

∧• T ∗X,−. It is a subgroup of G(k)
T ∗X,−

and

so by (?) above G(k+1)
T ∗X,−

∩ G(k)
T ∗Y,−;T ∗X,−

will be a normal subgroup of G(k)
T ∗Y,−;T ∗X,−

.

Now note that

G(k+1)
T ∗X,−

∩ G(k)
T ∗Y,−;T ∗X,−

=
(
G(k+1)
T ∗X,−

∩ G(k)
T ∗X,−

)
∩ AutT ∗Y,−

∧• T ∗X,−

= G(k+1)
T ∗X,−

∩ AutT ∗Y,−
∧• T ∗X,−

= G(k+1)
T ∗Y,−;T ∗X,−

The lemma now follows. �

Remark 3.2. As remarked in [DW12], the sheaf of groups G(k)
T ∗Y,−;T ∗X,−

need

not be a sheaf of normal subgroups of G(k)
T ∗X,−

.

3.2. The obstruction sheaves

We will denote the quotient G(k)
T ∗Y,−;T ∗X,−

/G(k+1)
T ∗Y,−;T ∗X,−

by the sheaf Q(k)
T ∗Y,−;T ∗X,−

. It

is a sheaf of groups by Lemma 3.1 above. Like the obstruction sheaves Q(k)
T ∗X,−

we have:

Lemma 3.3. Q(k)
T ∗Y,−;T ∗X,−

is a sheaf of abelian groups.
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Proof. This follows from the same argument as in Lemma 1.3(ii). �

Definition 3.4. Let (Y, T ∗Y,−) ⊂ (X,T ∗X,−) be an embedding of models. The

abelian sheaves Q(k)
T ∗Y,−;T ∗X,−

associated to this embedding will be referred to

as the k-th obstruction sheaves for the embedding.

From commutativity of (2.2.1) we see that there will be induced the following
maps on the obstruction sheaves:

Q(k)
T ∗Y,−;T ∗X,−

��

// Q(k)
T ∗X,−

Q(k)
T ∗Y,−

(3.2.1)

Hence for each k we have on cohomology:

Ȟ
1(
X,G(k)

T ∗Y,−;T ∗X,−

)
((��

// Ȟ
1(
X,G(k)

T ∗X,−

)
((

Ȟ
1(
Y,G(k)

T ∗Y,−

)
((

H1
(
X,Q(k)

T ∗Y,−;T ∗X,−

)
��

// H1
(
X,Q(k)

T ∗X,−

)

H1
(
Y,Q(k)

T ∗Y,−

)

(3.2.2)

Just like (k − 1)-split supermanifolds we have the following definition.

Definition 3.5. Let
(
Z : Y ⊂ X

)
be a (k − 1)-split embedding. The im-

age of
(
Z : Y ⊂ X

)
in H1

(
X,Q(k)

T ∗Y,−;T ∗X,−

)
under the map in (3.2.2) will be

referred to as the primary obstruction of the embedding
(
Z : Y ⊂ X

)
By Lemma 3.1 we are guaranteed the following result, analogous to Lemma
1.6 for supermanifolds.

Lemma 3.6. A (k − 1)-split embedding is k-split if and only if its primary
obstruction vanishes.

The relation of the primary obstructions of embeddings to those of super-
manifolds can be readily deduced from commutativity of (3.2.2).
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Proposition 3.7. Let
(
Z : Y ⊂ X

)
be a (k − 1)-split embedding. Then un-

der the maps in (3.2.2), the primary obstruction ω(Z) will map to ω(Y) and
ω(X) respectively, i.e., we have:

ω(Z)
_

��

� // ω(X)

ω(Y)

3.3. Obstructions to existence

Based on the primary obstructions of X, it is possible to deduce whether
there will exist submanifolds Y ⊂ X. The starting point if the following.

Lemma 3.8. Let (Y, T ∗Y,−) ⊂ (X,T ∗X,−). Then for each k ≥ 2, Q(k)
T ∗Y,−;T ∗X,−

is

a subsheaf of Q(k)
T ∗X,−

.

Proof. By commutativity of (2.2.1) we have induced a map ι : Q(k)
T ∗Y,−;T ∗X,−

→
Q(k)
T ∗X,−

giving rise to the following morphism of short exact sequences of

sheaves of groups:

G(k+1)
T ∗Y,−;T ∗X,−

��

// G(k)
T ∗Y,−;T ∗X,−

��

// Q(k)
T ∗Y,−;T ∗X,−

ι

��

G(k+1)
T ∗X,−

// G(k)
T ∗X,−

// Q(k)
T ∗X,−

(3.3.1)

The solid, vertical arrows are injective. We wish to show that the dashed
arrow ι is also injective. To see this, observe that ker ι can be identified with

a subgroup of the image of G(k)
T ∗Y,−;T ∗X,−

∩ G(k+1)
T ∗X,−

in G(k)
T ∗X,−

. This follows from

short-exactness of the rows in (3.3.1). Now note that this intersection is

precisely G(k+1)
T ∗Y,−;T ∗X,−

by definition. Hence ker ι ⊂ G(k+1)
T ∗Y,−;T ∗X,−

. But Q(k)
T ∗Y,−;T ∗X,−

=

G(k)
T ∗Y,−;T ∗X,−

/G(k+1)
T ∗Y,−;T ∗X,−

which means we must have ker ι = (0) and so ι is in-

jective. �

Let R(k)
T ∗Y,−,T

∗
X,−

denote the quotient Q(k)
T ∗X,−

/Q(k)
T ∗Y,−;T ∗X,−

. Then we will have a

long exact sequence on cohomology containing the following exact piece:

· · · −→ H1
(
X,Q(k)

T ∗Y,−;T ∗X,−

) ι∗−→ H1
(
X,Q(k)

T ∗X,−

) βY ;X−→ H1
(
X,R(k)

T ∗Y,−,T
∗
X,−

)
−→ · · ·
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Now, the map H1
(
X,Q(k)

T ∗Y,−;T ∗X,−

)
→ H1

(
X,Q(k)

T ∗X,−

)
from (3.2.2) is induced

from the embedding ι : Q(k)
T ∗Y,−;T ∗X,−

⊂ Q(k)
T ∗X,−

. Hence from Proposition 3.7, if

there exists an embedding of supermanifolds
(
Z : Y ⊂ X

)
, then ι∗ω(Z) =

ω(X). This leads to the following obstruction-to-existence result.

Theorem 3.9. Let (Y, T ∗Y,−) ⊂ (X,T ∗X,−) be an embedding of models. For
any k ≥ 2, if X is a (k − 1)-split supermanifold with primary obstruction
ω(X) such that βY ;X(ωX) 6= 0, then there will not exist any (k − 1)-split
submanifold of X modelled on (Y, T ∗Y,−).

3.4. A correspondence of obstructions

In this article we only consider holomorphic embeddings of models
(Y, T ∗Y,−) ⊂ (X,T ∗X,−). This means the embedding of underlying spaces i :
Y ⊂ X is holomorphic. As such the restriction functor r = i∗ from sheaves
on X to sheaves on Y is exact (see e.g., [GR84, p. 20]). From Lemma 3.8 we
therefore obtain the following commutative diagram,

0 // Q(k)
T ∗Y,−;T ∗X,−

r

��

// Q(k)
T ∗X,−

//

r

��

R(k)
T ∗Y,−;T ∗X,−

//

r

��

0

0 // Q(k)
T ∗Y,−

i // Q(k)
T ∗X,−
|Y // R(k)

T ∗Y,−;T ∗X,−
|Y // 0

(3.4.1)

This diagram translates to a commutative diagram on cohomology. Upon
combining it with (3.2.2) we obtain:

Theorem 3.10. Let (Y, T ∗Y,−) ⊂ (X,T ∗X,−) be an embedding of models. Then
for each k ≥ 2, the following diagram commutes:

Ȟ
1(
X,G(k)

T ∗Y,−;T ∗X,−

)
((��

// Ȟ
1(
X,G(k)

T ∗X,−

)
((

Ȟ
1(
Y,G(k)

T ∗Y,−

)
((

H1
(
X,Q(k)

T ∗Y,−;T ∗X,−

)
��

// H1
(
X,Q(k)

T ∗X,−

)
r∗
��

H1
(
Y,Q(k)

T ∗Y,−

)
i∗
// H1

(
Y,Q(k)

T ∗X,−
|Y
)
.

(3.4.2)

Commutativity of the square in (3.4.2) and Proposition 3.7 give:
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Theorem 3.11. Let
(
Z : Y ⊂ X

)
be a (k − 1)-split embedding of super-

manifolds modelled on (Y, T ∗Y,−) and (X,T ∗X,−). Then

i∗
(
ω(Y)

)
= r∗

(
ω(X)

)
.

where i∗ and r∗ are the maps in (3.4.2).

3.5. Embeddings of splitting type (k; k, k + 1)

Embeddings in a split supermanifold are a particular class of embeddings
of splitting type (k; k, k + 1). We single such embeddings out here as their
obstruction classes admit a nice characterisation. Consider the diagram on
cohomology induced from (3.4.1). The piece of relevance for our present
purposes is:

H0
(
X,R(k)

T ∗Y,−;T ∗X,−

)
r∗
��

δ1 // H1
(
X,Q(k)

T ∗Y,−;T ∗X,−

)
��

// H1
(
X,Q(k)

T ∗X,−

)
��

H0
(
Y,R(k)

T ∗Y,−;T ∗X,−
|Y
) δ2 // H1

(
Y,Q(k)

T ∗Y,−

)
// H1(Y,Q(k)

T ∗X,−
|Y
)

(3.5.1)

We are thus led to the following:

Theorem 3.12. Let
(
Z : Y ⊂ X

)
be an embedding of splitting type (k; k, k +

1). Then there exists a global section ϕ ∈ H0
(
X,R(k)

T ∗Y,−;T ∗X,−

)
such that

δ1(ϕ) = ω(Z) and δ2

(
r∗(ϕ)

)
= ω(Y).

Proof. Recall, if
(
Z : Y ⊂ X

)
is an embedding of splitting type (k; k, k + 1),

then Y and Z will be (k − 1)-split while X will be k-split. In particular, its
primary obstruction as a (k − 1)-split supermanifold will vanish (c.f., Theo-

rem 1.6). Hence ω(Z) will map to zero in H1
(
X,Q(k)

T ∗X,−

)
by Proposition 3.7;

and ω(Y) will map to zero in H1
(
X,Q(k)

T ∗X,−
|Y
)

by Theorem 3.11. The present

theorem now follows from exactness of the rows in (3.5.1). �

4. Conormal sheaves

The rows in the diagram (3.4.1) will be referred to as obstruction sequences
associated to an embedding of models (Y, T ∗Y,−) ⊂ (X,T ∗X,−). We refer to
the top row as the ambient obstruction sequence while the bottom row will
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be referred to as the embedded obstruction sequence. Our objective in this
section is to relate these sequences with appropriately twisted, conormal
sheaves.

4.1. Obstruction sheaves

We recall here an explicit description of the obstruction sheaves obtained by
Green in [Gre82]. To any model (Z, T ∗Z,−), the obstruction sheaves are given
by:

Q(k)
T ∗Z,−
∼=

{
HomOZ

(
T ∗Z ,∧kT ∗Z,−

)
if k is even;

HomOZ

(
T ∗Z,−,∧kT ∗Z,−

)
if k is odd.

(4.1.1)

For convenience we use the following notation

T ∗Z,(±)k =

{
T ∗Z k is even;

T ∗Z,− k is odd;

Then (4.1.1) can be conveniently stated:

Q(k)
T ∗X,−

∼= HomOZ

(
T ∗Z,(±)k ,∧

kT ∗Z,−
)
.(4.1.2)

The obstruction sheaf associated to an embedding of models is however a
little more subtle.

4.2. The obstruction sheaf for embeddings

Let f : (Y, T ∗Y,−) ⊂ (X,T ∗X,−) be an embedding of models. Recall f = (i, f ])

where i : Y ⊂ X and f ] : T ∗X,− → i∗T
∗
Y,− → 0 (equivalently, i∗T ∗X,− → T ∗Y,−

is a surjection). The k-th obstruction sheaf associated to f is Q(k)
T ∗Y,−;T ∗X,−

. In

Lemma 3.8 we found that Q(k)
T ∗Y,−;T ∗X,−

is a subsheaf of Q(k)
T ∗X,−

. By construction,

it pulls back to Q(k)
T ∗Y,−

. Hence, we can view Q(k)
T ∗Y,−;T ∗X,−

as those sections of

Q(k)
T ∗X,−

which pullback to Q(k)
T ∗Y,−

. Phrased in this way, Q(k)
T ∗Y,−;T ∗X,−

can be seen

to satisfy a lifting property. To state it, firstly observe that there exists

a natural injection Q(k)
T ∗Y,−
→ i∗Q(k)

T ∗X,−
. This can be deduced from Green’s

characterisation of the obstruction sheaves in (4.1.2) combined with the
surjection i∗T ∗X,(±)k → T ∗Y,(±)k . With this observation we present:
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Lifting Property. Let F be a sheaf of OX-modules and suppose φ : F →
Q(k)
T ∗X,−

is a morphism such that i∗φ factors through Q(k)
T ∗Y,−
→ i∗Q(k)

T ∗X,−
, i.e.,

that there exists a morphism v : i∗F → Q(k)
T ∗Y,−

commuting the following dia-
gram:

F

��

φ // Q(k)
T ∗X,−

��

i∗F v //

i∗φ

55
Q(k)
T ∗Y,−

// i∗Q(k)
T ∗X,−

Then φ factors through the subsheaf Q(k)
T ∗Y,−;T ∗X,−

. That is, there exists a unique

morphism u : F → Q(k)
T ∗Y,−;T ∗X,−

lifting v. In terms of diagrams, the lifting

property can be summarised by: given v, there exists u commuting the fol-
lowing,

F

��

u

$$

φ

%%

i∗F

i∗φ

66

v

##

Q(k)
T ∗Y,−;T ∗X,−

��

// Q(k)
T ∗X,−

��

Q(k)
T ∗Y,−

// i∗Q(k)
T ∗X,−

(4.2.1)

We conclude with the following useful result.

Lemma 4.1. Let F be a subsheaf of Q(k)
T ∗X,−

which pulls back to Q(k)
T ∗Y,−

. Then

F is isomorphic to Q(k)
T ∗Y,−;T ∗X,−

.

4.3. The embedded obstruction sequence

Let f = (i, f ]) : (Y, T ∗Y,−) ⊂ (X,T ∗X,−) be an embedding of models. We set,

ν∗Y/X,(±)k :=

{
IY /I2

Y k is even;

i∗KT ∗Y,−;T ∗X,−
k is odd

(4.3.1)
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where IY is the ideal sheaf of Y ⊂ X and KT ∗Y,−;T ∗X,−
is the kernel of the

surjection T ∗X,− → f∗T ∗Y,−. Since f is holomorphic we have the ‘conormal
bundle sequence’,

0 −→ ν∗Y/X,(±)k −→ i∗T ∗X,(±)k −→ T ∗Y,(±)k −→ 0.

Since ∧kT ∗Y,− is locally free, the contravariant functor HomOY

(
−,∧kT ∗Y,−

)
is exact. We therefore get:

0 −→ HomOY

(
T ∗Y,(±)k ,∧

kT ∗Y,−
)
−→ HomOY

(
i∗T ∗X,(±)k ,∧

kT ∗Y,−
)

(4.3.2)

−→ HomOY

(
ν∗Y/X,(±)k ,∧

kT ∗Y,−
)
−→ 0

Note that the left-most term in (4.3.2) is isomorphic to Q(k)
T ∗Y,−

by (4.1.2). As

for the next term observe that, again by (4.1.2),

i∗Q(k)
T ∗X,−

∼= i∗HomOX

(
T ∗X,(±)k ,∧

kT ∗X,−
)

∼= HomOY

(
i∗T ∗X,(±)k , i

∗ ∧k T ∗X,−
)

−→ HomOY

(
f∗T ∗X,(±)k ,∧

kT ∗Y,−
)
.(4.3.3)

To explain the map in (4.3.3) recall that we have the surjection f ] : i∗T ∗X,− →
T ∗Y,− → 0. This induces a surjection on exterior powers since the operation
of taking exterior powers is right exact. Hence we have a natural trans-
formation of functors HomOY

(
−, i∗ ∧k T ∗X,−

)
→ HomOY

(
−,∧kT ∗Y,−

)
giving

(4.3.3). Evidently, we obtain a commutative diagram:

Q(k)
T ∗Y,−

∼=
��

// i∗Q(k)
T ∗X,−

(4.3.3)

��
HomOY

(
T ∗Y,(±)k ,∧

kT ∗Y,−
)

// HomOY

(
i∗T ∗X,(±)k ,∧

kT ∗Y,−
)
.

Upon identifying Q(k)
T ∗Y,−

with i∗Q(k)
T ∗Y,−;T ∗X,−

as sheaves of OY -modules we con-

clude:

Proposition 4.2. Let f : (Y, T ∗Y,−) ⊂ (X,T ∗X,−) be an embedding of models.
For each k, the natural transformation

HomOY

(
−, i∗ ∧k T ∗X,−

)
→ HomOY

(
−,∧kT ∗Y,−

)
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induces the following morphisim of short exact sequences:

Q(k)
T ∗Y,−

//

∼=
��

i∗Q(k)
T ∗X,−

//

��

i∗R(k)
T ∗Y,−;T ∗X,−

��
HomOY

(
T ∗Y,(±)k ,∧

kT ∗Y,−
)

// HomOY

(
i∗T ∗X,(±)k ,∧

kT ∗Y,−
)

// HomOY

(
ν∗Y/X,(±)k ,∧

kT ∗Y,−
)

where the isomorphism Q(k)
T ∗Y,−
∼=HomOY

(
T ∗Y,(±)k ,∧

kT ∗Y,−
)

comes from (4.1.2).

4.4. The ambient obstruction sequence

In Proposition 4.2 we characterized the embedded obstruction sequence as a
sequence of sheaves of OY -modules. We consider here the ambient obstruc-
tion sequence which is a sequence of sheaves OX -modules. Our starting point
is the normal bundle sequence of f : (Y, T ∗Y,−) ⊂ (X,T ∗X,−) now as sheaves
on X:

0 −→ N∗Y/X,(±)k −→ T ∗X,(±)k −→ i∗T
∗
Y,(±)k −→ 0

where

N∗Y/X,(±)k =

{
IY k is even;

KT ∗Y,−;T ∗X,−
k is odd.

(4.4.1)

Applying HomOX

(
−,∧kT ∗X,−

)
gives

0 −→ HomOX

(
i∗T
∗
Y,(±)k ,∧

kT ∗X,−
)
−→ HomOX

(
T ∗X,(±)k ,∧

kT ∗X,−
)

(4.4.2)

−→ HomOX

(
N∗Y/X,(±)k ,∧

kT ∗X,−
)
−→ 0

The relation to the ambient obstruction sequence is as follows.

Proposition 4.3. There exists a morphism of exact sequences,

HomOX

(
i∗T
∗
Y,(±)k ,∧

kT ∗X,−
)

//

u
��

HomOX

(
T ∗X,(±)k ,∧

kT ∗X,−
)

//

∼=
��

HomOX

(
N∗Y/X,(±)k ,∧

kT ∗X,−
)

��

Q(k)
T ∗Y,−;T ∗X,−

// Q(k)
T ∗X,−

// R(k)
T ∗Y,−;T ∗X,−

where the above isomorphism comes from (4.1.2).
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Proof. The isomorphism HomOX

(
T ∗X,(±)k ,∧

kT ∗X,−
) ∼→ Q(k)

T ∗X,−
gives the fol-

lowing composition

θ : HomOX

(
f∗T

∗
Y,(±)k ,∧

kT ∗X,−
)

(4.4.3)

→ HomOX

(
T ∗X,(±)k ,∧

kT ∗X,−
) ∼→ Q(k)

T ∗X,−
.

As the embedding f is holomorphic, the pullback i∗ defines an exact functor.
Now the map θ is injective and so i∗θ is injective giving,

0 −→ i∗HomOX

(
i∗T
∗
Y,(±)k ,∧

kT ∗X,−
) i∗θ′−→ i∗Q(k)

T ∗X,−
.(4.4.4)

Now again by holomorphy of f there exists a natural isomorphism i∗i∗ ∼= 1.
Using this and the transformation

HomOY

(
−, i∗ ∧k T ∗X,−

)
→ HomOY

(
−,∧kT ∗Y,−

)
yields,

i∗HomOX

(
i∗T
∗
Y,(±)k ,∧

kT ∗X,−
) ∼=−→ HomOX

(
i∗i∗T

∗
Y,(±)k , i

∗ ∧k T ∗X,−
)

(4.4.5)
∼=−→ HomOX

(
T ∗Y,(±)k , i

∗ ∧k T ∗X,−
)

−→ HomOX

(
T ∗Y,(±)k ,∧

kT ∗Y,−
)

∼=−→ Q(k)
T ∗Y,−

.

Injectivity of i∗θ in (4.4.4) guarantees a morphism h : i∗Q(k)
T ∗X,−

→ f∗Q(k)
T ∗X,−

commuting the following diagram,3

3That there will exist such a commutative diagram can be seen by considering
a more abstract setting. Let A and B be algebras with A ⊂ B. Let A′ be another
algebra and suppose we have morphisms A

g→ A′ → B. With g we can define a
morphism h : B → B commuting with g by setting:

h(b) =

{
g(b) b ≡ 0 mod A

b otherwise.

That h is well-defined homomorphism depends essentially on A being a subalgebra
of B. This is because the condition b ≡ 0 mod A ensures the existence of a unique
a ∈ A mapping to b and so we can identify b with a.
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i∗HomOX

(
i∗T
∗
Y,(±)k ,∧

kT ∗X,−
)

��

i∗θ // i∗Q(k)
T ∗X,−

h
��

Q(k)
T ∗Y,−

// i∗Q(k)
T ∗X,−

Hence the morphism hi∗θ factors through Q(k)
T ∗Y,−
→ i∗Q(k)

T ∗X,−
. By (4.4.5), note

that we can write hi∗θ = i∗θ′ for some morphism

θ′ : HomOX

(
i∗T
∗
Y,(±)k ,∧

kT ∗X,−
)
→ Q(k)

T ∗X,−
.

Then as we have just seen i∗θ′ factors through Q(k)
T ∗Y,−
→ i∗Q(k)

T ∗X,−
. Therefore,

by the lifting property (see (4.2.1)), there will exist a morphism u, well
defined up to isomorphism, commuting the following,

HomOX

(
i∗T
∗
Y,(±)k ,∧

kT ∗X,−
)

u
��

θ′

++Q(k)
T ∗Y,−;T ∗X,−

// Q(k)
T ∗X,−

(4.4.6)

To obtain the desired morphism of exact sequences we will need to appeal
to the universal property of cokernels. In identifying

HomOX

(
N∗Y/X,(±)k ,∧

kT ∗X,−
)

with the cokernel of

HomOX

(
T ∗X,(±)k ,∧

kT ∗X,−
)
→ HomOX

(
N∗Y/X,(±)k ,∧

kT ∗X,−
)
,

the universal property guarantees a morphism

HomOX

(
N∗Y/X,(±)k ,∧

kT ∗X,−
)
→ coker θ′.

Combining this with (4.4.6) we find the following diagram of morphisms:
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HomOX

(
i∗T
∗
Y,(±)k ,∧

kT ∗X,−
)

// HomOX

(
T ∗X,(±)k ,∧

kT ∗X,−
)

//

∼=
��

HomOX

(
N∗Y/X,(±)k ,∧

kT ∗X,−
)

��
HomOX

(
i∗T
∗
Y,(±)k ,∧

kT ∗X,−
)

u

��

θ′ // Q(k)
T ∗X,−

// coker θ′

��

Q(k)
T ∗Y,−;T ∗X,−

// Q(k)
T ∗X,−

// R(k)
T ∗Y,−;T ∗X,−

The proposition now follows. �

In putting Proposition 4.2 and 4.3 together, we have:

Theorem 4.4. To an embedding of models f : (Y, T ∗Y,−) ⊂ (X,T ∗X,−) we
have the following commutative diagram for each k,

HomOX

(
i∗T
∗
Y,(±)k ,∧

kT ∗X,−
)

//

��

HomOX

(
T ∗X,(±)k ,∧

kT ∗X,−
)

//

∼=
��

HomOX

(
N∗Y/X,(±)k ,∧

kT ∗X,−
)

��

Q(k)
T ∗Y,−;T ∗X,−

//

��

Q(k)
T ∗X,−

//

��

R(k)
T ∗Y,−;T ∗X,−

��

Q(k)
T ∗Y,−

//

∼=
��

i∗Q(k)
T ∗X,−

//

��

i∗R(k)
T ∗Y,−;T ∗X,−

��
HomOY

(
T ∗Y,(±)k ,∧

kT ∗Y,−
)

// HomOY

(
i∗T ∗X,(±)k ,∧

kT ∗Y,−
)

// HomOY

(
ν∗Y/X,(±)k ,∧

kT ∗Y,−
)

4.5. Even holomorphic embeddings

The vertical arrows in Proposition 4.2 and 4.3 need not be injective or
surjective in general. It is addressing this point which motivates what we
term ‘even’ embeddings.

Definition 4.5. An embedding of models f = (i, f ]) : (Y, T ∗Y,−) ⊂ (X,T ∗X,−)

is said to be even if the surjection of odd conormal sheaves f ] : f∗T ∗X,− →
T ∗Y,− is an isomorphism.

The following result concerning the embedded obstruction sequence follows
straightforwardly from the definition.

Proposition 4.6. To any even embedding f : (Y, T ∗Y,−) ⊂ (X,T ∗X,−), the
vertical morphisms in Proposition 4.2 are isomorphisms.
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Regarding the ambient obstruction sequence we have similarly:

Proposition 4.7. To any even embedding f : (Y, T ∗Y,−) ⊂ (X,T ∗X,−), the
vertical morphisms in Proposition 4.3 are isomorphisms.

Proof. We follow the proof of Proposition 4.3 more closely. Observe that
with the assumption i∗T ∗X,−

∼= TY,− we have

i∗HomOX

(
i∗T
∗
Y,(±)k ,∧

kT ∗X,−
) ∼= Q(k)

T ∗Y,−
.(4.5.1)

Hence for θ the injection in (4.4.3) we see that i∗θ will factor through the
isomorphism v in (4.5.1). We are thus reduced to the hypotheses in Lemma

4.1 and can therefore conclude HomOX

(
i∗T
∗
Y,(±)k ,∧

kT ∗X,−
)

and Q(k)
T ∗Y,−;T ∗X,−

are isomorphic. The proposition now follows. �

5. Ideal sheaves

Supermanifolds of a prescribed splitting type were defined in Definition 1.1.
This subsequently inspired the definition of holomorphic embeddings in Def-
inition 2.1 from whence we eventually deduce Theorem 4.4. Presently, we
will describe embeddings by reference to sheaves of ideals.

5.1. Embeddings of split models

Let f = (i, f ]) : (Y, T ∗Y,−) ⊂ (X,T ∗X,−) be an embedding of models. We have

the surjections i] : OX → i∗OY and f ] : T ∗X,− → i∗T
∗
Y,−, where OX (resp.

OY ) is the structure sheaf of X (resp. Y ). Let IY and KT ∗Y,−;T ∗X,−
denote the

respective kernels. Since ∧• is a right-exact functor, the surjection f ] gives
∧•T ∗X,− → ∧•i∗T ∗Y,− → 0. To describe the kernel, recall that each exterior
power ∧mT ∗X,− will be a filtered OX -module of length m. Denote by Fm• =
{Fmn}0≤n≤m+1 the filtration given by:

0 = Fm0 ⊂ Fm1 ⊂ · · · ⊂ Fmm ⊂ Fmm+1 = ∧mT ∗X,−.

Successive quotients satisfy,

Fmp+1/F
m
p
∼= ∧m−pKT ∗Y,−;T ∗X,−

⊗ ∧pi∗T ∗Y,−.
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Hence Fmm = ker{∧mT ∗X,− → ∧mT ∗Y,−} for each m. Accordingly, we set

IT ∗Y,−;T ∗X,−
:= IY ⊕

⊕
m≥1

Fmm

 .(5.1.1)

Then ker{∧•T ∗X,− → ∧•i∗T ∗Y,−} is isomorphic to IT ∗Y,−;T ∗X,−
as OX -modules.

We list below important properties entertained by IT ∗Y,−;T ∗X,−
:

(i) IT ∗Y,−;T ∗X,−
is Z-graded with graded pieces:

IjT ∗Y,−;T ∗X,−
=


IY j = 0;

KT ∗Y,−;T ∗X,−
j = 1

F jj j > 0;

(ii) the grading on IjT ∗Y,−;T ∗X,−
is induced from the grading on ∧•T ∗X,− in the

following sense: if ξj : ∧•T ∗X,− → ∧jT ∗X,− denotes the projection onto
the j-th graded piece, then

F jj = im

{
IT ∗Y,−;T ∗X,−

↪→ ∧•T ∗X,−
ξj−→ ∧jT ∗X,−

}
;

(iii) the quotient ∧•T ∗X,−/IT ∗Y,−;T ∗X,−
is isomorphic to the sheaf of exterior

algebras ∧•i∗T ∗Y,−.

We view IT ∗Y,−;T ∗X,−
as the ideal sheaf defining the embedding e(Y,T ∗Y,−) ⊂

e(X,T ∗X,−), of split models.

5.2. Embeddings in split models

Based on the observations (i), (ii) and (iii) made earlier, we propose the
following general definition of embeddings in a split supermanifold e(X,T ∗X,−).

Definition 5.1. To an embedding of models (Y, T ∗Y,−) ⊂ (X,T ∗X,−), let I ⊂
∧•T ∗X,− be a sheaf of ideals satisfying:

(i) I is Z2-graded, with grading inherited from ∧•T ∗X,− in the following
sense: let ξ± : ∧•T ∗X,− → ∧±T ∗X,− be the projection onto the even and
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odd graded components.4 Note that ∧+T ∗X,− ⊂ ∧•T ∗X,− is a commuta-
tive subalgebra and ∧−T ∗X,− is an ∧+T ∗X,−-module. Set,

I± = im

{
I ↪→ ∧•T ∗X,−

ξ±−→ ∧±T ∗X,−
}
.

Then as ∧+T ∗X,−-modules we have I ∼= I+ ⊕ I−. We refer to I+ resp.
I− as the even and odd graded components of I;

(ii) modulo the fermionic ideal J 2
T ∗X,−

,

I+ mod J 2
T ∗X,−

= IY and I− mod J 2
T ∗X,−

= KT ∗Y,−;T ∗X,−
.

(iii) ∧•T ∗X,−/I and ∧•i∗T ∗Y,− are locally isomorphic.

If I satisfies (i), (ii) and (iii) above then it will be called an ideal sheaf for
an embedding of supermanifolds over (Y, T ∗Y,−) ⊂ (X,T ∗X,−).

Definition 5.1 is made precisely to capture the following correspondence:
Ideal sheaves I for holo–
morphic embeddings over
(Y, T ∗Y,−) ⊂ (X,T ∗X,−)

⇐⇒


Holomorphic embeddings
(Z : Y ⊂ e(X,T ∗X,−)) for Y

modelled on (Y, T ∗Y,−)

(5.2.1)

5.3. Splitting of submanifolds

Let
(
Z : Y ⊂ e(X,T ∗X,−)

)
be defined by an ideal sheaf I. Then (using (1.3.1)

and the notation in (4.4.1)) from Definition 5.1(ii) we have morphisms of
exact sequences:

I± //

��

∧±T ∗X,−

��

// i∗O±Y

��
N∗Y/X,±

// ∧±T ∗X,−/J 2
T ∗X,−

//

JJ

i∗
(
O±Y/J 2

Y

)
(5.3.1)

A straightforward application of Lemma 1.8 gives:

4as OX -modules we have ∧+T ∗X,− = ⊕j≥0 ∧2j T ∗X,− and ∧−T ∗X,− = ⊕j≥0 ∧2j+1

T ∗X,−.



i
i

“1-Bettadapura” — 2020/2/21 — 0:40 — page 1452 — #26 i
i

i
i

i
i

1452 Kowshik Bettadapura

Lemma 5.2. Let I be a sheaf of ideals defining an embedding
(
Z : Y ⊂

e(X,T ∗X,−)

)
. Suppose there exist OX-module morphisms N∗Y/X,± → I

± which

commute with the natural inclusions ∧±T ∗X,−/J 2
T ∗X,−

→ ∧±T ∗X,− represented

by the dotted arrow in (5.3.1). Then,

(i) Y is split;

(ii) I ∼= IT ∗Y,−;T ∗X,−
.

Proof. Part (i) is immediate. As for (ii), consider that the splitting for Y
gives an isomorphism ψ : i∗OY

∼→ ∧•i∗T ∗Y,−. This splitting is induced from
an automorphism ψ′ of ∧•T ∗X,−. Hence we obtain the following morphism of
exact sequences,

0 // I

ψ′′

��

// ∧•T ∗X,− //

ψ′

��

OY

ψ

��

// 0

0 // IT ∗Y,−;T ∗X,−
// ∧•T ∗X,− // ∧•i∗T ∗Y,− // 0

Since ψ and ψ′ are isomorphisms, so is ψ′′. �

5.4. The maximal splitting degree

From Lemma 5.2 it is clear that the space HomOX

(
N∗Y/X,±, I

±) is an im-
portant invariant of the ideal sheaf I. It is however a little too large for our
purposes. We consider instead a subset defined as follows. Firstly observe
from Definition 5.1(ii) that any morphism in HomOX

(
N∗Y/X,±, I

±) will give

a morphism N∗Y/X,± → N∗Y/X,± modulo J 2
T ∗X,−

. Set,

H̃om
(
N∗Y/X,±, I

±)
:=
{
F± ∈ Hom

(
N∗Y/X,±, I

±) : F± mod J 2
T ∗X,−

= idN∗Y/X,±

}
.

To each F± ∈ H̃omOX

(
N∗Y/X,±, I

±) consider the composition

ξj(F±) : N∗Y/X,±
F±−→ I± ↪→ ∧•T ∗X,−

ξj−→ ∧jT ∗X,−

where ξj : ∧•T ∗X,− → ∧jT ∗X,− is the projection. We define the ‘maximal split-
ting degree’ of F± as follows.
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Definition 5.3. Let F± ∈ H̃omOX

(
N∗Y/X,±, I

±). The maximal splitting de-

gree of F±, denoted mF± , is defined to be:

mF± := max
{
m : ξm

′
(F±) = 0 ∀ 2 ≤ m′ ≤ m

}
Note that mF± ≥ 2. If mF± coinsides with rank T ∗X,−, we will set mF± =∞.

We can formulate statements about splitting now in terms splitting degrees.

Lemma 5.4. Let I be an ideal sheaf defining an embedding(
Z : Y ⊂ e(X,T ∗X,−)

)
.

Then Y is split if and only if there exist homomorphisms

F± ∈ H̃omOX

(
N∗Y/X,±, I

±)
with maximal splitting degree mF± =∞.

Proof. In the converse direction, the existence of F± with mF± =∞ imply-
ing Y is split is a restatement of Lemma 5.2. In the other direction, suppose
now that Y is split. We will then obtain an inclusion f∗

(
O±Y/J 2

Y

)
→ O±Y

commuting with the natural inclusion ∧±T ∗X,−/J 2
T ∗X,−

→ ∧±T ∗X,−. This in-

duces homomorphisms F± with maximal splitting degree mF± =∞. �

5.5. Ideal sheaves and embeddings

In (5.2.1) we claimed a correspondence between ideal sheaves and holo-
morphic embeddings. In this section we clarify this claim. Fix a system of
generators F̂ for IT ∗Y,−;T ∗X,−

with mF̂ =∞. Now consider the set

S ≥k
T ∗Y,−;T ∗X,−

(F̂ ) :=
{(
I, F

)
: mF ≥ k

}
for I an ideal sheaf for an embedding over (Y, T ∗Y,−) ⊂ (X,T ∗X,−) and F

a system of generators for I. We consider S ≥k
T ∗Y,−;T ∗X,−

(F̂ ) as a pointed set

with base-point
(
IT ∗Y,−;T ∗X,−

, F̂
)
. Clearly S ≥k+1

T ∗Y,−;T ∗X,−
(F̂ ) ⊂ S ≥k

T ∗Y,−;T ∗X,−
(F̂ ) is an

inclusion of pointed sets. We have:
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Theorem 5.5. Let (Y, T ∗Y,−) ⊂ (X,T ∗X,−) be an embedding of models. Then
there exist maps commuting the following diagram:

S ≥k+1
T ∗Y,−;T ∗X,−

(F̂ )

��

// S ≥k
T ∗Y,−;T ∗X,−

(F̂ )

��

Ȟ
1(
X,G(k+1)

T ∗Y,−;T ∗X,−

)
// Ȟ

1(
X,G(k)

T ∗Y,−;T ∗X,−

)
(5.5.1)

Proof. We will construct a map S ≥k
T ∗Y,−;T ∗X,−

(F̂ )→ Ȟ
1(
X,G(k)

T ∗X,−

)
from whence

this theorem will follow. We begin with the following observation: to any
ideal sheaf I defining an embedding of supermanifolds, note that a choice of
generators F for I will give morphisms F± ∈ H̃omOX

(
N∗Y/X,±, I

±). Here F+

resp. F− are the even and odd components of F . Modulo J 2
T ∗X,−

, F generates

IY resp. KT ∗Y,−;T ∗X,−
. We set mF = min{mF+ ,mF−}. Thus to generators F

of I we have a homomorphism hF ∈ HomOX

(
NY/X,(±)mF ,∧mFT ∗X,−

)
. Note,(

hF = 0
)
⇐⇒

(
mF =∞

)
⇐⇒

(
mF± =∞

)
⇐⇒

(
Y is split

)
,(5.5.2)

the latter implication following from Lemma 5.4. Now let (I, F ) ∈
S ≥k
T ∗Y,−;T ∗X,−

(F̂ ). Then associated to (I, F ) is the morphism

hF ∈ HomOX

(
NY/X,(±)mF ,∧mFT ∗X,−

)
.

Recall that there exists a surjective morphism of sheaves

Q(mF )
T ∗X,−

−→ HomOX

(
NY/X,(±)mF ,∧mFT ∗X,−

)
−→ 0.

Hence over each open set U ⊂ X there will exist some νU ∈ Q(mF )
T ∗X,−

(U) map-

ping to hF |U . At this stage we recall the following short exact sequence
relating (even) derivations and obstruction sheaves from [Oni99]:

0 −→ Q(2k+1)
T ∗X,−

−→ g
(2k)
T ∗X,−

−→ Q(2k)
T ∗X,−

−→ 0

where g
(2k)
T ∗X,−

is the sheaf of derivations of ∧•T ∗X,− sending ∧`T ∗X,− →
∧`+2kT ∗X,−. We can therefore deduce that over each open set U , there will

exist a derivation δU ∈ g
(2k)
T ∗X,−

(U) mapping to hF |U . Now, the sheaf of deriva-

tions gT ∗X,−
is a nilpotent Lie algebra with g

(k)
T ∗X,−

its k-th graded compo-

nent. Exponentiating defines a bijection g
(k)
T ∗X,−

∼= G(k)
T ∗X,−

as sheaves of sets.
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We can therefore exponentiate the derivation δU to an automorphism eδU ∈
G(mF )
T ∗X,−

(U). Now let F ′U = e−δUF |U . Then F ′U will generate a sheaf of ideals

I ′(U) in ∧•T ∗X,−(U). Since we know δU 7→ hF |U it follows that,

mF ′U ≥ mF + 1.

Hence over an open set U ⊂ X we can find an automorphism lifting the
maximal splitting degree mF of F . Iterating this procedure, it is clear that
we can find local automorphisms αU such that mαU (F |U ) =∞. Uniqueness of

αU is established by requiring αU (F |U ) = F̂ |U . Observe that αU will induce

an automorphism of ∧•T ∗Y,−(U ∩ Y ), so it therefore lies in G(mF )
T ∗Y,−;T ∗X,−

(U). In

this way we can thus assign to any (I, F ) ∈ S ≥k
T ∗Y,−;T ∗X,−

(F̂ ) and covering U of

X, a 0-cochain α =
{
αU
}
U∈U ∈ C

0
(
U,G(k)

T ∗Y,−;T ∗X,−

)
. The map sending (I, F )

to the class of
{
αUα

−1
V

}
U,V ∈U defines a map of pointed sets S ≥k

T ∗Y,−;T ∗X,−
(F̂ )→

Ȟ
1(
X,G(k)

T ∗X,−

)
. �

5.6. Relation to obstruction classes

In the diagram of sheaves in Theorem 4.4, the rows are short exact sequences.
Hence they give long exact sequences on cohomology. Observe then that we
have a map,

Θ : HomOX

(
NY/X,(±)k ,∧kT ∗X,−

)
−→ H0

(
X,R(k)

T ∗Y,−;T ∗X,−

)
−→ H1

(
X,Q(k)

T ∗Y,−;T ∗X,−

)
.

Thus to any (I, F ) ∈ S ≥k
T ∗Y,−;T ∗X,−

(F̂ ) we have

Θ(I, F ) := Θ(hF ) ∈ H1
(
X,Q(k)

T ∗Y,−;T ∗X,−

)
.

Hence a map S ≥k
T ∗Y,−;T ∗X,−

(F̂ )→ H1
(
X,Q(k)

T ∗Y,−;T ∗X,−

)
. Now note from Theo-

rem 5.5 that we also have the composition S ≥k
T ∗Y,−;T ∗X,−

(F̂ )→ Ȟ
1(
X,G(k)

T ∗X,−

) ω∗→
H1
(
X,Q(k)

T ∗Y,−;T ∗X,−

)
where ω∗ is the map sending (Z : Y ⊂ X

)
7→ ω(Z). When

the embedding of models is even, we can identify Θ and ω∗ since, by Propo-

sition 4.7, the map HomOX

(
NY/X,(±)k ,∧kT ∗X,−

)
→ H0

(
X,R(k)

T ∗Y,−;T ∗X,−

)
is an

isomorphism. Thus:
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Theorem 5.6. Let (Y, T ∗Y,−) ⊂ (X,T ∗X,−) be an even embedding of models.
Then the following diagram commutes,

S ≥k
T ∗Y,−;T ∗X,−

��

Θ // H1
(
X,Q(k)

T∗Y,−;T ∗X,−

)

Ȟ
1(
X,G(k)

T ∗Y,−;T ∗X,−

) ω∗ // H1
(
X,Q(k)

T ∗Y,−;T ∗X,−

)
(5.6.1)

6. Applications I: Some generalities

6.1. General characterisations

In Theorem 3.12 we deduced, for embeddings
(
Z : Y ⊂ X

)
over (Y, T ∗Y,−) ⊂

(X,T ∗X,−) of splitting type (k; k, k + 1), the existence of global sections in

H0
(
X,R(k)

T ∗Y,−;T ∗X,−

)
which map to the obstruction classes of Z and Y re-

spectively. From Theorem 5.6 we can see what these classes are explicitly
if X = e(X,T ∗X,−) is the split model and the embedding of models (Y, T ∗Y,−) ⊂
(X,T ∗X,−) is even. They can be derived from the generators of ideal sheaves.
Now concerning even embeddings more generally, we have recourse to Propo-
sition 4.7 which justifies studying only the top and bottom rows of the dia-
gram in Theorem 4.4, which are appropriately twisted sequences of conormal
sheaves associated to the embedding (Y, T ∗Y,−) ⊂ (X,T ∗X,−). We can then par-
tially address the splitting question: let Y be a supermanifold modelled on
(Y, T ∗Y,−). Is it split?

Theorem 6.1. Let (Y, T ∗Y,−) be a model and suppose there exists an even
embedding f : (Y, T ∗Y,−) ⊂ (X,T ∗X,−) such that, for all k, either:

(i) HomOY

(
ν∗Y/X,(±)k ,∧

kT ∗Y,−
)

= (0) or;

(ii) HomOX

(
N∗Y/X,(±)k ,∧

kT ∗X,−
)

= (0).

Then any supermanifold Y modelled on (Y, T ∗Y,−) which can be embedded in
the split model e(X,T ∗X,−) will be split.

Proof. To prove (i), suppose the hypotheses of the theorem and let
(
Z :

Y ⊂ e(X,T ∗X,−)

)
be an embedding of Y in e(X,T ∗X,−). By Theorem 3.12 and

Proposition 4.7, any obstruction to splitting Y will come from
HomOX

(
νY/X,(±)k ,∧kT ∗Y,−

)
, which vanishes by assumption. Hence any ob-

struction to splitting Y vanishes which means Y must be split. We can
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deduce part (ii) similarly by reference to Proposition 3.7 and Theorem 3.12.
�

6.2. Split embeddings of models

The notion of splitness has been defined for supermanifolds in Definition 1.1
and embeddings of supermanifolds in Definition 2.2. Presently, Theorem 6.1
motivates the following definition of splitness for embeddings of models.

Definition 6.2. An embedding of models f : (Y, T ∗Y,−) ⊂ (X,T ∗X,−) is said
to be split if every holomorphic submanifold of the split model e(X,T ∗X,−) over
f is split as a supermanifold.

In the above terminology, Theorem 6.1 asserts: an even embedding of models
f : (Y, T ∗Y,−) ⊂ (X,T ∗X,−) is split if either Theorem 6.1(i) or Theorem 6.1(ii)
hold for each k ≥ 2. These conditions can be relaxed slightly since what is
ultimately of importance is the image of the Hom spaces in Theorem 6.1(i)

and (ii) in the obstruction spaces H1
(
X,Q(k)

T ∗Y,−;T ∗X,−

)
and H1

(
X,Q(k)

T ∗Y,−

)
re-

spectively. This leads to the following.

Proposition 6.3. Let f : (Y, T ∗Y,−) ⊂ (X,T ∗X,−) be an even embedding of
models and suppose the normal bundle sequence of the embedding of spaces
Y ⊂ X is split. Then f is split.

Proof. Since f is even,

ν∗Y/X,(±)k =

{
IY /I2

Y k is even

(0) k is odd.

Now as T ∗Y,− is locally free, so are its exterior powers. In particular, assuming
the normal bundle sequence of Y ⊂ X splits, the sequence of sheaves on
the bottom row of Theorem 4.4 is split exact for k even. It is split exact
when k is odd since ν∗Y/X,− = (0), as stated above. On cohomology, the

image of HomOY

(
ν∗Y/X,(±)k ,∧

kT ∗Y,−
)

in H1
(
X,Q(k)

T ∗Y,−

)
vanishes for all k. By

Theorem 3.12 and Proposition 4.6, the embedding of models f will be split.
�

Example 6.4. A classical result of Van de Ven in [VdV58] states that the
normal bundle sequence of any linear subspace i : Y ⊂ PmC will be split exact.
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Hence by Proposition 6.3, any embedding of models

f = (i, f ]) : (Y, i∗T ∗Pm
C ,−) ⊂ (PmC , T ∗Pm

C ,−)

will be split, for T ∗Pm
C ,−

any locally free sheaf on PmC .

In a subsequent section We will recover the results of Example 6.4 in a
particular case without reference to Van de Ven’s result.

6.3. Embeddings in projective spaces and twistings

We continue here from where we left off in Example 6.4. Let X = PmC and
Y be a holomorphic submanifold. Denote by i : Y ⊂ PmC the holomorphic
embedding of spaces. For any locally free sheaf T ∗Pm

C ,−
we get an even em-

bedding of models f : (Y, i∗T ∗Pm
C ,−

) ⊂ (Pm, T ∗Pm
C ,−

). Note that this embedding

can be ‘twisted’ by replacing T ∗Pm
C

with T ∗Pm
C ,−

(`) := T ∗Pm
C
⊗OPm

C
(`). We denote

by f ` : (Y, i∗T ∗Pm
C ,−

(`)) ⊂ (PmC , T ∗Pm
C ,−

(`)) the embedding of models obtained

by twisting f . In the case where Y = Pm′C is also a projective space for some
m′ ≤ m, a famous theorem of Serre can be applied to deduce the existence
of split embeddings of models.

Theorem 6.5. Let f : (Pm′C , i∗T ∗Pm
C ,−

) ⊂ (PmC , T ∗Pm
C ,−

) be an embedding of

models, where i : Pm′C ⊂ PmC is holomorphic. Then there exists some integer
`0 such that f ` is split for all ` ≤ `0.

Proof. This result relies on Serre’s Theorem B and boundedness of the ex-
terior algebra as a graded commutative algebra. Recall that Serre’s The-
orem B, as stated in [OSS10], implies: for any locally free sheaf on F on
projective space PjC, there exists some `0 such that H0(PjC,F(`)) = (0) for
all ` ≤ `0. Now with f ` : (Pm′C , i∗T ∗Pm

C ,−
(`)) ⊂ (PmC , T ∗Pm

C ,−
(`)) see that for each

k the corresponding conormal bundle of f `, denoted ν∗Pm′
C /Pm

C ,(±)k
(`), is:

ν∗Pm′
C /Pm

C ,(±)k
(`) =

{
IPm′

C
/I2

Pm′
C

k is even;

(0) k is odd.

Since the embedding i is holomorphic, ν∗Pm′
C /Pm

C ,(±)k
(`) will be locally free.

Now, for any locally free sheaf F on PjC we have ∧k
(
F ⊗OPj

C
(`)
)

= ∧kF ⊗
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OPj
C
(k`). Hence for each k,

(f `)∗R(k)
T ∗
Pm′C ,−

(`);T ∗PmC ,−(`)

∼=

{
HomOPm′C

(
IPm′

C
/I2

Pm′
C
,∧kT ∗Pm′

C ,−

)
⊗OPm′

C
(k`) k is even;

(0) k is odd

where T ∗Pm′
C ,− = i∗T ∗Pm

C
. Since ν∗Pm′

C /Pm
C ,(±)k

(`) is locally free, so is

(f `)∗R(k)
T ∗
Pm′C ,−

(`);T ∗PmC ,−(`)

and we can apply Serre’s Theorem B. It implies there exists an `(k) such

that H0
(
Pm′C , (f `)∗R(k)

T ∗
Pm′C ,−

(`);T ∗PmC ,−(`)

)
= (0) for all ` ≤ `(k). Since the exte-

rior algebra ∧•T ∗Pm′
C ,− is bounded, i.e., ∧kT ∗Pm′

C ,− = (0) for k < 0 and k >

rank T ∗Pm′
C ,−, there are only finitely many such values `(k) to consider. Set

`0 = min{`(k) : 2 ≤ k ≤ rank T ∗Pm′
C ,−}. By Proposition 4.7 and Theorem 6.1,

f ` will be split for all ` ≤ `0. �

7. Applications II: Projective varieties

7.1. Projective superspace

Throughout this article, we have studied supermanifolds by reference to
their model. The treatment so far is perhaps a little abstract so we consider

more concrete examples presently. Complex affine superspace Am+1|n
C is the

superspace with global function algebra C[x0, . . . , xn|θ1, . . . , θm], the polyno-
mial algebra defined by relations xixj = xjxi, θaθb = −θbθa and xiθa = θaxi.
Complex superspace Cm+1|n is the split model associated to the model
(Cm+1,⊕nO), where O is the structure sheaf of Cm+1 and ⊕nO is the n-
fold direct sum. In the notation in this article, Cm+1|n = e(Cm+1,⊕nO). A con-
struction of projective superspace, as one might encounter in the literature,
can be found in [Man88]. It proceeds along lines similar to the construction
of projective space. For shorthand set C[x|θ] = C[x0, . . . , xn|θ1, . . . , θm]. The
multiplicative group Gm = C× acts on C[x|θ] by scaling x 7→ λx and θ 7→ λθ
for all λ ∈ Gm. In viewing (x|θ) as a system of global coordinates on Cm+1|n

we see that Gm will act on Cm+1|n, leaving fixed the origin (0|0). The quo-

tient
(
Cm+1|n − {(0|0)}

)
/Gm is defined to be the projective superspace Pm|nC .
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An instructive exercise is to verify the following, details of which we omit
here.

Lemma 7.1. Projective superspace Pm|nC is the split model associated to the
model

(
PmC ,⊕nOPm

C
(−1)

)
.

7.2. Degree-d subvarieties

Subvarieties of affine superspace Am+1|n
C are described by prime ideals I

in C[x|θ]. Those prime ideals which are homogeneous define subvarieties of

Pm|nC . Consider a homogeneous, prime ideal I ⊂ C[x|θ] generated by poly-
nomials {Pα(x|θ)}α∈I , where I is a finite index set and

Pα(x|θ) =
∑
|µ|>0

Pα|µ(x)θµ

= Pα|0(x) + Pα|a(x)θa + Pα|ij(x)θiθj + · · ·

where µ is a multi-index; |µ| is its length; and Pα|µ(x) are polynomials
in x and all the free indices are implicitly summed. The set {Pα|0(x)}α∈I
generates a homogeneous ideal in C[x] and so defines a subvariety V of PmC .
Since the even and odd coordinates x and θ have the same degree under the
scaling action of Gm = C×, we see that Pα(λx|λθ) = λdPα(x|θ) if and only
if

degPα|µ(x) = d− |µ|(7.2.1)

for all µ. The subvariety V ⊂ Pm|nk defined by I has degree d if and only if I
is generated by homogeneous polynomials {Pα(x|θ)}α∈I whose coefficients
satisfy (7.2.1) for all α, µ. Some general properties to observe are:

(i) Vred = V ;

(ii) the odd conormal sheaf T ∗V,− is defined as the cokernel of the syzygy

generated by
(∑

Pα|a(x)θa
)
α∈I in ⊕nOPm

C
(−1).

The odd conormal sheaf of the embedding (V, T ∗V,−) ⊂ (PmC ,⊕nOPm
C

(−1))

of models is generated by the relation
∑
Pα|a(x)θa for all α ∈ I. Hence if

Pα|a(x) = 0 for all α and a, this embedding of models will be even. And in
this case T ∗V,− = i∗ ⊕n OPm

C
(−1), for i : V ⊂ PmC the holomorphic embedding

of reduced spaces.

Proposition 7.2. Any linear subvariety V ⊂ Pm|nC is split.
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By Lemma 7.1, the statement of Lemma 7.2 above is a particular instance of
the more general statement in Example 6.4. In Example 6.4 however it was
necessary reference a classical result of Van de Ven on the nature of linear
subvarieties of projective spaces. We will present below a simple argument
which does not require Van de Ven’s result.

Proof of Proposition 7.2. Let V ⊂ Pm|nC be given by the ideal I and gener-
ators F =

(
{Pα}α∈I

)
. If V is linear, d = 1. Then from (7.2.1) we see that

degPα|µ < 0 for |µ| > 1, which means Pα|µ = 0 for |µ| > 1. Hence the mini-
mal non-splitting degree of F is∞, i.e.,mF± =∞ (c.f., (5.5.2)). In using that

Pm|nC is split by Lemma 7.1, this proposition follows from Lemma 5.4. �

7.3. The rational normal curve

Consider a subvariety V ⊂ PmC of degree d, defined by a homogeneous, prime
ideal

(
{Pα|0(x)}α∈I

)
. To any λ ∈ C consider the ideal Iλ generated by

Pα(x|θ) = Pα|0(x) + λθ1 · · · θd.(7.3.1)

Then Iλ will define a degree-d subvariety Vλ ⊂ Pm|dC , with (Vλ)red = V . A
natural question to ask is whether Vλ so described is split or not. We address
this in the case where V ⊂ PdC is the rational normal curve, i.e., a degree-d
embedding of P1

C.

Theorem 7.3. For λ ∈ C, let Vλ ⊂ Pd|dC be given by F = P (x) + λθ1 · · · θd,
where (Vλ)red ⊂ PdC, defined by (P (x)), is the rational normal curve of degree
d. Then:

(i) if d = 2, Vλ will be split if and only if λ = 0;

(ii) if d 6= 2, Vλ is split for any λ.

Remark 7.4. Theorem 7.3(i) was also addressed by Onishchik and
Bunegina in [BO96]. There the authors argued, by reference to transition

data, that the superspace quadric in P2|2
C is non-split. We recover these re-

sults in Theorem 7.3(i) without recourse to transition data.

Proof. Let Iλ be the ideal defining Vλ. The case d = 1 is addressed in Propo-
sition 7.2. For d > 1, observe that the embedding of models (V, T ∗V,−) ⊂
(PdC,⊕dOPd

C
(−1)) will be even. Since i : V = (Vλ)red ⊂ PdC is the degree-d

embedding of the rational normal curve, V is isomorphic to P1
C and T ∗V,−

∼=
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i∗ ⊕d OPd
C
(−1) = ⊕dOP1

C
(−d). The model for the degree-d subvariety Vλ is

therefore (P1
C,⊕dOP1

C
(−d)). We will now focus on part (i) and so set d = 2.

The model for Vλ in degree 2 is (P1
C,⊕2OP1

C
(−2)). Since P2|2

C is split we can
use Theorem 3.12 to evaluate the obstructions to splitting. We firstly recall
some classical theory:

• any holomorphic vector bundle on P1
C will split into a sum of holomorphic

line bundles (see [OSS10, p. 12]);

• a rank r vector bundle E on a rational curve is said to be balanced if E ∼=
OP1

C
(k)⊕s ⊕OP1

C
(k − 1)⊕r−s, where E is the sheaf of holomorphic sections

of E;

• for a rational curve C ⊂ PnC, the restriction ∧`TPn
C
|C is balanced for all `.

This a consequence of the Grauert-Mülich theorem (see [OSS10, p. 104]).

Now TP2
C

is a holomorphic vector bundle on P2
C of degree 3. Hence its re-

striction to V will have degree 6. From the above facts, this leads therefore
to:

TP2
C
|V ∼= OP1

C
(3)⊕OP1

C
(3).

In using now that TV = OP1
C
(2) and νV/P2

C
= OP1

C
(4) the normal bundle se-

quence to the embedding V ⊂ P2
C is:

0 −→ OP1
C
(2) −→ OP1

C
(3)⊕OP1

C
(3) −→ OP1

C
(4) −→ 0.(7.3.2)

With T ∗V,− = OP1
C
(−2)⊕2, dualising (7.3.2) and applying

HomOVred

(
−,∧2T ∗V,−

)
,

the induced sequence on cohomology gives,

0 −→ C δ−→ C −→ 0.

The boundary map δ above can be identified with δ2 in (3.5.1) since the

embedding Vλ ⊂ Pd|dC is even. Note in particular that δ is an isomorphism.
Now recall that Vλ is defined by the pair (I, F ) where F = P (x) + λθ1θ2.
The term hF = λθ1θ2 pulls back to a global homomorphism in

HomOV

(
ν∗V/P2

C
,∧2T ∗V,−

) ∼= C

and so can be identified with λ. By Theorem 5.6 we see that δ(λ) will be
the obstruction class of Vλ. As we have observed, δ is an isomorphism so
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therefore if λ 6= 0, Vλ will be non-split. This settles part (i). Regarding (ii),
note that the result holds trivially from Theorem 6.1 when d is odd, since
ν∗
V/Pd

C,−
= (0). For d even, we firstly recall the classical fact:

• let C ⊂ PdC be a rational curve of degree-d. Then νC/Pd
C
∼= OP1

C
(d+ 2)⊕d−1.

Hence,

HomOV

(
ν∗V/Pd

C
,∧dT ∗V,−

) ∼= OP1
C
(d+ 2− d2)⊕(d−1).

Since d2 > d+ 2 for d > 2, the above sheaf cannot have any global sections.
Part (ii) now follows from Theorem 6.1. �

Concluding Remarks

The obstruction classes to splitting supermanifolds appear prominently
throughout this article. They are indispensable to the understanding of
complex supermanifolds but their application in theoretical physics remains
unclear. More recently, they have been considered in the framework of su-
perstring theory, arising there as the impediment to the calculation of the
superstring scattering amplitude to loop orders greater than two. We pro-
pose another potential application of the obstruction classes which would be
interesting to pursue in future work.

In the paper by Sethi in [Set94] and Aganagic and Vafa in [AV04], certain
superspace quadrics are proposed as mirrors for the rigid Kähler manifolds
appearing in Landau-Ginzberg sigma models. Based on Theorem 7.3(i), we
might expect these superspace quadrics to be non-split and indeed this is
what is deduced in a subsequent paper [Bet18b]. In which case, the mirror
map described by Sethi and Aganagic-Vafa ought to exchange the Kähler pa-
rameter with obstruction classes to splitting the mirror superspace quadric.
This could lead to interesting interplay between Kähler geometry and com-
plex supergeometry and so would be an interesting line of research to pursue.

Appendix A. Proof of Lemma 1.8

Let X = (X,OX) be a supermanifold. We wish to show: if the following exact
sequences of sheaves on X:

0→ JX → OX → OX → 0(A.1)
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and

0→ J 2
T ∗X,−

→ JT ∗X,−
→ T ∗X,− → 0(A.2)

are split exact, then X is split. That is, there exists a global isomorphism
OX

∼→ ∧•T ∗X,−. A splitting of (A.1) shows that OX will admit the structure
of an OX -algebra. Then with a splitting of (A.2), we are in the situation
where: we have a map j : T ∗X,− → OX of an OX -module into the unital OX -

algebra OX such that j(ξ)2 = 0, by supercommutativity of OX. Hence by
the universal property of exterior algebras, there will exist a unique algebra
morphism ψ : ∧•T ∗X,− → OX such that the following diagram commutes:

T ∗X,−

j ""

// ∧•T ∗X,−

ψ{{
OX

(A.3)

It remains to show that ψ is an isomorphism. To see this, consider a cover
(Ui) for X and local splittings ϕi : ∧•T ∗X,−(Ui)

∼→ OX(Ui) which exist since
X is a supermanifold. As ψ comes from the universal property,

ψ|Ui
: ∧•T ∗X,−(Ui)→ OX(Ui)

will inherit this property, i.e., it will be unique so there will exist a morphism
φi : ∧•T ∗X,−(Ui)→ ∧•T ∗X,−(Ui) commuting the following diagram:

∧•T ∗X,−(Ui)

ϕi &&

φi // ∧•T ∗X,−(Ui)

ψ|Uixx
OX(Ui)

(A.4)

Now ϕi is an isomorphism and commutativity of (A.4) gives ϕi = ψ|Ui
◦ φi.

Hence both ψ|Ui
and φi must be injective. Since φi is an injective homomor-

phism of sheaves, it will be injective on stalks. Then at the level of stalks,
note that φi will will be an injective morphism of a finite rank algebra into
itself, so it will therefore be an isomorphism. Hence φi is an isomorphism of
sheaves. From (A.4) now, we see that ψ|Ui

can be written as a composition
of isomorphisms. Therefore ψ|Ui

is an isomorphism for each Ui. It follows
that ψ itself is an isomorphism of sheaves. �
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