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Symmetry classification of
topological photonic crystals

GIUSEPPE DE NITTIS AND MAX LEIN

In a seminal paper Haldane conjectured that topological phenom-
ena are not particular to quantum systems, and indeed, later ex-
periments realized unidirectional, backscattering-free edge modes
with electromagnetic waves. This raises two immediate questions:
(1) Are there other topological effects in electromagnetic media?
And (2) is Haldane’s “Quantum Hall Effect for light” really anal-
ogous to the Quantum Hall Effect?

We conclusively answer both of these questions by classifying
topological photonic crystals according to material (as opposed to
crystallographic) symmetries. It turns out there are four topolog-
ically distinct types of media, of which only one, gyrotropic me-
dia, is topologically non-trivial in d = 2,3. That means there are
no as-of-yet undiscovered topological effects due to our choice of
materials; in particular, there is no analog of the Quantum Spin
Hall Effect in classical electromagnetism. Moreover, at least qual-
itatively, Haldane’s Quantum Hall Effect for light is analogous to
the Quantum Hall Effect from condensed matter physics as both
systems are in the same topological class, class A. Our ideas are
directly applicable to other classical waves.
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1. Introduction

Raghu and Haldane proposed in a seminal work [80] that topological ef-
fects are bona fide wave rather than gquantum phenomena. In analogy to
the Quantum Hall Effect, they predicted unidirectional, backscattering-free
edge modes in periodic gyrotropic light conductors, also known as gyrotropic
photonic crystals, and attributed their existence to the “non-trivial topology
of the system”. More specifically, they made the following

Conjecture 1.1 (Raghu and Haldane’s Photonic Bulk-Edge Corre-
spondence [80]). In a two-dimensional photonic crystals with boundary
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the difference of the number of left- and right-moving boundary modes in
bulk band gaps is a topologically protected quantity and equals the Chern
number associated to the frequency bands below the bulk band gap.

Raghu and Haldane base their arguments on the analogy to the corre-
sponding quantum systems: they proposed (as opposed to derived) ray optics
equations, which contain geometric Berry curvature terms to subleading or-
der. And since the Chern number can be computed as the Brillouin zone
average of the Berry curvature, the analogy to the Bloch electron is then
invoked in an ad hoc fashion without making any reference to the underly-
ing dynamical equations. Their prediction has been confirmed in a number
of spectacular experiments in electromagnetic, acoustic and phononic waves
[66, 81, OT, 07, 100]. Up until now a first-principles understanding starting
from Maxwell’s equations is an open problem. These and other, more recent
works have naturally raised two questions:

(1) How similar is the Quantum Hall Effect for light to the one from solid
state physics? Do they share the same mechanism?

(2) Are there other, as-of-yet unknown topological effects?

To answer these questions and get a more complete picture, we will rigor-
ously establish what “topological” means in the context of classical electro-
magnetism. This keyword is inserted into the discussion of a lot of physical
effects — even if it is not always clear what that actually means. For exam-
ple, three different groups [8, 53, O9] have claimed to have found a photonic
analog of the Quantum Spin Hall Effect, implying that the spin-momentum
locking they find is of topological origin. Our first principles approach will
clear up this confusion, and we will analyze these three works in the conclu-
sion (Section [5.2.2).

The crucial ingredient in the analysis of topological effects is symmetries,
and when designing topological electromagnetic media, there are two axes
to explore: One can choose the materials from which to build the photonic
crystal (material symmetries) and then decide how to periodically arrange
these materials (crystallographic symmetries). In this work we will focus on
material symmetries. For those we answer both of these questions conclu-
sively by first reformulating Maxwell’s equations in Schrédinger form [24],
and then adapting the Cartan-Altland-Zirnbauer classification scheme for
topological insulators. The latter is the content of the present paper and the
eighth in a sequence of earlier works [20H25] [61] that tries to systematically
understand how topological effects emerge from electrodynamics.
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Initially, the term topological insulator was born of the topological inter-
pretation of the Quantum Hall Effect [94]. This seminal work by Thouless,
Kohmoto, Nightingale and den Nijs linked a measurable quantity, the trans-
verse conductivity, to a topological invariant of the so-called Bloch vector
bundle, the Chern number [88]. Put succinctly, they have established a con-
nection between the topology of a mathematical object, in this case a vector
bundle, and a measurable physical quantity, the transverse conductivity.
Topological insulators come in more than one flavor, and their systematic
classification and characterization (see e. g. [12] [36], [79] for three recent re-
views) is the main aim of several vibrant communities within theoretical
and mathematical physics; the most common classification tool is the so-
called Cartan-Altland-Zirnbauer (CAZ) scheme [2] 12, [84]. So not only can
breaking symmetries lead to topological effects, also their presence might
[15] [16l [47), [79]. The idea to realize an analog of the Quantum Hall Effect
with electromagnetic waves in photonic crystals relies on the breaking of
time-reversal symmetry.

Just like with (quantum) topological insulators the existence of “con-
ducting” electromagnetic boundary states in a region where the bulk is “in-
sulating” is expected to be explainable via bulk-boundary correspondences;
in the context of classical waves conducting means the presence of states
while insulating refers to their absence. This idea goes back to Hatsugai’s
works on topological condensed matter systems |40, [41] and states that cer-
tain aspects of the system at the boundary are completely determined by
its properties in the interior. Bulk-boundary, sometimes also known as bulk-
edge correspondences, usually consist of three equalities:

(1‘13) Obulk/edge(t> ~ Tbulk/edge
(1.1b) Touk = Tedge

The first two identify physical observables Oyyji/egde in the bulk and at
the boundary that are approximately given in terms of topological quan-
tities Thyik/edges and the third states that topological bulk and boundary
invariants necessarily agree with one another. The number and nature of
topological invariants depends on the presence or absence of certain discrete
symmetries. For the Quantum Hall Effect time-reversal symmetry is broken
by the magnetic field, and [94] proved equation in the bulk while
Hatsugai contributed the other two. Note that in the more mathematically
minded subcommunity, usually by itself is referred to as bulk-edge
correspondence, but we insist that it is which imbues Thyk = Teqge
with physical meaning.
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Therefore, justifying the Quantum Hall Effect for Light from first princi-
ples rests on proving photonic bulk-boundary correspondences, and with this
paper we aim to work towards this goal. A necessary prerequisite is to first
classify linear, lossless and dispersionless positive index media for electro-
magnetic waves according to certain discrete symmetries in the spirit of the
CAZ scheme, as the symmetries which are present determine the number and
nature of topological invariants which are supported in photonic crystals.

This paper provides an ezhaustive classification of electromagnetic loss-
less, positive index media according to their material symmetries. Here, we
will only consider symmetries which relate electric and magnetic components
(as opposed to crystallographic symmetries), i. e. those of the form

(1.2a) U,=0,91, n=1,2,3,
(1.2b) T, = (0, ® 1) C, n=0,1,2,3,

where C' is complex conjugation, g = 1 is the identity and the o, for
n = 1,2, 3 are the Pauli matrices, seen as acting on the electromagnetic split-
ting. For instance, T3 : (E, H) — (E, —ﬁ) complex conjugates the fields and
garnishes H with a minus sign. Note that since we can always rescale the
fields by constants such as €y and pg, conditions such as e(x) = p(x) are
equivalent to e(x) = const. u(x). To simplify presentation, we shall always
assume from hereon that the fields have been suitably rescaled so that the
symmetries are of the form .

It turns out that of those 7 symmetries only three are admissible (cf. Sec-
tion for a detailed explanation).

Proposition 1.2 (Admissible material symmetries). Suppose the
medium satisfies Assumption i. e. it is a lossless positive index ma-
terial. Then of all symmetries of the form only the even time-reversal
symmetries T and T3 as well as the dual symmetry Us are admissible.

The presence or absence of these symmetries translate to conditions on
the electric permittivity e, the magnetic permeability p and the bianistropic
tensor x which enter the constitutive relations

o (B) v (8- G2 32 82
that relate the auxiliary fields (D, B) to the electromagnetic field (E, H);

these enter as 3 x 3 blocks into the 6 x 6 matrix-valued function W (x) which
we will collectively refer to as the material weights. W phenomenologically
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describes how the microscopic charges in the medium react to impinging
electromagnetic waves.

Just like in quantum mechanics, for the purpose of a topological clas-
sification, only the anti-linear symmetries 77 and T3 are relevant and we
suppose that all other symmetries have been reduced out:

Assumption 1.3 (No additional symmetries). Suppose either of the
two conditions on the material weights W is satisfied:

(a) Assume W commutes with at most one of the T;, j =1,3, and that
there are mo unitaries U apart from translations which commute with
the material weights W and the free Mazwell operator

_ 0 +iV*
Rot = (—iVX 0 ) .

(b) Assume W commutes with Ty and Ts. Then we suppose that apart from
a phase times Uy = 09 @ 1 there are no other unitaries U apart from
translations which commute with the material weights W and the free
Maxwell operator Rot .

If there were an additional unitary, discrete, commuting symmetry U
present, then we first need to make a block decomposition of the Maxwell
operator M, = W~! Rot ‘w>0, the analog of the quantum Hamiltonian de-
fined by equation below, with respect to the eigenspaces of U and
analyze each of the block operators separately. Depending on the interplay
of all of M’s symmetries, the individual block operators may or may not
inherit symmetries from M, ; we will give a detailed analysis of both of these
cases in Section

Therefore, we identify four distinct types of media which correspond to the
presence of no time-reversal symmetries (1), one even time-reversal symme-
try (2) and two even time-reversal symmetries (1).

Theorem 1.4 (Symmetry classification of media). Suppose the ma-
terial weights

_(el@) x(@)) _ (wolz) Fws(z)  wi(x) —iws()
W(m)_<x(x)* u($)>_<w1(ﬂ?)+iw2(ﬂf) wo<x>—w3<x>)’

expressed in terms of four hermitian 3 x 3 matrices wj(x) = wj(x)*, j =
0,1,2,3, are lossless and have strictly positive eigenvalues that are bounded
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away from 0 and oo, i. e. they satisfy Assumption[2.1. Moreover, we assume
there are no additional unitary commuting symmetries (Assumption .
Then there are four topologically distinct materials:

: o Conditions . CA7Z
Material Realizations on W Symmetries Cla
Dual symmetric Ves wowz Reowo,
) 5 =0,
[ Ty, T3, U 2 x Al
materials & 28 29 o — 0, Ty, Uy y
vacuum
wo = Re ws
Non-dual wo = Rewy,
. Yes w3 = Re w3,
symmetric ; _ T3 AT
€ non-gyrotropic B [0 7 wy = ilmwy,
wy = Rews
wp = Rewp,
Magneto-electric Yes ws = 1Imws, T Al
? B399 | w=Rew, 1
wo = Re wo
Gyrotropic Yes None None A
Y b [42] [96]

The conditions on the material weights in each row are exclusive, meaning
that e. g. non-gyrotropic materials must violate at least one of the conditions
that single out magneto-electric materials.

Three of these four cases fall within the standard CAZ classification
scheme and therefore closely resemble the corresponding quantum systems.
Although, as we will discuss below, drawing conclusions from that is not as
easy as it might appear at first. Dual symmetric, non-gyrotropic media, the
first case, falls outside of standard theory as it has two anti-commuting even
time-reversal symmetries, and we will perform an analysis of the topological
phases this topological class supports in Section The result can be
succinctly summarized as 2 x class Al (the meaning of this shorthand is
made precise in Theorem [4.5]).

At the end of the day, it turns out that of all periodic media in dimensions
1, 2 and 3, only gyrotropic media in dimensions 2 and 3 can be topologically
non-trivial; the phases are labelled by one and three first Chern numbers, re-
spectively. For periodic 3d photonic crystals with periodic time-dependence
(d =4), second Chern classes will also play a role when distinguishing topo-
logically distinct phases. More specifically, our classification result reads:
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Theorem 1.5 (Topological bulk classification of periodic media).
Suppose the material weights are periodic and satisfy Assumption |2.1]

(1) Class A: Gyrotropic media
Phases are labelled by Z-valued Chern numbers, in
d =1 by none (topologically trivial),
d =2 by a single first Chern number (Z),
d = 3 by three first Chern numbers (Z3),
d = 4 by six first and one second Chern number (Z° @ 7).

(2) Class AI: Non-dual symmetric, non-gyrotropic and magneto-
electric media
Ind=1,2,3 these media are topologically trivial, i. e. there exists only
a single phase.
In d = 4, phases are labelled by a single second Chern number (Z).

(8) Dual-symmetric, non-gyrotropic media
Ind=1,2,3 these media are topologically trivial, i. e. there exists only
a single phase.
In d = 4, phases are labelled by two second Chern numbers (Z2).

Outline. This work is separated into 5 Sections: following this introduc-
tion, we give an overview of the Schrodinger formalism for classical electro-
magnetism in media in Section 2] summarizing the results of [24] to make this
work more self-contained. After a discussion of the relevant material sym-
metries (Section , we give a bulk classification of electromagnetic media
(Section . That includes a precise definition of what we mean by topol-
ogy and how topological invariants are connected to relevant families of
frequency bands. We close this work by contrasting and comparing it to the
literature and outlining future developments (Section .

2. The Schrodinger formalism for
electromagnetism in linear, dispersionless media

The first step prior to adapting a quantum mechanical concept such as the
symmetry classification is to write Maxwell’s equations in Schrédinger form;
this is a little more involved, and we have dedicated a separate paper [24] to
address all the subtleties. These intricacies arise because we want to include
gyrotropic lossless media in our discussion where the material weights

(2.1) W(z) = <e<w>* x(iv)>
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are complex, W # W. Here, W is a 6 x 6 matrix-valued function and is
usually split into 3 x 3 blocks, the electric permittivity ¢ = *, the magnetic
permeability 4 = p* and the bianisotropic tensor x. It phenomenologically
describes how the microscopic charges inside the material react to impinging
electromagnetic fields. To be able to rewrite Maxwell’s equations in
Schrodinger form we need to impose two conditions on the medium:

Assumption 2.1 (Material weights).

(a) The medium is lossless, i. e. W(x) = W (x)* takes values in the hermi-
tian 6 x 6 matrices.

(b) The medium is not a negative index material, i. e. the eigenvalues
0<c<wi(z),...,we(r) <C <0

of the hermitian matriz W (x) are all positive and bounded away from 0
and oo uniformly in x.

2.1. Maxwell’s equations in linear, dispersionless media

In case the material weights W # W are complex, it is necessary split the
physical electromagnetic field

(E(t), H(t)) = U (t) + T_(2)
into a complex wave

~

(22) o) = (60, D) = —= [ dwe i (Blw), Aw),

1
Vor /0

consisting only of positive frequencies and the analogously defined neg-
ative frequency contribution W_, defined in terms of the Fourier trans-
formed fields (E(w), H(w)). We will similarly have to split charge density
p(t) = (pP(t), 0) = p1(t) + p—(t) and current density J(t) = (JP(¢), 0) =
J4+(t) + J_(t) into positive and negative frequency parts.

W, and ¥_ evolve according to different Maxwell equations, namely

e (6 3) A - (- (3)

2

V- (e (t) + x i (1))
(2.3b) (v-(x*z/Z(Huwi(t)) ( >
2.30) VIR0 + 0 l) =0
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for non-negative frequencies and an analogous set of equations involving
the complex conjugate weights W when w < 0. For otherwise (E(t), H(t))
would acquire a non-vanishing imaginary part over time. We refer to equa-
tion as the dynamical equation, is the constraint equation and
local charge conservation.

To readers who would like to know why these equations are physi-
cally sensible, we refer to [24, Section 2] where we have derived them from
Maxwell’s equations for linear, dispersive media. The main point is that the
real-valuedness of the electromagnetic field as well as current and charge
densities translates to

~

(E(w), Hw)) = (E(~w), H(-w))

after Fourier transform and gives rise to phase locking condition
(2.4) U =",

for complex waves. Put another way, positive and negative frequency contri-
butions of the wave are not independent degrees of freedom, if we know one,
we can reconstruct the other. Hence, it suffices to consider for w>0
only. Implicitly, we have exploited that we can uniquely represent real fields
with finite field energy as complex waves composed solely of non-negative fre-
quencies (see [24, Proposition 3.3]); this systematic link to a complex Hilbert
space is essential if one wants to apply methods from quantum mechanics.

2.2. Rewriting Maxwell’s equations in Schrodinger form

If we multiply both sides of (2.3a) by iW~! (which is bounded thanks to
our assumptions on W), we get the Schrdodinger form of the dynamical law,

(2.5) 10U (t) = M W (t) —iW LT (1), T, (0) = Q4 (Eo, Hp).

Here, the complex positive frequency wave W represents the real electro-
magnetic field and plays the role of the wave function; the map Q4 which
connects ¥ to the real fields (Eg, Hy) will be introduced below. The role
of the Hamiltonian is played by the positive frequency Maxwell operator

(2.6) My =W Rot | .,
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which is defined in terms of the free Mazwell operator

- 0 +iV*
Rot = (—iVX 0 > .

V*E =V x E denotes the usual curl.

Of course, we still need to specify the Hilbert space this operator acts
on, and prove that M, is selfadjoint (or in physics parlance, hermitian).
To do that, let us drop the frequency restrictions and define the auxiliary
positive frequency Mazwell operator

M3 = W~ Rot.

Because M$"™ defines a selfadjoint (hermitian) operator (cf. [24, Appendix B])
on the Hilbert space

L%, (R3, %) = {xp RY — C"

/ o W(x) - W (2) W(z) < o0 )
Rd
endowed with the energy scalar product

(2.7) (@, V) = (2, W V) = /R do ®(z) - W(x) ¥(x),

we can give meaning to the map

(2.8) Q+ = L(0,00)(MP™) + 5 1o (MT™)

with which we can uniquely represent real fields as complex waves composed
solely of non-negative frequencies. The factor 1/2 is necessary so that gradient
fields (which are static, i. e. eigenfunctions to frequency 0) are not counted
twice (see [24] Section 3.2.2] for further explanations).

Now My = M3 is the restriction of the auxiliary Maxwell operator
to the Hilbert space

‘wzo

My = Q4 [Liy(R?,C7%)]

comprised of non-negative frequency states that inherits the energy scalar
product. We need to include w = 0 waves, i. e. gradient fields, so that we
are able to cope with sources. What is more, there is a one-to-one cor-
respondence between real electromagnetic fields (E, H) € L?(R3,R%) with
finite field energy and complex fields of non-negative frequencies (cf. [24]
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Proposition 3.3)),
(E,H) ¢ L*(R3,R%) «+— U, =Q, (E,H)cH,.

This systematic identification of real and complex fields allows us to employ
technqiues from the theory of selfadjoint operators, and that necessarily
forces us to work on complex vector spaces.

M inherits the selfadjointness of M, and therefore the evolution
group e M+ is unitary with respect to (-, )y - The unitarity implies the
conservation of field energy in the absence of currents,

—itM —itM
£(B(1),H(D)) = (7™M w, (0), «™Mow (0)),,
— (0.(0), W4 (0))y,, = £ (E(0), H(0)).
thereby justifying the term energy scalar product in the process.

Lastly, there is the matter of the constraint equation ([2.3b]). Provided
local charge conservation ([2.3c|) holds, the solution to (2.5) automatically
satisfies (2.3b]). The key idea here is to decompose ¥ into transversal and

longitudinal components, and then use (2.3c). Further details can be found
in [24, Appendix A].

2.3. Symmetry between positive
and negative frequency equations

For the symmetry arguments we also need to define the negative frequency
counterparts. The Maxwell operator

< —
M_=M2| _ =W "Rot|
the “projection” onto non-positive states,
Q= 1oaig) (M) + 1y (M),

and the non-positive frequency Hilbert space H_ are defined with the com-
plex conjugated weights W. Complex conjugation (CW)(z) = ¥(z) defines
an antiunitary between H4 and H+ that intertwines positive and negative
frequency operators with one another,

M_=-CM,C,
Q- =CQ.cC.

However, complex conjugation can mever be a physically meaningful sym-
metry of the Mazwell operator, because the real-valuedness of the physical
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fields is an unbreakable tenet of classical electromagnetism and the resulting
phase locking condition ([2.4]) implies that positive and negative frequency
fields are not independent degrees of freedom.

2.4. Maxwell’s equations in other dimensions

Maxwell’s equations are naturally defined in three spatial dimensions, but
electromagnetic waves can be confined to lower-dimensional media. One
common way is to construct wave guides where in one or two directions
the medium is terminated by a metal. Conversely, there are cases when the
effective dimension of the system may exceed 3 [72], 103].

We emphasize that all the symmetries that we will consider in the next
section do not depend on z, derivatives V or time ¢, and only impose condi-
tions such as € = Ree or ¢ = u. These symmetries then define (anti)unitaries
on the relevant Hilbert space on which the (auxiliary) Maxwell operator is
defined. We will only outline the main ideas and postpone the technical
details to a future work.

2.4.1. Lower-dimensional electromagnetic media. The two-dimen-
sional gyrotropic photonic crystal realized in [96] which exhibited topologi-
cally protected edge modes is an example of a lower-dimensional electromag-
netic medium. Here, YIG rods (immersed in a constant magnetic field to tune
the material weights) were arranged in a quadratic lattice and sandwiched
between two metal plates, thereby forming a waveguide for microwaves with
periodic interior. The height h ~ 7mm of the wave guide (which we take to
point in the z-direction) was comparable to the lattice length [ ~ 40 mm.
Usually, the metal walls are approximated by an idealized perfect electric
conductor (PEC) where appropriate boundary conditions

(2.9a) E;(z,0) =0 = E;(z, h),
(2.9b) H,(z,0)=0= H.(x,h),

are imposed on the electromagnetic field. As the notation suggests, E, =
(Ey,, Ey,) is the in-plane component of the electric field E = (E, E,) and
H, the z-component of the magnetic field H = (H,, H,). We will forgo a
precise mathematical definition (which is straight-forward, but technical),
and only sketch the strategy of defining first the auxiliary, then the positive
frequency Maxwell operator. The weights W (z, z) evidently only need to
be periodic in the z-direction with respect to a two-dimensional periodicity
lattice. Straightforward arguments show that M$"™ = W~ Rot, endowed
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with the proper domain, is a selfadjoint (hermitian) operator, and we may
impose the condition w > 0 just like before via the “projection”

Q= 10,0 (ME™) + 1y (M3™)

onto the physical states with frequencies w > 0. This gives rise to My =
M¥™|,>0 and the Hilbert space

Hy =ranQ4 C LQ(R2 x [0, h],(CG).

The situation further simplifies if we assume that

eo(@) 0 0 0

|0 @ o 0

V=10 0 @ o
0 0 0 @

is independent of z and ¢ and p split cleanly into x and z components. Then
we can express every electromagnetic wave as a linear combination of plane
waves (E(m,kz),H(x, kz)) et*-2 in k,, where of course, k, may only take
discrete values. Put another way, the discrete Fourier transform F, in the
z-direction decomposes the auxiliary Maxwell operator

FMyF = @ Mi(k)
kze%’z

into a direct sum of operators M (k. ), each associated to a fixed momentum
k- that governs the dynamics of (E(z,k.), H(z, k.)). In the aforementioned
experiment [96] only the k., = 0 mode contributed, and it suffices to consider

M, (0) = W(x) (_i(v?wo)x +i(Vg,0)x>

w>0

acting the positive frequency subspace of L%,V(]Rz, C%); this operator has a
more compact expression as two 3 x 3-matrix-valued operators (see e. g. [21],
Section 2.4]). We can adapt all of our arguments without any essential
changes, e. g. employ the Bloch-Floquet transform in z = (x1,x2) in or-
der to obtain frequency bands and Bloch functions that now depend on
ky = (kz,, kz,) (cf. Section [4.1)).

The construction of the Maxwell operator for quasi-one-dimensional
waveguides is analogous. Evidently, the more complicated the waveguide
geometry is, the less explicit expressions we get.
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2.4.2. Time-dependent media and media with synthetic dimen-
sions. Photonic crystals which are modulated periodically in time could
also be treated within this framework by making use of techniques devel-
oped for time-dependent quantum systems (see e. g. [76, Section 4.4] or
[19, 54, [74], [82]). Time then appears alongside momentum k = (ki,...,kq)
as a periodic variable, and for topological considerations the system becomes
d + 1-dimensional.

Physical systems can also be designed to have synthetic dimensions by
making the system parameter-dependent or adding internal degrees of free-
dom (see e. g. [72, [103]).

3. Discrete material symmetries of electromagnetic media

The standard classification scheme for topological insulators [2), [84], also
known as the Ten-Fold Way or the Cartan-Altland-Zirnbauer (CAZ) scheme,
distinguishes 10 different topological classes. Which topological class a sys-
tem belongs to is determined by the symmetries of the Hamilton or Maxwell
operator M which enters the dynamical equation i0, ¥ = M W. Inside of each
topological class there are inequivalent phases labeled by a finite set of topo-
logical invariants such as Chern numbers or the Kane-Mele invariant. The
number and nature of these invariants depends crucially on the symmetries
and the dimensionality of the system.

We have applied this scheme in a previous work [2I] to Maxwell’s equa-
tions, but as mentioned in the introduction, the equations we used for me-
dia with complex material weights included states that were unphysical.
Now that we have started with the correct equations and recast them in
Schrodinger form, we have finished all preparations to have a physically
meaningful classification of PTIs.

Compared to the classification theory developed for quantum mechan-
ics, there is one major difference: electromagnetic fields are real. Hence, it
is not clear whether we are able to employ the standard classification ma-
chinery developed for complex vector spaces. The systematic identification
of real fields with complex wave functions that was part and parcel of the
Schrodinger formalism allows us to overcome this conceptual chasm. We
emphasize that all of what we do in this section applies to homogeneous,
random and periodic media alike, covers lower-dimensional waveguides and
time-dependent mediaﬂ and is a prerequisite to the symmetry classification
of periodic light conductors in Section 4

ITo simplify our presentation, we will not make the time-dependence explicit in
case the medium changes periodically in time.
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Before we begin, we need to introduce some more abstract notation. This
is necessary, because much of what we do here holds verbatim independently
of whether we allow the electromagnetic waves to propagate in all of R? or
restrict them to, say, waveguides.

Remark 3.1 (Notation). (1) We denote the unweighted Hilbert space
with . It stands in for spaces like L2(R3,C) or L?(R? x [0, h], C®).

(2) The Hilbert space Hyy is obtained by endowing the Banach space H with
the weighted scalar product (®, V), := (®, W ¥), . For all of the subse-
quent arguments to work, we will first need to show the selfadjointness
of the auxiliary Maxwell operator M$" on Hyy.

(3) The non-negative frequency subspace H, := Q4+ [Hw] is the range of
@+. This operator is constructed from the spectral projections of the
(selfadjoint) operator M$™ through equation ([2.8).

(4) Non-positive frequency analogs such as H_ are defined in the same fash-

ion, we just need to work with complex conjugate weights W.

3.1. Relevant symmetries

For the purpose of classifying photonic topological insulators, we are inter-
ested in four basic types of symmetries: unitary operators with U? = +1 are
called regular symmetries if

(3.1) UMU' =+M,

and chiral (pseudo) symmetries in case

(3.2) UMU=—-M.

Antiunitaries U are said to be of time-reversal-type if holds, and are
particle-hole-type symmetries if just as in U anticommutes with M.
Regardless of whether they commute or anticommute, antiunitaries come
in the even and the odd variety, depending on whether U? = 1. In what
follows, we will refer to all four merely as symmetries unless the distinction
between proper, i. e. commuting, symmetries and anticommuting pseudo
symmetries becomes important.

Let us emphasize that the terminology originates from quantum me-
chanics and should not be taken literally in this context. The presence of a
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particle-hole symmetry, i. e. an anticommuting antiunitarity, does not nec-
essarily postulate the existence of particles and antiparticles.

The notable absence of commuting unitaries in the CAZ scheme rests
on the assumption that such symmetries have been reduced out: should M
commute with a selfadjoint unitary U, then M = M; & M| admits a block
decomposition with respect to the two eigenspaces of U. However, the other
symmetries need not commute with U, so the block operators M, only
retain some, but not necessarily all of the other (ordinary, time-reversal,
particle-hole and chiral) symmetries. This is something that remains to be
checked on a case-by-case basis.

The form of the relevant symmetries is suggested by the problem: we
can express the weights

3
X M —
7=0
and the free Maxwell operator

Rot = —09 ® V*

in terms of the identity o9 = 1, the Pauli matrices o1, o9 and o3, and
3 x 3 block operators acting on the electric or magnetic fields. The first one
VX =V x ¥ is just the usual curl. Electric permittivity € and magnetic
permeability ;¢ determine wo = % (¢ + p) and w3 = (e — p); hermitian and
antihermitian parts of the bianisotropic tensor y fix the remaining two com-
ponents w1 = 1(x + x*) and we = 3(x — x*).

Therefore, we shall consider either

(3.3) U,=o0,®1, n=123,
as candidates for linear symmetries and
(3.4) T, = (o, ®1)C, n=0,1,2,3,

for antilinear symmetries. 77 = (9 1) C' exchanges electric and magnetic
fields, and then complex conjugates them. It captures whether the medium
treats electric and magnetic fields differently; this particular symmetry will
play an important role in our analysis later on.

Symmetries in our case have to satisfy two conditions which seemingly
have to be imposed in addition to U My, U~! = £ M, namely (1) U maps
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non-negative frequency states onto non-negative frequency states and (2) it
needs to satisfy U*W = W—tU*W = U~!, where U*" denotes the adjoint
with respect to the weighted scalar product (cf. [24, Section 3.1.2]);
this adjoint is to be distinguished from U*, the adjoint with respect to the
usual, unweighted scalar product. It turns out only commuting reqular or
time-reversal-type symmetries are admissible.

Proposition 3.2 (Conditions for admissibility of symmetries). Sup-
pose the material weights W satisfy Assumption . Then an (anti)unitary
U on H restricts to an (anti)unitary

U+Z7‘[+—>H+

on the non-negative frequency subspace that preserves the Helmholtz splitting
into transversal w > 0 fields and w = 0 gradients fields exactly when

(a) U commutes with the material weights W (( -, - )y -(anti)unitarity),

(b) U commutes with the free Maxwell operator Rot or, equivalently, the
auziliary Mazwell operator M$™ = W=LRot (positive frequency states
are mapped onto positive frequency states).

(Anti)unitaries U : H — H restrict to Uy : Hy — Hy exactly when U :=
C U C restricts to an (anti)unitary U— : H_ — H_ on the w < 0 frequency
subspace, and Uy and U_ = C Uy C are related by complex conjugation.

This proposition in essence states that Wigner’s Theorem [98] still ap-
plies to classical electromagnetism when Maxwell’s equations are expressed
in Schrodinger form: physical symmetries are implemented by unitary or an-
tiunitary operators. Even for vacuum, we obtain the non-trivial constraint
URot U~! = +Rot on the set of admissible symmetries. What is more,
the Cartan-Altland-Zirnbauer classification crucially rests on Wigner’s The-
orem, so Proposition is an important conceptual prerequisite for our
symmetry classification of electromagnetic media.

The condition that U preserves the Helmholtz splitting seems technical
and perhaps mysterious. But its origin can be traced all the way back to
Maxwell’s equations . Symmetry operations U should maps solutions
of Maxwell’s equations to solutions of Maxwell’s equations. While the focus
usually lies with the dynamical equation , we must not forget that the
constraint equation and the restriction to w > 0 waves are inseparable
parts of the very definition of Maxwell’s equations with complex weights.
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So if U maps solutions onto solutions, then U must preserve the restric-
tion to w > 0 waves. Furthermore, UV must satisfy the constraint equation
whenever U does. And in the absence of charges p = 0, the constraint equa-
tion singles out the positive frequency subspace,

1(0,00) (MP™)[Hw] = {¥ € Hw | Div W ¥ =0},

which is precisely the condition imposed in the Proposition.

Proof. For simplicity, we start with the case of non-negative frequencies and
write (anti)unitary to mean either unitary or antiunitary.

Combining the (anti)unitarity on H with the requirement that U be an
(anti)unitary on Hy translates to the condition

Ur=U- LUt —wol Ut w

Equivalently, we need to impose [U -1 W] = 0. And given that U~! com-
mutes with W whenever U does, we arrive at condition (a).

Next, we need to verify that U restricts to an (anti)unitary on the non-
negative frequency subspace. U is a bounded bijection with bounded inverse
by assumption, so if it restricts to a map Uy : Hy — H, its restriction
also needs to be bijective, bounded and have bounded inverse.

Our assumptions on U are such that the same must hold for positive and
zero frequency subspaces separately. For example, the positive frequency
subspace is the range of 1(g ) (M5"™), and U preserves the w > 0 subspace
exactly when it commutes with 1(g o) (M$"™),

— aux — ' aux
U Lo,00)(ME™) U™ = 1g,00) (U MEXUTT) = 10,00) (ME™).

Clearly, this is the case if and only if U commutes with M.

We can repeat the same arguments for the spectral projection 1, (M),
and the condition obtained here, U M U l=4M 4% is compatible with
U M¥™ U= +M3*™ deduced above.

The product structure of M$"™* =W Rot together with condition (a)
simplifies the commutator to

[U,Rot] =0,

and we have obtained condition (b).

When we read our above arguments in reverse, we deduce that if U is
an (anti)unitary satisfying conditions (a) and (b), it restricts to an (-, - )y~
(anti)unitary that respects the Helmholtz splitting.
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Lastly, complex conjugation maps M{"* onto
M*> =W Rot = —-C M¥™C

So clearly, we can repeat the above arguments after replacing U and W with
U and W. For example, U commutes with Rot exactly when U =CUC
does, and U_ = C'U, C' is obtained from U, by complex conjugation. [

When applied to symmetries of the form (3.3) and (3.4)), our choice is nar-
rowed down to 3 of the 7 operators.

Corollary 3.3. Suppose the material weights W satisfy Assumption [2.1].
Then only commuting symmetries are admissible, namely T1, T3 and Us,.

Proof. We have to check conditions enumerated in Proposition Com-
puting the signs of U Rot U~ = +Rot is straightforward. [U, Rot] = 0 then
singles out those three symmetries above. For symmetries of the form
and the (-, - )y -(anti)unitarity is equivalent to U WU~ = W. O

When the material weights W = W are real, we can give a simpler, concep-
tual proof. For real-valued electromagnetic fields, the action of the operators

1(E,H) = C(E, H),
Un(E’ H) = Tn(E’ H)v

coincide. The first equation means that complex conjugation acts trivially,
i. e. complex conjugation cannot be a physical symmetry since we place no
constraints on the fields.

According to the second equality there are three non-trivial symme-
tries, and barring any other conditions, it seems we are free to implement
them linearly or antilinearly. On the level of real fields, complex conjugation
does not exist, so we would have to choose the linear implementation. In-
deed, physics text books list Us : (E,H) — (E, —H) rather than T3 = U3 C
as time-reversal operation in classical electromagnetism (cf. [44] Table 6.1]).
However, in only one case is the linear implementation compatible with the
Schrodinger form of Maxwell’s equations, for the other two cases (77 and
T3) the symmetry operations need to be implemented antilinearly.

Fortunately, this is consistent with the standard terminology for quan-
tum systems: antiunitary, commuting symmetries are dubbed time-reversal-
type symmetries. So calling T3 time-reversal is consistent with established
terminology and the physical nature of the operation.



Symmetry classification of topological photonic crystals 1487

These subtleties become important when we want to consistently imple-
ment other types of symmetries for classical electromagnetic fields, including
rotations and partial reflections.

Example 3.4 (The parity operation for electromagnetic fields).
The simplest O(3) transformation in this context is parity, i. e. a symmetry
operation which relates the fields at z and —z. Text books of electromag-
netism (e. g. [44, Table 6.1]) will tell us that the physically meaningful
inversion operation on the level of (real-valued) electromagnetic fields is

(P(E,H))(z) := (—E(—z),H(-2)).

The commonly stated reason why we have to add a — sign to the electric
field but leave the magnetic field untouched is that H is an axial or pseudo
vector, whereas E is a vector. That raises the simple question “Why?”

Within the context of the Schrédinger formalism, this is easy to see.
For the sake of argument, let us start with the wrong implementation of
parity (Poare(E,H))(z) := (E(—z),H(—z)) that does not flip the sign of
E. As a first-order differential operator the free Maxwell operator Rot =
— Ppare Rot Pyare anticommutes with Ppape. Hence, it maps positive frequency
waves onto negative frequency waves and vice versa, in violation of condi-
tion (b) stipulated in Proposition

One way to cure this defect is to add complex conjugation. While P, C
preserves H,, we know from quantum mechanics that rotations and partial
reflections should be implemented unitarily and not antiunitarily. Instead,
Prare C does not just act like an antiunitary PT-symmetry, we will see in
just a moment that it in fact is a PT-symmetry.

The other option to make P, into a commuting symmetry is to multi-
ply by another operator that anticommutes with Rot . Mathematically, this
leaves us with a great many options, one of them is —Us,

P = —Us3 Prare = — Phare Us.
The corresponding PT-symmetry constructed from P and T3 is nothing but
PT3 = _Pbare C

as claimed above. Once again, the Schrodinger formalism consistently mar-
ries notions from classical electromagnetism and quantum mechanics.



1488 G. De Nittis and M. Lein

Example 3.5 (General O(3) transformations). Along the same vein,
we extend the above construction to any R € O(3) and define the unitary

35) (v () = (i)

that implements rotations and partial reflections for electromagnetic waves.
Setting R = —1gs recovers the parity operation, which we discussed just
prior. And we recognize the pattern here: for any R with determinant —1
we need to multiply the “bare” operator with Us to ensure we map w > 0
fields to w > 0 fields. That is because O(3) transformations that reverse the
orientation of an oriented basis of R? are exactly those with determinant
—1. And the curl V* picks up on that, it can detect a change of orientation.
Indeed, the generalized eigenfunctions are plane waves with suitable, vector-
valued amplitudes; the details can be found in the proof of [22, Lemma A.4].
Whenever R reverses orientation, the “bare” action of R (without the fac-
tor 03 ® 1) on these plane waves will flip the sign of the “eigenvalue”. To
compensate for the change in sign, we need to add the factor o3 ® 1, which
anticommutes with Rot = —o9 @ V*.

It goes without saying that our O(3)-action is consistent with the
literature (see e. g. [90, Chapter 3.9] for partial reflections).

3.2. Conditions on &, p and x

Now that we know which of the material symmetries and are
admissible, we can translate their presence to conditions on ¢, p and x.
With the help of Proposition and the algebra of Pauli matrices, we can
summarize our findings as follows:

Proposition 3.6 (Symmetry conditions on the w;). Suppose W sat-

isfies Assumption[2.1] Of the 7 operators considered in (3.3) and (3.4) only
three are admissible, and their presence ([Tj, W] = 0) translates to the fol-

lowing conditions on the material weights:

Symmetry ‘ wy = ‘ wy = ‘ wy = ‘ ws = ‘ Symmetry Type
Ty =(01®1)C | Rewp | Rew; | Rews | ilmws +TR
Uy=091 wo 0 W9 0 unitary, commuting
T3 =(03®1)C | Rewp | ilmw; | Rews | Rews +TR

All of them are either proper symmetries or even time-reversal symmetries.
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Note that since T} T3 = iUs the presence of any two symmetries implies
the presence of the third.

Proof. Corollary tells us that the relevant material symmetries are 77,
Uy and T3. And comparing U W U~ and W then gives the conditions on
the w; listed in the table. ]

3.3. Four topologically distinct media

Simple arithmetic tells us we have four different cases to consider, depending
on whether 77 or T3 are preserved or broken. Three of them can be under-
stood within the ordinary CAZ classification scheme. The remaining one
with two even time-reversal symmetries belongs to none of the 10 classes,
and could therefore exhibit novel topological effects. Unfortunately, our anal-
ysis in Section will conclusively show that this is not the case.

Theorem 3.7 (Symmetry classification of media). Suppose the mate-
rial weights satisfy Assumption[2.1. Then there are four topologically distinct
electromagnetic media:

Material Realizations Symmetries | CAZ Class

Dual symmetric,

_ vacuum, [28,129] | Ty, T3, Uy 2 x Al
non-gyrotropic

Non-dual
symmetric, [3, [70, [71] Ty Al
non-gyrotropic
Magneto-electric 163, 193] Ty Al
Gyrotropic 142, [96] None A

The specific conditions which arise from imposing [T, W] =0 can be read
off of the table in Proposition [3.6

One of our main motivations is to give a first-principles explanation of
the Quantum Hall Effect for Light [80L97]. The above result sheds some light
on its inner workings: while making W complex is the right thing to do, the
symmetry to be broken is the even time-reversal symmetry 75 = (03 ® 1) C
rather than complex conjugation C' as claimed in [80]. In fact, C is not even
an admissible symmetry in the Schrédinger formalism, since it swaps pos-
itive and negative frequency states. Even in the non-gyrotropic case where
W = W, complex conjugation acts as an even particle-hole-type symmetry of
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the auxiliary Maxwell operator M = —C M C, and therefore no matter
the framework the nature of C' can never be of time-reversal type. Evidently,
breaking time-reversal T3 is a mecessary condition for the existence of uni-
directional edge modes. For otherwise modes come in counterpropagating
pairs related by time-reversal. Before applying this classification result to
photonic crystals, though, we will briefly consider the relationship between
symmetries and sources.

3.4. Symmetries imposed on sources

Apart from the reality of electromagnetic fields, a second difference to quan-
tum mechanics is the potential presence of sources in the Schrodinger-type
equation , and we may ask what role symmetries play when it comes
to the current density. From our discussion above, we only need to consider
ordinary symmetries and those of time-reversal type.

The idea here is to generalize the condition

Ue—itM+ — e—i(:l:t)M+ U,

with + chosen for linear, commuting symmetries and — for time-reversal
symmetries, to solutions of the equation with sources,

t
UD)(t) = e M — i /0 dse =M =1 1 (s).

Imposing U(U®P)(t) = (UUP))(£t) yields U J4(t) = J4(£t), i. e. the signs
need to match. Otherwise, sources will break symmetries.

4. Bulk classification of topological photonic crystals

Generally, we need two ingredients to create topological effects: (1) We need
to break or preserve the right symmetries. And (2), we need a spectral gap.
In electromagnetic media, gaps can either be created by periodic patterning
[101] or by using dispersion [87]. While Silveirinha’s recent works [32], [87]
make first steps to classifying homogeneous, dispersive media, we focus on
photonic crystals, i. e. electromagnetic media with periodic structure.
Phase relations are at the root of all topological effects, and one way
to encode them is to construct vector bundles. If necessary, these vector
bundles are endowed with symmetries that are inherited from the Maxwell
operator. This follows the exact same playbook as in the quantum case,
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pioneered by [94]. Just like in the theory of crystalline solids, the Bloch
bundle is obtained from a collection of Bloch waves which arise naturally in
the context of periodic systems.

4.1. The frequency band picture

Let us start with a time-independent three-dimensional medium where d =
3, the dimension where Maxwell’s are naturally defined. The periodicity of
the weights W and of the Maxwell operator M, with respect to the lattice
I' =2 72 can be exploited via the Bloch-Floquet-Zak transform

(4.1) (FO)(k,2) =Y e @ W(z + ),
~yel’

which maps onto the space-periodic part of the Bloch functions. This is
a standard tool in the theory of periodic operators and has been applied
to great effect to various types of equations [22 35, 66, 57]. F defines a
unitary map between the Hilbert spaces before restricting to non-negative
frequencies, L?,(R3,C®) and L*(B) ® L%, (T3, CY); the first factor L*(B) is
the usual, unweighted L?-space over the Brillouin torus B and L#,(T3,C9)
is the Hilbert space over the Wigner-Seitz cell, also seen as a torus, and
endowed with a weighted scalar product akin to ,

(4.2) (b)Y (k))yy, = (o(k), W (k)) = /

. dz ¢(k,z) - W(x)(k,x).

Both, the auxiliary and the frequency constrained Maxwell operators are
periodic and therefore admit a fiber decomposition in Bloch momentum
k € B. Starting with the auxiliary Maxwell operator, we see that

®
FM¥F~t = / dk M3™ (k)
B
consists of a collection of operators

M2 (k) = W Rot (k) = (; Z) <+(—iV0+I<;)X —(—iv0+ k)x)

acting on LIZ,V(']I‘S, C%), the Hilbert space associated to electromagnetic fields
defined on the unit cell in real space. Here, the operator v*E = v x E de-
notes the matrix form associated to the crossed product with any vectorial
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quantity v = (v, ve, v3) from the left. Following the procedure of the quan-
tum case, we arrive at the frequency band picture by looking at solutions to
the eigenvalue equation

M (k)gn (k) = wa(k) pa(k),

where ¢, (k) = (o5 (k), ¢f (k)) is a (necessarily complex) Bloch function and
wn (k) a frequency band.

Properties of M{"™*(k) have been investigated extensively in the past
(e. g. in [22, 57]), and there are a few features of note that set it apart
from the condensed matter case: first of all, the longitudinal gradient fields
contribute an infinitely degenerate flat band wy(k) = 0, and these bands
only play a role if sources are present. In the absence of charge densities,
electromagnetic waves that satisfy are necessarily transversal. Apart
from the infinitely degenerate eigenvalue 0, all other (positive and negative!)
eigenvalues wy, (k) that make up the frequency bands have finite degeneracy,
and their Bloch functions span the space L, (T3, C®). The analyticity of
M3 (k) in k (the operator is linear in & and its domain is independent
of k [22, p. 68]) means that these eigenvalues form (frequency) bands. By
convention, the flat band wy(k) =0 due to the gradient fields has band
index 0, frequency bands for which wy,(k) > 0 when k # 0 are enumerated
with positive integers n > 0 while negative indices n < 0 are reserved for the
unphysical Bloch functions with w, (k) < 0 for k # 0.

Secondly, there are always ground state bands, i. e. two positive and two
negative frequency bands (including degeneracy) with approximately linear
dispersion at k ~ 0 and w ~ 0. (That is why we had to exclude k& = 0 when
labeling frequency bands.) The ground state Bloch functions are necessarily
discontinuous at k = 0, since the transversality condition degenerates there
and consequently, the dimensionality if the eigenspace changes by 2 [22]
Section 3.2-3.3]. Apart from the ground state bands, though, both Bloch
functions (after a judicious choice of phase) and frequency band functions
are locally analytic away from band crossings; in these respects, they mimic
the Schrodinger case.

The physical Maxwell operator is the restriction of M$"* to complex
waves with w > 0, i. e. we discard unphysical waves of frequency w < 0; these
waves are unphysical, because the physically relevant negative frequency
waves are subject to the complex conjugate weights W [24, Section 2.3].
For periodic systems, we can make this restriction more explicit: The Bloch
waves associated to the physically relevant Bloch bands wy, (k) > 0 span the
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Hilbert space of physically relevant waves
Ho (k) = T (k) ® G(k) C L3, (T3, C°)
where we distinguish between the (positive frequency) transversal fields
T+ (k) = span{p € Ly (T%,C°) | ME™(k)p = wn (k) ¢, n >0}
and the longitudinal gradient fields
G(k) = {gp € L2, (T3, C%) | M2 (k) = o}.

The symbol & for the orthogonal sum means that we can uniquely write
any U =W, + W) € H (k) as the sum of a transversal field ¥, (k) € Ty (k)
and a longitudinal field ¥ (k) € G(k) that are orthogonal to each other with
respect to the weighted scalar product . The restriction of the auxiliary
operator M3 (k) to the physically relevant subspace of fields with non-
negative frequencies yields the k-dependent Mazwell operator
M+(k) = M—?-ux(k)‘q.[+(k)a

whose Bloch functions are those of M$"*(k) for w > 0 frequency bands.

Symbolically we write that the Bloch-Floquet-Zak transform is a unitary
between the Hilbert spaces

S
F: H+ —)/ dk’HJr(k’)
B
that fiber-decomposes the Maxwell operator
®
FM, F'= / dk M (k).

B

All of these arguments can be straightforwardly adapted to include time-
dependent media or lower-dimensional photonic crystals (cf. Section [2.4]).

4.2. The Bloch bundle and its topological classification

A vector bundle is a collection of vector spaces, indexed by a (base space)
variable, that is glued together in a continuous or analytic fashion; for more
information, we refer the interested reader to [19, Section 3.3], [I8, Sec-
tion IV.A] and references therein. The Bloch bundle is a vector bundle con-
structed from a family of (energy or frequency) bands. When physicists use
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expressions such as “band topology”, what they actually mean is the follow-
ing: they pick a family of isolated bands, which are relevant to the discussion.
Mathematically, this translates to

Assumption 4.1 (Gap Condition). Suppose oye(k) = {wn(k:)}nez is a
finite family of relevant bands, indexed by a set of positive integers I, that
does not cross or merge with other bands. Put another way, they are sepa-
rated by local spectral gaps from the other bands,

(4.3) in dist (M(k;) Lo (M (k) \arel(k)) > 0.
Once the relevant frequency bands have been selected, we arrive at a
collection of vector spaces

Hrel(k) = Span {Son(k)}nel'

which are spanned by the relevant Bloch functions and indexed by Bloch
momentum k. Collectively, they make up the Bloch bundle. “Band topology”
refers to how H,e (k) “twists and turns” as k is varied; note that at this level
the actual shape of the frequency band functions wy, (k) is irrelevant.
Physically, the significance of the Gap Condition is that states supported
in such an isolated family of bands decouple from the others, because band
transitions outside of o (k) are typically exponentially suppressed. Note
that the assumption that o (k) consists of finitely many bands ezcludes
ground state bands, since they merge into the infinitely degenerate gradi-
ent field band wp(k) = 0. This is not a mere technical obstacle either: since
ground state Bloch waves for k£ ~ 0 have very long wavelengths, they no
longer see the periodic structure but just homogeneous material weights that
are averaged over the unit cell. And homogeneous media require a different
classification approach than periodic media. Mathematically, this manifests
itself in the fact that the ground state Bloch functions are necessarily dis-
continuous, hence non-analytic, at £ = 0, and this discontinuity prevents us
from defining a vector bundle over the whole Brillouin torus B.
Nevertheless, our hope is to tackle this question in a subsequent work.
Numerical results by physicists strongly suggest that the ground state bands
do not contribute to the Chern number (see e. g. [89, Figs. 1(b), 1(c), 2(b),
and 2(c)| or [96], Fig. 2(b)]). Conceptually, though, this is a non-trivial prob-
lem. One possible approach is to study the regularity of k +— Pyei(k) at k =0
once the ground state bands are included. Our hope is that this projection-
valued map is still regular enough so that we can plug it into equation
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below and obtain an integer. That would be the relevant topological bulk
invariant, which enters Haldane’s photonic bulk-edge correspondence, an
extension of the concept of Chern number.

Symmetries of the Maxwell operator are inherited by the Bloch vec-
tor bundle: should M (k) possess a time-reveral symmetry 7', for example,
i. e. T' is an antiunitary operator with 7'M, (k) = My (—k) T, then T re-
lates the fibers H,e(k) and Hyel(—k). Mathematically, symmetries of M, (k)
give rise to additional structures on the vector bundle [I4HI6]; this will be
explained in Section below.

4.2.1. The mathematical definition of the Bloch bundle. One con-
venient way to think of H,e (k) = ran Py (k) is as the range of the projection

Peaa(k) =Y lon(k)) (on (k)]

nel

onto the relevant states, although it is the weighted scalar product that is
implicit in the bra-ket notation,

(4.4) |on(B)) (on (k) (k) := (n(k), (k) )y, on (k).

The Gap Condition ensures that k — P, (k) is not just locally analytic, but
analytic over the whole Brillouin torus; put another way, locally around any
point ko there is family of k-dependent unitaries U(k, ko) so that they are
analytic and relate the projections at k£ and kg,

Poi(k) = U(k, ko) Prei(ko) U(k, ko)*.

Consequently, the dependence of H,e (k) on Bloch momentum £ is also an-
alytic, and the Bloch bundle is the triple

(4.5) E8(Pea) 1 || Hoar(k) = B,
keB

consisting of the total space, the disjoint union of all the H,e (k)s, the Bril-
louin torus B as base space, and the projection W(\II(/{?)) = k onto the base
point. Necessarily, the dimension m = dim H,¢ (k) of the fiber vector space,
the rank of the vector bundle, has to be independent of k. In some contexts
we need to distinguish between continuous and analytic vector bundles, al-
though here, thanks to the so-called Oka principle, this is not necessary for
vector bundles over the torus. The reader may find a detailed argument as
to why in [I8 Section IL.F].
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In the simplest case, the vector bundle is a trivial complex vector bundle,
meaning it is isomorphic to the product bundle Eg(Pre) = B x C™ of base
space and fiber. However, in general vector bundles can only be trivialized
locally, i. e. only in a sufficiently small neighborhood U of a point ky do we
have 771(U) 2 U x C™. In fact, a second and equivalent way to assemble
the vector bundle from a trivializing open covering {U;} is to glue together
7Y U;) 2 U; x C™ using transition functions, which then contain all the
information on the “twists”.

The Bloch vector bundle is suited to describe continuous deformations
of the system: as M (k) is deformed continuously, then also the frequency
bands and the relevant subspaces H,e(k) change continuously as well —
provided that the spectral gap does not close. Should additional symme-
tries be present, then these must not be broken during the deformation.
Thus, continuous deformations of physical systems translate to continuous
deformations of vector bundles.

4.2.2. Classification of complex vector bundles (CAZ class A). To
give rigorous meaning to the notion of “vector bundle up to continuous defor-
mations”, we need to say when two vector bundles are considered equivalent
and then classify equivalence classes of vector bundles. This is quite standard
for complex vector bundles and explicit criteria are known when the base
space is low-dimensional (d < 4 suffices to cover time-dependent systems)
and has such a simple structure as B = T¢ =S x --- x S [I8, 69, [73]. All of
these are immediately relevant for our discussion of periodic light conduc-
tors, starting from layered media (d = 1) [13], two-dimensional [53, 95] [96],
99] and three-dimensional [26], 45], 46, (59] photonic crystals and the as-of-yet
unrealized case of a three-dimensional photonic crystal which is deformed
periodically in time.

Mathematical definition of equivalence. Now let us explain when vec-
tor bundles are mathematically equivalent: So let &£ = (gj, X, 7rj), j=12,
be two vector bundles over the same base space. An X-map f:& — &
is a continuous function between the total spaces so that the fiberwise re-
striction f, = f] ) defines a linear homomorphism between the vector
spaces 7, '({z}) and 7, ' ({x}) attached to the same base point z. Put an-
other way, f preserves fibers and is compatible with the linear structure in
each of the fibers. The set of such maps is denoted by Hom(&;, &). If in
addition f restricts fiberwise to vector space isomorphisms for all x € X,
then f is in fact a homeomorphism between £; and &, and therefore de-
fines an X-isomorphism between the bundles & and & [39, Lemma 1.1].
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This defines an equivalence relation & ~ &5, and because isomorphic vector
bundles have the same rank, we write Vecg'(X) for the set of equivalence
classes of isomorphic rank m hermitian vector bundles. Classification theory
of complex vector bundles concerns itself with the description of Vec{'(X)
for different m and X. One particularly important element is that associ-
ated to the trivial vector bundle €™ = (X x C™ X, projl) of rank m where
the total space is just the cartesian product of base space and fiber, and the
projection proj;(x, 1) = x onto the first element.

Mimicking the construction above, we could define equivalence of bun-
dles in terms of analytic X-isomorphisms, something that enters when estab-
lishing the existence of exponentially localized Wannier functions [18], 58, [73].
Fortunately, though, in the present case we need not distinguish between
continuous and analytic equivalence of vector bundles, because the so-called
Oka principle [34] holds for B = T? (see [I8, Section IL.F] for a detailed
mathematical argument).

Abstract classification results. Now that we have defined Vec(T?) as
the set of vector bundles up to equivalence, two natural questions arise: first
of all, how many different equivalence classes are there? And secondly, given
a concrete realization, can we compute what equivalence class it belongs to?
We postpone the second question and focus on the first. This classification
problem is quite standard, and there are many different mathematical tools
(e. g. K-theory [43, [48] or vector bundle theoretic methods [I4HI6]) with
which we all arrive at the same conclusion:

Theorem 4.2 (Classification of Vec'(T¢)). For the cases of rank-m vec-
tor bundles over the d-dimensional torus listed below, the set of equivalence
classes is countable and given by:

(1) d=1, m > 1: Vec’(S!) = {0}
(2) d>2, m=1: Vect:(T%) =7

(3) d=2, m>2: Vecl(T?) 2 Z
(4) d=3, m > 2: Vecl!(T3) = 73
(5) d=4, m>2: Vec?(T?) =75 ¢ Z

Computing topological invariants. The above classification would be
quite academic if we were not able to actually compute the “coordinates” of
a concretely given vector bundle in Vec”(T%); the coordinates which make
up the address are topological invariants, in this case first and second Chern
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classes. To define the Chern classes
cj(&s) € HY(B,Z) =24, j=1,2,

abstractly, one approach (see e. g. [67, [68]) is to view &g as the pullback of
the universal vector bundle and define £g’s Chern classes as the pullbacks
of universal Chern classes. They are elements of the 2jth cohomology group
H?(B,Z) over the Brillouin torus with integer coefficients; these cohomol-
ogy groups can be computed explicitly by recursion to be Z to the power
n(d,j) = d/j1(d—j) for all 0 < j < d and n(d,j) =0if j > d.

Thanks to the Universal Coefficient Theorem [38, Theorem 3.2], we can
embed H?% (B,Z) into the de Rham cohomology Hiﬁ(ﬂ%), and Chern-Weil
Theory [68, Appendix C] allows us to connect the algebraically defined Chern
classes with differential geometric objects such as the Berry curvature. For
details we refer the interested reader to [18, pp. 28].

The upshot is that these arguments not only ensure that they are integer-
valued, but also allow us to compute Chern classes via the usual formulas.
In two dimensions, the first Chern class of a vector bundle can be identified
with the first Chern number,

(4.6) Cl(gB) == 1/

o s dk TI'H+(]€) (Q(kj)),

whose equation involves the Berry curvature Q(k) = dA + A A A, which in
turn is defined locally in terms of the Berry connection

Alk) = (Aj (k))lgj,ngm
Ajn(k) = 1{p;j(k), Vien(k))y

with respect to a locally trivializing basis. Alternatively, we can recast

1

@7 als)=,- /B Qk Trye, 1 (i Pra() [0k, Bra(k) . O, Prar ()]

solely in terms of the projection onto the relevant bands. Similar formulas
exist for ¢;(€g) in d > 3 and for the second Chern class c2(Eg) (cf. e. g. [I8,

equations (5.9)—(5.10)]). Collecting our results, we can restate the above
classification Theorem [4.2] as follows:

Corollary 4.3. The equivalence class a Bloch bundle belongs to is given in
terms of the first two Chern classes. More specifically:
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(1) For the cases (2)-(4) enumerated in Theorem|[4.2 the Bloch vector bundle
is classified by its first Chern class alone.

(2) For case (5) (d =4, m > 2), the Bloch vector bundle is classified by its
first and second Chern classes.

Put another way, two vector bundles can be continuously deformed into one
another if and only if all (first and second) Chern numbers agree; a vector
bundle is trivial, i. e. isomorphic to the product bundle B x C™, if and only
if all Chern numbers vanish.

4.2.3. Classification of vector bundles in the presence of even time-
reversal symmetries (class AI). Since the work of Nenciu [69] (note
also the later works [18, 58, [73]), it was understood that in d < 3 the presence
of an antiunitary T satisfying

(4'8) TPrel(k) = Prel(_k) T

guarantees that the first Chern numbers vanish. However, in general the
presence of additional symmetries does not mean the bundle is necessarily
trivial, and the triviality of Chern numbers does not preclude the existence
of other topological invariants. In fact, if T is odd, i. e. T? = —1 (class AII),
a new, Zo-valued topological invariant appears [15], 31l 47]. However, in the
context of Maxwell operators time-reversal symmetries are necessarily even
(T? = +1) and have to satisfy (cf. Proposition . Consequently,
if only one time-reversal symmetry is present, the classification theory for
class AT vector bundles applies [14].

Theorem 4.4 ([14, Theorem 1.6]). Suppose there exists an antiunitary
operator T satisfies (4.8]). Then the first Chern class of the Bloch bundle
Ep(Pre1) vanishes and we have:

(1) In dimensions d < 3 the Bloch bundle is trivial.

(2) In dimension d = 4 the Bloch bundle is trivial if and only if the second
Chern class vanishes.

Note, however, it is critical for this Theorem to hold that T relates
Peei(k) and Pyei(—k). If T Pei(k) = Pre1(7(k)) T held for some other invo-
lution 7(k) # —k, then the presence of the even time-reversal symmetry T
would not necessarily ensure the triviality of the bundle [I4, Section 4].
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4.2.4. Classification of dual symmetric, non-gyrotropic materials.
Dual symmetric, non-gyrotropic media have two even time-reversal symme-
tries and fall outside of the standard Cartan-Altland-Zirnbauer classification
scheme. While media in d < 3 with a single even time-reversal symmetry are
trivial, it is not permissible to simply omit one or the other. Moreover, be-
cause these two symmetries anticommute with each other, their interplay
needs to be carefully studied. We will perform the analysis of this non-
standard topological class now.

As luck would have it we can derive the classification with relatively
simple, straight-forward arguments and do not need to perform a rather
technical analysis along the lines of [I4H16] that involves advanced tools
from the theory of vector bundles and K-theory.

The presence of two even time-reversal symmetries in such media,

Ty My (k) T; ' = My (—k),
Tj2 =+1,

where j = 1,3, means they automatically possess one unitary, commuting
symmetry Uy = oo @ 1 = —iT1 T3,

Us My (k) Uyt = My (k)

which up to a factor of —i equals the product of T} = (07 ® 1) C and T3 =
(03 ® 1) C. The presence of this symmetry means that each frequency band
is helicity degenerate, and we may choose Bloch functions with a specific
(left- or right-handed) helicity.

Put another way, the Maxwell operator

admits a block decomposition into helicity components, where the operators
M, + = Q+ M, QQ+ are obtained from the projections

Qr = 3(1+Uy)

onto right-handed (eigenvalue +1) and left-handed (eigenvalue —1) circu-
larly polarized waves.
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Consequently, we may split the projection onto the relevant bands
Prei(k) = Pre1+ (k) + Prer,— (k) as well as the Bloch bundle

5B(Prel) - EIB%(Prel,—i-) ©® EB(Prel,—) == g+ eE_

into a right-handed (4) and left-handed (—) component. Note that the ranks
of £1 necessarily have to agree as each band has even helicity degeneracy.

Below, we will show that the time-reversal symmetries are compatible
with this decomposition (Lemma , independently of whether the time-
reversal symmetries commute or anticommute (Lemma [4.7). That means
they do not mix left- and right-handed states, and we may write T; = T} 4 ©
T; — where T+ = Q+ Tj; Q+. What is more, the time-reversal symmetries
restricted to each helicity component, 77 + and 75+, are no longer distinct
physical symmetries (Theorem , and effectively, £+ come with only a
single even time-reversal symmetry.

To summarize, for dual symmetric gyrotropic media the Bloch bundle
is the sum of two class Al bundles, and £+ can be classified with standard
theory (see Theorem |4.4)).

Theorem 4.5 (Classification of dual symmetric gyrotropic media).
Suppose the weights W are periodic with respect to ' = Z% and possess the
two even time-reversal symmetries T and T3. Then the Bloch bundle asso-

ciated to an isolated family of bands (in the sense of the Gap Condition
Ep(Pre) =EL DE-

is the sum of two class Al bundles that can be classified as follows:

(1) Independently of the dimension of the periodicity lattice, one topological
invariant is the total rank of the bundle, rank &g = 2rank £,

(2) When the rank is fized, then in dimensions d =1,2,3 the Bloch bundle
is the sum of two trivial vector bundles, i. e. all vector bundles are
topologically equivalent.

(8) When the rank is fixed, then in dimensions d = 4 the Bloch vector bun-
dles are distinguished by the two second Chern numbers of 4.

We emphasize that the notion of trivial vector bundle depends on the
symmetries, i. e. on the topological class: for complex vector bundles (the
Quantum Hall class, class A, with no symmetries) a trivial bundle by defi-
nition is one that is isomorphic to a product bundle. Given that the Chern
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numbers for product bundles all vanish, this gives a simple criterion for
bundle triviality. For vector bundles that are endowed with additional sym-
metries, the situation can be more delicate. For low-dimensional class Al
bundles over the torus there is only one phase and all vector bundles of
the same rank can be continuously deformed into one another (provided
the time-reversal symmetry is preserved). So not just a specific bundle, but
the whole class of vector bundles is trivial. However, for other topological
classes (e. g. class AIII) where vector bundles are characterized by relative
topological invariants, there exists no canonical notion of trivial bundle.

We now proceed with the derivation of this classification result. Our argu-
ments are all non-technical, and we think they are instructive for the reader.
We will broaden our setting: suppose H is a selfadjoint (hermitian) operator,
a stand-in for a quantum Hamiltonian or the Maxwell operator, that comes
furnished with two antiunitary symmetries,

4.9a T,HT ' =¢H, j=1,2,
J i J
(4.9b) T7? = M1

That means we do not restrict ourselves to even time-reversal symmetries,
but admit any combination of even (A = 1) or odd (A = —1) symmetries, be
it of time-reversal- (e = +1) or of particle-hole-type (e = —1). For the sake
of brevity, we will say that Tj is of type (e;, A;).

First, we have a certain amount of freedom when picking antiunitary
symmetries. For example, we may multiply them with a phase to transform
an agnticommuting to a commuting pair of symmetries.

Lemma 4.6. Suppose T is a symmetry of type (€, \) in the sense of equa-
tion (£.9) and e'¥ € C a phase. Then T' = &' T is a symmetry of type (e, \).

Proof. The antiunitarity of T implies 7" 2o elveie T2 = )\ 1, and T" is even
or odd whenever 7T is.

To show that 7" (anti)commutes with H if and only if 7" does, we express
T = U C as the product of a unitary U and complex conjucation C (which
is always possible). Therefore, the inverse of 77,

T = (PUC) T =C(¥U) =Ce T U*
—etlooU* =P,
is just €% times the inverse of T, and 7" is a symmetry of the same type,

THT ' =TeYHT 1 =THT ! =¢H. 0



Symmetry classification of topological photonic crystals 1503

Secondly, if the two antiunitary symmetries commute up to a phase,

(4.10) T\ Ty =¥ T T,

then we can find equivalent symmetries which commute. In particular, two
anticommuting, antiunitary symmetries are equivalent to a pair of antiuni-
tary, commuting symmetries.

Lemma 4.7. Suppose T and Ty are two antiunitary symmetries of types
(€5, /\-) j = 1,2, which commute up to a phase ¥ € C. Then T| =Ty and
T, =¢' 3Ty are a pair of commuting symmetries of the same types.

Proof. According to the preceding Lemma, T} is also of type (e2, A2), the
same as T». And a quick computation shows that 7% commutes with 7] = T}
because the phase factors cancel:

T Ty=TietTh=e ST Th=e 2T, Ty =T4T) 0

Now suppose the two symmetries commute and are of the same type,
(€1,A1) = (€2, A2). As we have just seen, assuming 7} To = T» T} instead of
(4.10) imposes no additional restrictions. Then their product

U=T1T
is a unitary that squares to +1,
(4.11) U? = (M) = T2T3 = 221 = +1,
and commutes with H,

(4.12) UHU ' =Ty (LHT, )T ' =eTWHT; ' = ¢ H = H.

Combining the unitarity of U with (4.11] -, we deduce that U = U* = U ! is
selfadjoint (hermitian), and due to U? = +1 the spectrum o(U) C {—1,+1}
consists of either one or two eigenvalues. Let us exclude the trivial cases
U = £1 where T1 and Ty = £T7 L — 4T are equivalent as they differ only
by a phase (Lemma . When U # +1 both eigenvalues occur and the
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corresponding spectral projections

Q:=31+0)
map onto the eigenspaces associated with the eigenvalues +1. For dual sym-
metric electromagnetic media these are the projections onto right-handed

(4+1) and left-handed (—1) electromagnetic waves.
These give rise to a decomposition of the Hilbert space

(4.13) H=H,&H_

where the two subspaces Hy = Q4 [H] are the ranges of Q4. As U commutes
with H (equation (4.12))), so do the associated spectral projections, which
leads us to conclude

B _(Hy 0
H_HNML_(O HJ,

since Q+ H Q+ = H Q+ Q+ = 0 and only the block-diagonal contributions
Hy = Q4+ H Q4 remain. It turns out that also the two antiunitary symme-
tries T = T} 1 ® T} _ are block-diagonal with respect to this decomposition.

Lemma 4.8. Suppose T and Ts are two commuting, antiunitary symme-
tries of the same type (e,\), and their product U # +1 is not trivial. Then
Ty, Ty and U are block-diagonal with respect to the decomposition (4.13),

]1]_<0 ij.’_>7 j_1727
(410
U‘(o —Q'

Moreover, the block components of the two antiunitaries are related,

(T 0\ _ | (+T1+ 0
(4.14) Tj_<0 Br>_A( ot _n_)

The condition U # %1 is necessary to ensure that the two time-reversal
symmetries are distinct and the block decomposition meaningful.



Symmetry classification of topological photonic crystals 1505

Proof. Since T and Tb commute with one another by assumption, U also
necessarily commutes with both of the 77},

UTj =T\ ToTj =T; Ty Ty = T; U.

Thus, they commute with the spectral projections Q4+ = %(]l +U) as well,
and the symmetries are all block-diagonal with respect to H = H4 & H_.
Computing U block-wise yields

U=+1) & (-1) = (T14 Tos) & (T1,- Ta,-),
and comparing left- and right-hand side gives equation (4.14]). U

The main result is now within reach:

Theorem 4.9. Suppose T1 and Ty are two antiunitary symmetries of type
(€,\) that commute up to the phase €% according to equation . Then
the system block decomposes with respect to H = Hy ® H_ (defined as above),
namely H = Hy @ H_ and T; =T ®Tj _ for j = 1,2. Moreover, on H4
one of the symmetries is redundant, because

1¥£
2

— — —_ie
ng: = +e ! 1:i = :tAe 1 TL:‘:

equals Th + up to a phase.

Proof. For commuting symmetries where el¥ = 1 the statement is an imme-
diate consequence of Lemma and Lemma

When e # 1 we apply the above argument to T} = T} and T = €'z T}
as they are equivalent commuting symmetries (Lemma . To translate

that back to the generic case, all we need to do is add the phase factor e 1%,

Ty=e 5Ty = (+re 2Ty ) @ (e 2 Ty ). 0

The classification of Bloch bundles with two even time-reversal symmetries
is just a special case:

Corollary 4.10. Suppose My is the Mazwell operator for a periodic, dual
symmetric gyrotropic medium, and Py (k) the projection associated to a fam-
ily of isolated frequency bands (i. e. they satisfy the Gap Condition .
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Then the associated Bloch bundle
(4.15) EB(Pel) = E+ D E-

decomposes into the sum of two class Al vector bundles £+ = Eg(Prel +),
each associated to one helicity component.

Proof. First of all, M, is a selfadjoint operator furnished with two even time-
reversal symmetries that anticommute (i. e. the phase is —1 = e'™). Hence,
we are in the setting of Theorem Instead of T3 = (03 ® 1) C' we may
use i73 so that it commutes with 77 = (07 ® 1) C' and their product yields
U=1T,iT5 = 0o ® 1. The eigenspaces of U correspond to electromagnetic
fields with right- (4+1) and left-handed (—1) helicities. Therefore, M, =
My + ® My _ and Pei(k) = Prel+ (k) @ Prel,— (k) as well as the two time-
reversal symmetries decompose into helicity components. The components of
the projection P + (k) = Q+ Prei(k) Q+ are defined analogously to Hy; the
projections Q+ = %(]1 + U) do not depend on crystal momentum because U
is independent of z and —iV.

Setting €4 = Er(Prel,+ ), We see that the Bloch bundle splits into helicity
components as given in equation . On each helicity component, the
two symmetries 77 4+ and T3 4+ = +e™ 'z T} 4 are equivalent. Thus, the vector
bundles £+ are endowed with only one even time-reversal symmetry, and we
may consider them as class Al vector bundles. (|

Note that analogous statements hold for when H has two odd time-reversal
or two (even or odd) particle-hole symmetries. In those cases, the Bloch
bundle splits into two class All, class D or class C bundles, respectively.
However, these cases are not relevant in our analysis of photonic crystals.

Proof of Theorem[{.5. (1) The fact that the frequency bands for right- and
left-handed circularly polarized Bloch waves always have the same mul-
tiplicity stems from the fact that the degeneracies of +1 and —1 of oy
are the same. Therefore, the ranks of the right-handed and left-handed
circularly polarized sub bundles £1 are always the same.

(2) Corollary tells us that the Bloch bundle can be seen as the sum of
two class Al vector bundles. And in dimension d = 1,2, 3 vector bundles
over the torus where an antiunitary symmetry relates fibers at +k are
trivial (Theorem [4.4)).

(3) This again follows from Corollary and the fact that class Al vector
bundles are distinguished topologically by the second Chern number of
which there are two (Theorem [4.4)). ]
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5. Conclusion and future developments

We close this work by contrasting and comparing our results to the litera-
ture and sketch what avenues we would like to explore in the future. Our
main aim in this paper was to make precise what “topological photonic crys-
tal” means, and how to differentiate between topologically distinct types of
electromagnetic media. Our first principles approach is very different from
most attempts in the literature where the keyword “topological” is tacked
onto a lot of physical effects even if the link to topology is not made explicit.
We emphasize that phenomenological similarities such as a locking of spin
and propagation direction are not conclusive evidence of a topological origin.
Instead, a direct causal link should be established between physical effects
and the topology of a specific mathematical object.

5.1. Topological effects due to material symmetries

We framed this article with two specific questions, and we owe it to the
reader to provide the answers we have promised in the introduction. The
first concerns the similarities between the Quantum Hall Effect in photonic
crystals and condensed matter physics.

5.1.1. Haldane’s Quantum Hall Effect for light. We can only give
a partial answer: Gyrotropic media belong to the same topological class as
quantum systems exhibiting the Quantum Hall Effect — in both cases time-
reversal symmetry is broken so that the bulk media belong to class A. That
is consistent with Haldane’s conjecture, and we intend to give a complete
derivation in a future work.

Our analysis provides a number of new insights: first of all, the relevant
symmetry that is broken is the even time-reversal symmetry 75 rather than
complex conjugation C' as is argued in some of the literature (see e. g. [80),
99]). In fact, complex conjugation “symmetry” of Maxwell’s equations can
never be broken since one of the tenets of classical electromagnetism is that
fields (E, H) are necessarily real; this reality constraint is preserved in the
correct complexified Maxwell equations (cf. [23, Section 2.2]) where C' acts
as an even particle-hole symmetry. Such subtle distinctions are essential for
a topological classification, because it is crucial we correctly identify the
nature of the relevant symmetries.

The bulk classification of gyrotropic photonic crystals as class A topo-
logical insulators made here is an important first step towards establishing
Haldane’s Photonic Bulk-Edge Correspondence conjecture. At first glance,
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adapting derivations of the Quantum Hall Effect may now seem completely
straightforward and further research unnecessary: there is a wealth of liter-
ature (e. g. [4l 9L 5OH52, [79, 94]) with different approaches to deriving bulk-
edge correspondences that generalize the early works of Hatsugai [40), [41].

However, there are important mathematical and physical differences be-
tween the quantum system and its electromagnetic analog, and these differ-
ences are not mere technical footnotes but essential. Taking these differences
into account was already important to properly understand the analogy be-
tween semiclassical limits and the derivation of ray optics equations [23],
Section 5]. One of the issues that was discussed there was the form of “typi-
cal” states: in solid state physics, the relevant states are perturbations of the
Fermi projection where all states up to the Fermi energy Eg are completely
filled; in the context of topological insulators, the Fermi energy is usually
assumed to lie in a spectral gap or, more generally, a zone of dynamical
localization. Electromagnetic waves, though, are not fermions, so there is
no physical principle that forbids us to arbitrarily populate bands. Instead,
states are often excited by a laser, and therefore, states are peaked around
some wave vector kg and frequency wg, i. e. wave packet states. Another
method is to use an antenna to excite a given frequency in multiple direc-
tions at the same time. Nevertheless, it stands to reason that the analog of
the “Fermi projection” may enter the derivation of this photonic bulk-edge
correspondence as an auziliary object (as opposed to being interpreted as
the physical state of the system).

A second difference is that there does not seem to be a photonic “bulk
observable” and only the edge observable “net number of boundary states”
(right moving vs. left-moving) enters equations so that we need to
prove the following two equalities

signed § edge modes = Sf = ¢1(Eg(Poy))-

Sf is the so-called spectral flow [78], which is one way to rigorously define
the edge invariant (see e. g. Corollary 7.2.1 (iii) and the discussion around
equation (7.13) in [79]). A prerequisite for proving this photonic bulk-edge
correspondence is to be able to compute the Chern number of the “pho-
tonic Fermi projection” P, (again, seen only as an auxiliary object). Un-
fortunately, our definition of Bloch bundle from Section does not apply
without modification. We had to exclude the so-called ground state bands,
i. e. the bands which have approximately linear dispersion near £ = 0 and
w = 0; these necessarily exist in any periodic medium [22, Theorem 1.4 (iii)].
If the relevant bands include the ground state bands, then the dimension
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dim Hye1(0) = dim Hye1 (k) + 2 is larger by 2 than for k& # 0 as the transver-

sality condition
(CR o) = ()

degenerates there; this is further explained in [22, Sections 3.2-3.3] and [25]
Section IV]. We intend to revisit this question in a future work.

A third, perhaps more mathematical question concerns how to create
interfaces (edges and surfaces) in the first place, and one can choose from
at least three different options:

(1) We can sandwich two different photonic crystals [53, [99] whose relevant
photonic band gaps overlap.

(2) We can terminate the photonic crystal with a metal [97]; the metal is
typically modeled as a perfect electric conductor and enters as boundary
conditions imposed on solutions to Maxwell’s equations.

(3) In principle, we could also choose to terminate with a perfect magnetic
conductor, which translates to a different set of boundary conditions.

While in spirit this closely resembles the quantum case, we may obtain dif-
ferent photonic bulk-edge correspondences for some or all of these choices.
Such differences already appear when considering interfaces between homo-
geneous (as opposed to periodic) electromagnetic media, where the existence
and polarization of surface modes depends on the details [8, Supplementary
Material]. Therefore, it is not a foregone conclusion that the form of the
photonic bulk-edge correspondence is independent of how boundaries are
created, including our choice of boundary condition.

5.1.2. Absence of novel topological effects in d < 3 due to material
symmetries. The second question concerned the existence of novel topo-
logical effects, i. e. other than the Quantum Hall Effect for light. When we
began our investigation, we were hoping to find that certain media belong
to topological classes that support topological invariants other than Chern
numbers, which, in turn, would indicate the existence of other topologi-
cal effects. Unfortunately, this is not the case: barring additional (isospin)
symmetries, our finding here is that apart from gyrotropic materials, which
are in the same topological class as operators that exhibit the Quantum
Hall Effect, the other three types of media do not support as-of-yet un-
known topological effects in d < 3; for three-dimensional photonic crystals
with periodic time-dependence, there could be topological effects related to
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the second Chern number — independently of which of the four topologi-
cal classes the material belongs to. While that does not exclude topological
effects due to crystallographic symmetries (e. g. [II, 10 13} 27]), those will
have to be considered separately. The case of time-reversal symmetric media
with additional (linear, commuting) symmetries reduces either to class Al
(topologically trivial) or the Quantum Hall Class, class A; we will discuss
both of these in more detail next.

5.2. Comparison with the literature

Ever since Raghu and Haldane’s first proposed topological phenomena in
periodic electromagnetic media [80], there has been a growing body of work
on the subject; for recent reviews we point to [64, [65]. To keep the discussion
brief, we will focus on a few select publications that are directly related to
the core of this work and representative for a number of others.

5.2.1. Haldane’s Quantum Hall Effect for light. While the experi-
mental confirmation [97] of Quantum Hall Effect for light settled the question
that topological phenomena exist, very little effort was made to probe the
quantitative validity of Haldane’s Photonic Bulk-Edge Correspondence and
derive it from first principles.

Ray optics equations. Raghu and Haldane based their arguments on
postulating ray optics equations which included an “anomalous velocity
term”; however, the form of the sub-leading terms was a topic of discus-
sion, one that was settled only recently with our rigorous work [23] (see
[23, Section 5.2] for an in-depth discussion). Unfortunately, it is not possible
to derive bulk-boundary correspondences purely on the basis of ray optics
equations — not only because those govern the light dynamics in the bulk,
but also because the semiclassical arguments with which one may show the
quantization of the transverse conductivity (see e. g. [75, Section 1]) do not
generalize to electromagnetism due to the fundamental differences between
both physical theories (cf. the discussion in [23] Section 5.1]).

Justification for effective “Hamiltonians”. A great deal of theoreti-
cal works on topological phenomena in photonic crystals argue in two steps:
first, a system is identified which has the desired features in its frequency
band diagram. In the simplest case that is typically an isolated photonic
band or a conical intersection. Then based on the dispersion of the frequency
bands of interest, a simpler, effective Hamiltonian is postulated that shares
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the same essential features in its band spectrum. This ad hoc procedure is
performed without making any reference to the underlying dynamical prob-
lem — which has been falsely considered to be well-understood by analogy
to the Bloch electron’s quantum dynamics.

The reason for this is that in a great number of cases, physicists study
the second-order Maxwell equations obtained by “squaring” equation :
that is because in media where the bianisotropic tensor y = 0 vanishes, the
second-order eigenvalue problem for electric and magnetic field can be solved
separately, e. g.

eV x (7Y x GE(R)) = wak)? £E (k)

for the electric Bloch functions and an analogous equation for the magnetic
Bloch functions. The “effective Hamiltonian” then supposedly approximates
the physics of the full equations associated to M2, ==t V> u~1V* (see
e. g. the work by Wu and Hu [99]).

However, things are not as simple as they appear. In the absence of
sources the dynamical equation for the electric field is the wave equation

PP (t) + Mg (t) =0,

and as it is second order in time, we not only need to specify ¥ (ty) but also
the time derivative 9% (tg) = e 71 V x 9 (t(), which is determined through
the magnetic field at initial time tg. Consequently, the solution cannot be of
the form e~ i(t—to)Mip ¥ (1), which would allow us to replace the “evolution
group” e itMip by the effective “evolution” e~ 1#Hes

Again, this problem disappears if we stick to the proper Schrédinger
formalism where the evolution equation is first-order in time and is mathe-
matically of the form of a Schrédinger equation, namely

0U(t) = MU(t),  U(ty) = D,

where M = W~ Rot ‘w>0 is selfadjoint (hermitian). Now suppose we are
given a closed subspace H,e spanned by states which we deem relevant, and
that this subspace is left invariant by the dynamics; one common example
would be states from a given finite frequency range. That means if we start
with ® € H,e then the time-evolved state ¥(t) = e M ¢ H, remains in
the relevant subspace. This translates to

(5.1) [M, Pa] =0
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for the orthogonal projection P, onto H,e. Now if we can approximate
MPrel ~ Meff Prel

by some effective Maxwell operator M, for states from H,e, then we can
exploit (5.1) to make a Duhamel argument,

e~ itM Pug — o it Metr Pg =

_ /Ot dei<e,1tM efi(t*S)Mcff) P

S

¢
(5.2) ~ / dseitM (M — Meg) Pegr e 1= Merr ),
0

It states that the effective dynamics remain close to the full dynamics,
e tMett P oy @ M P o Evidently, this argument (which we have made rig-
orous for adiabatic, i. e. slowly varying spatial perturbations in [20]) crucially
relies on the fact that we deal with first-order equations in time.

If V is a commuting or anticommuting linear or antilinear symmetry of
M that leaves H,e) invariant (i. e. [V, Pyl = 0), then Mg necessarily inherits
V' as at least an approximate symmetry,

VMeffPeff %VMPeﬂr :MPeﬁV%MeﬂVPeH.

Of course, we can also make this argument in reverse: any symmetry of the
effective Maxwell operator is at least an approximate symmetry of the origi-
nal, full Maxwell operator M. This immediately disqualifies effective “Hamil-
tonians” that possess an odd time-reversal symmetry due to the choice of
materials. It is true that we may produce an odd, commuting antiunitary
by taking the product of one of the even time-reversal symmetries with a
crystallographic symmetry (we will give an example below). Unfortunately,
we would not obtain a class AII topological insulator, because for the topo-
logical classification we cannot simply discard the other even time-reversal
symmetry. Instead, we would have to adapt the topological classification
scheme developed for crystallographic groups [33, [86] to deal with the pres-
ence of an even time-reversal symmetry.

Electric vs. magnetic vs. electromagnetic Chern numbers. The
second-order formalism suggests that knowledge of the electric part of the
Bloch functions suffices for all of our subsequent arguments. Indeed, many
works (e. g. [96]) compute the Chern numbers based only on the electric
field. That is because to any given family of relevant frequency bands we can



Symmetry classification of topological photonic crystals 1513

associate an electric Bloch vector bundle SIB‘? : just as described in Section
we glue together the electric subspaces HE, (k) = span{of (k)}n 7 Spanned
by the electric parts of the relevant Bloch functions. Such a bundle is then
characterized up to continuous deformations by electric (first and second)
Chern numbers CJE =c;(EF), j=1,2.

Of course, we could base our arguments off of the magnetic field and ob-
tain a magnetic Bloch vector bundle Eéf , characterized by magnetic Chern
numbers CJH = c;(EH), j = 1,2. That is all in addition to the electromag-
netic Bloch bundle & = EFH constructed in Sectionand electromagnetic
Chern numbers C]EH = ¢j(Er).

While the first-order formalism clearly singles out electromagnetic Chern
numbers, it still seems as if we have three choices. The immediate question
is whether the three sets of Chern numbers agree,

cflt=cP=cf, jeN

Fortunately, the answer is yes (see [25, Theorem 1.2]). Our proof rests on
vector bundle-theoretic arguments. More specifically, we give explicit ana-
lytic vector bundle isomorphisms with which we can identify & = & = .
As we argue in Section II1.B.1 of the aforementioned publication, this is not
something that one can deduce “by hand” even in the simplest setting.

5.2.2. Examples in the literature are not analogs of the Quantum
Spin Hall Effect. There are several distinct effects which claim to be
photonic analogs of the “Quantum Spin Hall Effect”, because the propaga-
tion direction of a boundary mode is locked to its spin or isospin degree of
freedom (e. g. [8, 0] 53], [99]). The naming at the very least suggests that
topology is at the heart of this spin-momentum locking.

In the context of quantum solid state physics, the Quantum Spin Hall
Effect [47] has a very precise meaning: the system is of class AII, meaning it
possesses an odd time-reversal symmetry, and the presence of this symme-
try is the proximate cause for the spin-momentum locking. However, as we
have discovered here electromagnetic media do not support odd time-reversal
symmetries due to our choice of materials — only even ones are admissible
(cf. Proposition . Thus, in a topological sense, these phenomena are not
photonic analogs of the Quantum Spin Hall Effect. Nevertheless, of the four
works mentioned, two of them [8,[99] actually do describe topological effects.

Surface plasmon-polaritons are topological, but not an analog of
the Quantum Spin Hall Effect. Interfaces between electromagnetic me-
dia such as between a dielectric and a metal (so that e. g. the sign of ¢ flips)
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support surface modes which are localized to the vicinity of the surface layer.
Such surface waves are also known as surface plasmon-polaritons. Bliokh,
Nori and co-workers have tried very long to understand whether topology
plays a role in the physics of surface-plasmon polaritons. The surprising
answer is yes, but not in the way previously thought. More specifically,
spin-momentum locking described in [8] is not of topological origin, their
existence and polarization is [6].

Let us explain the origin of spin-momentum locking. For simplicity, let
us focus on interfaces between two homogeneous media, as that situation
admits a complete set of explicit, analytical solutions. Bliokh, Smirnova
and Nori [§] gave a very concise and elegant explanation for the following
effect: if these surface waves are excited with circularly polarized light, then
the propagation direction of the surface wave is locked to the handedness
of the incoming light. To be clear, despite calling this an analog of the
“Quantum Spin Hall Effect” Bliokh et al did not claim that this effect is
of topological origin. Instead, spin-momentum locking here is due to the
transversality constraint and the fact that surface modes come in a single,
fized polarization — they are necessarily transverse magnetic waves.

The localization of the surface wave to the interface means that both,
the local wave vector k = (k;,ik,) and the polarization vector Wg,t(k) =
(WE (k) , ¥ ;(k)) are necessarily complex (cf. [8, equation (4)]), for oth-

surf surf
erwise the transversality constraint

could not be satisfied. The fact that these polarization vectors are complex
forces the electric field into a rotation in the plane of propagation, which, in
turn, gives rise to a spin angular momentum transverse to the plane. And
the sense of rotation, i. e. the sign of the transverse spin is locked to the
propagation direction of the surface wave (cf. [8, Figure 3A]); time-reversal
symmetry, which flips spin and and the in-plane momentum k., relates these
two counterpropagating waves.

Because the incoming circularly polarized light can only excite surface
modes whose sense of rotation matches its own, the sense of rotation dic-
tates which of the two counter-propagating surface modes will be excited —
and therefore the propagation direction. This robust mechanism, which is
responsible for spin-momentum locking, is at the heart of a broad range of
phenomena [7], [37, [60]. However, this is not a topological effect, in particular
not an analog of the Quantum Spin Hall Effect in the topological sense.
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In a surprising turn of events, one of the authors together with Bliokh,
Leykam and Nori did manage to tie the presence and polarization of surface
plasmon-polaritons to topology via a set of novel bulk-boundary correspon-
dences [6]. We considered interfaces between homogeneous media described
by scalar, real-valued electric permittivity € € R\ {0} and magnetic perme-
ability € R\ {0}. When sgne # sgn i, the medium is “metallic” (as bulk
waves decay exponentially in time), otherwise it is “dielectric” (oscillatory
bulk waves exist). The number of TE surface modes NIE is either 0 or 1,
depending on whether € changes sign across the surface; likewise, the num-
ber of TM modes NTNf[ =0, 1 is determined by sgn % Both can computed

sur
from the bulk topological invariants sgne; and sgn p;:

(5.3a) TE — 3(1 —sgn %) = 1(1 —sgn(e1) sgn (g2))
(5.3b) Nt = 5 (1 —sgn &) = (1 —sgn (1) sgn (2))
(5-3¢) Nt = Nowt + Nowt

Our derivation relied on our ability to find explicit, analytical solutions to
Maxwell’s equations for a simple geometry. Thus, from the vantage point
of a mathematician, these should be considered as conjectures, and pro-
viding a proof is the subject of active research. Experiments and numerics
strongly suggest that our bulk-boundary correspondences hold as a general
rule, e. g. when the surface is periodically or randomly patterned.

All the pertinent properties of the surface modes are summarized neatly
in a phase diagram [6, Fig. 3]. The phase diagram features a few symmetries
like the mirror symmetry of [6, Fig. 3b] around the £, = p, axis. The function
sgn (Z— — ), which tells us whether we are above or below the line €, = p,,
cannot be written as a function of the bulk invariants (sgne;,sgnp;), j =
1,2, though. Consequently, this features and indeed, all others apart from
NgJIEf’TM cannot be topological in nature!

What makes the bulk-boundary correspondences interesting are
two things: to the best of our knowledge this is the first time the topol-
ogy of the system is not determined by the generator of the dynamics,
but by another conserved quantity — in this case helicity. And secondly,
whenever the interface involves a “metal”, the problem is a manifestly non-
selfadjoint. More precisely, the relevant operators are only Krein-selfadjoint
since (®, V), = (@, W) is no longer a scalar product when W does not
have a fixed sign. Consequently, (¥, W), could be positive, negative or 0
even when W # 0. And because of that, our set of bulk-boundary corre-

spondences has no quantum analog and requires the development of entirely
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new mathematical techniques. We expect that recent advances in the under-
standing of Krein-selfadjoint [I7, [62] and non-selfadjoint systems [49] [102]
may provide a good basis to start with.

The results of [6] in no way contradict our topological classification,
Theorem That is because “metals”, where either ¢ < 0 or u < 0, are
excluded by Assumption (b). Nevertheless, [6] points to a richer, po-
tentially much more interesting topological classification of media where
Assumption (b) is replaced by

cl < |W|<C1, 0<e<C<oo.

Time-reversal symmetric media with isospin symmetry. Manufac-
turing electromagnetic media for which time-reversal symmetry is broken
at optical frequencies is difficult. To circumvent that difficulty several re-
searchers had had the idea to add an isospin symmetry to a medium with
time-reversal symmetry. One way to do that is by introducing a crystal-
lographic symmetry: Wu and Hu [99] proposed to arrange identical rods
made of a dielectric in a hexagonal lattice and sandwiched between two
metal plates. To be specific, the electric permittivity e(z) =eq(x)1 is a
real scalar, the magnetic permeability u(x) = po 1 equals the vacuum value,
and the bianisotropic tensor x = 0 is absent; were it not for the additional
isospin symmetry, this material would be of class Al. Instead, it possesses
three symmetries, namely the even time-reversal symmetry 73, the (unitary,
commuting) isospin symmetry as well as their product.

Provided the parameters are chosen correctly, such photonic crystals
have a photonic band gap for TM modes and there are edge modes at the
boundary (cf. [99, Figure 3]). Because of the presence of the time-reversal
symmetry T3 these boundary modes come in pairs that are mirror symmet-
ric with respect to reflection k, — —k,; here, k, is the Bloch momentum
associated to the remaining periodic direction parallel to the edge. More-
over, each of these boundary modes has a definite pseudospin. This leads
to a locking between pseudospin and propagation direction: according to
the band diagram [99, Figure 5] the boundary modes associated to isospin
T has a strictly positive group velocity (Opwedge+ > 0) while its symmet-
ric partner | has strictly negative group velocity (Ozwedge,| < 0). Moreover,
they propose that this is described by an effective Hamiltonian with an odd
time-reversal symmetry. Therefore, Wu and Hu incorrectly argue that this
is an analogue to the Quantum Spin Hall Effect and the system possesses a
Zo-valued invariant.

It is worthwhile to outline their argument in order to trace the mis-
takes in their analysis: first of all, they employ the second-order formalism



Symmetry classification of topological photonic crystals 1517

which is not suited for the symmetry classification (cf. 21 Section 3]) as it
becomes impossible to distinguish between commuting and anticommuting
symmetries of the auxiliary Maxwell operator M3 = M*"™. Wu and Hu
erroneously identify complex conjugation as being of time-reversal type,

O (M3™)*C = (1) (Mf™)" = (M3™)*

whereas C' actually anticommutes with M. In fact, because the real-
valuedness of electromagnetic fields is one of the inviolable tenets of elec-
tromagnetism, the equations describing electromagnetic waves in media can
never break complex conjugation “symmetry”. Therefore, this unbreakable
“symmetry” is not a symmetry at all, but a constraint that emerges from
the mathematical representation of our equations. Consequently, complex
conjugation is irrelevant for the topological classification.

Not only this point, but also the next item illustrates why the second-
order formalism is unsuitable for making quantum-wave analogies rigorous.
The authors then note the (avoided) conical intersection at k = 0 and pro-
pose an effective operator for those which possesses an odd time-reversal
symmetry. Because this effective 4-band operator [99, Supplementary Mate-
rial, equations (S28)—(529)] supposedly approximates (M _?_ux)2, it is quadratic
instead of linear in k. We caution against making such ad hoc arguments
without making any reference to the dynamical problem — the reasoning to
replace a Hamiltonian with an effective one crucially relies on the equa-
tions of motion being first order in time (e. g. via a Duhamel argument
akin to equation ([5.2))). Without having established a direct link between
the “effective Hamiltonian” and Maxwell’s equations, the presence of an odd
time-reversal symmetry for the “effective Hamiltonian” does not imply that
the original equations, Maxwell’s equations, sport such a symmetry as well.

Then the frequency bands and their Chern numbers are computed. Two
of these bands have Chern numbers 0 while the other two have Chern num-
bers +1. The claimed Zs-invariant is the Chern number mod 2. Note that
due to the presence of the even time-reversal symmetry Chern numbers come
i pairs of equal magnitude and opposite sign.

We can give a simple and systematic explanation of Wu’s and Hu’s finding,
the locking of spin and momentum in the boundary modes, by applying
the topological classification tools of Section 4] In particular, the presence
of topologically protected boundary modes does not contradict our main
classification result (Theorem [L.F)).

The system Wu and Hu studied exemplifies why assuming the absence
of additional unitary, commuting symmetries (Assumption is absolutely



1518 G. De Nittis and M. Lein

crucial for the physics and not a mathematical footnote. The existence of
a unitary, commuting (isospin) symmetry means we can decompose the k-
dependent Maxwell operator

M) =) 0wy = (M4 0

into block operators M, (k) that act on the isospin /| subspaces. Now two
things may happen: either the time-reversal symmetry is block-diagonal or it
s not. The block operators for dual symmetric media retain a time-reversal
symmetry whereas for the system that Wu and Hu consider, it turns out to
be broken as we will explain below. Put another way, we are dealing with a
“2 x class A” system (one for each isospin eigenstate). The topology of such
a system is completely determined by the Chern numbers of the isospin-
1 bands; again, thanks to the even time-reversal symmetry T3 the Chern
numbers of the isospin-] bands are necessarily equal in magnitude but have
opposite sign compared to their symmetric isospin-1 partners.

The simplest way to see this is by observing that akin to [99, Supplemen-
tary Material, equation (S11)] time-reversal symmetry flips isospins, and is
therefore completely block-off diagonal in the isospin basis. Retracing these
arguments on the level of Maxwell’s equations with the correct symmetries
is straightforward but lengthy — and fortunately for us unnecessary.

That is because breaking of time-reversal symmetry can be deduced
solely from the band picture obtained by Wu and Hu (cf. [99, Figure 5)): if
the time-reversal symmetry were block-diagonal, then M;,| would inherit a
time-reversal symmetry. Therefore, isospin-1 edge bands would necessarily
come in pairs, and that would mean the edge modes had to be two-fold
spin degenerate. However, according to the [99, Figure 5] the edge modes
are non-degenerate and have a definite isospin — M,/ cannot possess a
time-reversal symmetry.

In summary, M, are operators of class A, the same topological class as
gyrotropic media or quantum systems exhibiting the Quantum Hall Effect,
and the topological invariants are the usual Z-valued Chern numbers, rather
than a Zs-valued invariant. Given the topological classification, the spin-
momentum locking cannot be seen as a topological analog of the Quantum
Spin Hall Effect; instead, it has its origin in the usual Quantum Hall Ef-
fect. These Chern numbers come in isospin pairs: owing to the time-reversal
symmetry of the total system, isospin-] Chern numbers are equal in magni-
tude but have opposite sign compared to their symmetric isospin-1 partners
— after all, they need to sum to 0. This correct classification explains why
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edge modes of given isospin are unidirectional and are afforded topological
protection — provided that the perturbation preserves the isospin symme-
try. However, generic perturbations, i. e. those that break the honeycomb
symmetry, will mix isospin states and backscattering may occur. That is
why topological effects which are due to crystallographic symmetries are
less robust than those which only depend on symmetries of the medium.
Nevertheless, in light of the difficulty of fabricating electromagnetic media
which are gyrotropic and lossless in the optical or infrared, this may still be
a worthwhile tradeoff in practice.

Certain bianisotropic media. A different approach is taken by Khani-

kaev et al [53] as well as Chen et al [10] who propose to realize an isospin
degree of freedom due to a symmetry of the material weights

W= <; §>:1®5+01®X¢W:11®a—01®x

where € = diag (6 1,E L, 62) is purely diagonal and the bianistropic tensor

0 +iXzy O
X = | —iXay 0 0
0 0 0

is purely imaginary and offdiagonal. According to the nomenclature intro-
duced here, the medium described by W possesses a single even time-reversal
symmetry, T3, and therefore belongs to the non-gyrotropic class of media
(class Al cf. the table in Theorem . Absent any crystallographic sym-
metries, our analysis shows there are no topological effects — in direct con-
tradiction to the predictions made in [10, 53]. We will explain how this
discrepancy comes about and where their mistake lies.

Once we express W =1 ® € + 01 ® x in terms of Pauli matrices, we im-
mediately see that the weights commute with the operator J; = 07 ® 1. The
authors of [10, (3] exploited the fact that W and J; can be diagonalized
simultaneously, and proceeded to split Maxwell’s equations into separate
“spin-up” and “spin-down” equations. Time-reversal symmetry T5 maps be-
tween spin-up and spin-down states. The authors then show the existence of
boundary modes. Especially [10] seems to make a very persuasive argument
as they even verify the bulk-edge correspondence quantitatively.

Unfortunately, the analyses in [10, (53] start out with unphysical equa-
tions — “spin” eigenmodes (E +H, E- H) are not transversal. There are
two main reasons for this: first of all, J; anticommutes with the free Maxwell
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0 +ivX
—iv* 0
product M = W' Rot. That means .J; necessarily maps positive onto
non-positive states. Secondly, the authors did not take into account that
negative frequency states are governed by a different set of Maxwell’s equa-
tions that involve the complex conjugate weights W # W.

As a consequence of J; M J; = —M?®¥ there exist no positive fre-
quency solutions to the spin eigenvalue equation J;¥ = +W. In fact, Jp is
not even well-defined as an operator H4 — H on the non-negative fre-
quency subspace. The same arguments apply to the w < 0 subspace. Conse-
quently, spin eigenstates necessarily contain linear combinations of positive
and negative frequency states.

The last fact makes verifying the transversality of spin eigenstates more
difficult as we have two distinct transversality conditions that mix —
one for positive frequency waves with weights W, = W and one for negative
frequencies with complex conjugate weights W_ = W # W. The fact that
the projections I1L = %(]l + Jl) onto the eigenspaces are explicit means that
we need to check whether for an arbitrary positive frequency state U the
complex electromagnetic field J; ¥ (composed solely of non-positive frequen-
cies!) is transversal. However, a direct computation shows

operator Rot = ( ) and therefore also anticommutes with the

WIh=-1x+0 QAW =1Qc+0, X,

and J1¥ violates the transversality condition,
Div W ;¥ # Div W ¥ = 0.

In fact, replacing W with W in the above computation shows that .J; ¥
also does not satisfy the positive frequency transversality condition either.
Hence, spin eigenstates (E +H,E- H) cannot be transversal, they violate

one of Maxwell’s equations ([2.3b)).

Combining an even time-reversal with a crystallographic symme-
try to obtain an odd symmetry. FEven though our electromagnetic
media do not sport a bare, odd time-reversal symmetry, we can make one.
This is of course not a new idea, e. g. Kondo et al. proposed an odd, com-
muting antiunitary for a (bosonic) spin system [55], even though an odd
time-reversal symmetry may initially seem incompatible with the bosonic
nature of quantized spin waves.

One way to achieve this in electromagnetism is to start with a medium
that features 71 symmetry, but breaks 73. We will combine this with a
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partial reflection R = diag(1,1, —1) € O(3) about the zjz2-plane, whose key
features is det R = —1. According to equation (3.5)), the corresponding action
features o3 ® 1, which anticommutes with o1 ® 1 from T3. Their product

Toad := VRT1

therefore squares to —1. Following the discussion in Section we could
design a slab waveguide with this symmetry. A discrete Fourier transform
then yields My (ks, k). For k, = 0, the operator T,qq acts like a bona fide
odd time-reversal symmetry (i. e. ky — —kz),

Toaa My (kq, 0) Ty gy = +M (—ks, 0).

To our knowledge this particular setup has not yet been investigated. An
experimental realization may be hard, though, since media that preserve T}
and break T3 are hard to come by. Nevertheless, it stands to reason that such
a medium will feature the hallmarks of a class AII topological insulators.

5.3. Possible directions for future work

The premise of the article was to distinguish between material symmetries,
which have been studied here, and crystallographic symmetries. Because
electromagnetic and media for other classical waves can be fabricated to
exact specifications, there is a strong interest in understanding the role that
crystallographic symmetries play. Our analysis of [99] shows the power our
approach holds — we were straightfowardly able to link the presence of a
Cg-symmetry to a topological effect without making reference to an “effec-
tive Hamiltonian” whose link to the original equations is tenuous. What is
more, rewriting Maxwell’s equations in the form of a Schrédinger equation
(that is first order in time!) opens the door to the rich library of results from
the condensed matter community (see e. g. the references in [12}, 136, [79]). An
important prerequisite, though, is to start with the correct O(3) action on
electromagnetic fields (see Example . This action satisfies the two condi-
tions in Proposition which ensure that rotations and partial reflections
map solutions of Maxwell’s equations onto solutions.

Secondly, we still owe an answer to the first of the two questions from the
introduction — a derivation of Haldane’s Phontonic Bulk-Boundary Con-
jecture. That requires us to tackle the problems outlined in Section [5.2.1

Then we intend to look beyond electromagnetism and broaden our con-
siderations to include other classical waves. Indeed, analogs of the Quantum
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Hall Effect have been realized with other classical waves, including certain
acoustic waves [11), B0, [77), [83] and coupled pendula [91] 92], and we would
like to understand to what extent these phenomenological similarities are
founded on similar mathematics. Indeed, quite a few wave equations share
the same essential structure that characterize Maxwell’s equations: they are
first-order in time, feature a product structure and the physical fields are
real. For such wave equations the construction outlined in [24, Section 6]
yields a Schrodinger formalism. Just like with electromagnetism this will al-
low us and others to reach into the rich toolbox of techniques initially devel-
oped for quantum systems and apply them to classical waves; the topological
classification of media these waves propagate in would be but one example.
An attempt to look for new topological phenomena in spin waves (magnons)
was unsuccessful [62]. Excluding crystallographic symmetries, the relevant
topological classes are A, Al and All, so everything is well-understood from
a topological insulators perspective. These results are consistent with the
literature: Shindou et al. have anticipated an analog of the Quantum Hall
Effect (class A) [85] and Kondo et al. [55] proposed an experiment that
features an odd time-reversal-type symmetry (class AII). The so-called dy-
namical stability condition on the “Hamiltonian” is responsible for that. As
a consequence we can transform this operator into a selfadjoint one, and
reduce out w < 0 waves in much the same way as in [24, Section 3].

A mathematically and physically very intriguing question concerns the
generalization of our Schrodinger formalism and mathematical classification
to metals and metamaterials which violate the essential assumption that the
material weights be positive. One mathematical consequence is that (-, - )y,
fails to be a scalar product; similar to measuring distances with respect to
the Lorentzian metric, (¥, ¥),;, = 0 can vanish even if ¥ # 0. Spaces with
such indeterminate inner products are called Krein spaces [3], and their
mathematical properties are very different from those of Hilbert spaces. Un-
fortunately, Krein-selfadjointness (Krein-hermiticity) is a much weaker no-
tion, e. g. Krein-selfadjoint operators do not necessarily possess a functional
calculus, and because of that it is a priori not even clear how to imple-
ment the restriction to positive frequencies. One of our recent publications
[6] indeed strongly indicates that this is a promising direction. Interfaces
between homogeneous dielectric and metallic media seem to be the perfect
“drosophila system”: the bulk operators are either selfadjoint or antiselfad-
joint in the usual sense and admit completely explicit solutions. This frees
us from having to shoulder all sorts of technical burdens that generic Krein-
selfadjoint operators come with. The physical relevance is clear. But best
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of all, we have a specific bulk classification and bulk-boundary correspon-
dence conjectures to work towards. Early results indicate that this system
does not fit into the classification scheme for non-selfadjoint [49, 102] or
dynamically stable Krein-selfadjoint operators [I7], so we expect that com-
pletely new mathematical methods need to be developed to furnish a proof
of equation (5.3)).
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