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Graph minors and the linear reducibility

of Feynman diagrams

Benjamin Moore and Karen Yeats

We look at a graph property called reducibility which is closely
related to a condition developed by Brown to evaluate Feynman
integrals. We show for graphs with a fixed number of external mo-
menta, that reducibility with respect to both Symanzik polyno-
mials is graph minor closed. We also survey the known forbidden
minors and the known structural results. This gives some structural
information on those Feynman diagrams which are reducible.

1. Introduction

In recent years, there has been a large amount of research on both the math-
ematical and practical sides of calculating Feynman integrals using multiple
polylogarithms [6, 14, 23, 26, 27]. In [6], Brown gave a sufficient condition,
called linear reducibility, for evaluating Feynman integrals in parametric
form iteratively using multiple polylogarithms. Using this condition, Brown
showed that if a graph has vertex width less than three, then the corre-
sponding Feynman period evaluates to multiple zeta values. To determine
if a Feynman integral is linearly reducible, one does not have to look at the
integral at all, instead needing only to focus on a few graph polynomials,
namely the Symanzik polynomials. We quickly review the definitions of the
Symanzik polynomials.

Let G be a graph. To each edge e ∈ E(G) we associate a Schwinger
parameter αe. Let T denote the set of spanning trees of G. Then the first
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1658 B. Moore and K. Yeats

Symanzik polynomial of G is

ΨG =
∑
T∈T

∏
e6∈E(T )

αe.

We would also like to allow kinematics. To do so, to each edge e we
associate an edge weight me ∈ R, the mass of e. Also, we will allow our graph
to have external edges, as in, edges with exactly one endpoint. The external
edges have associated external momenta, but it will be more convenient to
associate the external momenta to the vertices with external edges. Formally
for each v ∈ V (G), we associate a vector ρv ∈ R4 (with Minkowski signature)
called the external momentum at v which will be 0 for vertices without
external edges. This lines up neatly with the graph theory; the vertices with
external edges become the root vertices in rooted forbidden minor results.
For the results of Section 4, we will restrict to on-shell external momenta.
Let G be a graph and H a subgraph of G. We will say the momentum flowing
into H is ∑

v∈V (H)

ρv.

Given a graph G, a spanning 2-forest of G is an unordered pair (T1, T2)
where T1 and T2 are trees such that V (T1) ∪ V (T2) = V (G) and V (T1) ∩
V (T2) = ∅. Then, letting T be the set of spanning 2-forests of G, the second
Symanzik polynomial is

ΦG =
∑

(T1,T2)∈T

(ρT1)2
∏

e6∈E(T1∪T2)

αe + ΨG

|E(G)|∑
i=1

αim
2
i .

Here (ρT1)2 is taken to mean the Minkowski norm squared. We note some
authors let the second Symanzik polynomial be just the terms depending
on the external momenta [5, 7]. Following [3], if G is a disconnected graph,
then we say ΦG = 0 and ΨG = 0. This is a reasonable convention; if we start
with a connected graph, we want to view deleting edges as restricting the
number of spanning trees and spanning 2-forests until there are none. Of
course, a disconnected graph can have a spanning 2-forest, however in such
a case the spanning 2-forest is really just two spanning trees of the connected
components, and thus not what we would like to consider.

At a high level, a Feynman integral being linearly reducible means that
starting with the Symanzik polynomials, there exists an ordering such that
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Graph minors and the linear reducibility 1659

one can iteratively integrate the integral in parametric form such that poly-
nomials which appear can be dealt with by multiple polylogarithms. There-
fore, we can talk about sets of polynomials being linearly reducible. We
note that such an ordering does not always occur, and there are examples
of Feynman integrals which require a larger class of functions than multiple
polylogarithms [8].

Surprisingly, Brown showed that for the first Symanzik polynomial, lin-
ear reducibility is graph minor closed [6], as in, given a reducible graph,
the deletion or contraction of any edge results in a reducible graph. Then,
by the celebrated well-quasi-ordering theorem of Robertson and Seymour
[25], linear reducibility for the first Symanzik polynomial is characterized
by a finite set of forbidden minors. Due to this, there have been attempts
to understand linear reducibility (and various related notions) using graph
minors [1, 3, 6, 16]. One such attempt by Bogner and Lüders was to extend
the graph minor closed result to both Symanzik polynomials. They showed
that a stronger condition called Fubini reducibility1 is graph minor closed
for graphs with a fixed number of external momenta [3]. Unfortunately there
are a few flaws in their argument. For one, the definition of graph minors
includes the deletion of isolated vertices, for which their claim fails. This is
because deleting an isolated vertex can cause a disconnected graph to be-
come connected, which can cause drastic changes in Φ and Ψ and result in
a non-Fubini reducible graph. This is not too much of a problem, as when
one restricts to connected graphs, one never needs to delete isolated ver-
tices when finding minors. However, their proof does not follow even in the
connected case.

In this paper, we correct and generalize the Bogner and Lüders result
to “compatibility graph reducibility”. Here we note compatibility graph re-
ducibility is a stronger condition than the notion of linear reducibility in [6]
(as in, if a set is compatibility graph reducible, then it is linearly reducible),
but is weaker than the notion of Fubini reducibility used by Bogner and
Lüders (as in, Fubini reducibility implies compatibility graph reducibility).
Additionally, we list the known forbidden minors for graphs with four exter-
nal on-shell momenta (with one new forbidden minor included) and outline
some structural results for graphs excluding these minors.

1Bogner and Lüders occasionally used the term linear reducibility, however their
version of reducibility is the same as the one outlined in [5] which Brown calls
Fubini reducibility.



i
i

“6-Moore” — 2020/3/20 — 9:45 — page 1660 — #4 i
i

i
i

i
i

1660 B. Moore and K. Yeats

2. The compatibility graph reduction

Here we review the compatibility graph reduction outlined in [6]. Before
jumping into the definition, we pause to give some motivation and intuition.
The compatibility graph reduction is an algorithm which simulates what
polynomials would appear at each stage of iteratively integrating a paramet-
ric Feynman integral under some order, by only acting on the polynomials.
At each step, the algorithm checks if the techniques in [6] are admissible for
the integration, or stops if it finds an obstruction. While compatibility graph
reducibility is a sufficient condition for the evaluation of Feynman integrals,
in general one can ask if an arbitrary set of polynomials with rational coef-
ficients is compatibility graph reducible. We will first give a simpler variant
of the algorithm, and use that to give the full definition.

Let S be a set of polynomials in the polynomial ring Q[α1, α2, . . . , αr].
Let σ be a permutation of {α1, . . . , αr}. Let CS be a complete graph on |S|
vertices, where we consider the vertex set of CS to be the set of polyno-
mials in S. Suppose we are at the kth iteration of the algorithm. If k ≥ 2,
then we have a set of polynomials with rational coefficients S(σ(1),...,σ(k−1)) =
{f1, . . . , fn} and compatibility graph C(σ(1),...,σ(k−1)) (here and throughout
we abuse notation and let σ(i) = ασ(i)). Here we let the vertices of
C(σ(1),...,σ(k−1)) be labelled by the polynomials from S(σ(1),...,σ(k−1)), and we
define the edge set below. Otherwise k = 1 and we use S and CS . We then
do the following:

1) If there is a polynomial f ∈ S(σ(1),...,σ(k)) such that f is not linear in
σ(k) (here and throughout linear means the degree of f in σ(k) is at
most one, so in particular f may be constant in σ(k)), we end the
algorithm, otherwise continue.

2) Then for all i ∈ {1, . . . , n}, given a polynomial fi ∈ S(σ(1),...,σ(k)), we

write fi = giσ(k) + hi, where gi = ∂fi
∂σ(k) and hi = fi|σ(k)=0.

3) Let S1 = {gi|i ∈ {1, . . . , n}}. Let S2 = {hi|i ∈ {1, . . . , n}}. Let S3 =
{gihj − higj |i, j ∈ {1, . . . , n}, i 6= j where fifj ∈ E(C(σ(1),...,σ(k−1)))}.
Let S4 = S1 ∪ S2 ∪ S3.

4) Let S̃ be the set of irreducible factors over Q of polynomials in S4.

5) Let S(σ(1),...,σ(k)) = S̃ and construct a new compatibility graph
C(σ(1),...,σ(k)) with some rule set (see below).

6) Repeat the above steps with S(σ(1),...,σ(k)) in place of S(σ(1),...,σ(k−1))
and C(σ(1),...,σ(k)) in place of C(σ(1),...,σ(k−1)).
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Now we show how to construct the compatibility graphs, C(σ(1),...,σ(k)).
Recall, the vertex set of C(σ(1),...,σ(k)) is the set of polynomials in
S(σ(1),...σ(k−1)). To determine the edges of C(σ(1),...,σ(k)) we associate a set
of 2-tuples to each vertex of C(σ(1),...,σ(k)) to keep track of how the polyno-
mials were created. Let m ∈ V (C(σ(1),...,σ(k))).

• If m is an irreducible factor of a polynomial gi ∈ S1 we associate the
2-tuple {0, i} with m.

• If m is an irreducible factor of some polynomial hi ∈ S2 then we
associate the 2-tuple {i,∞} with m. Additionally, if hi = fi where
fi ∈ S(σ(1),...σ(k−1)) then we associate the 2-tuple {0, i} to m as well as
{i,∞}.

• If m is the irreducible polynomial of some polynomial gihj − higj ∈ S3,
then we associate the 2-tuple {i, j} to m.

Now let m,n ∈ V (C(σ(1),...,σ(k))). The edge mn ∈ E(C(σ(1),...,σ(k))) if and
only if there exists a 2-tuple associated with m and a 2-tuple associated with
n such that their intersection is non-empty.

As an example, suppose a polynomial f is associated with the 2-tuples
{1,∞} and {3, 4}, and polynomial g is associated with the 2-tuples {2,∞}
and {1, 3}. Then since {3, 4} ∩ {1, 3} = {3}, the polynomials f and g are
compatible. However if g instead was associated with the 2-tuples {5, 6} and
{0, 2}, then as all pairwise intersections are empty, f and g would not be
compatible. We note that this technique does not always result in a complete
graph (and thus we consider fewer polynomials in the reduction algorithm).
We refer the reader to [6] for examples of compatibility graphs which are
not the complete graphs when starting with the first Symanzik polynomial.
We remark that there is a similar notion of compatibility graphs developed
by Panzer in [23].

Now we define the full compatibility graph reduction. Let S be a set of
polynomials in the polynomial ring Q[α1, α2, . . . , αr]. Initialize CS to be the
complete graph on |S| vertices and let σ be a permutation of {α1, . . . , αr}.

We define S[σ(1)] = S(σ(1)) and C[σ(1)] = C(σ(1)), where we obtain S(σ(1))
and C(σ(1)) using the algorithm outlined at the start of the section. Ad-
ditionally, we define S[σ(1),σ(2)] = S(σ(1),σ(2)) ∩ S(σ(2),σ(1)) and C[σ(1),σ(2)] to
be a graph where fg ∈ E(C[σ(1),σ(2)]) if and only if fg ∈ E(C(σ(1),σ(2))) ∩
E(C(σ(2),σ(1))). Then we can inductively define the sets S[σ(1),...,σ(k)] by

S[σ(1),...,σ(k)] =
⋂

1≤i≤k
S
[σ(1),..., ˆσ(i),...,σ(k)](σ(i))

,
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and we define C[σ(1),...,σ(k)] to be the compatibility graph for S[σ(1),...,σ(k)]
such that fg ∈ C[σ(1),...,σ(k)] if and only if

fg ∈
⋂

1≤i≤k
E(C

[σ(1),..., ˆσ(i),...,σ(k)](σ(i))
).

Here we make a slight technical note. In the above notions of intersecting
sets of polynomials, if two polynomials differ by a constant prefactor, we do
not remove them from the intersection. Now finally we can define what it
means for a set to be compatibility graph reducible.

Definition 1. Let S be a set of polynomials in the polynomial ring
Q[α1, . . . , αr]. Let σ be a permutation of {α1, . . . , αr}. We say S is compati-
bility graph reducible with respect to σ if for all 1 ≤ i ≤ r − 1, all polynomials
in the set S[σ(1),...,σ(i)] are linear in σ(i+ 1). If there exists a permutation σ
such that S is compatibility graph reducible with respect to σ, we say that S
is compatibility graph reducible. Given a graph G, and S ⊆ {ΨG,ΦG}, if S is
compatibility graph reducible, then we say G is compatibility graph reducible
with respect to S.

We pause to remark on what happens when a variable in Q[α1, . . . , αr]
does not appear in the set S. In this case, let α be the variable, and apply
one step of the reduction algorithm to S and α. We then obtain the set
S[α] which is the set of irreducible factors of S over Q, and the resulting
compatibility graph is a complete graph. In some sense, we can always as-
sume every variable appears in some polynomial of S. To see this, suppose
we pick an ordering of our variables where all the variables which do not
appear come first. Then as the initial compatibility graph is complete, ap-
plying the reduction algorithm to those variables simply makes the set of
polynomials irreducible over Q. We show later (Lemma 4) that this does not
affect reducibility.

We note the difference between Fubini reducibility used by Bogner and
Lüders and compatibility graph reducibility, is that in Fubini reducibility, at
each step every compatibility graph is a complete graph. There are graphs
which are compatibility graph reducible but not Fubini reducible. For exam-
ple, consider the 4-cycle C4, with four on-shell external momenta. Then C4

is not Fubini reducible with respect to Φ and Ψ, but is compatibility graph
reducible [16]. For brevity, we will refer to compatibility graph reducibility
as just reducibility.
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3. Properties of reducible sets

In this section, we prove the following result:

Theorem 2. Let S = {P1, . . . , PN} be a set of polynomials which is re-
ducible in the order (α1, . . . , αn). Fix l ∈ {1, . . . , n}. Let lc(P ) denote the
leading coefficient of polynomial P with respect to αl. Let S′ = {lc(P )|P ∈ S}
and S′′ = {P1|αl=0, . . . , PN |αl=0}. Then both S′ and S′′ are reducible with the
order (α1, . . . , αn).

This will essentially give us that reducibility is graph minor closed for
the Symanzik polynomials. We start this section by noting that reducibility
is well behaved under subsets.

Lemma 3. Let S = {f1, . . . , fn} be a set of polynomials in the polynomial
ring Q[α1, . . . , αr] and let σ be a permutation of {α1, . . . , αr}. Suppose S is
reducible with respect to σ. Then any subset L ⊆ S is reducible with respect
to σ.

Proof. Consider the sequence of sets and compatibility graphs

(S,CS), (S[σ(1)], C[σ(1)]), . . . , (S[σ(1),...,σ(r−1)], C[σ(1),...,σ(r−1)]).

We claim that that for all i ∈ {0, 1, . . . , r − 1}, the set L[σ(1),...,σ(i)] ⊆
S[σ(1),...,σ(i)] and that CL[σ(1),...,σ(i)]

is a subgraph of CS[σ(1),...,σ(i)]
[L[σ(1),...,σ(i)]]

(that is, a subgraph of the graph induced by the polynomials L[σ(1),...,σ(i)] in
the graph CS[σ(1),...,σ(i)]

). When i = 0 we consider the sets (S,CS) and (L,CL).
We proceed by induction on i.

The base case follows trivially. Now consider the set L[σ(1),...,σ(i−1)] and
the compatibility graph LC[σ(1),...,σ(i−1)]

. By induction we have

L[σ(1),...,σ(i−1)] ⊆ S[σ(1),...,σ(i−1)]

and that CL[σ(1),...,σ(i−1)]
is a subgraph of CS[σ(1),...,σ(i−1)]

[L[σ(1),...,σ(i−1)]]. We
will now apply one step of the reduction algorithm to these sets.

We claim that for all 1 ≤ j ≤ i, we have

L
[σ(1),..., ˆσ(j),...,σ(i)](σ(j))

⊆ S
[σ(1),..., ˆσ(j),...,σ(i)](σ(j))

when the set S
[σ(1),..., ˆσ(j),...,σ(i)](σ(j))

exists. We know that S is reducible with

respect to σ, so there exists a j ∈ {1, . . . , i} such that S
[σ(1),..., ˆσ(j),...,σ(i)](σ(j))
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exists. Fix any such j ∈ {1, . . . , i}. Then by induction we have

L
[σ(1),..., ˆσ(j),...,σ(i)]

⊆ S
[σ(1),..., ˆσ(j),...,σ(i)]

,

and CL[σ(1),..., ˆσ(j),...,σ(i)]
is a subgraph of CS[σ(1),..., ˆσ(j),...,σ(i)]

[L
[σ(1),..., ˆσ(j),...,σ(i)]

].

Note as S
[σ(1),..., ˆσ(j),...,σ(i)](σ(j))

exists, all polynomials in L
[σ(1),..., ˆσ(j),...,σ(i)]

are linear in σ(j). We will denote the set L4 to be the set obtained in the third
step of the reduction algorithm when starting with L

[σ(1),..., ˆσ(j),...,σ(i)]
, and S4

will be the set obtained in the second step of the reduction algorithm applied
to S

[σ(1),..., ˆσ(j),...,σ(i)]
. Then L4 ⊆ S4 as L

[σ(1),..., ˆσ(j),...,σ(i)]
⊆ S

[σ(1),..., ˆσ(j),...,σ(i)]
and as two polynomials in L

[σ(1),..., ˆσ(j),...,σ(i)]
are compatible then they are

compatible in S
[σ(1),..., ˆσ(j),...,σ(i)]

.

Let S̃ and L̃ be the sets obtained from step four of the reduction al-
gorithm in for S

[σ(1),..., ˆσ(j),...,σ(i)]
and L

[σ(1),..., ˆσ(j),...,σ(i)]
respectively. Then

as L4 ⊆ S4, we have that L̃ ⊆ S̃. Now consider the compatibility graph
CL[σ(1),..., ˆσ(j),...,σ(i)](σ(j))

. Let m and n be adjacent in the compatibility graph.
Then there is an 2-tuple associated to m and a 2-tuple associated to n
such that their intersection is non-empty. By construction, these 2-tuples
are derived from some polynomials in L

[σ(1),..., ˆσ(j),...,σ(i)](σ(j))
. But we know

that L
[σ(1),..., ˆσ(j),...,σ(i)](σ(j))

⊆ S
[σ(1),..., ˆσ(j),...,σ(i)](σ(j))

and thus the polyno-

mials which gave m and n the associated 2-tuples in L
[σ(1),..., ˆσ(j),...,σ(i)](σ(j))

exist in S
[σ(1),..., ˆσ(j),...,σ(i)](σ(j))

. Thus mn ∈ E(CS[σ(1),..., ˆσ(j),...,σ(i)](σ(j))
). There-

fore we have CL[σ(1),..., ˆσ(j),...,σ(i)](σ(j))
is a subgraph of the graph induced by

L
[σ(1),..., ˆσ(j),...,σ(i)](σ(j))

in CS[σ(1),..., ˆσ(j),...,σ(i)](σ(j))
. Therefore,

L[σ(1),...,σ(i)] =
⋂

1≤j≤k
L
[σ(1),..., ˆσ(j),...,σ(i)](σ(j))

⊆
⋂

1≤j≤k
S
[σ(1),..., ˆσ(j),...,σ(i)](σ(j))

= S[σ(1),...,σ(i)],

and CL[σ(1),...,σ(i)]
is a subgraph of CS[σ(1),...σ(i)]

[L[σ(1),...,σ(i)]], completing the
claim. �

In proving Theorem 2, we will move between some set of polynomial S
and the set of all irreducible polynomials of S with respect to Q. We now
prove a lemma that shows we can essentially move between these two sets
without impacting reducibility.

Lemma 4. Let S = {f1, . . . , fn} be a set of polynomials in the polynomial
ring Q[α1, . . . , αr]. Let σ be a permutation of {α1, . . . , αr}. Let SI be the set
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of irreducible factors of S with rational coefficients. If S is reducible with
respect to σ then SI is reducible with respect to σ. Furthermore, if SI is
reducible with respect to σ, and all polynomials in S are linear in σ(1), then
S is reducible with respect to σ.

Proof. Suppose S is reducible with respect to σ. Let p ∈ S and p = p1p2
where p1, p2 are polynomials in Q[α1, . . . , αr]. Let L = S \ {p} ∪ {p1, p2}. We
claim L is reducible with respect to σ. Note this proves the first statement of
the lemma as one can repeatedly apply this fact. We will show that S[σ(1)] =
L[σ(1)] and that their compatibility graphs are isomorphic. We consider two
cases.

Case 1: Suppose deg(p, σ(1)) = 0. Then deg(pi, σ(1)) = 0 for i ∈ {1, 2}.
We perform the first iteration of the reduction algorithm on S and L. Let
L4 and S4 be the sets obtained in step three of the reduction algorithm for
σ(1) for L and S respectively. As deg(p, σ(1)) = 0, we have that p1, p2 ∈ L4

and p ∈ S4. Notice that the polynomial gihj − gjhi = pgi when the hj , gj
polynomials are obtained from p, as then gj is 0. Similarly, when hj , gj is
obtained from p1 or p2, we get that gihj − gjhi is p1gi or p2gi respectively.
Then after factoring, we have L̃ = S̃, and so L[σ(1)] = S[σ(1)]. Thus it suffices
to show CL(σ(1))

is isomorphic to CS(σ(1))
.

As L = S \ {p} ∪ {p1, p2}, the graphs CL[σ(1)]
and CS[σ(1)]

have the same
vertex set, and we may restrict our attention to compatibilities caused by
p, p1 and p2. Notice the irreducible factors of p, p1 and p2 all contain an
associated 2-tuple containing ∞ and 0, thus we may restrict our attention
to 2-tuples not containing ∞ or 0.

Suppose an irreducible factor of p, say p′, is adjacent to a vertex g′ in
SCσ(1) , where g′ is an irreducible factor of some gi. Since we are assuming
that the compatibility did not arise from a 2-tuple containing {0} or {∞}
we may assume that compatibilities comes from the polynomial pgj . Then
without loss of generality, p′ is an irreducible factor of p1 and so p1gj would
provide the desired 2-tuple for compatibility. The same argument works in
the other direction as well, so we have that CL[σ(1)]

is isomorphic to CS[σ(1)]
.

As S[σ(1)] = L[σ(1)] and their compatibility graphs are the same, since S is
reducible, L is reducible.

Case 2: Suppose deg(p, σ(1)) = 1. Notice that as p is linear in σ(1),
exactly one of p1 or p2 is linear in σ(1). Without loss of generality, we
assume deg(p1, σ(1)) = 1.

As before let S4, S̃ and L4, L̃ denote the sets obtained from the third and
fourth step of the reduction for S and L respectively. Let p1 = g1σ(1) + h1.
Then p = p2(g1σ(1) + h1). Thus p2, h1, g1 ∈ L4 , and p2g1, p2h1 ∈ S4. Notice



i
i

“6-Moore” — 2020/3/20 — 9:45 — page 1666 — #10 i
i

i
i

i
i

1666 B. Moore and K. Yeats

that the polynomial gihj − higj = p2(g1hj − h1gj) when the gi, hi polynomi-
als are obtained from p. Thus S[σ(1)] will contain all the irreducible factors
obtained from p1 and p2. Similarly, L[σ(1)] will contain all the irreducible
factors obtained from p, so S[σ(1)] = L[σ(1)].

For the compatibility graphs, as before all irreducible factors of p are
adjacent in CS[σ(1)]

as they share an 2-tuple from p. In CL[σ(1)]
, all irreducible

factors of either p1 or p2 are adjacent. This follows since deg(p2, σ(1)) = 0,
all irreducible factors of p2 have a 2-tuple with 0 and a 2-tuple with ∞, and
every irreducible factor of p1 has a 2-tuple containing either 0 or∞. If f and
g are adjacent in CS[σ(1)]

and the 2-tuples which make them adjacent came
from a polynomial p2(g1hj − h1gj), then the desired 2-tuples exist for CL[σ(1)]

as the polynomials p2g1 ∈ L4 and g1hj − h1gj ∈ L4. A similar statement
holds for two adjacent polynomials in CL[σ(1)]

. Therefore one can see that
CL[σ(1)]

is isomorphic to CS[σ(1)]
, and thus as S is reducible with respect to

σ, L is reducible with respect to σ. Notice for the partial converse, the same
argument works, as the only obstruction is if the reduction algorithm stops
immediately. �

We remark that in the above proof we did not rely on the fact that
the initial compatibility graph is complete, so one can apply this argument
in the “middle” of a reduction if desired. Now we are in position to prove
Theorem 2 (split into two theorems as the arguments are slightly different).

Theorem 5. Let S = {P1, . . . , PN} be a set of polynomials which is re-
ducible in the order (α1, . . . , αn). Fix some l ∈ {1, . . . , n}. Then the set
Sl = {P1|αl=0, . . . , PN |αl=0} is reducible in the order (α1, . . . , αn).

Proof. Let S and Sl be a counterexample with n minimized, as in, S is
reducible with order (α1, . . . , αn), but Sl is not reducible with order
(α1, . . . , αn).

First suppose that l = 1. Then for all polynomials P ∈ S, we have that
deg(P, αl) ≤ 1. Then notice that Sl = S2 where S2 is the set obtained by
applying the reduction algorithm to S for αl. Then Sl[αl] ⊆ S[α1]. Then by

Lemma 3, we have that Sl[αl] is reducible with order (α2, . . . , αn), which

implies that Sl is reducible with order (α1, . . . , αn), a contradiction.
Therefore we assume that l 6= 1 and consider one step of the reduction

algorithm. As S is reducible with order (α1, . . . , αn), we have that S[α1]

is reducible with order (α2, . . . , αn). Consider the set Sl
′

[α1]
= {f |αl=0|f ∈

S[α1]}. Then since S is a minimal counterexample with respect to n, we have

that Sl
′

[α1]
is reducible with order (α2, . . . , αn). Additionally, by Lemma 4, the
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set of irreducible polynomials of Sl
′

[α1]
is reducible with order (α2, . . . , αn).

Notice from the definitions we have:

Sl
′

[α1]
= {f |αl=0|f ∈ S[α1]}
= {f |αl=0|f ∈ irreducible factors of S4}.

For notational convenience, we will say Sjl will be the set Sj obtained
from the reduction algorithm by starting with Sl for j ∈ {1, 2, 3, 4}. Suppose
we have a polynomial f , and f = f1f2 for some polynomials f1 and f2. Then
fix any variable α and notice that f |α=0 = f1|α=0f2|α=0. This follows since
any term which contains α in f is generated by a pair of terms in f1 and f2,
where at least one of these terms contains α. Now, notice that Sl[α1]

exists
and,

Sl[α1]
= irreducible factors of S4l

= irreducible factors of (S1l ∪ S2l ∪ S3l)

= irreducible factors of

({
∂f

∂α1
|f ∈ Sl

}
∪
{
f |α1=0|f ∈ Sl

}
∪
{
∂f1
∂α1

f2|α1=0 −
∂f2
∂α1

f1|α1=0|f1, f2 ∈ Sl
})

= irreducible factors of

({
∂f |αl=0

∂α1
|f ∈ S

}
∪ {f |αl,α1=0|f ∈ S}

∪
{
∂f1|αl=0

∂α1
f2|αl,α1=0 −

∂f2|αl=0

∂α1
f1|αl,α1=0|f1, f2 ∈ S

})
= irreducible factors of

({
∂f

∂α1
|αl=0|f ∈ S

}
∪ {f |αl,α1=0|f ∈ S}

∪
{
∂f1
∂α1
|αl=0f2|αl,α1=0 −

∂f2
∂α1
|αl=0f1|αl,α1=0|f1, f2 ∈ S

})
= irreducible factors of

({
∂f

∂α1
|αl=0|f ∈ S

}
∪ {f |αl,α1=0|f ∈ S}

∪
{(

∂f1
∂α1

f2|α1=0 −
∂f2
∂α1

f1|α1=0

)
|αl=0|f1, f2 ∈ S

})
⊆ irreducible factors of {f |αl=0|f ∈ irreducible factors of S4}
= irreducible factors of Sl

′

[α1]
.

By previous observations, the set of irreducible factors of Sl
′

[α1]
is re-

ducible with order (α2, . . . , αn), so by Lemma 3, we get that Sl[α1]
is reducible

with order (α2, . . . , αn), completing the proof. �
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Before we can prove the analogous statement for leading coefficients, we
need to make a few more claims.

Proposition 6. Let S = S′ ∪ {c} for some set of polynomials S′ and any
constant c. Then S is reducible if and only if S′ is reducible.

Proof. If S is reducible, then the result follows from Lemma 3.
Now suppose S′ is a set of polynomials in the polynomial ring

Q[α1, . . . , αr] which is reducible for some permutation σ of α1, . . . , αr. For
σ(1), the polynomial c forces c ∈ S2 and 0 ∈ S1. Thus the polynomial gihj −
higj = cgj when fi = c. Then after factoring over Q, we get S̃ = {c, S′σ(1)}.
This implies in the compatibility graph, c is adjacent to all other polynomi-
als. Notice that this happens at every step of the algorithm. Then since c is
linear in every variable, by induction S is reducible. �

Lemma 7. Let f1 and f2 be polynomials linear in α1. Fix a variable αl
such that αl 6= α1. For a polynomial f , let lc(f) be the leading coefficient of
f with respect to αl. Then either

1) ∂lc(f1)
∂α1

lc(f2)|α1=0 − ∂lc(f2)
∂α1

lc(f1)|α1=0 = 0 or

2) ∂lc(f1)
∂α1

lc(f2)|α1=0 − ∂lc(f2)
∂α1

lc(f1)|α1=0 = lc( ∂f1∂α1
f2|α1=0 − ∂f[2

∂α1
f1|α1=0).

Proof. Let f1 =
∑k

i=0(f1,i,1α1 + f1,i,2)α
i
l and f2 =

∑t
j=0(f2,j,1α1 + f2,j,2)α

j
l .

Then

∂lc(f1)

∂α1
lc(f2)|α1=0 −

∂lc(f2)

∂α1
lc(f1)|α1=0 = f1,k,1f2,t,2 − f2,t,1f1,k,2,

and

lc

(
∂f1
∂α1

f2|α1=0 −
∂f2
∂α1

f1|α1=0

)

= lc

( k∑
i=0

f1,i,1α
i
l

) t∑
j=0

f2,j,2α
j
l

−
 t∑
j=0

f2,j,1α
j
l

( k∑
i=0

f1,i,2α
i
l

) .

Now we consider various cases. If f1,k,1f2,t,2 − f2,t,1f1,k,2 = 0, then the
claim immediately holds. Therefore we assume that f1,k,1f2,t,2 − f2,t,1f1,k,2 6=
0. Suppose each of f1,k,1, f2,t,2, f2,t,1 and f1,k,2 are non-zero, then the largest

power of αl in (
∑k

i=0 f1,i,1α
i
l)(
∑t

j=0 f2,j,2α
j
l )− (

∑t
j=0 f2,j,1α

j
l )(
∑k

i=0 f1,i,2α
i
l)
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is αk+tl , and thus

lc

( k∑
i=0

f1,i,1α
i
l

) t∑
j=0

f2,j,2α
j
l

−
 t∑
j=0

f2,j,1α
j
l

( k∑
i=0

f1,i,2α
i
l

)
= f1,k,1f2,t,2 − f2,t,1f1,k,2.

Now suppose that f1,k,1 = 0 and f2,t,2, f2,t,1, and f1,k,2 are not zero. Then
the highest power of αl in(

k∑
i=0

f1,i,1α
i
l

) t∑
j=0

f2,j,2α
j
l

−
 t∑
j=0

f2,j,1α
j
l

( k∑
i=0

f1,i,2α
i
l

)

is αk+tl which only occurs in (
∑t

j=0 f2,j,1α
j
l )(
∑k

i=0 f1,i,2α
i
l) so,

lc

( k∑
i=0

f1,i,1α
i
l

) t∑
j=0

f2,j,2α
j
l

−
 t∑
j=0

f2,j,1α
j
l

( k∑
i=0

f1,i,2α
i
l

)
= −f2,t,1f1,k,2.

Now suppose that f1,k,2 = 0 and f2,t,2, f2,t,1, and f1,k,2 are not zero. Then
the highest power of αl in(

k∑
i=0

f1,i,1α
i
l

) t∑
j=0

f2,j,2α
j
l

−
 t∑
j=0

f2,j,1α
j
l

( k∑
i=0

f1,i,2α
i
l

)

is αk+tl so,

lc

( k∑
i=0

f1,i,1α
i
l

) t∑
j=0

f2,j,2α
j
l

−
 t∑
j=0

f2,j,1α
j
l

( k∑
i=0

f1,i,2α
i
l

)
= f1,k,1f2,t,2.

The case where f2,t,1 = 0 and f2,t,2, f1,k,1, and f1,k,2 are non-zero and the
case where f2,t,2 = 0 and f2,t,1, f1,k,1, f1,k,2 are non-zero follow similarly.

Now consider the case where f1,k,1 = 0, f2,t,1 = 0, and f1,k,2, f2,t,1 are
not zero. Then f1,k,1f2,t,2 − f2,t,1f1,k,2 = 0, satisfying the claim.

Now consider the case where f1,k,2 = 0,f2,t,2 = 0, and f1,k,1,f2,t,1 are not
zero. Then f1,k,1f2,t,2 − f2,t,1f1,k,2 = 0, satisfying the claim.



i
i

“6-Moore” — 2020/3/20 — 9:45 — page 1670 — #14 i
i

i
i

i
i

1670 B. Moore and K. Yeats

Now consider the case where f1,k,1 = 0, f2,t,2 = 0 and f1,k,2, f2,t,1 are

non-zero. Then the highest power of αl in (
∑k

i=0 f1,i,1α
i
l)(
∑t

j=0 f2,j,2α
j
l )−

(
∑t

j=0 f2,j,1α
j
l )(
∑k

i=0 f1,i,2α
i
l) is αk+tl so,

lc

( k∑
i=0

f1,i,1α
i
l

) t∑
j=0

f2,j,2α
j
l

−
 t∑
j=0

f2,j,1α
j
l

( k∑
i=0

f1,i,2α
i
l

)
= −f2,t,1f1,k,2.

The case where f1,k,2 = 0, f2,t,1 = 0 and f1,k,1,f2,t,1 are non-zero follows
similarly. Notice that these are all possible cases, so the claim holds. �

Theorem 8. Let S = {P1, . . . , PN} be a set of polynomials which is re-
ducible in the order (α1, . . . , αn). Fix l ∈ {1, . . . , n}. For all i ∈ {1, . . . , N},
Let Sl = {lc(P )|P ∈ S}. Then Sl is reducible with the order (α1, . . . , αn).

Proof. Let S and Sl be a counterexample with n minimized, as in, S is
reducible with order (α1, . . . , αn), but Sl is not reducible with order (α1,
. . . , αn)

First we suppose that l = 1. Then for all P ∈ S, we have deg(P, αl) ≤ 1.
Then Sl = S1 where S1 is the set obtained in the reduction algorithm
applied to S and αl. Then Sl[αl] ⊆ S[αl]. Since S[αl] is reducible with or-

der (α2, . . . , αn), by Lemma 3 we have that Sl[αl] is reducible with order

(α2, . . . , αn), and thus Sl is reducible with order (α1, . . . , αn).
Therefore we can assume that l 6= 1. Now consider the set (S[α1])

l, which
we define to be the set of leading coefficients of polynomials in S[α1] with
respect to αl. Since S is reducible with order (α1, . . . , αn), we have that
S[α1] is reducible with order (α2, . . . , αn) and thus as we chose a minimal

counterexample, (S[α1])
l is reducible with order (α2, . . . , αn). Notice from

the definitions we have:

(S[α1])
l = {lc(f)|f ∈ S[α1]}

= {lc(f)|f ∈ irreducible factors of S4}.

For notational convenience, we will say Sjl will be the set Sj obtained
by starting with Sl for j ∈ {1, 2, 3, 4}. Suppose we have a polynomial f , and
f = f1f2 for some polynomials f1 and f2. Now, notice that Sl[α1]

exists and,

Sl[α1]
= irreducible factors of S4l

= irreducible factors of (S1l ∪ S2l ∪ S3l)
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= irreducible factors of

({
∂f

∂α1
|f ∈ Sl

}
∪ {f |α1=0|f ∈ Sl}

∪
{
∂f1
∂α1

f2|α1=0 −
∂f2
∂α1

f1|α1=0|f1, f2 ∈ Sl
})

= irreducible factors of

({
∂lc(f)

∂α1
|f ∈ S

}
∪ {lc(f)|α1=0|f ∈ S}

∪
{
∂lc(f1)

∂α1
lc(f2)|α1=0 −

∂lc(f2)

∂α1
lc(f1)|α1=0|f1, f2 ∈ S

})
⊆ irreducible factors of

({
lc

(
∂f

∂α1

)
|f ∈ S

}
∪ {lc(f |α1=0)|f ∈ S}

∪
{
lc

(
∂f1
∂α1

f2|α1=0 −
∂f2
∂α1

f1|α1=0

)
|f1, f2 ∈ S

})
= irreducible factors of {lc(f)|f ∈ irreducible factors of S4}
= irreducible factors of (S[α1])

l

We note that the subset relationship between lines 4 and 5 above holds
by appealing to Lemma 7 and assuming that if

∂lc(f1)

∂α1
lc(f2)|α1=0 −

∂lc(f2)

∂α1
lc(f1)|α1=0 = 0,

then we remove the 0 from the set. This does not affect reducibility since 0
is a constant (see Proposition 6).

Then since (S[α1])
l is reducible with order (α2, . . . , αn), the set of irre-

ducible factors of (S[α1])
l is reducible with order (α2, . . . , αn) by Lemma 4.

Then by Lemma 3, we have that Sl[α1]
is reducible with order (α2, . . . , αn),

completing the claim. �

With that, Theorem 2 is proved. Now we shift focus to reducibility for
the specific set S = {ΨG,ΦG} for some graph G.

4. Graph minors and reducibility

Given a graph G, and an edge e, we denote the graph obtained by deleting
e as G \ e and the graph obtained by contracting e as G/e. A graph G
has a graph H as a minor if H can be obtained from G via a series of
edge deletions, contractions and if necessary, deletion of isolated vertices.
We remark that if G is connected, then any H-minor of G can be obtained
by deleting and contracting edges only.
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We now prove that reducibility for the Symanzik polynomials is graph
minor closed for graphs with a fixed number of momenta. Notice that ΨG is
a homogeneous polynomial linear in all variables, and if there are no massive
edges, then ΦG is a homogeneous polynomial linear in all variables [4]. We
also note the following well known observations (see, for example, [3, 4]):

Lemma 9. Let G be a graph. Let e ∈ E(G) such that e is not massive and
e is not a loop. Then the following identities hold:

∂

∂αe
ΦG = ΦG\e, ΦG|αe=0 = ΦG/e,

∂

∂αe
ΨG = ΨG\e, ΨG|αe=0 = ΨG/e.

Lemma 10. Let G be a graph and consider any edge e which is a loop.
Then ΨG = αeΨG\e, and ΦG = ΦG\eαe.

Before proving the graph minor closed result, we make the convention
that for a given graph G, we consider reducibility in the polynomial ring
Q[α1, . . . , αr] where each αi corresponds to a Schwinger parameter of an
edge of G. However using this convention means that we cannot appeal to
Theorem 2 as it is stated, as deleting and contracting edges would reduce the
number of variables we are considering, whereas in Theorem 2, the variable
list never changes. However, the corresponding result with αl removed from
the variable list after taking constant or leading coefficients is an immediate
corollary because, as observed previously, a reduction step where the vari-
able does not appear makes no change to the polynomial while potentially
adding edges to the compatibility graph which can only make it harder to
be reducible. Now we prove the graph minor closed result.

Theorem 11. Let r be a fixed positive integer. Let G be the set of connected
graphs which have r external momenta, and are reducible with respect to
{Φ,Ψ}. Then all connected minors of G are in G.

Proof. Let G ∈ G. Pick any edge e ∈ E(G) (if there are no edges then the
result follows trivially). If e is massive, then G is reducible for any value of
me and so we can suppose me = 0. Therefore without loss of generality we
assume e is massless. We consider two cases.

Case 1: Suppose e is a loop. Graph theoretically for loops, deletion
and contraction are the same. Then by Lemma 10, we have {ΦG,ΨG} =
{ΦG\eαe,ΨG\eαe}. By Lemma 4, {ΦG\eαe,ΨG\eαe} is reducible if and only if
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K4 W4
K2,4 L

K3,4 V8 ∪ {02}

Figure 1: Forbidden Minors for reducibility. Edges with no endpoint denote
vertices with external momenta.

{ΦG\e,ΨG\e, αe} is reducible. Since αe is a monomial, we get that {ΦG,ΨG}
is reducible if and only if {ΦG\e,ΨG\e} is reducible. Alternately if we take the
more physical convention that contracting a loop sends the whole graph to
0 (corresponding to the fact that ΨG|αe=0 = 0 and ΦG|αe=0 = 0 for e a loop)
then the result still holds as {0} is trivially reducible. Therefore G \ e ∈ G,
and by induction the result follows.

Case 2: Suppose that e is not a loop edge and consider G \ e and G/e.
By Lemma 9 the Symanzik polynomials for G \ e are { ∂

∂αe
ΦG,

∂
∂αe

ΨG}. Simi-
larly, by Lemma 9 the Symanzik polynomials for G/e are {ΨG|αe=0

,ΦG|αe=0
}.

Notice that since we have no massive edges, both of the Symanzik polynomi-
als are linear in αl, thus ∂

∂αe
ΦG = lc(ΦG) and ∂

∂αe
ΦG = lc(ΦG). Thus both

sets are reducible by appealing to Theorem 8 and Theorem 5. Therefore
both G \ e and G/e are in G, and by induction the result follows. �

We note the exact same proof works for reducibility with respect to just
Φ or Ψ.
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4.1. Towards a forbidden minor characterization

As mentioned in the introduction, Robertson and Seymour proved that if
a property is graph minor closed, then that property is characterized by a
finite set of forbidden minors (where a graph is a forbidden minor if it does
not have the property, but all proper minors of it have the property) [25]. It is
worth noting that even restricted to connected graphs this theorem holds and
that appropriate analogues hold for graphs with external momenta (rooted
minor results) as will be discussed below. Then by Theorem 11, reducibility
with a fixed number of external momenta is characterized by a finite set of
forbidden minors. Therefore, it is of interest to try and determine the full
set of forbidden minors. We do not claim to have anywhere near a complete
characterization, but we list some of the graphs which are known to be
non-reducible here. Checking whether a graph is reducible was done using
Panzer’s HyperInt program [22, 23]. We note that Bogner also has software
available for checking reducibility [2].

Quite a bit of work has been done on reducibility with respect to the
first Symanzik polynomial. In [6], the graph K3,4 was shown to be non-
reducible with respect to Ψ and that, in particular, for any permutation σ,
the set S[σ(1),...,σ(7)] (if it exists) is quadratic in σ(8). Furthermore, by direct
computation, one can show that all proper minors of K3,4 are reducible,
showing that K3,4 is a forbidden minor for reducibility with respect to the
first Symanzik polynomial [6].

Also in [6], Brown notes that the graph V8 ∪ {02} (see Figure 1, also
known as Q48 in [26], V8 is the well known Wagner’s graph) is not reducible
with respect to Ψ. Again by direct computation, it is possible to show that
V8 ∪ {02} is a forbidden minor with respect to Ψ ([6]).

Now we record forbidden minors for reducibility with respect to both
Symanzik polynomials, where the underlying graph has no massive edges,
and four on-shell external momenta (so ρ2 = 0 for all external momenta ρ).
It was shown in [16] and noted in [3] that the complete graph on four vertices,
K4, is a forbidden minor, where each vertex has an external edge. Also, the
wheel with four spokes, W4 is a forbidden minor when all of the vertices
with external edges lie on the four vertices with degree 3. We note that
W4 is the forbidden minor obtained when taking the non-reducible graphs
in [16] and finding the minimal non-reducible graph. One can show that
K2,4 where all the external edges are on the large side of the bipartition
is a forbidden minor. Lastly, there is a graph which we call L which is a
new forbidden minor (see Figure 1). To the authors knowledge, these are all
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known forbidden minors, though we expect there to be more which are not
yet known.

On finding more forbidden minors, a census of periods of Feynman in-
tegrals has been constructed in [26]. Since reducibility is tied to Brown’s
integration algorithm, and we know that when Brown’s algorithm succeeds
that the Feynman integral is a multiple zeta value, all graphs in [26] whose
Feynman integral is not a multiple zeta value are not reducible. There are
some graphs which are known to not have periods which are multiple zeta
values, but they are almost certainly not forbidden minors. However, it is
quite difficult computationally to try and find the forbidden minor from
these graphs, and it would be beneficial to find a easier way to compute
reducibility. Additionally, we have the following conjecture.

Conjecture 12. The complete graph on six vertices, K6, is a forbidden
minor for reducibility with respect to the first Symanzik polynomial.

We remark that it is not known if K6 is even not reducible. It turns
out that the resolution of this conjecture will largely not impact the class of
reducible graphs with respect to the first Symanzik polynomial. This is due
to the following observation:

Observation 13. Let G be a 3-connected graph with a K6-minor. Then
either G is isomorphic to K6, or G has a K3,4-minor.

This follows easily from Seymour’s 3-splitter Theorem [28] (see [20] for a
proof of the observation). We note, despite not having a full list of forbidden
minors, one can utilize the known forbidden minors to gain insight on the
structure of reducible graphs. Here we survey some of the known results, in
particular results dealing with the four external on-shell momenta case.

First, we have to extend the notion of graph minors to deal with the
external momenta. For the purposes of this discussion, the roots of a graph
G will be the the vertices of G with external momenta. Let X be the set of
roots of a graph. Then, given graphs G and H, and a injective map f : X →
V (H), we say G admits a rooted H-minor with respect to f if there exists
a set {Gx | x ∈ V (H)} where Gx is a set of vertices, we have Gx ∩Gy = ∅
when x 6= y, for each uv ∈ E(H), there is a x ∈ Gu and y ∈ Gv such that
xy ∈ E(G), and lastly if x ∈ X, then x ∈ Gf(x). We note that if one drops the
final condition, then one obtains an alternative definition of graph minors. In
general, we will want to consider more than one injective map, so if we have
injective maps f1, . . . , fn : X → V (H), that a graph G has a rooted H-minor
if G has a rooted H-minor with respect to fi for any i ∈ {1, . . . , n}.
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For our purposes, for each ofK4,W4,K2,4 and L, we consider all injective
maps from the roots of G to the external momenta of those graphs as shown
in Figure 1. We note that the notion of rooted minors is the correct notion
of minors when dealing with reducibility with respect to both Symanzik
polynomials. If a graph has a rooted K4, W4, K2,4 or L-minor, then the graph
is not reducible with respect to {Φ,Ψ}. Then we can ask the question; what
is the structure of a graph not containing rooted K4, W4, K2,4, or L-minors?
There has been some work on varying aspects of this question [10, 20, 21, 30].
It turns out for 3-connected graphs, one of the those minors always exists.
In fact, we have:

Theorem 14 ([20, 21]). Let G be a 3-connected graph with four roots.
Then either G has a rooted K4-minor or a rooted W4-minor.

Therefore, reducibility with four external on-shell momenta is only inter-
esting for graphs with cut vertices or 2-separations. This reduction already
simplifies the physics significantly. As all the minors we are looking at are
2-connected, graphs with cut vertices are uninteresting, so we restrict to 2-
connected graphs. It turns out that to not have one of the forbidden minors,
one has to look largely planar. To formalize this, let H be a planar graph
where the outer face is bounded by a 4-cycle on vertices a, b, c and d , all in-
ternal faces are triangles, and all triangles are faces. To each triangle T in H,
we attach a clique, FT , of arbitrary (possibly empty) size where the vertices
of FT are only adjacent to to the vertices in T in H. Following Wood and
Fabila-Monroy, [30], we call the resulting graph an {a, b, c, d}-web2. In gen-
eral, given a graph H, we say the graph H+ is obtained by adding cliques of
arbitrary size to every triangle in H in the same fashion as above. We remark
that webs are closely related to the notion of flat embeddings, which arise
in the study of graph linkages. Now we state the excluded rooted K4-minor
theorem:

Theorem 15 ([30]). Suppose G has four roots and is rooted K4-minor-
free. Then G is the spanning subgraph of a graph H+ where H is one of the
graphs in Figure 2.

When we add in rooted K2,4-minors and W4-minors we can restrict the
graph class quite significantly. For the rest of the paper, we will use the

2Note that this is a different notion of webs than used in studying infrared di-
vergences in non-abelian gauge theories [29] or in studying the Grassmannian via
tensor invariants and other similar objects [11, 15].
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Class A Class B Class C

Class D Class E Class F

a

b

dc

a

b

c

d

a

b

c

d

a

b c

d

c d

a

b

a

b

c

d

Figure 2: The graphs H in Theorem 15. Grey sections are webs in the sense
of Wood and Fabila-Monroy. The vertices labelled a, b, c, d are the vertices
with external momentum.

phrase G is a spanning subgraph of a class A (for example) to mean that G
is isomorphic to a spanning subgraph of a graph H+ where H is the graph
in Figure 2 under the header class A.

We can collect together and summarize the main forbidden minor char-
acterization results of [20] and [21] (which can be consulted for details) in
the following theorem.

Theorem 16 ([20], [21]). Let G be a 2-connected graph with four roots. If
G is a spanning subgraph of a class A graph then G does not have a rooted
W4 or K2,4-minor. If G is a spanning subgraph of a class B or C graph, then
G has a rooted K2,4-minor. If G is a spanning subgraph of an {a, b, c, d}-web
and has a rooted K2,4-minor, then G has a rooted W4-minor. Furthermore,
a spanning subgraph of an {a, b, c, d}-web does not have a rooted W4-minor
if and only if it is a spanning subgraph of one of the graphs in Figure 3
(see below for a more detail). Finally, spanning subgraphs of class E and F
graphs have a rooted W4-minor if and only if the underlying {a, b, c, d}-web
has a rooted W4-minor, where we move the roots which are not on the web
to distinct neighbouring vertices on the web.
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Obstruction 1 Obstruction 2

Obstruction 3 Obstruction 4

Obstruction 5

C C

C

· · ·

· · · · · ·

Figure 3: Obstructions to having a rooted W4-minor in an {a, b, c, d}-web.
The curved white sections indicate a 2-vertex cut. The dots indicate a 2-
chain.

Now we clarify the obstructions in Figure 3. All of the obstructions are
build up of two pieces, root separating triangles and root separating 2-chains.
A 2-separation (A,B) is the partition of V (G) induced by a 2-vertex cut. A 2-
dissection is a sequence of 2-separations ((A1, B1), . . . , (Ak, Bk)), where Ai ⊆
Ai+1 for all i ∈ {1, . . . , k − 1} and Bi+1 ⊆ Bi for all i ∈ {2, . . . , k}. A 2-chain
is a 2-dissection ((A1, B1), . . . , (Ak, Bk)) where Ai ∩Bi ∩Ai+1 ∩Bi+1 is non-
empty for all i ∈ {1, . . . , k − 1}. Given a graph with four roots, say a, b, c, d,
a root separating 2-chain is a 2-chain where a ∈ A1 ∩B1, b ∈ A1 \B1, c ∈
Ak ∩Bk, and d ∈ Bk \Ak. In Figure 3, obstruction one is a root separating
2-chain, and in general, any root separating 2-chain is an obstruction.

Now, we define a triangle to be a collection of 2-separations (A1, B1),
(A2, B2), (A3, B3) where A1 ∩B1 = {x, y}, A2 ∩B2 = {y, z}, and A3 ∩B3 =
{x, z}. For notational convenience, we will enforce that in a triangle, (Ai \
Bi) ∩ (Aj \Bj) = ∅ for any i, j ∈ {1, 2, 3}, i 6= j. Then, a triangle (A1, B1),
(A2, B2), (A3, B3), is a root separating triangle if exactly two of the roots
are contained in A1, exactly one root is contained in A2 \B2 and exactly
one root contained in A3 \B3. Obstruction 2, 3, 4, and 5 from Figure 3 are
all built up from root separating triangles.
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The only rooted minor which we haven’t discussed is the rooted L-minor.
It turns out that by additionally restricting to graphs without rooted L-
minors we do not actually see that much change in the graph class. After
applying some reductions which we won’t discuss here, it turns out root
separating 2-chain obstructions are the only place where one can find rooted
L-minors. In these instances, the only time one can only obtain a rooted L-
minor if the root separating 2-chain has even length, and “inside” a pair of
separations (as in, in the graph induced by G[Ai+1] ∩G[Bi]) one can find
a certain smaller rooted minor. The parity condition arises from the fact
that if the length of the two chain is odd, then for any cycle containing
the roots a, b, c, d, the two roots not appearing in A1 ∩B1 and Ak ∩Bk are
separated by the two roots which do appear in A1 ∩B1 and Ak ∩Bk. As in,
if b, d 6∈ A1 ∩B1 and b, d 6∈ Ak ∩Bk, then walking in any direction along the
cycle from b, we hit a or c before d. We refer the reader to [20, 21] for more
details.

Notice throughout these results, nothing has been said about the ar-
bitrary graph hidden in each triangle. This is because the rooted minors
cannot “see” the structure of these graphs, as the triangles are too small of
a cut-set. However, the forbidden minors for the first Symanzik polynomial
(which also are obstructions for reducibility for both Symanzik polynomials)
are not rooted, and thus impose structure on those sections of the graph.

One small thing that can be said about the graphs in each triangle while
still using the rooted minors is that if two triangles T1 and T2 have three
disjoint paths between them, then at most one of the spanning subgraphs
of cliques adjoined to the triangles is non-planar. This follows easily from a
well known result on rooted K2,3-minors by Seymour and Thomasson [24].

As to the effect of the known minors for the first Symanzik polynomial
on the graphs hidden in each triangle, unfortunately, in general not much
is known about graphs without K3,4-minors and V8 ∪ {02}-minors. In the
projective plane, vertically 4-connected graphs without K3,4-minors have
been characterized as graphs which are minors of Möbius hyperladders (or
spanning subgraphs of certain “patch graphs”) [18, 19]. Essentially nothing
is known about V8 ∪ {02}-minors, however V8-minor-free graphs have been
characterized by Robertson and Maharray [17], so one might hope to be able
to characterize V8 ∪ {02}-minor free graphs by using the V8 result and the
splitter theorem.

Despite not having a clear picture of what the class of reducible graphs
for the first Symanzik polynomial looks like, one can make a reasonable
guess on what the class should be. As mentioned in the introduction, Brown
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showed that graphs with vertex width less than or equal to three are re-
ducible for the first Symanzik polynomial. Define vertex width as follows.

Let G be a graph with m edges. The width of an ordering e1, e2, . . . , em
of E(G) is the maximum order of a separation of the form ({e1, . . . , el},
{el+1, . . . , em}) for l ∈ {1, . . . ,m}. Here we are viewing {e1, . . . , el} as a set
of vertices induced by the edges e1, . . . , el, and the order of the separation is
|{e1, . . . , el} ∩ {el+1, . . . , em}|. The vertex width of G is the minimum width
among all edge orders of G.

We note that vertex width is closely related to other graph theoretic
width properties. In particular, vertex width is close to the linear version
of treewidth, pathwidth, and the linear notion of branch width, which is
sometimes called caterpillar width. In the 3-connected case vertex-width 3
also matches with zero forcing number equal to 3 [12].

It is easy to see that the graphs satisfying vertex width ≤ 3 are planar. In
fact, the 3-connected graphs satisfying vertex width ≤ 3 were characterized
in terms of forbidden minors (K5,K3,3, the cube, the octahedron, and one
other special graph) by Crump in his master’s thesis [1, 9]. Unfortunately,
all of the forbidden minors for 3-connected vertex width ≤ 3 graphs are
reducible with respect to the first Symanzik polynomial, so the class of
reducible graphs for the first Symanzik polynomial should be somewhat
larger, but it still gives a nice infinite family of graphs which are reducible
for the first Symanzik polynomial. On the flip side, there is a beautiful
conjecture of Jörgensen which says that a 6-connected graph is K6-minor-
free if and only if there exists a vertex v such that the deletion of v results
in a planar graph. This conjecture has been proven for graphs with a large
number of vertices [13]. Assuming the truth of this conjecture (or assuming
we are dealing with large graphs), combined with Observation 13, we see
that graphs which are reducible should be “nearly” planar, in the sense
that deleting a small number of vertices leaves a planar graph. Thus we
see that the class of reducible graphs for the first Symanzik polynomial
should lie somewhere between the class of vertex width ≤ 3, which are highly
structured planar graphs, and graphs which are “almost” planar. We also
note that there is a planar graph which is not reducible [8], and so perhaps
it is reasonable to expect the class of reducible class lies closer to highly
structured vertex width ≤ 3 graphs than the class of “almost” planar graphs.

For reducibility of graphs with 4 external on-shell momenta, given that
going from rooted K4, W4, and K2,4-minor free graphs to rooted K4, W4,
K2,4 and L-minor free graphs does not change the characterization too much,
we anticipate the graph class in the exact characterization not to differ too
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much from what was presented here (however there may be significantly
many more forbidden minors).
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