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Building on a strategy introduced in arXiv:1706.05364, we present
exact analytic expressions for all the singlet eigenstates and eigen-
values of the simplest non-linear (n = 2, d = 3) gauged Gurau-
Witten tensor model. This solves the theory completely. The
ground state eigenvalue is −2

√
14 in suitable conventions. This

matches the result obtained for the ground state energy in the
ungauged model, via brute force diagonalization on a computer.
We find that the leftover degeneracies in the gauged theory, are
only partially accounted for by its known discrete symmetries, in-
dicating the existence of previously unidentified “hidden” global
symmetries in the system. We discuss the spectral form factor,
the beginnings of chaos, and the distinction between theories with
SO(n) and O(n) gaugings. Our results provide the complete ana-
lytic solution of a non-linear gauge theory in 0+1 dimensions, albeit
for a specific value of N . A summary of the main results in this
paper were presented in the companion letter arXiv:1802.02502.
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1. Introduction

The purpose of this paper is to present the complete analytic solution of a
gauged non-linear 0+1 dimensional quantum theory of strongly interacting
fermions. More specifically, we will present the eigenvalues and eigenstates
of the n = 2, d = 3 colored tensor model in the language of [1]. A letter
version of this paper with only (some of) the results was presented in [2],
here we will present the various technical details of both the method as well
as the complete results. Before proceeding, we will present a few words of
motivation as well as make some general comments.

Gauged tensor models [3] have been around for a while, but they expe-
rienced a resurgence in interest after Witten argued [1] that certain classes
of them can mimic the large-N diagrammatics of the SYK model [4, 5]
and therefore they might be of interest for holographic purposes (see re-
lated discussions in [6, 7]). Unlike the SYK model, these theories are not
disorder averaged and therefore are perfectly legitimate quantum mechan-
ical theories. In this paper, we will view these tensor models as a class of
strongly coupled gauge theories in 0+1 dimensions, with tunable parameters
that capture N . Our goal will be to see how far we can proceed in exactly
(non-pertubatively) solving them, and we will stick to relatively small N .

The strategy we present here is in principle general enough to go through
for all colored Gurau-Witten tensor models with gauge groupO(n)4 ×O(2)2,
as well as possibly other related classes of tensor models. Of course, at larger
n the implementatioon of the approach is more complicated. What we have
explicitly solved here is the n = 2 case. Even though the gauge group is
Abelian, because of the quartic self-interactions the theory is still highly non-
linear. One of the advantages of 0+1 dimensions is that the gauge field is not
dynamical and merely imposes a singlet constraint (see e.g., [8]) for any n.
We take systematic advantage of this, as well as of the crucial fact observed
in [9] that the Hilbert space is a spinor and that its Clifford structure can be
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exploited profitably. We should emphasize that while the ungauged model
is more or less straightforwardly diagonalized numerically on a computer,
the gauged theory is not. This is because constructing singlets and singlet
eigenstates in a useful way in these theories is difficult. In particular, it is
unclear (to us) whether having the numerical eigenvalue spectrum of the
ungauged theory is helpful in solving the gauged theory. This is what makes
this problem interesting. In fact, even the counting of singlets is a non-trivial
problem, see [10]. The dimensionality of the gauged Hilbert space we find
matches with the count in [10].

It is easy to convince oneself that the eigenvalues of the gauged model
should form a subset of the ungauged model. Since the ungauged model can
be diagonalized numerically, this offers us a non-trivial test of our solution.
Indeed, we find that all the eigenvalues that we find (our eigenvalues are all
square roots of integres as it turns out) match with (a subset of) the nu-
merical eigenvalues of [11] upto six decimal places. In particular, the ground
state energy is −2

√
14 in units where the coupling J = 11, and agrees with

the ungauged ground state energy. We will offer a qualitative understanding
of the origin of the irrational energies in a later section.

Despite the relative smallness of N we find that the theory does lead
to some rudimentary large-N features like chaos. In particular, the Spectral
Form Factor (SFF) is qualitatively identical to that of the ungauged model
found in [11, 12] which in turn was related to the dip-ramp-plateau structure
of SYK [13]. This should be contrasted to the simplest uncolored model
[14] whose gauged version was solved in [15, 16], but it was found to be
a rather trivial two-state system. The ungauged Hilbert space there was
only 16 dimensional, and after gauging only two states were left. Here, we
start with an ungauged Hilbert space that is 65536 dimensional and after
gauging we end up with a Hilbert space that is 140 dimensional. There
are 11 distinct eigenvalues in the spectrum. We are able to explain many
of the degeneracies in the final Hilbert space in terms of the known [1,
11] discrete global symmetries of the tensor model. However, there remain
degeneracies which are unaccounted for by the known symmetries of the

1See next section for definition of J . The coupling is dimensionful and setting
it to one corresponds merely to a choice of unit, and we will do so in most of the
paper. We can always re-instate it by dimensional analysis. Note that the running
coupling one expects at long distances in melonic theories should not be directly
compared to this. What we are solving is the UV theory. To get IR correlators
one should calculate correlators and look at their long time behavior. The effective
running coupling will emerge then.
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system, suggesting that there are (so far) unidentified hidden symmetries in
the Gurau-Witten tensor model. It is clearly of interest to identify them.

Note that it is the finding of the solution that is the difficult part in the
problem. Once we find the solution it is easy enough to verify: by explicitly
acting with the Hamiltonian on the eigenstates. This means that we can
have quite a bit of confidence that the solution is indeed right. Further tests
of the solution include the fact that the eigenvalues match with previous
numerical results of a (subset of) eigenvalues in the ungauged tensor model,
as well as the match of the dimensionality of the Hilbert space with the
indirect count of singlets in [10]2.

We will mostly discuss the SO(n) version of the model in detail in this
paper. It is also possible to consider the O(n) model, which will remove many
more of the states from the spectrum and for completeness, we present a
discussion of that as well in Section 8. But it should be kept in mind that
in the rest of the paper we will not emphasize the distinction between the
two, even though we always have the SO(n) case in mind.

Comment added. The explicit forms of the singlet states are suppressed
in the journal version, but can be found in the appendices of the arXiv
version.

2. Gurau-Witten model

Gurau-Witten model is a quantum mechanical model in 0+1 dimensions.
The model is constructed using fermionic tensors of the form ψi1i2...id

A . The
index A corresponds to color index and take values from 0 to d and the
tensor indices take values from 1 to n. That is, the total degrees of freedom
is given by N = (d+ 1)nd.

For each pair of colors (A,B), we assign a symmetry group O(n)AB. As
there are (d+ 1) colors in the theory, the overall symmetry group of the
theory is given by:

G ∼ O(n)d(d+1)/2(2.1)

Further, we demand that under any group O(n)AB, fermions belonging to
the colors A and B transform in the vector representation and the fermions
of rest of the colors transform trivially. The interaction term of the theory is

2Note that [10] appeared after the Letter version of this paper [2] on the arXiv,
so this is not a retrodiction.
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an invariant under the symmetry group G and contains fermions belonging
to all the (d+ 1) colors.

From now on, we work with d = 3 i.e., we work with a theory that has 4
colors and has a quartic interaction term. The Lagrangian of d = 3 Gurau-
Witten model is given by:

L =
i

2
ψijk
A ∂tψ

ijk
A +

J

n3/2

∑

ψijk
0 ψilm

1 ψnjm
2 ψnlk

3(2.2)

where (0, 1, 2, 3) correspond to the color indices and each of the tensor indices
takes values from 1 to n. J is the dimensionful coupling and we set it to unity
in the rest of the discussion. Quantizing this theory gives rise to the following
anti-commutation relations:

{ψijk
A , ψpqr

B } = δABδ
ipδjqδkr(2.3)

The kinetic term of d = 3 Gurau-Witten Lagrangian has O(4n3) symme-
try which is broken down to O(n)6 due to the presence of interaction term.
That is, the symmetry group G of the theory is given by:

G ∼ O(n)01 ×O(n)02 ×O(n)03 ×O(n)12 ×O(n)13 ×O(n)23.(2.4)

More specifically, each of the fermionic tensors transform under G as follows:

(2.5)

ψijk
0 →M ii′

01 M
jj′

02 Mkk′

03 ψi′j′k′

0

ψijk
1 →M ii′

01 M
jj′

13 Mkk′

12 ψi′j′k′

1

ψijk
2 →M ii′

23 M
jj′

02 Mkk′

12 ψi′j′k′

2

ψijk
3 →M ii′

23 M
jj′

13 Mkk′

03 ψi′j′k′

3

where MAB are the matrices that correspond to the group O(n)AB. Using
this information, we can compute the Noether charges corresponding to the
symmetry group G as follows:

Qi1i2
01 = i

(

ψi1jk
0 ψi2jk

0 + ψi1jk
1 ψi2jk

1

)

(2.6)

Qi1i2
23 = i

(

ψi1jk
2 ψi2jk

2 + ψi1jk
3 ψi2jk

3

)

(2.7)

Qj1j2
02 = i

(

ψij1k
0 ψij2k

0 + ψij1k
2 ψij2k

2

)

(2.8)
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Qj1j2
13 = i

(

ψij1k
1 ψij2k

1 + ψij1k
3 ψij2k

3

)

(2.9)

Qk1k2

03 = i
(

ψijk1

0 ψijk2

0 + ψijk1

3 ψijk2

3

)

(2.10)

Qk1k2

12 = i
(

ψijk1

1 ψijk2

1 + ψijk1

2 ψijk2

2

)

(2.11)

where the subscripts are the color indices. Note that the upper indices on
any of the charges should not be equal.

3. The Clifford basis

Before explaining our strategy to find the singlet spectrum, we define the
basis that we work with. The construction of basis is based on the fact that
the Hilbert space of our theory forms a spinor representation of O(n).

To start with, following and slightly generalizing [9, 16], we define for
even n the “colored” creation and annihilation operators as:

ψijk±

A =
1√
2

(

ψijk
A ± iψ

ij(k+1)
A

)

(3.1)

where k takes only odd values and k± is given by the relation:

k = 2k± − 1(3.2)

Further, we can show that the ψijk±

A obey the following anti-commutation
relations:

(3.3)
{ψijk+

A , ψlmn+

B } = 0; {ψijk−

A , ψlmn−

B } = 0;

{ψijk+

A , ψlmn−

B } = δABδ
ilδjmδk

+,n−

We define the Clifford vacuum as the state that is annihilated by all
ψ−’s i.e.,

ψijk−

A | ⟩ = 0(3.4)

Acting with the creation operators, we can construct the entire Hilbert space.
Since there are 2n3 (fermionic) creation operators, we can see that the di-
mensionality of Hilbert space is 22n

3

.
For forthcoming purposes, we define four level operators LA, which

counts the number of creation operators of each color in a state. These
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LA are defined as:

LA = ψijk+
A ψijk−

A(3.5)

Note that there is no summation over the color index A. The commutation
relations with the fermionic tensors are given by:

[LA, ψ
ijk±

B ] = ±ψijk±

B δAB(3.6)

There is no summation over B on the RHS.
The Hamiltonian can be written in terms of the creation and annihilation

operators as follows:

H =
∑

ψijk+

0 ψilm+

1 ψnjm−

2 ψnlk−

3 + ψijk+

0 ψilm−

1 ψnjm+

2 ψnlk−

3(3.7)

+ ψijk−

0 ψilm+

1 ψnjm−

2 ψnlk+

3 + ψijk−

0 ψilm−

1 ψnjm+

2 ψnlk+

3

Note that each of the four terms in the Hamiltonian is manifestly invariant
under O(n)4 × U(n2 )

2. From the explicit form of the Hamiltonian, it is clear
that it does not commute with the level operators corresponding to indi-
vidual colors. As we will explain later, this makes finding the eigenstates of
the Hamiltonian more difficult in the case of n = 2 as compared to that of
identifying the singlets.

4. The singlet spectrum

In this section, we describe our strategy to find the singlet spectrum of the
Gurau-Witten model. Our strategy here is a “colored” generalization of the
one presented in [16] for uncolored models and in principle can be imple-
mented to identify singlet spectrum of Gurau-Witten model with arbitrary
d and n. Note that one can gauge first and then solve the theory or solve the
theory and then gauge it afterwards. The second approach leads to compli-
cations related to Young tableaux proliferation [17], so we will stick to the
first.

We start by noting that the singlet states by definition are the states
that transform trivially under the symmetry group. This definition can be
operationally implemented by demanding that the singlet states are anni-
hilated by the Noether charges (2.6)–(2.11) corresponding to the symmetry
group G i.e.,

QAB |singlet⟩ = 0(4.1)
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So, our goal is to find the linear combination of our basis states that are
annihilated by all the Noether charges. Since the number of basis states are
exponentially large, this seems a daunting task. But the following simplifi-
cation mitigates the situation partially and in particular makes the model of
our interest (n = 2 model) tractable. We emphasize that the last statement
does not mean that our method of finding singlet states using equation (4.1)
is restricted to O(2)6 GW model alone and indeed can be extended to O(n)6

model. Further, the techniques and simplifications that we discuss in this
paper for O(2)6 model will be applicable to the case of O(n)4 ×O(2)2 model
as well and work is in progress along this direction.

The simplification is that all the gauge singlet states are present in the
mid-Clifford level. It can be shown as follows. Taking k2 = k1 + 1 in the last
two Noether charges (2.10) and (2.11) and summing over all the odd k1’s,
we get:

(4.2)

(

L0 + L3 −
n3

2

)

|singlet⟩ = 0

(

L1 + L2 −
n3

2

)

|singlet⟩ = 0

These conditions imply that the singlets are at the mid-Clifford (= n3) level
in which n3

2 creation operators belong to the colors A = 0, 3 and the other
half of them belong to the colors A = 1, 2.

Even with this simplification, identifying all the singlets is still a non-
trivial task and we currently3 do not have a solution for Gurau-Witten
model with arbitrary n. As we will explain later, n = 2 case has some extra
simplifications which helps us in identifying all the singlets.

Once we have a strategy to identify the singlets, the next step is to find
linear combinations of singlets such that they form eigenstates of the Hamil-
tonian. As the Noether charges commute with the Hamiltonian, acting on
any singlet state with the Hamiltonian necessarily gives a combination of
singlet states. This is in general a hard task and the judicious application
of residual symmetries of the Hamiltonian helps us by reducing the num-
ber of computations that we need to do. We will elaborate on the residual
symmetries in the next section.

3Finding all the singlets in uncolored model with arbitrary n is comparatively
simpler problem and work towards this is in progress [18].
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5. Discrete (residual) symmetries

The two tasks we have at hand- identifying the singlets and constructing sin-
glet eigenstates of the Hamiltonian are conceptually simple. But the compu-
tations involved are often tedious and can not be evaded. But, we can reduce
their number by exploiting the residual symmetries[1] of the Gurau-Witten
Hamiltonian. In this section, we identify these set of (discrete) residual sym-
metries. These symmetries are related to the permutation of colors and are
not part of the O(n)6 group that we will gauge later in the paper. Thus,
these symmetries will be helpful in identifying the singlet eigenstates of the
Hamiltonian and also in explaining some of the degeneracies that we find in
the singlet spectrum.

The first set of these symmetries are denoted as:

S01;23; S02;13; S03;12(5.1)

The action of these symmetries is as follows. The operator SAB;CD acting on
a state exchanges the colors A↔ B and C ↔ D simultaneously. The action
of these operators on the Noether charges is as follows:

(5.2)

S01;23 Q01 S
−1
01;23 = Q01; S01;23 Q23 S

−1
01;23 = Q23;

S01;23 Q02 S
−1
01;23 = Q13; S01;23 Q13 S

−1
01;23 = Q02

S02;13 Q01 S
−1
02;13 = Q23; S02;13 Q23 S

−1
02;13 = Q01;

S02;13 Q02 S
−1
02;13 = Q13; S02;13 Q13 S

−1
02;13 = Q02

S03;12 Q01 S
−1
03;12 = Q23; S03;12 Q23 S

−1
03;12 = Q01;

S03;12 Q02 S
−1
03;12 = Q13; S03;12 Q13 S

−1
03;12 = Q02.

From these relations, it is easy to see that if |a⟩ is a singlet state then
SAB;CD|a⟩ is also a singlet state. Before moving ahead, we note that the
operators S01;23, S02;13 and S03;12 commute with the Hamiltonian.

The next set of operators are:

S03;S12(5.3)

The operator SAB exchanges the colors A↔ B along with the exchange of
first two indices on each ψ. For instance,

S01ψ
ij+
0 | ⟩ = ψji+

1 | ⟩(5.4)
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The action of these symmetries on the Noether charges is given as follows:

(5.5)

S03 Q01 S
−1
03 = Q13; S03 Q23 S

−1
03 = Q02;

S03 Q02 S
−1
03 = Q23; S03 Q13 S

−1
03 = Q01;

S12 Q01 S
−1
12 = Q02; S12 Q23 S

−1
12 = Q13;

S12 Q02 S
−1
12 = Q01; S12 Q13 S

−1
12 = Q23.

From the action of SAB on Noether charges, we can see that if |a⟩ is a singlet
then SAB|a⟩ is also a singlet state.

The next set of operators we define are quite non-trivial as they do
not commute with the level operators LA defined in (3.5). The first such
symmetry operator is S23. S23 exchanges the colors 2 and 3 along with
exchanging the second and third indices on each fermion. For instance,

S23ψ
ijk
2 S−1

23 = ψikj
3(5.6)

As this operator exchanges second and third indices and since we constructed
our basis by breaking the O(n)2 symmetry corresponding to the third in-
dices, S23 can be thought of as an operator that relates our basis (the one
obtained by breaking O(n)’s of the third indices) to another basis that needs
breaking of O(n)’s corresponding to the second indices. As a result, the ac-
tion of S23 on our Clifford vacuum is quite non-trivial. To understand the
action of S23 on the Clifford vacuum, we need to know the operator S23
explicitly. The construction of S23 is straightforward4 and uses the following
identities:

(5.7)

1

2

(

ψijk
A + ψi′jk

B

)

ψijk
A

(

ψijk
A + ψi′j′k′

B

)

= ψi′j′k′

B

1

2

(

ψijk
A + ψi′jk

B

)

ψi′j′k′

B

(

ψijk
A + ψi′j′k′

B

)

= ψijk
A

Using these identities, we can write down the explicit form of S23 operator
as:

S23 = ψ111
0 ψ122

0 ψ211
0 ψ222

0

(

ψ112
0 + ψ121

0

) (

ψ212
0 + ψ221

0

)

(5.8)

ψ111
1 ψ122

1 ψ211
1 ψ222

1

(

ψ112
1 + ψ121

1

) (

ψ212
1 + ψ221

1

)

(

ψ111
2 + ψ111

3

) (

ψ112
2 + ψ121

3

) (

ψ121
2 + ψ112

3

) (

ψ122
2 + ψ122

3

)

(

ψ211
2 + ψ211

3

) (

ψ212
2 + ψ221

3

) (

ψ221
2 + ψ212

3

) (

ψ222
2 + ψ222

3

)

4For more details, see [12]
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The action of this operator on the Clifford vacuum is given by:

S23| ⟩ =
[ (

ψ11+
0 ψ21+

0 − ψ12+
0 ψ22+

0

)

(5.9)

− i
(

ψ11+
0 ψ22+

0 + ψ12+
0 ψ21+

0

) ]

[0 → 1, 2, 3] | ⟩

The operator S23 permutes the Noether charges (2.6)–(2.11) among them-
selves. More precisely, we have:

(5.10)

S23Q01S
−1
23 = Q01; S23Q23S

−1
23 = Q23

S23Q12S
−1
23 = Q13; S23Q13S

−1
23 = Q12

S23Q02S
−1
23 = Q03; S23Q03S

−1
23 = Q02

From these relations, it is clear that if |a⟩ is a singlet, then S23|a⟩ is also a
singlet.

Likewise, we can define an operator S13 that exchanges the colors 1 and
3 along with exchanging the first and third indices. Similar to the case of
S23, we can write down the explicit form of S13. The action of S13 on the
Clifford vacuum is given as:

S13| ⟩ =
[ (

ψ11+
0 ψ12+

0 − ψ21+
0 ψ22+

0

)

(5.11)

− i
(

ψ11+
0 ψ22+

0 − ψ12+
0 ψ21+

0

) ]

[0 → 1, 2, 3] | ⟩

Note that S13 is not an independent operator and can be obtained from
the operators we have already defined. For instance, it can be written as a
combination of S23 and S12 as follows:

S13 = S12 S23 S
−1
12(5.12)

We can also define operators S01 and S02 that have an action analogous
to S23 and S13 respectively. These operators are also not independent and
can be obtained from the operators we have defined already. Note that the
operators of the form SAB anti-commute with the Hamiltonian.

Further, we can define operators of the form:

SA =

n
∏

i,j,k=1

ψijk
A(5.13)
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From the anti-commutation relations, we see that the action of this operator
is as follows:

SAψBS
−1
A = (−1)n−1ψB if A = B(5.14)

= (−1)nψB if A ̸= B(5.15)

The operators SA commute with the Noether charges but anti-commute with
the Hamiltonian.

6. n = 2

From now on, we specialize to the case of n = 2. The Clifford levels are
2n3 = 16 in number and thus the Hilbert space is 216 dimensional. From
the mid-level condition (4.2), we find that all the singlets should be at 8th
Clifford level. Out of the 8 creation operators, four of them should have
A = {0, 3} color indices and the remaining four should have A = {1, 2} color
indices. A generic candidate singlet state satisfying these constraints is of
the form:

(6.1)
∑

α
0/3...,0/3,1/2...1/2
i1j1;i2j2;...i8j8

ψi1j11+

0/3 ψi2j21+

0/3 ψi3j31+

0/3

ψi4j41+

0/3 ψi5j51+

1/2 ψi6j61+

1/2 ψi7j71+

1/2 ψi8j81+

1/2 | ⟩

The total number of α’s are given by
(

8
4

)(

8
4

)

= 4900. These α’s can be divided
into 25 different groups based on the bi-partitions of 4 which are given by:

4 = 4 + 0 = 3 + 1 = 2 + 2 = 1 + 3 = 0 + 4(6.2)

We call these partitions as p1, . . . p5. Each of the candidate singlet states5

belong to a unique group that can be denoted by an ordered pair (pa, pb)
where pa denotes the partition of the colors 0 and 3 whereas pb denotes
the partition corresponding to other two colors. For instance, the group of
states denoted by (p1, p2) has four ψ

+
0 ’s; three ψ

+
1 ’s and a ψ+

2 . The number
of states in each of the groups is given in Table 1.

5By candidate singlet state, we mean a state in the Clifford basis that satisfies
the mid-level condition.
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(pa, pb) Number of states Number of Singlets

(p1, p1) 1 1

(p1, p2) 16 0

(p1, p3) 36 4

(p1, p4) 16 0

(p1, p5) 1 1

(p2, p1) 16 0

(p2, p2) 256 16

(p2, p3) 576 0

(p2, p4) 256 16

(p2, p5) 16 0

(p3, p1) 36 4

(p3, p2) 576 0

(p3, p3) 1296 16+8+8+8+8+4+4=56

(p3, p4) 576 0

(p3, p5) 36 4

(p4, p1) 16 0

(p4, p2) 256 16

(p4, p3) 576 0

(p4, p4) 256 16

(p4, p5) 16 0

(p5, p1) 1 1

(p5, p2) 16 0

(p5, p3) 36 4

(p5, p4) 16 0

(p5, p5) 1 1

Total 4900 1× 4 + 4× 4 + 16× 4 + 56 = 140

Table 1: Number of states and singlets in various groups (pa, pb).

For the case of n = 2, the mid-level condition exhausts the information
with respect to the equations:

(6.3)
Qk1k2

03 |singlet⟩ = 0

Qk1k2

12 |singlet⟩ = 0
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The remaining four independent charges in the language of creation and
annihilation operators can be written as6:

(6.4)

Q12
01 = i

(

ψ1j+
0 ψ2j−

0 − ψ2j+
0 ψ1j−

0 + ψ1j+
1 ψ2j−

1 − ψ2j+
1 ψ1j−

1

)

≡ R12
0 +R12

1

Q12
23 = i

(

ψ1j+
2 ψ2j−

2 − ψ2j+
2 ψ1j−

2 + ψ1j+
3 ψ2j−

3 − ψ2j+
3 ψ1j−

3

)

≡ R12
2 +R12

3

Q12
02 = i

(

ψi1+
0 ψi2−

0 − ψi2+
0 ψi1−

0 + ψi1+
2 ψi2−

2 − ψi2+
1 ψi1−

1

)

≡ S12
0 + S12

2

Q12
13 = i

(

ψi1+
1 ψi2−

1 − ψi2+
1 ψi1−

1 + ψi1+
3 ψi2−

3 − ψi2+
3 ψi1−

3

)

≡ S12
1 + S12

3

where the charges R and S are the colored analogues of the charges7 Q1 and
Q2 in n = 2 uncolored model. As the level operators LA commute with the
above charges, we can find the singlet states in each of the groups separately.
Note that this simplification is unique to n = 2 case. More generally, this
simplification happens whenever we construct the Clifford basis by breaking
a O(2) group. For instance, this simplification also occurs in O(n)4 ×O(2)2

Gurau-Witten model and hence the singlets in that model can be written
down straightforwardly following our method-I to construct singlets. We
leave further details to a future work.

7. Singlets of n = 2

In this section, we identify the singlets of n = 2 Gurau-Witten model in all
the groups using two different methods. In the first method, we will make
use of the group-theoretic facts about the orthogonal group to list down the
singlets. In the second method, we solve the equations QAB|singlets⟩ = 0
explicitly to find the singlet states. We find that there are 140 singlets in
n = 2 Gurau-Witten model spreading over only 13 out of the total 25 groups.
See Table 1 for details. Note that this number of singlets matches exactly
with that of [10] where a systematic way to count the number of singlet
states in the Gurau-Witten and uncolored tensor models is presented.

6In the rest of the paper we denote the last index as ± instead of 1±.
7See appendix for more details.
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7.1. Method-I

In this method, we take advantage of various facts about orthogonal groups.
Firstly, we note that there are only two invariant tensors of SO(n) that are
given by:

• Kronecker Delta- Due to the following property of the orthogonal
group:

MTM = I(7.1)

where M ∈ SO(n) or O(n). Note that Kronecker delta is the only
invariant tensor of O(n).

• Levi-Civita tensor - Because the determinant of SO(n) matrices is
equal to +1.

Secondly, note that the Clifford vacuum is invariant under O(2)4 × U(1)2

by definition and thus is annihilated by the charges (6.4). Further, the
Noether charges (6.4) correspond to those four orthogonal groups. This im-
plies that the quantity that appears before the Clifford vacuum of any singlet
state should be an invariant of O(2)4. Combining all these observations with
the mid-level condition, we can list down all the singlet states. More opera-
tionally, if we start with a generic singlet state of the form (6.1), then the
α’s are made up of Kronecker deltas and Levi-Civita tensors. Concerning
our future work [18], we mention that the singlets under the generalizations
of the charges (6.4) to arbitrary n case can be found in a similar way.

We have listed down all the 140 independent singlet states that can be
constructed using this method in an appendix of the arXiv version of this
paper. Note that not all possible contractions lead to different singlets.

7.2. Method-II

Our strategy here is to start with a generic linear combination of states in
a particular8 group of the form (6.1) and then demand that the Noether
charges (6.4) annihilate this state to find the numerical coefficients α in
(6.1). This gives us the singlets. Instead of identifying all the singlets using
this strategy, we can also use the discrete symmetry operators defined in

8This can be done because the Noether charges in n = 2 case commute with the
level operators LA as explained in the last section.
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the last section to identify some of the singlets. As an example, consider the
following singlet state:

[

(ψ11+
2 ψ12+

2 − ψ21+
2 ψ22+

2 )(2 → 3) + (ψ11+
2 ψ22+

2 − ψ12+
2 ψ21+

2 )(2 → 3)
]

(7.2)

(ψ11+
0 ψ12+

0 + ψ21+
0 ψ22+

0 )(ψ11+
1 ψ12+

1 + ψ21+
1 ψ22+

1 )

From the last section, we know that S02;13 acting on the above state is also
a singlet i.e., the following state is also a singlet9:

[

(ψ11+
0 ψ12+

0 − ψ21+
0 ψ22+

0 )(0 → 1) + (ψ11+
0 ψ22+

0 − ψ12+
0 ψ21+

0 )(0 → 1)
]

(7.3)

(ψ11+
2 ψ12+

2 + ψ21+
2 ψ22+

2 )(ψ11+
3 ψ12+

3 + ψ21+
3 ψ22+

3 )

Likewise, we can identify three more singlets in this particular case using
other symmetry operators. We can also use these symmetries as a (rough)
check that we have identified a complete set of singlets. We take any sin-
glet state and act with these discrete symmetry operators and then verify
whether the resultant state is also present in our singlet spectrum. The sin-
glets we have listed in the next section are indeed closed under the action
of these operators. Now, we move on to finding the singlets.

We start by noting that the charges RA and SA act non-trivially on
the fermions belonging to color A and acts trivially on the objects of other
colors. Also, for a specific color A, there are four singlets10 with respect to
RA and SA and are given by:

(7.4)

1.f(ψB)| ⟩
2.
(

ψ11+
A ψ12+

A + ψ21+
A ψ22+

A

)

f(ψB)| ⟩
3.
(

ψ11+
A ψ21+

A + ψ12+
A ψ22+

A

)

f(ψB)| ⟩
4. ψ11+

A ψ12+
A ψ21+

A ψ22+
A f(ψB)| ⟩

where f(ψB) denote functions of fermions that do not belong to the color A.
Also, we note that the charges RB and SB act trivially on ψA’s when A ̸= B.
This information along with the mid-level conditions (6.3) is sufficient to
show that the single state present in each of the four groups (p1,5, p1,5) is a
singlet state. Also, it helps us to list down the first 16 singlet states in the
group (p3, p3) as we discuss later in the section.

9This can be verified by doing an explicit computation.
10Just to avoid any confusions, we emphasize that singlets under RA and SA (for

a particular A) are not necessarily singlets under the Noether charges (6.4).
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Let us now consider the group (p1, p2) which has 16 states. The states
have four ψ0’s, three ψ1’s and one ψ2. The generic form of a singlet state is
given by:

ψ11+
0 ψ12+

0 ψ21+
0 ψ22+

0

[

ψ11+
1 ψ12+

1 ψ21+
1

(

α1ψ
11+
2 + α2ψ

12+
2 + α3ψ

21+
2 + α4ψ

22+
2

)

+ ψ11+
1 ψ12+

1 ψ22+
1

(

α5ψ
11+
2 + α6ψ

12+
2 + α7ψ

21+
2 + α8ψ

22+
2

)

+ ψ11+
1 ψ21+

1 ψ22+
1

(

α9ψ
11+
2 + α10ψ

12+
2 + α11ψ

21+
2 + α12ψ

22+
2

)

+ ψ11+
1 ψ12+

1 ψ21+
1

(

α13ψ
11+
2 + α14ψ

12+
2 + α15ψ

21+
2 + α16ψ

22+
2

) ]

| ⟩(7.5)

Noting that ψ11+
0 ψ12+

0 ψ21+
0 ψ22+

0 is a singlet under S0, and imposing the
condition that Q02 = S0 + S2 should annihilate this state, we see that all α’s
need to be zero. That is, there are no singlets in this group. In a similar way,
we can show that there are no singlets in (p1, p4), (p5, p2,4) and (p2,4, p1,5)
groups.

Let us now consider the states in the group (p2, p2). A generic singlet
state is of the form:

ψ12+
0 ψ21+

0 ψ22+
0 ψ11+

1 ψ21+
1 ψ22+

1(7.6)

×
[

ψ11+
2

(

α1ψ
11+
3 + α2ψ

12+
3 + α3ψ

21+
3 + α4ψ

22+
3

)

+ . . .
]

+ ψ11+
0 ψ12+

0 ψ22+
0 ψ11+

1 ψ12+
1 ψ21+

1

×
[

ψ11+
2

(

α17ψ
11+
3 + α18ψ

12+
3 + α19ψ

21+
3 + α20ψ

22+
3

)

+ . . .
]

+ · · · | ⟩

Let us start by imposing the condition that Q01 ≡ R0 +R1 annihilates the
state. We note that a linear combination of ψ0ψ0ψ0 (or ψ1ψ1ψ1) can not
form a singlet under R0 (or R1). Further, since the charge Q01 does not
affect the colors 2 & 3 , the state can be annihilated by Q01 only by some
suitable combinations of ψ0’s and ψ1’s. The important point is that under
the action of Q01, the cancellations can only happen between the terms of
the form ψ0ψ0ψ0ψ1ψ1ψ1 and R0 (ψ0ψ0ψ0)R1 (ψ1ψ1ψ1). This can be shown
as follows. The action of Q01 on ψ0ψ0ψ0ψ1ψ1ψ1 is given by:

Q01 (ψ0ψ0ψ0ψ1ψ1ψ1) = R0 (ψ0ψ0ψ0)ψ1ψ1ψ1 + ψ0ψ0ψ0R1 (ψ1ψ1ψ1)(7.7)

From the appendix of the arXiv version of this paper, we see that acting
with R0 twice on ψ0ψ0ψ0 gives us the negative of the same state. Hence the
action of Q01 on R0 (ψ0ψ0ψ0)R1 (ψ1ψ1ψ1) is the only other possibility that
can reproduce11 the terms in the RHS of (7.7). The final message from this

11The action of Q01 on R0 (ψ0ψ0ψ0)R1 (ψ1ψ1ψ1) is given as:

Q01 [R0 (ψ0ψ0ψ0)R1 (ψ1ψ1ψ1)] = −ψ0ψ0ψ0R1 (ψ1ψ1ψ1)−R0 (ψ0ψ0ψ0)ψ1ψ1ψ1
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discussion is that a singlet under Q01 is of the form:

[ψ0ψ0ψ0ψ1ψ1ψ1 +R0 (ψ0ψ0ψ0)R1 (ψ1ψ1ψ1)] f(ψ2, ψ3)(7.8)

Similar arguments go through for the other three charges as well. Putting
this all together, we can see that a singlet in the group (p2, p2) is of the
following form:

[ψ0ψ0ψ0ψ1ψ1ψ1 +R0 (ψ0ψ0ψ0)R1 (ψ1ψ1ψ1)] [ψ2ψ3 +R2(ψ2)R3(ψ3)](7.9)

+ [ψ0ψ0ψ0S1(ψ1ψ1ψ1) +R0 (ψ0ψ0ψ0)S1R1 (ψ1ψ1ψ1)]

× [ψ2S3(ψ3) +R2(ψ2)S3R3(ψ3)]

+ [S0(ψ0ψ0ψ0)ψ1ψ1ψ1 + S0R0 (ψ0ψ0ψ0)R1 (ψ1ψ1ψ1)]

× [S2(ψ2)ψ3 + S2R2(ψ2)R3(ψ3)]

+ [S0(ψ0ψ0ψ0)S1(ψ1ψ1ψ1) + S0R0 (ψ0ψ0ψ0)S1R1 (ψ1ψ1ψ1)]

× [S2(ψ2)S3(ψ3) + S2R2(ψ2)S3R3(ψ3)]

From the structure of the singlet, it is clear that starting from any one of
the terms, one can construct the entire singlet uniquely. This observation
suggests that there are 16 singlet states in the group (p2, p2). In a similar
way, we can show that there are 16 singlets in each of (p2, p4), (p4, p2) and
(p4, p4).

Now, we move on to the group (p1, p3). The states in this group comprises
of four ψ0’s, two ψ1’s and two ψ2’s. Hence the singlets are of the form:

ψ0ψ0ψ0ψ0f(ψ1ψ1, ψ2ψ2)(7.10)

Since ψ0ψ0ψ0ψ0 is a singlet under the charges (6.4), f(ψ1ψ1, ψ2ψ2) should
also be made up of singlets under those charges. From the list of singlets
(7.4), we see that there are 2 singlets that can be constructed using two
ψ’s of same color. So, there are totally four singlets in this group. Similar
arguments show that there are four singlets in each of (p3, p1), (p3, p5) and
(p5, p3).

We now move on to the group (p2, p3). The states have three ψ0’s, one
ψ3 and two of each of ψ1 and ψ2. Hence the singlets are of the form:

ψ0ψ0ψ0f1(ψ1ψ1, ψ2ψ2, ψ3) + ψ0ψ0ψ0f2(ψ1ψ1, ψ2ψ2, ψ3) + · · ·(7.11)

Since a linear combination of ψ0ψ0ψ0 can not form a singlet under R0 or
S0, the function fi(ψ1ψ1, ψ2ψ2, ψ3) can not include singlets of {1, 2} colors
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under R1,2 or S1,2. This suggests that the singlets are of the form:

ψ0ψ0ψ0

[

α1(ψ
11+
1 ψ21+

1 − ψ12+
1 ψ22+

1 ) + α2(ψ
11+
1 ψ12+

1 − ψ21+
1 ψ22+

1 )(7.12)

+ α3(ψ
11+
1 ψ22+

1 − ψ12+
1 ψ21+

1 ) + α4(ψ
11+
1 ψ22+

1 + ψ12+
1 ψ21+

1 )
]

+R0(ψ0ψ0ψ0)
[

α5(ψ
11+
1 ψ21+

1 − ψ12+
1 ψ22+

1 ) + · · ·
]

| ⟩+ · · ·

Demanding that Q01 annihilates the above state sets all the α’s to be zero
and hence there are no singlets in this group. Similarly, we can show that
there are no singlets in (p4, p3), (p3, p2) and (p3, p4).

We now consider the last group: (p3, p3). The states in this group in-
clude two fermions of each color. From the appendix, we have the following
observations:

• Under the charge RA, the following four states are singlets:

(7.13)
ψ11+
A ψ21+

A f(ψB); (ψ11+
A ψ12+

A + ψ21+
A ψ22+

A )f(ψB)

ψ12+
A ψ22+

A f(ψB); (ψ11+
A ψ22+

A + ψ12+
A ψ21+

A )f(ψB)

where f(ψB) denotes some function of fermions of all the colors except
the ones that belong to color A. Note that there is no summation over
A in the above states.

• Under the charge SA, the following four states are singlets:

(7.14)
ψ11+
A ψ12+

A f(ψB); (ψ11+
A ψ21+

A + ψ12+
A ψ22+

A )f(ψB)

ψ21+
A ψ22+

A f(ψB); (ψ11+
A ψ22+

A − ψ12+
A ψ21+

A )f(ψB)

• Under both the charges RA and SA, the following two states are sin-
glets:

(ψ11+
A ψ21+

A + ψ12+
A ψ22+

A )f(ψB); (ψ11+
A ψ12+

A + ψ21+
A ψ22+

A )f(ψB)(7.15)

There are different types of singlets (with respect to the charges (6.4))
in this group. The first type of singlets is obtained by taking a product of
singlets under both RA and SA for each of the colors A = {0, 1, 2, 3}. For
example, the following singlet belongs to this type:

(7.16) (ψ11+
0 ψ21+

0 + ψ12+
0 ψ22+

0 )(ψ11+
1 ψ21+

1 + ψ12+
1 ψ22+

1 )

× (ψ11+
2 ψ21+

2 + ψ12+
2 ψ22+

2 )(ψ11+
3 ψ21+

3 + ψ12+
3 ψ22+

3 )

There are 16 singlets of this type. Singlets of this type range from 21 to 36
in the list given in the next section.
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Let us now take three of the colors to have singlets of the form (7.15)
i.e., we consider states of the form:

(uA/vA)(uB/vB)(uC/vC)
[

α1(ψ
11+
D ψ12+

D − ψ21+
D ψ22+

D )(7.17)

+ α2(ψ
11+
D ψ21+

D − ψ12+
D ψ22+

D ) + α3(ψ
11+
D ψ22+

D − ψ12+
D ψ21+

D )

+ α4(ψ
11+
D ψ22+

D + ψ12+
D ψ21+

D )
]

where uA ≡ (ψ11+
A ψ21+

A + ψ12+
A ψ22+

A ) and vA ≡ (ψ11+
A ψ12+

A + ψ21+
A ψ22+

A ). De-
manding that the Noether charges (6.4) annihilates this state sets all the α’s
to be zero and hence there are no singlets of this form.

Now, we consider states of the form:

(uA/vA)(uB/vB)
[

(ψ11+
C ψ12+

C − ψ21+
C ψ22+

C )
{

α1(ψ
11+
D ψ12+

D − ψ21+
D ψ22+

D )(7.18)

+ α2(ψ
11+
D ψ21+

D − ψ12+
D ψ22+

D ) + α3(ψ
11+
D ψ22+

D − ψ12+
D ψ21+

D )

+ α4(ψ
11+
D ψ22+

D + ψ12+
D ψ21+

D )
}

+ (ψ11+
C ψ21+

C − ψ12+
C ψ22+

C )
{

α5(ψ
11+
D ψ12+

D − ψ21+
D ψ22+

D )

+ α6(ψ
11+
D ψ21+

D − ψ12+
D ψ22+

D ) + α7(ψ
11+
D ψ22+

D − ψ12+
D ψ21+

D )

+ α8(ψ
11+
D ψ22+

D + ψ12+
D ψ21+

D )
}

+ (ψ11+
C ψ22+

C − ψ12+
C ψ21+

C )
{

α9(ψ
11+
D ψ12+

D − ψ21+
D ψ22+

D )

+ α10(ψ
11+
D ψ21+

D − ψ12+
D ψ22+

D ) + α11(ψ
11+
D ψ22+

D − ψ12+
D ψ21+

D )

+ α12(ψ
11+
D ψ22+

D + ψ12+
D ψ21+

D )
}

+ (ψ11+
C ψ22+

C + ψ12+
C ψ21+

C )
{

α13(ψ
11+
D ψ12+

D − ψ21+
D ψ22+

D )

+ α14(ψ
11+
D ψ21+

D − ψ12+
D ψ22+

D ) + α15(ψ
11+
D ψ22+

D − ψ12+
D ψ21+

D )

+ α16(ψ
11+
D ψ22+

D + ψ12+
D ψ21+

D )
}

]

Depending on the different choices of the colors {A,B,C,D}, we obtain
different values for α’s such that the above state is a singlet. We will outline
the calculation for determining α’s for one such choice and we just mention
the singlets directly for the rest of the choices. Let us take

A = 0;B = 1;C = 2;D = 3

. The above state is trivially a singlet under Q01. For it to be a singlet under
Q23, we need:

(7.19)
α2 = α4 = α5 = α7 = α10 = α12 = α13 = α15 = 0

α1 = α11; α3 = −α9
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Demanding that this state is annihilated by Q02 will give us:

α6 = α8 = α14 = α16 = 0(7.20)

The charge Q13 does not give any new conditions. Hence we have two dif-
ferent12 types of independent singlet states in this case:

(u0/v0)(u1/v1)
[

(ψ11+
2 ψ12+

2 − ψ21+
2 ψ22+

2 )(2 → 3)(7.21)

+ (ψ11+
2 ψ22+

2 − ψ12+
2 ψ21+

2 )(2 → 3)
]

(u0/v0)(u1/v1)
[

(ψ11+
2 ψ12+

2 − ψ21+
2 ψ22+

2 )(7.22)

× (ψ11+
3 ψ22+

3 − ψ12+
3 ψ21+

3 )− (2 ↔ 3)
]

We can follow a similar strategy and obtain the singlets for other choices
of colors. See (37)-(68) in the list of singlets in the next section for explicit
expressions of these type of singlets.

Now consider the states of the form:

(uA/vA)f(ψB, ψC , ψD)(7.23)

where f(ψB, ψC , ψD) does not contain either uB,C,D or vB,C,D. We can show
that there are no singlets that can be constructed from these states.

Lastly, we consider the states that does not include either uA,B,C,D or
vA,B,C,D. Following a similar analysis as presented for the states of the form
(7.18), we find that there are eight singlets in this final set. These singlets
are listed from (69) to (76) in the next section.

We should have ideally done this entire analysis for the (p3, p3) group
starting from the most general state that can be written down for this group.
Instead we have identified singlets by considering different type of states in
this group. This is consistent because the Noether charges indeed do not
mix these different type of states and hence our results are not affected.

8. SO(n) vs O(n)

In the last section, we found the singlets by demanding that the Noether
charges (6.4) annihilate the singlet states. The Noether charges we have
computed takes into account only the continuous part of the group i.e.,
the part of the group that is continuously connected to the identity. This

12One of them is obtained if we take α1 = α11 = 0 and the other one for the
choice α3 = −α9 = 0
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means that we have obtained the singlets of SO(n) in the last section. In
this section, we give a strategy on how to obtain the O(n) singlets starting
from the SO(n) singlets.

To begin with, note that the O(n) group contains an extra parity trans-
formation i.e.,

O(n) ∼ SO(n)× Z2(8.1)

We denote the parity transformation by P i
AB where A/B are color indices

and its action is given by:

P i
ABψ

i′j′k′

A/B P
i
AB

−1
= −ψi′j′k′

A/B if i = i′(8.2)

= +ψi′j′k′

A/B if i ̸= i′(8.3)

That is, the action of parity operator P i
AB changes the sign of fermions ψi

A/B
and leaves the rest of them unchanged. Also, the product of two such par-
ity transformations within the same orthogonal group O(n) corresponds to
a SO(n) rotation. Hence, we need to consider only one such parity trans-
formation to obtain the singlets of O(n). There are five more such parity
operators, corresponding to the 4C2 different pairs of colors.

On SO(n) singlets we obtained in the last section, we need to impose
extra constraint that the O(n) singlets are invariant under the parity trans-
formations. This constraint is easier to implement in the method-I of con-
struction of singlets. Note that under the parity transformations, the SO(n)
singlets constructed using Kronecker deltas are invariant whereas the ones
constructed using Levi-Civita tensor change sign. So, the O(n) singlets are
the ones that are constructed using only13 the Kronecker deltas. This strat-
egy works for the groups O(n)01, O(n)23, O(n)02 and O(n)13.

For the groups O(n)03 and O(n)12, things are bit involved as the Clif-
ford vacuum that we are working with transforms non-trivially under these
groups. To obtain the action of parity operators corresponding to these two
groups on a generic state, we need to know their action on the Clifford vac-
uum. To that end, we construct explicit forms of the parity operators using
their definitions. For n = 2, the parity operators are given by:

P k=1
03 = 24 ψ111

0 ψ121
0 ψ211

0 ψ221
0 ψ111

3 ψ121
3 ψ211

3 ψ221
3(8.4)

P k=1
12 = 24 ψ111

1 ψ121
1 ψ211

1 ψ221
1 ψ111

2 ψ121
2 ψ211

2 ψ221
2(8.5)

13This is consistent with the fact that Kronecker delta is the only invariant tensor
of O(n).
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From the explicit forms, it is easy to verify that they satisfy the following
as expected:

P03ψ
ij1
0/3P

−1
03 = −ψij1

0/3; P03ψ
ij2
0/3P

−1
03 = +ψij2

0/3(8.6)

P12ψ
ij1
1/2P

−1
12 = −ψij1

1/2; P12ψ
ij2
1/2P

−1
12 = +ψij2

1/2(8.7)

From these relations, we can find the action of these parity operators on the
creation and annihilation operators as:

P03ψ
ij±
0/3P

−1
03 = −ψij∓

0/3 ; P12ψ
ij±
1/2P

−1
12 = −ψij∓

1/2(8.8)

Further, we can find the action of these parity operators on the Clifford
vacuum as:

P03| ⟩ = ψ11+
0 ψ12+

0 ψ21+
0 ψ22+

0 ψ11+
3 ψ12+

3 ψ21+
3 ψ22+

3 | ⟩(8.9)

P12| ⟩ = ψ11+
1 ψ12+

1 ψ21+
1 ψ22+

1 ψ11+
2 ψ12+

2 ψ21+
2 ψ22+

2 | ⟩(8.10)

Now, we have all the information needed to identify the singlets of O(2)03
and O(n)12. Among the SO(2)03 (and SO(2)12) singlets that we already
have, the O(2)03 (and O(2)12) singlets can be identified as the ones that are
left invariant under the respective parity operators.

Out of the 140 SO(2)6 singlets, only six of them are invariant under the
parity transformations corresponding to all the O(2)6 groups. More explic-
itly, following are the O(2)6 singlets:

(8.11) |1⟩+ |2⟩+ |3⟩+ |4⟩; |21⟩; |36⟩;
|69⟩; |73⟩; |77⟩+ |93⟩+ |109⟩+ |125⟩

where |i⟩ correspond to the ith singlet in the SO(2)6 singlet list in the ap-
pendix. It is interesting to note that all the O(2)6 singlets are from14 the first
independent set. Further, the O(2)6 invariant eigenstates of the Hamiltonian
are given as follows:

|36⟩ − |21⟩; |73⟩ − 4|21⟩; |69⟩ − 4|36⟩; |36⟩ − (|1⟩+ |2⟩+ |3⟩+ |4⟩)
4 (|1⟩+ |2⟩+ |3⟩+ |4⟩) + |36⟩+ |21⟩+ |69⟩+ |73⟩(8.12)

±
√

7

2
(|77⟩+ |93⟩+ |109⟩+ |125⟩)

14See the next section for more details on the independent sets.
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The eigenstates in the first line have zero energy and the ones in the next
line have eigenvalues of ±2

√
14. Note that the latter eigenvalues correspond

to the highest energy state and the lowest energy state (ground state).

9. Singlet eigenstates of the Hamiltonian

In the last section, we have identified all the singlets in the theory. Now, we
want to identify the energy eigenstates among those singlets. Before doing
that, we note that the Hamiltonian is a singlet of O(2)6 and hence commutes
with the Noether charges (6.4). As a result, we have:

H|singlet⟩ =
∑

a

βa|singlet⟩a(9.1)

where a denotes the singlets in the theory and runs from 1 to 140 and βa
are some numerical coefficients. The point we emphasize here is that the
singlets are a closed set under the action of the Hamiltonian.

We now proceed to identify the eigenstates. First of all, let us write down
the Hamiltonian for the n = 2 case explicitly:

H = ψij+
0 ψil+

1 ψnj−
2 ψnl−

3 + ψij+
0 ψil−

1 ψnj+
2 ψnl−

3 + ψij−
0 ψil+

1 ψnj−
2 ψnl+

3

(9.2)

+ ψij−
0 ψil−

1 ψnj+
2 ψnl+

3

= ψ11+
0 ψ11+

1 ψ11−
2 ψ11−

3 + ψ11+
0 ψ11+

1 ψ21−
2 ψ21−

3 + ψ11+
0 ψ12+

1 ψ11−
2 ψ12−

3

+ ψ11+
0 ψ12+

1 ψ21−
2 ψ22−

3 + ψ12+
0 ψ11+

1 ψ12−
2 ψ11−

3 + ψ12+
0 ψ11+

1 ψ22−
2 ψ21−

3

+ ψ12+
0 ψ12+

1 ψ12−
2 ψ12−

3 + ψ12+
0 ψ12+

1 ψ22−
2 ψ22−

3 + ψ21+
0 ψ21+

1 ψ11−
2 ψ11−

3

+ ψ21+
0 ψ21+

1 ψ21−
2 ψ21−

3 + ψ21+
0 ψ22+

1 ψ11−
2 ψ12−

3 + ψ21+
0 ψ22+

1 ψ21−
2 ψ22−

3

+ ψ22+
0 ψ21+

1 ψ12−
2 ψ11−

3 + ψ22+
0 ψ21+

1 ψ22−
2 ψ21−

3 + ψ22+
0 ψ22+

1 ψ12−
2 ψ12−

3

+ ψ22+
0 ψ22+

1 ψ22−
2 ψ22−

3

= ψ11+
0 ψ11−

1 ψ11+
2 ψ11−

3 + ψ11+
0 ψ11−

1 ψ21+
2 ψ21−

3 + ψ11+
0 ψ12−

1 ψ11+
2 ψ12−

3

+ ψ11+
0 ψ12−

1 ψ21+
2 ψ22−

3 + ψ12+
0 ψ11−

1 ψ12+
2 ψ11−

3 + ψ12+
0 ψ11−

1 ψ22+
2 ψ21−

3

+ ψ12+
0 ψ12−

1 ψ12+
2 ψ12−

3 + ψ12+
0 ψ12−

1 ψ22+
2 ψ22−

3 + ψ21+
0 ψ21−

1 ψ11+
2 ψ11−

3

+ ψ21+
0 ψ21−

1 ψ21+
2 ψ21−

3 + ψ21+
0 ψ22−

1 ψ11+
2 ψ12−

3 + ψ21+
0 ψ22−

1 ψ21+
2 ψ22−

3

+ ψ22+
0 ψ21−

1 ψ12+
2 ψ11−

3 + ψ22+
0 ψ21−

1 ψ22+
2 ψ21−

3 + ψ22+
0 ψ22−

1 ψ12+
2 ψ12−

3

+ ψ22+
0 ψ22−

1 ψ22+
2 ψ22−

3
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= ψ11−
0 ψ11+

1 ψ11−
2 ψ11+

3 + ψ11−
0 ψ11+

1 ψ21−
2 ψ21+

3 + ψ11−
0 ψ12+

1 ψ11−
2 ψ12+

3

+ ψ11−
0 ψ12+

1 ψ21−
2 ψ22+

3 + ψ12−
0 ψ11+

1 ψ12−
2 ψ11+

3 + ψ12−
0 ψ11+

1 ψ22−
2 ψ21+

3

+ ψ12−
0 ψ12+

1 ψ12−
2 ψ12+

3 + ψ12−
0 ψ12+

1 ψ22−
2 ψ22+

3 + ψ21−
0 ψ21+

1 ψ11−
2 ψ11+

3

+ ψ21−
0 ψ21+

1 ψ21−
2 ψ21+

3 + ψ21−
0 ψ22+

1 ψ11−
2 ψ12+

3 + ψ21−
0 ψ22+

1 ψ21−
2 ψ22+

3

+ ψ22−
0 ψ21+

1 ψ12−
2 ψ11+

3 + ψ22−
0 ψ21+

1 ψ22−
2 ψ21+

3 + ψ22−
0 ψ22+

1 ψ12−
2 ψ12+

3

+ ψ22−
0 ψ22+

1 ψ22−
2 ψ22+

3

= ψ11−
0 ψ11−

1 ψ11+
2 ψ11+

3 + ψ11−
0 ψ11−

1 ψ21+
2 ψ21+

3 + ψ11−
0 ψ12−

1 ψ11+
2 ψ12+

3

+ ψ11−
0 ψ12−

1 ψ21+
2 ψ22+

3 + ψ12−
0 ψ11−

1 ψ12+
2 ψ11+

3 + ψ12−
0 ψ11−

1 ψ22+
2 ψ21+

3

+ ψ12−
0 ψ12−

1 ψ12+
2 ψ12+

3 + ψ12−
0 ψ12−

1 ψ22+
2 ψ22+

3 + ψ21−
0 ψ21−

1 ψ11+
2 ψ11+

3

+ ψ21−
0 ψ21−

1 ψ21+
2 ψ21+

3 + ψ21−
0 ψ22−

1 ψ11+
2 ψ12+

3 + ψ21−
0 ψ22−

1 ψ21+
2 ψ22+

3

+ ψ22−
0 ψ21−

1 ψ12+
2 ψ11+

3 + ψ22−
0 ψ21−

1 ψ22+
2 ψ21+

3 + ψ22−
0 ψ22−

1 ψ12+
2 ψ12+

3

+ ψ22−
0 ψ22−

1 ψ22+
2 ψ22+

3

We need to act with this Hamiltonian on each of the singlet states and then
identify appropriate linear combinations such that:

H
∑

a

αa|singlet⟩a = λ
∑

a

αa|singlet⟩a(9.3)

Even though this is conceptually straightforward, the calculations are te-
dious. Additionally, the Hamiltonian does not15 commute with the level op-
erators (3.5) of specific colors. As a result, the Hamiltonian mixes the states
from different groups and hence we lost the simplification that happened in
the case of identifying singlets.

The discrete symmetry operators we have defined earlier make things
a bit easier. To begin with, we note that the Hamiltonian commutes with
the operators S01;23, S02;13 and S03;12 whereas it anti-commutes with the
operators SAB and SA. We will describe the usefulness of these symmetry
operators via an example. Consider the action of the Hamiltonian on the

15Note that the Hamiltonian commutes with the overall level operator defined
by the sum of level operators of individual colors.
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following singlet state:

Hψ11+
0 ψ12+

0 ψ21+
0 ψ22+

0 ψ11+
1 ψ12+

1 ψ21+
1 ψ22+

1 ≡ H|a⟩
(9.4)

=
(

ψ11+
2 ψ11+

3 + ψ21+
2 ψ21+

3

)

×
(

ψ12+
0 ψ21+

0 ψ22+
0 ψ12+

1 ψ21+
1 ψ22+

1 + ψ11+
0 ψ12+

0 ψ22+
0 ψ11+

1 ψ12+
1 ψ22+

1

)

−
(

ψ11+
2 ψ12+

3 + ψ21+
2 ψ22+

3

)

×
(

ψ12+
0 ψ21+

0 ψ22+
0 ψ11+

1 ψ21+
1 ψ22+

1 + ψ11+
0 ψ12+

0 ψ22+
0 ψ11+

1 ψ12+
1 ψ21+

1

)

−
(

ψ12+
2 ψ11+

3 + ψ22+
2 ψ21+

3

)

×
(

ψ11+
0 ψ21+

0 ψ22+
0 ψ12+

1 ψ21+
1 ψ22+

1 + ψ11+
0 ψ12+

0 ψ21+
0 ψ11+

1 ψ12+
1 ψ22+

1

)

+
(

ψ12+
2 ψ12+

3 + ψ22+
2 ψ22+

3

)

×
(

ψ11+
0 ψ21+

0 ψ22+
0 ψ11+

1 ψ21+
1 ψ22+

1 + ψ11+
0 ψ12+

0 ψ21+
0 ψ11+

1 ψ12+
1 ψ21+

1

)

≡ |(12, 21, 22), (12, 21, 22), (11), (11)⟩.

Suppose we now want to find the action of Hamiltonian on

|b⟩ ≡ ψ11+
2 ψ12+

2 ψ21+
2 ψ22+

2 ψ11+
3 ψ12+

3 ψ21+
3 ψ22+

3 .

Since |b⟩ = S02;13|a⟩, we see that H|b⟩ = S02;13 (H|a⟩). More explicitly, we
find that:

Hψ11+
2 ψ12+

2 ψ21+
2 ψ22+

2 ψ11+
3 ψ12+

3 ψ21+
3 ψ22+

3 ≡ H|b⟩
(9.5)

=
(

ψ11+
0 ψ11+

1 + ψ21+
0 ψ21+

1

)

×
(

ψ12+
2 ψ21+

2 ψ22+
2 ψ12+

3 ψ21+
3 ψ22+

3 + ψ11+
2 ψ12+

2 ψ22+
2 ψ11+

3 ψ12+
3 ψ22+

3

)

−
(

ψ11+
0 ψ12+

1 + ψ21+
0 ψ22+

1

)

×
(

ψ12+
2 ψ21+

2 ψ22+
2 ψ11+

3 ψ21+
3 ψ22+

3 + ψ11+
2 ψ12+

2 ψ22+
2 ψ11+

3 ψ12+
3 ψ21+

3

)

−
(

ψ12+
0 ψ11+

1 + ψ22+
0 ψ21+

1

)

×
(

ψ11+
2 ψ21+

2 ψ22+
2 ψ12+

3 ψ21+
3 ψ22+

3 + ψ11+
2 ψ12+

2 ψ21+
2 ψ11+

3 ψ12+
3 ψ22+

3

)

+
(

ψ12+
0 ψ12+

1 + ψ22+
0 ψ22+

1

)

×
(

ψ11+
2 ψ21+

2 ψ22+
2 ψ11+

3 ψ21+
3 ψ22+

3 + ψ11+
2 ψ12+

2 ψ21+
2 ψ11+

3 ψ12+
3 ψ21+

3

)

≡ |(11), (11), (12, 21, 22), (12, 21, 22)⟩.

By using the other symmetry operators, we can find the action of Hamilto-
nian on three more states in a similar way. Since many of the singlet states
are related by these operators, the number of calculations we need to do are
considerably reduced.



✐

✐

“3-Krishnan” — 2020/5/15 — 12:31 — page 1831 — #27
✐

✐

✐

✐

✐

✐

Complete solution of a gauged tensor model 1831

The symmetry operators are further helpful in identifying the eigen-
states. Let |E⟩ be an eigenstate of the Hamiltonian with eigenvalue E. Then
the states S01;23|E⟩, S02;13|E⟩ and S03;12|E⟩ are also eigenstates with the
same eigenvalue whereas the states SAB|E⟩ and SA|E⟩ are eigenstates of
the Hamiltonian with eigenvalue −E.

We found that the 140 singlet eigenstates we have fall into 16 indepen-
dent sets. By independent sets, we mean that the action of Hamiltonian on
any of the states in an independent set produces the states in that set. From
the appendix, it is clear that each of these independent sets has only one
singlet from the (p2, p2) group. This fact is useful to organize our calcula-
tions. We go about identifying the independent sets of eigenstates following
the steps listed below:

• Start with any one of the singlet states of the (p2, p2) group. Let us
denote it by |a⟩.

• Act with the Hamiltonian on |a⟩ and organize the result in terms of
singlets i.e.,

H|a⟩ =
∑

i

βi|bi⟩(9.6)

where |bi⟩ are some singlets that depend on our choice of singlet state
|a⟩ and βi are numerical coefficients.

• Now act with the Hamiltonian on |bi⟩’s and organize the result in terms
of singlets.

• Repeat this until we have a set of singlet states that closes under the
action of the Hamiltonian. We call this set of states as an independent
set.

• Take appropriate linear combination of states in the independent sets
to form eigenstates.

We demonstrate these steps using an example in the following subsection.
We will choose the example such that the ground state is a part of it. By
ground state we mean the lowest energy state of the entire theory not just
the gauged sector of it. The ground state being a part of our singlet spectrum
is expected since we know that it is unique as found numerically in [11]. This
is also consistent with the discussions in [16].

Before we proceed further, we emphasize that the reader should not be
surprised by the fact that we find some of the eigenvalues to be irrational.
We present here a simple case where the eigenvalues can be irrational. This
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example mirrors the situation that arises while finding the eigenvalues. Con-
sider an operator K whose action on two states |p⟩ and |q⟩ is given as fol-
lowing:

K|p⟩ = η|q⟩; K|q⟩ = ζ|p⟩(9.7)

for some positive integers η and ζ. Two of the eigenstates of K can then be
constructed as:

K

(

|p⟩ ±
√

η

ζ
|q⟩

)

= ±
√

ηζ

(

|p⟩ ±
√

η

ζ
|q⟩

)

(9.8)

As we can see from this simple example, even though η and ζ are integers,
the eigenvalues ±

√
ηζ can be irrational. This is similar to how we get some

of the eigenvalues of the Gurau-Witten Hamiltonian to be irrational and it
will become clearer after the following example.

9.1. An example

Here, we describe our strategy to find independent sets by choosing the
singlet state from the group (p2, p2) to be:

|(12, 21, 22), (12, 21, 22), (11), (11)⟩
(9.9)

=
(

ψ11+
2 ψ11+

3 + ψ21+
2 ψ21+

3

)

×
(

ψ12+
0 ψ21+

0 ψ22+
0 ψ12+

1 ψ21+
1 ψ22+

1 + ψ11+
0 ψ12+

0 ψ22+
0 ψ11+

1 ψ12+
1 ψ22+

1

)

−
(

ψ11+
2 ψ12+

3 + ψ21+
2 ψ22+

3

)

×
(

ψ12+
0 ψ21+

0 ψ22+
0 ψ11+

1 ψ21+
1 ψ22+

1 + ψ11+
0 ψ12+

0 ψ22+
0 ψ11+

1 ψ12+
1 ψ21+

1

)

−
(

ψ12+
2 ψ11+

3 + ψ22+
2 ψ21+

3

)

×
(

ψ11+
0 ψ21+

0 ψ22+
0 ψ12+

1 ψ21+
1 ψ22+

1 + ψ11+
0 ψ12+

0 ψ21+
0 ψ11+

1 ψ12+
1 ψ22+

1

)

+
(

ψ12+
2 ψ12+

3 + ψ22+
2 ψ22+

3

)

×
(

ψ11+
0 ψ21+

0 ψ22+
0 ψ11+

1 ψ21+
1 ψ22+

1 + ψ11+
0 ψ12+

0 ψ21+
0 ψ11+

1 ψ12+
1 ψ21+

1

)

As can be seen from the appendix, this choice corresponds to the indepen-
dent set-I. Before finding the action of the Hamiltonian on this state, let us
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define the following for convenience:

|a1⟩ =
(

ψ11+
0 ψ21+

0 + ψ12+
0 ψ22+

0

)

(0 → 1, 2, 3) | ⟩(9.10)

|a2⟩ =
(

ψ11+
0 ψ12+

0 + ψ21+
0 ψ22+

0

)

(0 → 1, 2, 3) | ⟩(9.11)

|a3⟩ =
[ (

ψ11+
0 ψ22+

0 + ψ12+
0 ψ21+

0

)

(0 ↔ 2)(9.12)

+
(

ψ11+
0 ψ21+

0 − ψ12+
0 ψ22+

0

)

(0 ↔ 2)
]

×
(

ψ11+
1 ψ21+

1 + ψ12+
1 ψ22+

1

) (

ψ11+
3 ψ21+

3 + ψ12+
3 ψ22+

3

)

| ⟩
|a4⟩ =

[ (

ψ11+
1 ψ22+

1 + ψ12+
1 ψ21+

1

)

(1 ↔ 3)(9.13)

+
(

ψ11+
1 ψ21+

1 − ψ12+
1 ψ22+

1

)

(1 ↔ 3)
]

×
(

ψ11+
0 ψ21+

0 + ψ12+
0 ψ22+

0

) (

ψ11+
2 ψ21+

2 + ψ12+
2 ψ22+

2

)

| ⟩
|a5⟩ =

[ (

ψ11+
0 ψ22+

0 − ψ12+
0 ψ21+

0

)

(0 ↔ 1)(9.14)

+
(

ψ11+
0 ψ12+

0 − ψ21+
0 ψ22+

0

)

(0 ↔ 1)
]

×
(

ψ11+
2 ψ12+

2 + ψ21+
2 ψ22+

2

) (

ψ11+
3 ψ12+

3 + ψ21+
3 ψ22+

3

)

| ⟩
|a6⟩ =

[ (

ψ11+
2 ψ22+

2 − ψ12+
2 ψ21+

2

)

(2 ↔ 3)(9.15)

+
(

ψ11+
2 ψ12+

2 − ψ21+
2 ψ22+

2

)

(2 ↔ 3)
]

×
(

ψ11+
0 ψ12+

0 + ψ21+
0 ψ22+

0

) (

ψ11+
1 ψ12+

1 + ψ21+
1 ψ22+

1

)

| ⟩
|a7⟩ =

[ (

ψ11+
0 ψ22+

0 + ψ12+
0 ψ21+

0

)

(0 ↔ 2)(9.16)

+
(

ψ11+
0 ψ21+

0 − ψ12+
0 ψ22+

0

)

(0 ↔ 2)
]

×
[ (

ψ11+
1 ψ22+

1 + ψ12+
1 ψ21+

1

)

(1 ↔ 3)

+
(

ψ11+
1 ψ21+

1 − ψ12+
1 ψ22+

1

)

(1 ↔ 3)
]

| ⟩
|a8⟩ =

[ (

ψ11+
0 ψ22+

0 − ψ12+
0 ψ21+

0

)

(0 ↔ 1)(9.17)

+
(

ψ11+
0 ψ12+

0 − ψ21+
0 ψ22+

0

)

(0 ↔ 1)
]

×
[ (

ψ11+
2 ψ22+

2 − ψ12+
2 ψ21+

2

)

(2 ↔ 3)

+
(

ψ11+
2 ψ12+

2 − ψ21+
2 ψ22+

2

)

(2 ↔ 3)
]

| ⟩
|a9⟩ =|(12, 21, 22), (12, 21, 22), (11), (11)⟩(9.18)

|a10⟩ =|(12, 21, 22), (11), (12, 21, 22), (11)⟩(9.19)

|a11⟩ =|(11), (12, 21, 22), (11), (12, 21, 22)⟩(9.20)

|a12⟩ =|(11), (11), (12, 21, 22), (12, 21, 22)⟩(9.21)

|a13⟩ =ψ11+
0 ψ12+

0 ψ21+
0 ψ22+

0 ψ11+
1 ψ12+

1 ψ21+
1 ψ22+

1(9.22)

|a14⟩ =ψ11+
0 ψ12+

0 ψ21+
0 ψ22+

0 ψ11+
2 ψ12+

2 ψ21+
2 ψ22+

2(9.23)

|a15⟩ =ψ11+
1 ψ12+

1 ψ21+
1 ψ22+

1 ψ11+
3 ψ12+

3 ψ21+
3 ψ22+

3(9.24)

|a16⟩ =ψ11+
2 ψ12+

2 ψ21+
2 ψ22+

2 ψ11+
3 ψ12+

3 ψ21+
3 ψ22+

3(9.25)
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The action of the Hamiltonian on the state (9.9) gives:

H|a9⟩ = 16|a13⟩+ |a1⟩+ |a2⟩ − |a3⟩ − |a4⟩+ |a5⟩+ |a6⟩+ |a7⟩+ |a8⟩(9.26)

Now, we need to act with the Hamiltonian on the singlets on RHS. This
would give us:

4H|a1⟩ = 4H|a2⟩ = H|a7⟩ = H|a8⟩ =+4|a9⟩+4|a10⟩+4|a11⟩+4|a12⟩(9.27)

H|a3⟩ = H|a4⟩ = −2|a9⟩+ 2|a10⟩+ 2|a11⟩ − 2|a12⟩(9.28)

H|a5⟩ = H|a6⟩ = +2|a9⟩ − 2|a10⟩ − 2|a11⟩+ 2|a12⟩(9.29)

H|a13⟩ = |a9⟩(9.30)

Acting with the Hamiltonian on the extra singlets that appeared here leads
to:

H|a10⟩ = 16|a14⟩+ |a1⟩+ |a2⟩+ |a3⟩+ |a4⟩ − |a5⟩ − |a6⟩+ |a7⟩+ |a8⟩(9.31)

H|a11⟩ = 16|a15⟩+ |a1⟩+ |a2⟩+ |a3⟩+ |a4⟩ − |a5⟩ − |a6⟩+ |a7⟩+ |a8⟩(9.32)

H|a12⟩ = 16|a16⟩+ |a1⟩+ |a2⟩ − |a3⟩ − |a4⟩+ |a5⟩+ |a6⟩+ |a7⟩+ |a8⟩(9.33)

Lastly, the action of the Hamiltonian on |a14⟩, |a15⟩ and |a16⟩ is given as
follows:

H|a14⟩ = |a10⟩; H|a15⟩ = |a11⟩; H|a16⟩ = |a12⟩(9.34)

As can be seen from the explicit expressions, these singlet states |a1⟩ to |a16⟩
are closed under the action of Hamiltonian.

From all the information at hand here, it is easy to construct the eigen-
states and are given by:

• Zero energy eigenstates: (8)

(9.35)

|a1⟩ − |a2⟩; |a5⟩ − |a6⟩; |a7⟩ − |a8⟩;
|a3⟩ − |a4⟩; |a7⟩ − 4|a1⟩; |a3⟩+ |a5⟩
|a1⟩ − |a13⟩ − |a14⟩ − |a15⟩ − |a16⟩;
|a3⟩+ 2|a13⟩ − 2|a14⟩ − 2|a15⟩+ 2|a16⟩

• Eigenvalue of ±4: (2× 2)

4(|a13⟩ − |a16⟩)± (|a9⟩ − |a12⟩)(9.36)

4(|a14⟩ − |a15⟩)± (|a10⟩ − |a11⟩)(9.37)
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Eigenvalue −2
√
14 −4

√
3 −2

√
6 −4 −2

√
2 0 2

√
2 4 2

√
6 4

√
3 2

√
14

Degeneracy 1 3 4 6 31 50 31 6 4 3 1

Table 2: Eigenvalues and corresponding degeneracy of the singlet eigen-
states.

• Eigenvalue of ±4
√
3: (1× 2)

(9.38) 4 (|a13⟩ − |a14⟩ − |a15⟩+ |a16⟩)− |a3⟩ − |a4⟩+ |a5⟩+ |a6⟩
±
√
3 (|a9⟩ − |a10⟩ − |a11⟩+ |a12⟩)

• Eigenvalue of ±2
√
14: (1× 2)

(9.39) 4 (|a13⟩+ |a14⟩+ |a15⟩+ |a16⟩) + |a1⟩+ |a2⟩+ |a7⟩+ |a8⟩

±
√

7

2
(|a9⟩+ |a10⟩+ |a11⟩+ |a12⟩)

The ground state corresponds to the eigenvalue of −2
√
14 and this value

exactly matches with the one that is obtained via numerical diagonalization.
In the numerical diagonallization, it was found that the ground state is
unique. So, we verified that the ground state we obtained here is unique
with respect to all the discrete symmetries that we have defined. This is a
non-trivial test as some of the discrete symmetry operators act quite non-
trivially on the singlet states.

In the appendix, we give a list of all the eigenstates along with their
eigenvalues. The eigenvalues and their degeneracies are summarized in the
Table 2.

10. Uniqueness of the ground state and the degeneracies

In this section, we verify that the ground state is unique i.e., we show that
it remains unchanged under the action of all the discrete symmetry opera-
tors we have defined. Also, we will explain the degeneracy of +4

√
3 energy

eigenvalue using those operators. We conclude this section by commenting
on the other symmetry operators that might exist in the theory.
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To start with, let us write down the ground state explicitly:

|g⟩ ≡
(

ψ11+
0 ψ21+

0 + ψ12+
0 ψ22+

0

)

(0 → 1, 2, 3)

(10.1)

+
(

ψ11+
0 ψ12+

0 + ψ21+
0 ψ22+

0

)

(0 → 1, 2, 3)

+ 4
(

ψ11+
0 ψ12+

0 ψ21+
0 ψ22+

0 + ψ11+
3 ψ12+

3 ψ21+
3 ψ22+

3

)

×
(

ψ11+
1 ψ12+

1 ψ21+
1 ψ22+

1 + ψ11+
2 ψ12+

2 ψ21+
2 ψ22+

2

)

+
[(

ψ11+
1 ψ22+

1 + ψ12+
1 ψ21+

1

)

(1 ↔ 3) +
(

ψ11+
1 ψ21+

1 − ψ12+
1 ψ22+

1

)

(1 ↔ 3)
]

×
[(

ψ11+
0 ψ22+

0 + ψ12+
0 ψ21+

0

)

(0 ↔ 2) +
(

ψ11+
0 ψ21+

0 − ψ12+
0 ψ22+

0

)

(0 ↔ 2)
]

+
[(

ψ11+
0 ψ22+

0 − ψ12+
0 ψ21+

0

)

(0 ↔ 1) +
(

ψ11+
0 ψ12+

0 − ψ21+
0 ψ22+

0

)

(0 ↔ 1)
]

×
[(

ψ11+
2 ψ22+

2 − ψ12+
2 ψ21+

2

)

(2 ↔ 3) +
(

ψ11+
2 ψ12+

2 − ψ21+
2 ψ22+

2

)

(2 ↔ 3)
]

±
√

7

2

(

|(12, 21, 22), (12, 21, 22), (11), (11)⟩

+ |(12, 21, 22), (11), (12, 21, 22), (11)⟩
)

±
√

7

2

(

|(11), (12, 21, 22), (11), (12, 21, 22)⟩

+ |(11), (11), (12, 21, 22), (12, 21, 22)⟩
)

We want to show that S|g⟩ = |g⟩ where S is one of the discrete symmetry
operators. It is easy to verify that under the action of the operators SAB;CD,
the ground state transforms into itself. Since the operators SAB and SA anti-
commute with the Hamiltonian, we take a product of two such operators
to construct operators (S′) that commute with the Hamiltonian. As long
as we consider the operators S′ that include SAB with (A,B) = (0, 3) or
(A,B) = (1, 2), it is straightforward to show that the ground state remains
unchanged under its action.

The action of S′ becomes non-trivial if it includes the operators SAB with
(A,B) = (2, 3) or (A,B) = (0, 1) or (A,B) = (1, 3) or (A,B) = (0, 2). This
is because these operators have a non-trivial action on the Clifford vacuum.
They do not commute with the level operators (3.5) and hence their action
on any singlet (in general) mixes singlets of various groups.

For concreteness, let us consider the operator S23. Now, we will consider
the action of S23 on each of the singlets present in the ground state. Let us
start with the singlets of (p1,5, p1,5). Before considering the entire singlet, let
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us consider the following:

S23(ψ
11+
0 ψ12+

0 ψ21+
0 ψ22+

0 )| ⟩(10.2)

= −
[

(ψ11+
0 ψ21+

0 − ψ12+
0 ψ22+

0 ) + i(ψ11+
0 ψ22+

0 + ψ12+
0 ψ21+

0 )
]

×
[

(ψ11+
1 ψ21+

1 − ψ12+
1 ψ22+

1 )

− i(ψ11+
1 ψ22+

1 + ψ12+
1 ψ21+

1 )
]

[1 → 2, 3] | ⟩

Using this, we can show that:

1

4
S23

(

ψ11+
0 ψ12+

0 ψ21+
0 ψ22+

0 + ψ11+
3 ψ12+

3 ψ21+
3 ψ22+

3

)

(10.3)

×
(

ψ11+
1 ψ12+

1 ψ21+
1 ψ22+

1 + ψ11+
2 ψ12+

2 ψ21+
2 ψ22+

2

)

| ⟩
=

[

(ψ11+
0 ψ22+

0 + ψ12+
0 ψ21+

0 )(0 → 2)

+ (ψ11+
0 ψ21+

0 − ψ12+
0 ψ22+

0 )(0 → 2)
]

×
[

(ψ11+
1 ψ22+

1 + ψ12+
2 ψ21+

2 )(1 → 3)

+ (ψ11+
1 ψ21+

1 − ψ12+
1 ψ22+

1 )(2 → 3)
]

| ⟩

Next, we move on to the singlets of the group (p3, p3) in the ground
state. To compute the action of S23 on these singlets, the following relations
are useful:

(10.4)

S23(ψ
11+
0 ψ22+

0 + ψ12+
0 ψ21+

0 )| ⟩
= −2i(ψ11+

0 ψ12+
0 ψ21+

0 ψ22+
0 + 1) f ′(ψ1,2,3)| ⟩

S23(ψ
11+
0 ψ21+

0 − ψ12+
0 ψ22+

0 )| ⟩
= +2(ψ11+

0 ψ12+
0 ψ21+

0 ψ22+
0 − 1) f ′(ψ1,2,3)| ⟩

S23(ψ
11+
0 ψ22+

0 − ψ12+
0 ψ21+

0 )| ⟩
= −2(ψ11+

0 ψ12+
0 − ψ21+

0 ψ22+
0 ) f ′(ψ1,2,3)| ⟩

S23(ψ
11+
0 ψ12+

0 − ψ21+
0 ψ22+

0 )| ⟩
= +2(ψ11+

0 ψ22+
0 − ψ12+

0 ψ21+
0 ) f ′(ψ1,2,3)| ⟩

S23(ψ
11+
0 ψ12+

0 + ψ21+
0 ψ22+

0 )| ⟩
= +2i(ψ11+

0 ψ21+
0 + ψ12+

0 ψ22+
0 ) f ′(ψ1,2,3)| ⟩

S23(ψ
11+
0 ψ21+

0 + ψ12+
0 ψ22+

0 )| ⟩
= +2i(ψ11+

0 ψ12+
0 + ψ21+

0 ψ22+
0 ) f ′(ψ1,2,3)| ⟩

where we have defined the function

f ′(ψ1,2,3) =
[

(ψ11+
1 ψ21+

1 − ψ12+
1 ψ22+

1 )− i(ψ11+
1 ψ22+

1 + ψ12+
1 ψ21+

1 )
]

[1 → 2, 3]
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Using the above relations, we can show that:

1

16
S23

[

(ψ11+
0 ψ22+

0 − ψ12+
0 ψ21+

0 )(0 → 1)(10.5)

+ (ψ11+
0 ψ12+

0 − ψ21+
0 ψ22+

0 )(0 → 1)
]

×
[

(ψ11+
2 ψ22+

2 − ψ12+
2 ψ21+

2 )(2 → 3)

+ (ψ11+
2 ψ12+

2 − ψ21+
2 ψ22+

2 )(2 → 3)
]

| ⟩
=

[

(ψ11+
0 ψ22+

0 + ψ12+
0 ψ21+

0 )(0 → 1)

+ (ψ11+
0 ψ12+

0 − ψ21+
0 ψ22+

0 )(0 → 1)
]

×
[

(ψ11+
2 ψ22+

2 + ψ12+
2 ψ21+

2 )(2 → 3)

+ (ψ11+
2 ψ12+

2 − ψ21+
2 ψ22+

2 )(2 → 3)
]

| ⟩
1

16
S23

[

(ψ11+
0 ψ22+

0 + ψ12+
0 ψ21+

0 )(0 → 2)(10.6)

+ (ψ11+
0 ψ21+

0 − ψ12+
0 ψ22+

0 )(0 → 2)
]

×
[

(ψ11+
1 ψ22+

1 + ψ12+
2 ψ21+

2 )(1 → 3)

+ (ψ11+
1 ψ21+

1 − ψ12+
1 ψ22+

1 )(2 → 3)
]

| ⟩
= 4

(

ψ11+
0 ψ12+

0 ψ21+
0 ψ22+

0 + 0 ↔ 3
)

×
(

ψ11+
1 ψ12+

1 ψ21+
1 ψ22+

1 + 1 ↔ 2
)

| ⟩
1

16
S23

[

(ψ11+
0 ψ21+

0 + ψ12+
0 ψ22+

0 )(0 → 1, 2, 3)
]

(10.7)

=
[

(ψ11+
0 ψ12+

0 + ψ21+
0 ψ22+

0 )(0 → 1, 2, 3)
]

1

16
S23

[

(ψ11+
0 ψ12+

0 + ψ21+
0 ψ22+

0 )(0 → 1, 2, 3)
]

(10.8)

=
[

(ψ11+
0 ψ21+

0 + ψ12+
0 ψ22+

0 )(0 → 1, 2, 3)
]

Lastly, we move to the singlets belonging to the groups (p2,4, p2,4). Before
finding the action of S23 on these singlets, we need the following:
(10.9)

S23ψ
11+
0 | ⟩ = −

(

ψ11+
0 ψ12+

0 + i
)

(iψ21+
0 + ψ22+

0 ) f ′(ψ1,2,3)| ⟩
S23ψ

12+
0 | ⟩ = −

(

ψ11+
0 ψ12+

0 − i
)

(ψ21+
0 − iψ22+

0 ) f ′(ψ1,2,3)| ⟩
S23ψ

21+
0 | ⟩ = +

(

iψ11+
0 + ψ12+

0

)

(ψ21+
0 ψ22+

0 + i) f ′(ψ1,2,3)| ⟩
S23ψ

22+
0 | ⟩ = +

(

ψ11+
0 − iψ12+

0

)

(ψ21+
0 ψ22+

0 − i) f ′(ψ1,2,3)| ⟩
S23ψ

12+
0 ψ21+

0 ψ22+
0 | ⟩ = −

(

ψ11+
0 ψ12+

0 − i
)

(iψ21+
0 − ψ22+

0 ) f ′(ψ1,2,3)| ⟩
S23ψ

11+
0 ψ21+

0 ψ22+
0 | ⟩ = +

(

ψ11+
0 ψ12+

0 + i
)

(ψ21+
0 + iψ22+

0 ) f ′(ψ1,2,3)| ⟩
S23ψ

11+
0 ψ12+

0 ψ22+
0 | ⟩ = +

(

iψ11+
0 − ψ12+

0

)

(ψ21+
0 ψ22+

0 − i) f ′(ψ1,2,3)| ⟩
S23ψ

11+
0 ψ12+

0 ψ21+
0 | ⟩ = −

(

ψ11+
0 + iψ12+

0

)

(ψ21+
0 ψ22+

0 + i) f ′(ψ1,2,3)| ⟩



✐

✐

“3-Krishnan” — 2020/5/15 — 12:31 — page 1839 — #35
✐

✐

✐

✐

✐

✐

Complete solution of a gauged tensor model 1839

where we have defined the function f ′(ψ1,2,3) above. Computing the action
of S23 on the singlets of (p2,4, p2,4) is now straightforward. The explicit ex-
pressions are as follows:

− 1

4
S23|(12, 21, 22), (12, 21, 22), (11), (11)⟩

(10.10)

= |(12, 21, 22), (12, 21, 22), (11), (11)⟩+ |(12, 21, 22), (11), (12, 21, 22), (11)⟩
+ |(11), (12, 21, 22), (11), (12, 21, 22)⟩+ |(11), (11), (12, 21, 22), (12, 21, 22)⟩
− |(11), (12), (11, 21, 22), (12, 21, 22)⟩ − |(12, 21, 22), (11, 21, 22), (12), (11)⟩
− |(12, 21, 22), (12), (11, 21, 22), (11)⟩ − |(12), (12, 21, 22), (11), (11, 21, 22)⟩
− i|(11, 21, 22), (12, 21, 22), (11), (11)⟩ − i|(11, 21, 22), (11), (12, 21, 22), (11)⟩
+ i|(12), (12, 21, 22), (11), (12, 21, 22)⟩+ i|(12), (11), (12, 21, 22), (12, 21, 22)⟩
− i|(12, 21, 22), (11, 21, 22), (11), (11)⟩+ i|(12, 21, 22), (12), (12, 21, 22), (11)⟩
− i|(11), (11, 21, 22), (11), (12, 21, 22)⟩+ i|(11), (11), (12, 21, 22), (11, 21, 22)⟩

♢ ♢ ♢

− 1

4
S23|(12, 21, 22), (11), (12, 21, 22), (11)⟩

(10.11)

= |(12, 21, 22), (12, 21, 22), (11), (11)⟩+ |(12, 21, 22), (11), (12, 21, 22), (11)⟩
+ |(11), (12, 21, 22), (11), (12, 21, 22)⟩+ |(11), (11), (12, 21, 22), (12, 21, 22)⟩
+ |(11), (12), (11, 21, 22), (12, 21, 22)⟩+ |(12, 21, 22), (11, 21, 22), (12), (11)⟩
+ |(12, 21, 22), (12), (11, 21, 22), (11)⟩+ |(12), (12, 21, 22), (11), (11, 21, 22)⟩
− i|(11, 21, 22), (12, 21, 22), (11), (11)⟩ − i|(11, 21, 22), (11), (12, 21, 22), (11)⟩
+ i|(12), (12, 21, 22), (11), (12, 21, 22)⟩+ i|(12), (11), (12, 21, 22), (12, 21, 22)⟩
+ i|(12, 21, 22), (11, 21, 22), (11), (11)⟩ − i|(12, 21, 22), (12), (12, 21, 22), (11)⟩
+ i|(11), (11, 21, 22), (11), (12, 21, 22)⟩ − i|(11), (11), (12, 21, 22), (11, 21, 22)⟩

♢ ♢ ♢

− 1

4
S23|(11), (11), (12, 21, 22), (12, 21, 22)⟩

(10.12)

= |(12, 21, 22), (12, 21, 22), (11), (11)⟩+ |(12, 21, 22), (11), (12, 21, 22), (11)⟩
+ |(11), (12, 21, 22), (11), (12, 21, 22)⟩+ |(11), (11), (12, 21, 22), (12, 21, 22)⟩
− |(11), (12), (11, 21, 22), (12, 21, 22)⟩ − |(12, 21, 22), (11, 21, 22), (12), (11)⟩
− |(12, 21, 22), (12), (11, 21, 22), (11)⟩ − |(12), (12, 21, 22), (11), (11, 21, 22)⟩
+ i|(11, 21, 22), (12, 21, 22), (11), (11)⟩+ i|(11, 21, 22), (11), (12, 21, 22), (11)⟩
− i|(12), (12, 21, 22), (11), (12, 21, 22)⟩ − i|(12), (11), (12, 21, 22), (12, 21, 22)⟩
+ i|(12, 21, 22), (11, 21, 22), (11), (11)⟩ − i|(12, 21, 22), (12), (12, 21, 22), (11)⟩
+ i|(11), (11, 21, 22), (11), (12, 21, 22)⟩ − i|(11), (11), (12, 21, 22), (11, 21, 22)⟩
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♢ ♢ ♢

−1

4
S23|(11), (12, 21, 22), (11), (12, 21, 22)⟩

(10.13)

=|(12, 21, 22), (12, 21, 22), (11), (11)⟩+ |(12, 21, 22), (11), (12, 21, 22), (11)⟩
+|(11), (12, 21, 22), (11), (12, 21, 22)⟩+ |(11), (11), (12, 21, 22), (12, 21, 22)⟩
+|(11), (12), (11, 21, 22), (12, 21, 22)⟩+ |(12, 21, 22), (11, 21, 22), (12), (11)⟩
+|(12, 21, 22), (12), (11, 21, 22), (11)⟩+ |(12), (12, 21, 22), (11), (11, 21, 22)⟩
+i|(11, 21, 22), (12, 21, 22), (11), (11)⟩+ i|(11, 21, 22), (11), (12, 21, 22), (11)⟩
−i|(12), (12, 21, 22), (11), (12, 21, 22)⟩ − i|(12), (11), (12, 21, 22), (12, 21, 22)⟩
−i|(12, 21, 22), (11, 21, 22), (11), (11)⟩+ i|(12, 21, 22), (12), (12, 21, 22), (11)⟩
−i|(11), (11, 21, 22), (11), (12, 21, 22)⟩+ i|(11), (11), (12, 21, 22), (11, 21, 22)⟩

Using these expressions, it is straightforward to show that under the action
of S23SA, S23S03 or S23S12, the ground state transforms into itself.

The rest of the discrete symmetry operators are not independent and
can be constructed using the operators we have considered so far. So, the
information we have is sufficient to show that the ground state is unique
under all the symmetries we have identified.

We now explain the degeneracy of the eigenvalue +4
√
3. This eigenvalue

appears in the sets 1,15 and 16. The +4
√
3 eigenstates in the 15 and 16 sets

transform into each other under the action of the operator S12SA. We can
further show that under the action of S23SA, the +4

√
3 eigenstates of set

1 and set 16 transform into each other. The action of other operators does
not lead to any other new states. That is, we find that the degeneracy of the
eigenvalue +4

√
3 is three.

In a similar way, we can explain the degeneracies of all the eigenvalues
except 0 and ±2

√
2. For these exceptions, using our symmetry operators, we

can explain the degeneracies partially. By that we mean that there are states
having same16 eigenvalue which are not related via any of the symmetries
that we have identified. Thus, we need to find some other symmetries to ex-
plain all the degeneracies. One of the drawbacks of our symmetry operators
is that the singlets of (p2,4, p2,4) do not mix with the singlets of the other
groups under any of our symmetry operators. Also, the singlets (21)-(36) of

16As an example, consider the first states of sets 1, 2 and 11. All of them have
zero eigenvalue and are not related by symmetries. It is good to keep this example
in mind for the rest of the discussion.
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(p3, p3) group transform among themselves under the action of our symme-
tries. So, the extra symmetry operators we need to identify should overcome
these problems. In defining the symmetry operators, we have treated the
fermions of all the colors on an equal footing and there is no reason to do
that. We believe that the new symmetry operator(s) that can explain all the
degeneracies should indeed treat the colors in a different way.

11. Chaos in the gauged n = 2 Gurau-Witten model

In the previous sections, we have identified the gauge spectrum of n = 2
Gurau-Witten model explicitly. Now, we investigate whether there are any
signs of chaos in the gauged sector. Even though the number of distinct
eigenvalues is small, we find that the spectral form factor has a dip-ramp-
plateau structure indicating the signs of chaos.

Before investigating chaos, let us first understand the eigenvalue spec-
trum of the gauged model. There are 11 distinct eigenvalues in the spectrum.
There is a large degeneracy at zero energy and the spectrum has spectral
mirror symmetry as is obvious from the plot of density of eigenvalues in
Figure 1. Note that all the eigenvalues in the Table 2 are present in the
numerical diagonalization as well and this provides a non-trivial check of
our results.

The tool we use to investigate chaos is the spectral form factor (SFF).
It is defined as:

F (β, t) =

∣

∣

∣

∣

Z(β, t)

Z(β, 0)

∣

∣

∣

∣

2

; Z(β, t) = Tr
(

e−(β+it)H
)

(11.1)

For chaotic systems, SFF initially decays up to a certain time called the
dip-time (td). After that, it starts raising until the plateau time (tp) and
then finally stabilizes to a value called the plateau height. That is, the SFF
of chaotic systems have a dip-ramp-plateau structure. We compute the SFF
for the singlet spectrum and report it in the Figure 2 after a sliding time
average with different sliding intervals ∆t. Even though we have only 11
distinct eigenvalues, the SFF qualitatively has a dip-ramp-plateau structure
which can be understood as a primitive sign of chaos.

Exact solutions of strongly coupled (fermionic) gauge theories should
be useful in extending the understanding of eigenstate thermalization [19],
entanglement/entanglement entropy [20] and evolution of complexity [21] in
the context of holography.
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Figure 1: Density of states for the singlet spectrum of n = 2 Gurau-Witten
model.
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Figure 2: SFF for the singlet spectrum of n = 2 Gurau-Witten model for
β = 0.5.
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Appendix A. n = 2 uncolored model

In this appendix, we give relevant details of the n = 2 uncolored model.
These are useful especially for finding singlets via method-II. For more de-
tails on the n = 2 uncolored model, see [16].

The Noether charges Of n = 2 uncolored model are given by:

(A.1)

Q12
1 = i

(

ψ111+

ψ211−

+ ψ111−

ψ211+

+ ψ121+

ψ221−

+ ψ121−

ψ221+
)

Q12
2 = i

(

ψ111+

ψ121−

+ ψ111−

ψ121+

+ ψ211+

ψ221−

+ ψ211−

ψ221+
)

Q12
3 = 2− ψ111+

ψ111− − ψ121+

ψ121− − ψ211+

ψ211− − ψ221+

ψ221−

The action of the first two charges on level 0 and level 4 states is given by:

(A.2)
Q12

1,2| ⟩ = 0

Q12
1,2

(

ψ111+

ψ121+

ψ211+

ψ221+
)

| ⟩ = 0

At level 1, we have:

(A.3)

Q12
1 ψ111+ | ⟩ = −ψ211+

Q12
1 ψ211+ | ⟩ = +ψ111+

Q12
1 ψ121+ | ⟩ = −ψ221+

Q12
1 ψ221+ | ⟩ = +ψ121+

At level 3, we have:

(A.4)

Q12
1

(

ψ111+

ψ121+

ψ211+
)

| ⟩ = +ψ111+

ψ211+

ψ221+ | ⟩

Q12
1

(

ψ111+

ψ211+

ψ221+
)

| ⟩ = −ψ111+

ψ121+

ψ211+ | ⟩

Q12
1

(

ψ111+

ψ121+

ψ221+
)

| ⟩ = +ψ121+

ψ211+

ψ221+ | ⟩

Q12
1

(

ψ121+

ψ211+

ψ221+
)

| ⟩ = −ψ111+

ψ121+

ψ221+ | ⟩
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From these relations, we can see that:

(

(Q1)
2 + 1

)

|Level 1/3 state ⟩ = 0(A.5)

At level 2:
(A.6)

Q12
1

(

ψ111+

ψ211+
)

| ⟩ = 0

Q12
1

(

ψ121+

ψ221+
)

| ⟩ = 0

Q12
1

(

ψ111+

ψ221+

+ ψ121+

ψ211+
)

| ⟩ = 0

Q12
1

(

ψ111+

ψ121+

+ ψ211+

ψ221+
)

| ⟩ = 0

Q12
1

(

ψ111+

ψ121+ − ψ211+

ψ221+
)

| ⟩ = 2
(

ψ121+

ψ211+ − ψ111+

ψ221+
)

| ⟩

Q12
1

(

ψ111+

ψ221+ − ψ121+

ψ211+
)

| ⟩ = 2
(

ψ111+

ψ121+ − ψ211+

ψ221+
)

| ⟩

Now, we consider the action of Q2 charge. At level 1, we have the fol-
lowing relations:

(A.7)

Q12
2 ψ111+ | ⟩ = −ψ121+

Q12
2 ψ121+ | ⟩ = +ψ111+

Q12
2 ψ211+ | ⟩ = −ψ221+

Q12
2 ψ221+ | ⟩ = +ψ211+

At level 3:

(A.8)

Q12
2

(

ψ111+

ψ121+

ψ211+
)

| ⟩ = −ψ111+

ψ121+

ψ221+ | ⟩

Q12
2

(

ψ111+

ψ121+

ψ221+
)

| ⟩ = +ψ111+

ψ121+

ψ211+ | ⟩

Q12
2

(

ψ111+

ψ211+

ψ221+
)

| ⟩ = −ψ121+

ψ211+

ψ221+ | ⟩

Q12
2

(

ψ121+

ψ211+

ψ221+
)

| ⟩ = +ψ111+

ψ211+

ψ221+ | ⟩

As in the case of Q1, we have:

(

(Q2)
2 + 1

)

|Level 1/3 state ⟩ = 0(A.9)
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At level 2, we have:
(A.10)

Q12
2

(

ψ111+

ψ121+
)

| ⟩ = 0

Q12
2

(

ψ211+

ψ221+
)

| ⟩ = 0

Q12
2

(

ψ111+

ψ221+ − ψ121+

ψ211+
)

| ⟩ = 0

Q12
2

(

ψ111+

ψ211+

+ ψ121+

ψ221+
)

| ⟩ = 0

Q12
2

(

ψ111+

ψ211+ − ψ121+

ψ221+
)

| ⟩ = −2
(

ψ121+

ψ211+

+ ψ111+

ψ221+
)

| ⟩

Q12
2

(

ψ111+

ψ221+

+ ψ121+

ψ211+
)

| ⟩ = 2
(

ψ111+

ψ211+ − ψ121+

ψ221+
)

| ⟩

We conclude by pointing out that the charges Q1 and Q2 commute
and this fact is useful in determining the singlets of (p2,4, p2,4) and also in
uniquely fixing such singlets to be of the form (7.9) .
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