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We elucidate how integrable lattice models described by Costello’s
4d Chern-Simons theory can be realized via a stack of D4-branes
ending on an NS5-brane in type IIA string theory, with D0-branes
on the D4-brane worldvolume sourcing a meromorphic RR 1-form,
and fundamental strings forming the lattice. This provides us with
a nonperturbative integration cycle for the 4d Chern-Simons the-
ory, and by applying T- and S-duality, we show how the R-matrix,
the Yang-Baxter equation and the Yangian can be categorified,
that is, obtained via the Hilbert space of a 6d gauge theory.
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1. Introduction and summary

The Yang-Baxter equation with spectral parameter was recently found to
arise from a 4d variant of Chern-Simons gauge theory devised by Costello

1
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[1–3], with the action

(1.1) S =
1

ℏ

∫

Y×Σ

C ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
,

where A is a complex-valued gauge field, Y is a framed 2-manifold, and Σ
is a complex Riemann surface endowed with a meromorphic one-form C =
C(z)dz, which can have poles but no zeros. Within the realm of perturbation
theory, this gauge theory encapsulates the underlying structure of integrable
lattice models of two-dimensional classical statistical mechanics.

Outside of perturbation theory, the 4d Chern-Simons theory (1.1) is
not well-understood (its path integral is exponentially divergent), and it
was suggested in [5] that a nonperturbative definition of the theory should
arise from the D4-NS5 brane system of type IIA string theory, in a manner
similar to how analytically-continued 3d Chern-Simons theory can be given
a nonperturbative definition via the D3-NS5 system. Our aim in this work
is to firstly verify the suggestion in [5], and to derive the integration cycle
which allows (1.1) to be well-defined beyond perturbation theory; this shall
be done in Section 2.

Secondly, given that the D3-NS5 brane embedding of 3d Chern-Simons
theory leads to the categorification of knot polynomials in terms of Khovanov
homology [4], it is natural to ask if the D4-NS5 brane system will lead
us to a categorification of the Yang-Baxter equation. Indeed, in Section 3,
by applying T- and S-duality to arrive at the NS5-D5 system in type IIB
string theory, we will categorify the elements of the R-matrix which solves
the aforementioned Yang-Baxter equation, thereby categorifying the Yang-
Baxter equation itself, and we shall furthermore categorify the Yangian.

A brief summary of our results is as follows. We shall first show that
a twisted sector of the D4-NS5 system with a meromorphic RR 1-form is
equivalent to Costello’s 4d Chern-Simons theory (2.32) with nonperturbative
integration cycle defined by (2.33). Using T- and S-duality, we arrive at the
NS5-D5 brane system, the supersymmetric Hilbert space of ground states of
which is defined by the Floer cohomology of the 6d equations (3.11) which
interpolate solutions of the 5d equations (3.12). Via these dualities, we are
able to express each R-matrix element in terms of a trace over this Hilbert
space in (3.14) (thereby categorifying each R-matrix element), and we are
also able to categorify the Yang-Baxter equation, as shown in (3.17), as well
as the Yangian.
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2. 4d Chern-Simons theory from 5d topologically twisted

MSYM coupled to meromorphic RR 1-form

2.1. D4-brane worldvolume theory with NS5 boundary

conditions

The low energy worldvolume theory of N coincident D4-branes on a flat
manifold, M , has the classical action [6, 7]

S = − 1

g25

∫

M
d5x Tr

(
1

4
FMNF

MN +
1

2
DMϕM̂D

MϕM̂(2.1)

+
1

4
[ϕ

M̂
, ϕN̂ ][ϕM̂ , ϕN̂ ] + iρAÂ(ΓM ) B

A DMρBÂ

+ ρAÂ(ΓM̂ ) B̂
Â

[ϕ
M̂
, ρAB̂]

)
,

i.e., 5d maximally supersymmetric Yang-Mills theory (MSYM), which is
invariant under the supersymmetry transformations

(2.2)

δAM = 2ζAÂ(ΓM ) B
A ρBÂ

δϕM̂ = −i2ζAÂ(ΓM̂ ) B̂
Â

ρAB̂

δρAÂ = (ΓM ) B
A DMϕ

M̂ (Γ
M̂
) B̂
Â

ζBB̂

− i

2
(Γ

M̂
) B̂
Â

(ΓN̂ )B̂Ĉ [ϕ
M̂ , ϕN̂ ]ζ Ĉ

A − i

2
FMN (ΓMN )ABζ

B
Â
.

Here, (M,N, . . .) and (A,B, . . .) are respectively vector and spinor indices
for the SOE(5) rotation group, with their hatted counterparts corresponding
to the SOR(5) R-symmetry group. In addition, the Lie algebra of the U(N)
gauge group is taken to be generated by antihermitian matrices Ta, where
a = 1, . . . , dim u(N), implying that the invariant quadratic form on this Lie
algebra, denoted Tr, is negative-definite. In particular, the matrices Ta are
chosen such that Tr(TaTb) = −δab.

We shall take the D4-branes to end on an NS5-brane, in the type IIA
brane configuration in flat Euclidean space given by the following table:

1 2 3 4 5 6 7 8 9 10

D4 × × × × ×
NS5 × × × × × ×
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where, e.g., an empty entry under ‘3’ indicates that the brane is located at
x3 = 0. Also note that the scalar fields {ϕ1̂, ϕ2̂, ϕ3̂, ϕ4̂, ϕ5̂} of the worldvolume
theory are taken to parametrize the {6, 7, 8, 9, 10} directions, respectively.
This configuration induces the following boundary conditions on the fields
of the worldvolume theory:

(2.3) Fµ3 = 0|x3=0, D3ϕ
1̂,2̂ = 0|x3=0, ϕ3̂,4̂,5̂ = 0|x3=0,

(here, µ is the boundary SOE(4) rotation group 4d index) together with
projection conditions on the fermionic fields.

We now wish to perform a partial topological twist of the worldvolume
theory along a submanifold of M . The reason for this is we wish to obtain
Costello’s 4d Chern-Simons theory, which is a topological-holomorphic the-
ory, and hence not fully topological. Let the flat manifoldM = Y × R+ × Σ,
where Y and Σ are 2-manifolds corresponding to the {x1, x2} and {x4, x5}
directions respectively, while R+ is half of the real line, R, that corre-
sponds to the x3 direction. We shall twist along V = Y × R+, by redefin-
ing its SOE(3) rotation group to be the diagonal subgroup SOE(3)

′ of
SOE(3)× SOR(3), where SOR(3) is the subgroup of the R-symmetry group
that rotates {ϕ1̂, ϕ2̂, ϕ3̂}.

From the string theoretical perspective, this partial twist amounts to
taking the {x1, x2, x3} and {x6, x7, x8} directions to form T ∗Ṽ , where Ṽ =
Y × R; the twist follows essentially because V ⊂ Ṽ and Ṽ is the zero section
of the cotangent bundle T ∗Ṽ , and therefore ‘coordinates’ normal to Ṽ in
T ∗Ṽ must be components of one-forms [8], as we shall obtain via the twisting
procedure.

Let us denote SOE(3) vector indices by (α, β, . . .) and SOE(3) spinor
indices by (ᾱ, β̄, . . .), with their hatted versions corresponding to SOR(3).
Twisting simply amounts to setting the hatted indices to unhatted indices.
The remaining SOE(2) vector indices not involved in twisting shall be de-
noted (m,n, . . .), with the barred and hatted versions having the usual mean-
ing of spinor and R-symmetry indices.

As a result of the twisting, the scalar fields {ϕ1̂, ϕ2̂, ϕ3̂} now transform
as the components {ϕ1, ϕ2, ϕ3} of a one-form on Y × R+. In addition, the
twisting of the fermions which transform as (2,2) under SOE(3)× SOR(3)
results in fermions which transform as 1 and 3 under SOE(3)

′, i.e.,

(2.4) 2⊗ 2 = 1⊕ 3.
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To see this explicitly, the spinor fields ρAÂ = ρᾱm̄̂̄α ̂̄m can be expanded after
twisting as

(2.5) ρᾱm̄β̄ ̂̄m = ϵᾱβ̄ηm̄ ̂̄m + (σα)ᾱβ̄ψαm̄ ̂̄m,

where we have used the antisymmetric matrix ϵᾱβ̄ and the symmetric ma-
trix (σα)ᾱβ̄ introduced in the appendix. The supersymmetry transformation
parameters ζAÂ = ζᾱm̄̂̄α ̂̄m can also be expanded in such a manner, i.e.,

(2.6) ζᾱm̄β̄ ̂̄m = ϵᾱβ̄ζm̄ ̂̄m + (σα)ᾱβ̄ζαm̄ ̂̄m.

With the explicit representation of the gamma matrices given in the ap-
pendix, we can substitute (2.5) and (2.6) into (2.1) and (2.2) to obtain the
partially twisted action and supersymmetry transformations.

Now, we shall pick a particular supercharge, Q, that is scalar along
V , with respect to which we shall eventually localize the theory. The su-
persymmetry transformations generated by this supercharge ought to leave
invariant the combinations A1 + iϕ1 (or A1 − iϕ1), A2 + iϕ2 (or A2 − iϕ2),
and Az̄ =

1
2
(A4 + iA5), since these combinations are the natural candidates

for the fields of the 4d Chern-Simons theory, to which we hope to localize
the partially twisted theory. Indeed, there are two such supercharges, cor-
responding to the supersymmetry transformation parameters ζ11 and ζ12
in (2.6). Without any loss of generality, we shall pick the supercharge cor-
responding to ζ11. Observe that from the on-shell supersymmetry algebra
of (2.1),

(2.7) {QAB̂, Q
BĈ} = (ΓM ) B

A δ Ĉ
B̂

PM − iδ B
A (ΓM̂ ) Ĉ

B̂
P
M̂
,

where PM are the worldvolume momenta and P
M̂

are central charges, we
find (by expanding QAB̂ as in (2.5) and (2.6)) that the supercharge Q22

which corresponds to ζ11 satisfies

(2.8)
{Q,Q12} ∝ Pz̄

{Q,Q 22
β } ∝ Pβ ,

where Q = Q22. This indicates a topological-holomorphic theory, i.e., one
where correlation functions of Q-invariant local operators have holomorphic
dependence on Σ and no other dependence on M .
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Next, setting the parameter ζ11 equal to 1, the corresponding supersym-
metry transformations are

(2.9)

QAα = 0

QAα = −8ψα22

QAz̄ = 0

QAz = 4η12

Qϕẑ = 0

Qϕẑ = −4iη21

Qη11 = 2iFzz + 2i[ϕẑ, ϕẑ]−Dβϕ
β

Qη12 = 0

Qη21 = 0

Qη22 = 4Dz̄ϕẑ

Qψα11 = −1

2
εβγαFβγ

Qψα12 = 2Dαϕẑ
Qψα21 = −i2Fαz̄

Qψα22 = 0,

where we have defined the complex coordinates z = x4 + ix5 and z = x4 −
ix5, the complex gauge fields

(2.10) Aα = Aα + iϕα, Aα = Aα − iϕα,

and

(2.11) Az =
1

2
(A4 − iA5), Az̄ =

1

2
(A4 + iA5),

whereby we have the covariant derivatives

(2.12) Dα = ∂α + [Aα, · ], Dα = ∂α + [Aα, · ],

and

(2.13) Dz = ∂z + [Az, · ], Dz̄ = ∂z̄ + [Az̄, · ],

and the field strengths Fβγ = [Dβ ,Dγ ], Fαz = [Dα, Dz] and Fzz̄ = [Dz, Dz̄].
We have also defined the scalar fields

(2.14) ϕẑ =
1

2
(ϕ4̂ − iϕ5̂), ϕẑ =

1

2
(ϕ4̂ + iϕ5̂).
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Note that these transformations leave invariant the NS5 boundary condi-
tions, which take the following form after twisting:

(2.15)

A3 = 0|x3=0, ∂3Aµ = 0|x3=0,

∂3ϕ
1,2 = 0|x3=0, ϕ3,4̂,5̂ = 0|x3=0,

∂3η1m̂ = 0|x3=0, η
2m̂ = 0|x3=0,

ψα̃1m̂ = 0|x3=0, ∂3ψα̃2m̂ = 0|x3=0,

∂3ψ31m̂ = 0|x3=0, ψ
32m̂ = 0|x3=0,

where α̃ = 1, 2.
Now, let us proceed to reexpress the action in a form suitable for local-

ization. The partially twisted action we obtain can be put in the form

Stwisted = − 1

g25

∫

M
d5x Tr

(
1

4
FβγFβγ + 2Fα

zFαz + 2DαϕẑDαϕẑ

(2.16)

+ 8DzϕẑDz̄ϕẑ +
1

2
(2iFzz + 2i[ϕẑ, ϕẑ]−Dβϕ

β)2

− 4εβγαψα11Dβψγ22 + 4εαβγψ
γ
21Dαψβ12 − i4η11Dαψ

α
22

− i4ψα
21Dαη12 + i4ψα

12Dαη21 + i4η22Dαψ
α
11

− i8ψγ
21Dzψγ22 − i8ψγ

11Dz̄ψγ12 + i8η22Dzη21 + i8η11Dz̄η12

− 8ψβ
12[ϕẑ, ψβ22]− 8ψβ

21[ϕẑ, ψβ11] + 8η22[ϕẑ, η12] + 8η11[ϕẑ, η21]

)
.

In obtaining the form of the action given in (2.16), we have performed sev-
eral integration-by-parts, where we have used the NS5 boundary conditions
(2.15). In particular, the terms with only bosonic fields are equivalent to
partial twists of the standard terms, i.e.,
(2.17)

Sboson = − 1

g25

∫

M
d5x Tr

(
1

4
FαβF

αβ +
1

4
FαnF

αn +
1

4
FmβF

mβ +
1

4
FmnF

mn

+
1

2
DαϕβDαϕβ +

1

2
Dαϕn̂Dαϕn̂

+
1

2
DmϕβDmϕβ +

1

2
Dmϕn̂Dmϕn̂

+
1

4
[ϕα, ϕβ ][ϕα, ϕβ ] +

1

4
[ϕα, ϕn̂][ϕα, ϕn̂]

+
1

4
[ϕm̂, ϕβ ][ϕm̂, ϕβ ] +

1

4
[ϕm̂, ϕn̂][ϕm̂, ϕn̂]

)
.
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At this point, we note that the supersymmetry transformations (2.9) satisfy
Q2 = 0 on-shell, that is, with the aid of the equation of motion obtained
from varying η11. In order for Q2 = 0 to be satisfied off-shell, we ought to
introduce an auxiliary field to the action, i.e.,

(2.18)

− 1

g25

∫

M
d5x Tr

(
1

2

(
2iFzz + 2i[ϕẑ, ϕẑ]−Dβϕ

β
)2
)

→− 1

g25

∫

M
d5x Tr

(
d
(
2iFzz + 2i[ϕẑ, ϕẑ]−Dβϕ

β
)
− 1

2
d2
)
,

and modify (2.9) such that

(2.19)
Qη11 = d

Qd = 0.

Then, the action (2.16) can be written in terms of a Q-exact part and a
Q-invariant part, i.e.,

Stwisted = QΨ− 1

g25

∫

M
d5x Tr

(
4εαβγψγ21Dαψβ12 + i2εαρση22Dαχρσ11

(2.20)

− i4εγρσχρσ11Dz̄ψγ12 − 4εβρσψβ21[ϕẑ, χρσ11]

)
,

where

Ψ = − 1

g25

∫

M
d5x Tr

(
− 1

4
χβγ

11Fβγ + iψα
21Fαz + ψα

12Dαϕẑ + 2η22Dzϕẑ

(2.21)

+ η11
(
2iFzz + 2i[ϕẑ, ϕẑ]−Dβϕ

β
)
− 1

2
η11d

)
.

Here, we have performed the field redefinition

(2.22) χρσ11 = ερσαψ
α
11,

where χρσ11 are the components of a 2-form on V , satisfyingQχρσ11 = −Fρσ.
The Q-invariance of the Q-exact term in (2.20) follows since Q is nilpotent,
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while the remaining terms are Q-invariant due to the Bianchi identities

(2.23) DαFβγ +DβFγα +DγFαβ = 0

and

(2.24) Dz̄Fβγ +DβFγz̄ +DγFz̄β = 0.

Note that the dependence on the metric of V is completely contained
in the Q-exact term in (2.20), while there is dependence on the complex
structure of Σ which can be observed via the presence of the derivative Dz̄ in
one of the non-Q-exact terms. Hence, along the boundary, ∂M = Y × Σ, the
partially twisted theory we have derived is topological along Y but depends
on the complex structure of Σ, just as in Costello’s 4d Chern-Simons theory.

2.2. Boundary action

In general, the low energy worldvolume action of coincident D4-branes ad-
mits a topological term which couples to the RR 1-form, R, sourced by
D0-branes in the worldvolume, i.e.,

(2.25) Stop =
i

g25

∫

M
R ∧ Tr (F ∧ F ).

In the following, we shall only be concerned with D0-branes which are
charged such that the RR 1-form R is closed, which allows us to write (2.25)
as a boundary action.

In order to include such a coupling without breaking the supersymmetry
generated by Q, we shall first require that R has meromorphic dependence
on Σ, i.e., R = C(z)dz. Upon doing so, the boundary RR 1-form coupling
can be written as

(2.26)
−i
g25

∫

∂M
C ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
,

where C = C(z)dz. Now, this boundary action only depends on A1, A2 and
Az̄, where Az̄ is Q-invariant. Hence, in order to preserve Q-invariance along
the boundary, we add boundary interaction terms involving ϕ1 and ϕ2 to
the action, such that the dependence on (A1,A2) is replaced precisely by
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dependence on (A1,A2), resulting in the Q-invariant boundary action

(2.27) Sboundary =
−i
g25

∫

∂M
C ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
,

where we have used the notation Az̄ = Az̄.

2.3. Localization

We shall now specialize to the case where Y is a framed 2-manifold, the
most important examples (in the context of the Yang-Baxter equation) that
we will consider being T 2 and R2, and where Σ is a Riemann surface which
is either C, C× or C/(Z+ τZ). These three choices of Riemann surfaces
will eventually correspond to rational, trigonometric and elliptic integrable
lattice models.

To evaluate the path integral, we shall rescale the Q-exact part of the
action by a parameter s, which we shall eventually take to be very large.
Since the path integral localizes to the fixed points of the fermionic symme-
try, it will be convenient to evaluate it by expanding in perturbation theory
around these fixed points.

Let us first integrate out the auxiliary field d. Then, we gauge A3 away
to zero. Next, denoting solutions of the bosonic fixed points of the fermionic
symmetry as X0 and fluctuations around these points as X̃ for any bosonic
field X, we expand these fields as X0 + X̃, and we rescale the fluctuations
and the fermionic fields as follows:

(2.28)

Ãα̃, Ãα̃, Ãz, Ãz̄, ϕ̃ẑ, ϕ̃ẑ, ϕ̃3

→ Ãα̃

s
,
Ãα̃

s
,
Ãz

s2
,
Ãz̄

s2
,
ϕ̃ẑ
s2
,
ϕ̃ẑ
s2
,
ϕ̃3

s
7

2

,

χ3α̃11, ψα̃22, ψ312, ψ321, ψ322, η11, η12, η21

→ χ3α̃11

s
,
ψα̃22

s
,
ψ312

s2
,
ψ321

s5/2
,
ψ322

s5/2
,
η11

s3/2
,
η12

s3/2
,
η21
s2

(here, and in what follows, (α̃, β̃, γ̃, . . . ) = 1, 2). Since the theory is topolog-
ical along V = Y × R+, we can also rescale the inverse of the metric as

(2.29) g33, gα̃β̃ → s3g33,
1

s2
gα̃β̃ ,

where g
α̃β̃

is the flat metric along Y .
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Taking s→ ∞, the total action becomes

S = − 1

g25

∫

M
d5x Tr

(
1

2
g33gγ̃β̃∂3Ãβ̃

∂3Ãγ̃ + 2g33∂3Ãz̄∂3Ãz(2.30)

+ 2g33∂3ϕ̃ẑ∂3ϕ̃ẑ +
1

2
g33g33∂3ϕ̃3∂3ϕ̃3

− 4g33gγ̃β̃χ
3β̃11

∂3ψγ̃22 − i4g33η11∂3ψ322

− i4g33ψ321∂3η12 + i4g33ψ312∂3η21

+ 4ε3β̃γ̃ψγ̃21∂3ψβ̃12
+ i2ε3β̃γ̃η22∂3χβ̃γ̃11

)

− i

g25

∫

∂M
C ∧ Tr

(
A0 ∧ dA0 +

2

3
A0 ∧ A0 ∧ A0

)

where we have used the fact that ϕ30, ϕẑ0 and ϕẑ0 are equal to zero.1 Per-
forming the path integral over the fluctuations and fermions,2 we obtain a
constant factor which can be absorbed into the measure, giving us

(2.31)

∫
DAα̃0DAα̃0DAz0DAz̄0 e

i

g2
5

∫
∂M

C∧Tr
(
A0∧dA0+

2

3
A0∧A0∧A0

)
.

Then, performing the path integral over Aα̃0 and renormalizing, we end up
with

(2.32)

∫

Γ

DAα̃0DAz0DAz̄0 e
i

g2
5

∫
∂M

C∧Tr
(
A0∧dA0+

2

3
A0∧A0∧A0

)

where we now use the notation Az0 = Az0 and Az̄0 = Az̄0 in the path integral
measure. This is the partition function of Costello’s 4d Chern-Simons theory
with gauge group U(N)C = GL(N,C) (where the Planck constant ℏ = g25),
with the functional integral performed over a nonperturbative integration

1This follows from the equivalence between the terms with only bosonic fields
in (2.16) and (2.17). The latter is a sum of squares, which implies that ϕ30, ϕẑ0 and
ϕ
ẑ0

are each covariantly constant, and commute with all the other ϕ fields. The
Dirichlet boundary conditions on these three fields then imply that they must be
zero everywhere on M .

2We have assumed here that there are no fermionic zero modes. This is a rea-
sonable assumption, given that the NS5 boundary conditions consist of Dirichlet
and Neumann boundary conditions which are both elliptic in general, and the index
of the fermionic operators ought to be proportional to χ(M)dim G, which vanishes
for our present choice of M .
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cycle Γ in field space, corresponding to the restriction to ∂M of the bosonic
fixed points of the fermionic symmetry generated by Q, i.e.,

(2.33)

F
α̃β̃0

= 0

Fα̃z̄0 = 0

2iFzz̄0 −Dα̃0ϕ
α̃
0 = 0

As shown recently in [9], one can also obtain 4d Chern-Simons theory from
string theory by realizing it via a stack of D5-branes supported on the prod-
uct of an Ω-background disk and Y × Σ.

2.4. Wilson lines

Now, it is a fact that QAα̃=0 also allows us to define supersymmetric Wilson
lines along Y , i.e.,

(2.34) W = Tr(P e
∫
L⊂Y

A),

as observables of the 5d topological-holomorphic theory that are associated
with representations of the complex Lie algebra g = gl(N,C). From the point
of view of string theory, these Wilson lines arise from the worldsheet bound-
aries of fundamental strings ending on the D4-brane worldvolume.

Now, in [2], a general class of Wilson lines was considered, i.e., not
only those associated with representations of g, but also representations
of g[[z]] (the Lie algebra of polynomial loops of g). These Wilson lines are
necessary in deriving the Yangian algebra associated with rational integrable
lattice models. Such a Wilson line associated with g[[z]] is constructed by
starting with a Wilson line along Y in a representation of g, and giving
holomorphic dependence on Σ to the gauge field in the operator, while also
removing the trace (gauge invariance is maintained by taking Y to be very
large, and insisting that the gauge field vanishes at infinity). In the string
picture, such a Wilson line ought to be realized by an identical modification
to the Wilson line along the boundary of a fundamental string worldsheet,
i.e., choosing a background gauge field with (z, z̄)-dependence, and which
vanishes at infinity along Σ. Note that since Pz̄ is Q-exact (see (2.8)), the
z̄-dependence is actually trivial in the sector of the worldvolume theory we
are studying, and therefore the Wilson line realized along Y has holomorphic
z-dependence.

Let us consider the path integral of the 5d topological-holomorphic the-
ory with Wilson lines along Y ⊂ ∂M . Localization of the path integral along
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the lines of the previous subsection leads us to Costello’s 4d Chern-Simons
theory with Wilson line insertions in the path integral, i.e.,

(2.35)

∫

Γ

DAα̃0DAz0DAz̄0

×
∏

i

Tr(P e
∫
Li

A0) e
i

g2
5

∫
∂M

C∧Tr
(
A0∧dA0+

2

3
A0∧A0∧A0

)

and for Wilson lines associated with representations of g = gl(N,C) form-
ing a lattice along Y ⊂ ∂M , this correlation function is identified with the
partition function of an integrable lattice model. This is because contracting
R-matrices (which correspond to intersections of Wilson lines) and taking
a trace gives a transfer matrix, and similarly contracting transfer matrices
and taking a trace gives us the partition function.

3. Categorification of R-matrix elements

3.1. T-duality as a lift to 6d

To categorify the R-matrix elements and the Yang-Baxter equation with
spectral parameter, we need to lift our 5d partially topological theory to a
6d one. From the string theory perspective, this corresponds to T-duality
along one of the directions transverse to the D4-brane worldvolume. For our
purposes, we shall require that this direction lie along the NS5-brane, so
that we end up with a D5-NS5 brane system. We shall pick this direction to
be x6, leading to the following type IIB brane configuration:

1 2 3 4 5 6 7 8 9 10

D5 × × × × × ×
NS5 × × × × × ×

However, recall that the partial twisting in Section 2.1 was induced by taking
the {x6, x7, x8} directions to form the normal bundle to Ṽ ⊂ T ∗Ṽ , where
Ṽ = Y × R lies along the {x1, x2, x3} directions. Hence, in order to facilitate
the T-duality along the x6 direction, we ought to replace the R fiber in this
direction by a very large circle. T-dualizing the D4-NS5 system then leads
to the above D5-NS5 system, where x6 is a local coordinate of a very small
circle.

Let us now describe this T-duality as a 6d lift of the 5d action. Firstly, we
note that the lift along the x6 direction implies that the field ϕ1 is replaced
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by the gauge field component A6. This in turn implies that

(3.1)
A1 = A1 + iϕ1 → A1 + iA6 = 2Aw

A1 = A1 − iϕ1 → A1 − iA6 = 2Aw,

where we have defined the complex coordinates w = x1 + ix6 and w = x1 −
ix6.

We shall first lift the boundary action (2.27) using the first identification
in (3.1), as well as ∂1 → 2∂w.

3 Upon doing so, we obtain

−i
g25

∫

∂M
C ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
(3.2)

→ −1

g25(2πr)

∫

∂M×S1

dw ∧ C ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)

where the circle with respect to which we are lifting has radius r, and where
we use the notation Aw = Aw.

Next, we wish to lift the bulk action. To do this, we shall first lift the
Q-transformations of the 5d action, via

(3.3)
D1 → 2Dw

D1 → 2Dw.

The Q-transformations we obtain in this way are

QAi = 0

QAi = −8ψi22

QAw = 0

QAw = −4η̃22

QAz̄ = 0

QAz = 4η12

Qϕẑ = 0

Qϕẑ = −4iη21

3This choice, as opposed to ∂1 → 2∂w, is necessary to obtain a boundary action
invariant under (small) gauge transformations.
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(3.4)

Qη11 = d

Qd = 0

Qη12 = 0

Qη21 = 0

Qη22 = 4Dz̄ϕẑ

Qψ̃j11 = 2Fjw

Qχij11 = −Fij

Qη̃12 = 4Dwϕẑ
Qψi12 = 2Diϕẑ
Qη̃21 = −i4Fwz̄

Qψi21 = −i2Fiz̄

Qη̃22 = 0

Qψi22 = 0,

where i, j, k, . . . = 2, 3, and where we have defined the fields ψ̃j11 = χ1j11,
η̃12 = ψ112, η̃21 = ψ121, and η̃22 = ψ122. Note that the boundary action (3.2)
remains Q-invariant after lifting. We can now directly lift the bulk action in
the form (2.20) to 6d, which gives

S6d
twisted = QΨ′ − 1

g252πr

∫

M×S1

d6x Tr

(
8εjkψk21Dwψj12(3.5)

− 4εikψk21Diη̃12 + 4εij η̃21Diψj12

+ i4εjkη22Dwχjk11 − i4εijη22Diψ̃j11

− i4εjkχjk11Dz̄ η̃12 + i8εijψ̃j11Dz̄ψi12

− 4εjkη̃21[ϕẑ, χjk11] + 8εijψi21[ϕẑ, ψ̃j11]

)
,

where ε1jk = εjk, and where

Ψ′ = − 1

g252πr

∫

M×S1

d6x Tr

(
− 1

4
χij

11F ij + ψ̃j
11F jw + iψi

21F iz(3.6)

+ i2η̃21Fwz + ψi
12Diϕẑ + 2η̃12Dwϕẑ + 2η22Dzϕẑ

+ η11
(
2iFzz + 2iFww + 2i[ϕẑ, ϕẑ]−Djϕ

j
)
− 1

2
η11d

)
.

We may verify that this is (a partially twisted version of) 6d N = (1, 1)
Super Yang-Mills by studying the terms with only bosonic fields in (3.5),
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i.e.,

S6d
boson =− 1

g252πr

∫

M×S1

d6x Tr

(
1

4
F ijF ij + 2F i

z̄F iz + 2F i
wF iw(3.7)

+ 8Fwz̄Fwz + 2DiϕẑDiϕẑ + 8Dz̄ϕẑDzϕẑ + 8DwϕẑDwϕẑ

+ d
(
2iFzz + 2iFww + 2i[ϕẑ, ϕẑ]−Djϕ

j
)
− 1

2
d2
)
.

Integrating d out of the action, this can be reexpressed as

S6d
boson = − 1

g252πr

∫

M×S1

d6x Tr

(
1

4
FxyF

xy +
1

4
FiyF

iy +
1

4
FxjF

xj(3.8)

+
1

4
FijF

ij +
1

2
DiϕjDiϕj +

1

2
Diϕn̂Diϕn̂

+
1

2
DxϕjDxϕj +

1

2
Dxϕn̂Dxϕn̂

+
1

4
[ϕi, ϕj ][ϕi, ϕj ] +

1

4
[ϕi, ϕn̂][ϕi, ϕn̂]

+
1

4
[ϕm̂, ϕj ][ϕm̂, ϕj ] +

1

4
[ϕm̂, ϕn̂][ϕm̂, ϕn̂]

)

after integration by parts (making use of the NS5 boundary condition ϕ3 =
0), where x, y = z, z̄, w, w. Hence, the 6d theory (3.5), together with the
boundary action

(3.9) S6d
boundary =

−1

g25(2πr)

∫

∂M×S1

dw ∧ C ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)

we obtained by lifting, is 6d maximally supersymmetric Yang-Mills theory
partially twisted along the x2 and x3 directions, with a boundary coupling to
the RR 2-form idw ∧ C. It can be observed from (3.5) that the dependence on
the metric in the x2 and x3 directions is completely contained in the Q-exact
term, while some of the remaining terms depend on the complex structures
of Σ or Σ′, where Σ′ is the Riemann surface with complex coordinates w
and w.

As an aside, we note that using similar arguments to section 2.2, one
ought to be able to localize this partially twisted theory to a 5d Chern-
Simons theory with an action of the form given in (3.9), with the path
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integral performed over the nonperturbative integration cycle Γ′ defined by

(3.10)

F2z̄0 = 0

F2w0 = 0

Fwz̄0 = 0

2iFzz̄0 + 2iFww0 −D20ϕ
2
0 = 0,

which happen to be the lifts of the equations given in (2.33). For C = dz,
this is just the commutative limit of Costello’s noncommutative 5d Chern-
Simons theory studied in [10–12], which was obtained from a stack of D6-
branes supported on the product of an Ω-background plane and R× C2.
Indeed, deforming the Ω-background plane to an infinitely long cigar and
applying T-duality along its circle fibers, we obtain the D5-NS5 system.
The reason we obtain a commutative version is that noncommutativity only
arises in the presence of a particular nonzero B-field [10], which we do not
have.

3.2. S-duality

We now go one step further, and study the S-dual of this system, whereby
D5 and NS5-branes are exchanged. We note that both D5-branes and NS5-
branes in type IIB string theory are described at low energy by 6d N = (1, 1)
Super Yang-Mills theory. Hence, the dual theory is also a twist of 6d N =
(1, 1) Super Yang-Mills, but one which lives on a stack of NS5-branes ending
on a D5-brane. In addition, the F-strings ending on the D5-branes, which
gave rise to Wilson lines, become D1-branes ending on the NS5-branes, which
are also described by Wilson lines. Also, the background metric is rescaled
under S-duality by a factor of 1/g, where g is the type IIB string coupling,
and therefore variables with dimensions of length are rescaled by

√
g.

Next, we note that before S-duality, the coupling of the 5d boundary
action of the D5-brane worldvolume theory is g25(2πr) = (2π)3gα′, and S-
duality results in the 5d boundary action of the NS5-brane worldvolume
theory having the coupling (2π)3α′/g. In other words, the boundary action
of the S-dual theory is multiplied by g/(2π)3α′ = g25/(2π)

5(α′)2r−1. In addi-
tion, the coupling of the 6d bulk action of the D5-brane worldvolume theory,
which is (2π)3gα′ before S-duality, is replaced by the coupling (2π)3α′ of the
bulk action of the NS5-brane worldvolume after S-duality. Finally, the RR
2-form idw ∧ C in the D5-brane worldvolume is identified with an NS-NS
2-form in the NS5-brane worldvolume theory.
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We shall use this S-dual 6d theory to categorify the R-matrix elements,
thereby providing a categorification of the Yang-Baxter equation with spec-
tral parameter. In other words, we want to be able to describe the R-matrix
elements in terms of the Hilbert space of a 6d theory. The reason for using
the S-dual theory is that it allows us to write its path integral as a trace
(over its supersymmetric Hilbert space) of an expression with an obvious
expansion in positive powers of ℏ, which the R-matrix is known to admit in
the semi-classical limit.

3.3. Hilbert space of 6d theory and categorification

The BPS equations to which the NS5-brane worldvolume theory localizes
will be identical to those of the original 6d theory on the D5-branes, which
can be obtained from (3.4), i.e.,

(3.11)

Fij = 0

Fiz̄ = 0

Fiw = 0

Fwz̄ = 0

2iFzz + 2iFww −Djϕ
j = 0

where we have integrated out d, and used the fact that equivalence between
(3.7) and (3.8) and the Dirichlet boundary conditions on ϕẑ imply that its
BPS configurations are forced to be zero.

Let us now use these equations to describe the supersymmetric Hilbert
space of the S-dual theory, taking the sixth dimension S1 to be the Eu-
clidean time dimension. We shall first find the space of classical ground
states, which in the present case is a time-independent classical solution of
the six-dimensional equations given in (3.11). That is, a classical ground
state would solve the 5d equations

(3.12)

Fβγ = 0

Fαz̄ = 0

2iFzz −Dβϕ
β = 0

which are the BPS equations from our study of the D4-brane worldvolume
theory. We shall assume for simplicity in what follows that these equations
have a finite set of solutions (modulo gauge transformations), and that they
are all nondegenerate (i.e., when expanding around a particular solution,
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there are no bosonic zero modes). The latter condition implies that expan-
sion around such a solution gives a single quantum state of vanishing energy,
at least in perturbation theory.

We shall now take into account quantum corrections to the classical
spectrum. Firstly, it is known that nonzero energy eigenstates of a super-
symmetric Hamiltonian always occur in pairs. In perturbation theory, the
supersymmetric spectrum is unaffected by quantum corrections, because we
always expand around a single approximate ground state, which is obtained
by quantizing the corresponding classical solution, and hence because in per-
turbation theory only this single state is accessible, it is impossible for it to
pair up with another state to leave the spectrum of supersymmetric ground
states.

However, nonperturbatively, quantum tunnelling via ‘instantons’ be-
tween such approximate ground states can lift a pair of ground states to
a pair of excited states. The ‘instantons’ in our case are solutions to the 6d
equations (3.11), and interpolate the 5d solutions of (3.12). An approximate
ground state ψI , i.e., which perturbatively obeys QψI = 0, would now obey

(3.13) QψI =
∑

J∈S5

mIJψJ ,

(where S5 is the space of solutions of (3.12)) in the full quantum theory,
where mIJ is obtained by summing contributions from all ‘instantons’ that
interpolate between the solutions labelled by I and J . Hence, the quantum
Hilbert space of ground states, H, of the 6d theory will be given by the
cohomology of the operator Q, which is the Floer cohomology corresponding
to the equations (3.11).

Now, when Y = T 2, the trace in the Wilson loop operators in (2.35) can
be disregarded due to the diffeomorphism invariance along Y in our original
D4-NS5 setup, which allows us to take Y to be very large (gauge invariance
will follow if we insist that the gauge field vanishes at infinity). When Y =
R2, removing the trace in this manner can be done without any rescaling of
Y . In what follows, we shall also view the system under consideration at a
fixed length scale, which allows us to set α′ and r to convenient constants.
Let us now consider (2.35) with two perpendicular Wilson lines along Y ,
which gives rise to the R-matrix. Since the path integral of the 6d theory
obtained via the aforementioned string dualities is equal to an R-matrix
element, we can write

(3.14) R12
IK,JL(z1, z2) = TrH

(
(−1)Fe−ℏPW 1

IJ(z1)W
2
KL(z2)

)
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where z1 and z2 are the positions of the Wilson lines (denoted as W 1 and
W 2) on Σ and correspond to the spectral parameters which label the R-
matrix, I, J,K,L are basis elements of the representations of the Wilson
lines, F is the fermion number operator, and where the operator

(3.15) P = i

∫

∂M
C ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)

as obtained from the boundary topological term of the S-dual action at a
point in time.

In other words, we have identified a vector space with each R-matrix
element, whereby the vector space is the Floer cohomology of the set of 6d
partial differential equations (3.11). We may compute each R-matrix ele-
ment from the solutions of these equations, which are associated with the
Hilbert space of the 6d theory (we shall leave this for future work). This
may be viewed as an indirect categorification of the Yang-Baxter equation,
but we may also categorify directly. This involves three Wilson lines labelled
by spectral parameters z1, z2 and z3 in the original D4-NS5 setup in Sec-
tion 2, whereby the topological invariance along Y allows us to reproduce
the diagrammatic form of the Yang-Baxter equation by moving one of the
Wilson lines. We then apply T- and S-duality to both sides of the equation,
whereby, with the moved Wilson line denoted as W̃ , we may represent the
Yang-Baxter equation,

∑

O,P,Q

R12
NM,QO(z1, z2)R

13
QL,IP (z1, z3)R

23
OP,JK(z2, z3)(3.16)

=
∑

R,S,T

R23
ML,RT (z2, z3)R

13
NT,SK(z1, z3)R

12
SR,IJ(z1, z2)

as

(3.17)
TrH

(
(−1)Fe−ℏPW 1

NI(z1)W
2
MJ(z2)W

3
LK(z3)

)

= TrH
(
(−1)Fe−ℏPW 1

NI(z1)W̃
2
MJ(z2)W

3
LK(z3)

)

Moreover, we may, in a similar vein, categorify the Yangian algebra
associated with rational integrable lattice models, in the form of the RTT
relation. The latter is realized in the 4d Chern-Simons theory using three
Wilson lines as well, but with one of them associated with a representation of
g[[z]] instead of g [3]. Moving this Wilson line using the topological invariance
along Y gives rise to the RTT relation, and therefore an expression of the
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form (3.17) categorifies the Yangian algebra as well. It is expected that affine
and elliptic quantum algebras can be categorified in an analogous manner.

3.4. S-dual 4d Chern-Simons theory

To obtain the 6d theory in Section 3.1, we applied T-duality along a very
large circle in the x6 direction, which resulted in a very small circle in the
6d worldvolume of the D5-branes. Hence, at low energies, the 6d theory
(and its S-dual) can effectively be regarded as the 5d theory obtained via
dimensional reduction. Considering the S-dual 6d theory, we may localize
the path integral of the effective 5d theory we obtain at low energies, in an
analogous manner to how we localized the path integral of the 5d theory in
Sections 2.3 and 2.4. Doing so, we obtain

∫

Γ

DAα̃0DAz0DAz̄0(3.18)

×
∏

i

Tr(P e
∫
Li

A0) eiℏ
∫
∂M

C∧Tr
(
A0∧dA0+

2

3
A0∧A0∧A0

)
,

where Γ is the cycle defined by the equations F
α̃β̃0

= 0, Fα̃z̄0 = 0 and

2iFzz̄0 −Dα̃0ϕ
α̃
0 = 0. Hence, we have an ‘S-dual’ of Costello’s 4d Chern-

Simons theory where the coupling is inverted as

(3.19)
1

ℏ
→ ℏ.

This may be compared with the S-duality of analytically-continued 3d
Chern-Simons theory, studied in [13, 14]. S-duality of this Chern-Simons
theory inverts the coupling and exchanges the gauge group with its Lang-
lands dual, and was argued to arise as a consequence of the S-duality of 4d
N = 4 SYM. Similarly, in our case, the S-duality can be understood to arise
from the S-duality of the D5-NS5 system.
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Appendix A. 5d gamma matrices and spinor operations

Where necessary, we use the following explicit representation of the gamma
matrices in five (Euclidean) dimensions

(A.1)
Γ1 = σ1 ⊗ σ3, Γ2 = σ2 ⊗ σ3, Γ3 = σ3 ⊗ σ3

Γ4 = 1⊗ σ1, Γ5 = 1⊗ σ2,

where the Pauli matrices {σ1, σ2, σ3} are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.(A.2)

These gamma matrices obey the Clifford algebra

(A.3) {ΓM ,ΓN} = 2gMN14×4.

In addition, we also use this set of gamma matrices for the R-symmetry
group SO(5)R.

The SO(5) rotation/R-symmetry group spinor indices in this paper are
raised and lowered using the two index antisymmetric tensor Ω, i.e.,4

ρA = ρBΩBA, ρA = ΩABρB,(A.4)

where ρA and ρA correspond to the representation 4 and its dual represen-
tation 4∨. Here, Ω is chosen to have the explicit form

(A.5) ΩAB = ϵᾱβ̄ ⊗Bm̄n̄ =

(
0 1
−1 0

)
⊗
(
0 1
1 0

)
.

Moreover, the two index antisymmetric tensor ϵ defined above can be used
to raise and lower SO(3) spinor indices, i.e.,

λᾱ = λβ̄ϵβ̄ᾱ, λᾱ = ϵᾱβ̄λβ̄ .(A.6)

Note that this antisymmetric tensor acts on the Pauli matrices to give sym-

metric matrices, i.e., (σα) β̄
ᾱ ϵβ̄γ̄ = (σα)ᾱγ̄ and ϵᾱβ̄(σα) γ̄

β̄
= (σα)ᾱγ̄ , where

(σα)ᾱγ̄ = (σα)γ̄ᾱ and (σα)ᾱγ̄ = (σα)γ̄ᾱ.

4We shall only write formulas corresponding to rotation group spinors in what
follows; the corresponding formulas for R-symmetry group spinors can be obtained
by replacing indices with hatted versions of themselves.
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