
✐

✐

“2-Chan” — 2020/5/19 — 18:21 — page 25 — #1
✐

✐

✐

✐

✐

✐

ADV. THEOR. MATH. PHYS.
Volume 24, Number 1, 25–66, 2020

Geometric quantization via SYZ

transforms
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The so-called quantization problem in geometric quantization is
asking whether the space of wave functions is independent of the
choice of polarization. In this paper, we apply SYZ transforms to
solve the quantization problem in two cases:
1) semi-flat Lagrangian torus fibrations over complete compact

integral affine manifolds, and
2) projective toric manifolds.
More precisely, we prove that the space of wave functions asso-
ciated to the real polarization is canonically isomorphic to that
associated to a complex polarization via SYZ transforms in both
cases.
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1. Introduction

1.1. The quantization problem

Physicists are keen on quantizing classical theories. Given any classical the-
ory, they aim at finding a quantum counterpart whose classical limit recovers
the original classical theory. This process is called quantization. Geometric
quantization is a mathematical approach to constructing such quantum the-
ories.
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26 K. Chan and Y.-H. Suen

A system of classical mechanics is a phase space formalized as a sym-
plectic manifold, so we let (X̌, ω̌) be a symplectic manifold such that ω̌
represents an integral class [ω̌] ∈ H2(X̌;Z). Then there exists a Hermitian
line bundle L → X̌ which admits a unitary connection ∇ so that

i

2π
F∇ = ω̌.

Such a pair (L,∇) is called a prequantum line bundle (Definition 3.1). Given
such a prequantum system, physicists would like to associate a Hilbert space
H to represent the wave functions or quantum states. A natural choice is to
take H as the (L2-completion of the) space of all sections of a line bundle L.
However, this space is in general too big to capture the actual physics. To
obtain a Hilbert space of reasonable size, physicists introduced the notion
of polarization.

A polarization is an involutive Lagrangian subbundle P of the complex-
ified tangent bundle TCX̌ of X̌. Given a polarization, one can then define H
as the space ΓP (X̌,L) of polarized sections – sections that are covariantly
constant along P (Definition 3.2). When (X̌, J̌ , ω̌) is a Kähler manifold ad-
mitting a Lagrangian fibration p̌ : X̌ → B, there are two natural choices for
the polarization, namely, the real polarization induced by the Lagrangian
fibration p̌ and the complex polarization induced by the complex structure
J̌ . But physicists believe that the quantum theory should be independent
of the polarization we chose, so it is desirable that the space of polarized
sections for the real polarization is canonically isomorphic to that for the
complex polarization. This is known as the quantization problem.

In this paper, we show how SYZ transforms, which are Fourier–type
transforms responsible for the interchange between complex-geometric data
on X̌ and symplectic-geometric data on the mirror X [24], can be applied
to solve the quantization problem. We demonstrate this idea in two cases
(Section 4.1):

1) semi-flat Lagrangian torus fibrations over complete compact integral
affine manifolds (see Definition 4.4), and

2) projective toric manifolds.

1.2. Applying SYZ

Let us explain why SYZ transforms can help to solve the quantization prob-
lem. We begin with a semi-flat Lagrangian torus fibration p̌ : X̌ → B which
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Geometric quantization via SYZ transforms 27

admits a Lagrangian section.1 The SYZ mirror of X̌ is simply given by the
total space of the fiberwise dual torus fibration p : X → B. Exploiting the
integral affine structure on the base B, we have the identifications

X̌ ∼= TB/Λ, X ∼= T ∗B/Λ∗,

together with the fiberwise dual fibrations

X̌

p̌
��

X

p
��

B

This is the toy model for SYZ mirror symmetry [18, 24].
Since a torus fiber Fx := p−1(x) is dual to the corresponding fiber F̌x :=

p̌−1(x) (for some point x ∈ B), geometrically Fx is parametrizing the flat
U(1)-connections over F̌x. So a section of p gives a U(1)-connection over
each fiber of p̌ and they combine to produce a U(1)-connection over the
total space X̌. A simple yet fundamental observation of Arinkin-Polishchuk
[2] and Leung-Yau-Zaslow [19] is that the section L of p is Lagrangian if and
only if the corresponding U(1)-connection defines a holomorphic line bundle
Ľ over X̌. We call the map L 7→ Ľ the SYZ transform.

Every Hermitian holomorphic line bundle over X̌ comes from this con-
struction. In particular, we can consider a prequantum line bundle

(L,∇) = (Ľ,∇Ľ)

given by the SYZ transform of some Lagrangian section L of p : X → B.
Śniatycki [23] proved that the space ΓPR

(X̌, Ľ) of polarized sections for
the real polarization PR (or simply the space of real polarized sections)
can be identified with the C-vector space spanned by the so-called Bohr-
Sommerfeld fibers of p̌ : X̌ → B which are, by definition, fibers of p̌ over
which ∇Ľ restricts to the trivial connection (see Definition 3.6):

ΓPR
(X̌, Ľ) ∼=

⊕

F̌x:BS fiber

C · F̌x.

Under the SYZ transform, these fibers correspond precisely to the inter-
section points between L and the zero section L0 of the dual fibration

1In general there are singular or degenerate fibers in a Lagrangian torus fibration
and the semi-flat one is obtained by restricting to the smooth locus.
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p : X → B, so we have

(1)
⊕

F̌x:BS fiber

C · F̌x ∼=
⊕

p∈L0∩L

C · p

via the SYZ transform.
On the other hand, the space ΓPC

(X̌, Ľ) of polarized sections for the com-
plex polarization PC (or simply the space of complex polarized sections) is
given by the space H0(X̌, Ľ) of holomorphic sections of Ľ. Since Ľ is ample,
we have Ext•(OX̌ , Ľ) = H0(X̌, Ľ). Then the homological mirror symmetry
(HMS) conjecture of Kontsevich [16] together with its compatibility with
the SYZ conjecture [24] implies the isomorphism

H0(X̌, Ľ) ∼= HF •(L0, L),

again via the SYZ transform. If the intersection of L0 and L is nice enough
(e.g. if all the intersection points of L0 and L are of Maslox index 0 so that
the Floer differential m1 is 0), then we further have

HF •(L0, L) ∼=
⊕

p∈L0∩L

C · p.

Combining, we arrive at the canonical isomorphism between the spaces
of polarized sections

ΓPR
(X̌, Ľ) ∼= ΓPC

(X̌, Ľ),

obtained by applying SYZ transforms twice.
Note that the space HF •(L0, L) in the above heuristic argument is only

playing an auxiliary role. In fact, instead of using HF •(L0, L) and alluding
to the HMS conjecture, we will consider the space

ker(dW ) ∩A0
r.d.(P (L0, L))

of dW -closed functions which rapidly decay (hence the subscript “r.d.”) along
the lattice directions of P (L0, L), where P (L0, L) is the fiberwise geodesic
path space of the pair (L0, L) equipped with the S1-valued area function

A : P (L0, L) → S1

and dW is the Witten differential.
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Applying Witten-Morse theory [6, 20, 26] to P (L0, L), we obtain the
correspondence

⊕

p∈L0∩L

C · p ∼= ker(dW ) ∩A0
r.d.(P (L0, L))

Then the SYZ transform (see Section 2.3)

F : (A•(P (L0, L)), dW ) → (A0,•(X̌, Ľ), ∂̄)

gives the identification

ker(dW ) ∩A0
r.d.(P (L0, L)) ∼= H0(X̌, Ľ).

Combining with (1), which was obtained via another SYZ transform, we
solve the quantization problem in the semi-flat setting:

Theorem 1.1 (=Theorem 4.10). Let p̌ : X̌ → B be a semi-flat Lagran-
gian torus fibration over a compact complete special integral affine manifold
B. Let g be an integral (Definition 4.1) Hessian type metric on B. With
respect to the prequantum line bundle (Ľg,∇Ľg

) associated to the metric g,

the SYZ transform F induces a canonical isomorphism between ΓPR
(X̌, Ľg)

and ΓPC
(X̌, Ľg)

The prequantum line bundle (Ľg,∇Ľg
) here is explicitly given as the

SYZ transform of the Lagrangian section

Lg := {(x, dϕ(x)) ∈ X : x ∈ B},

where ϕ is the local potential function for the Hessian type metric g.
Similar ideas can also be applied to projective toric manifolds:

Theorem 1.2 (=Theorem 4.26). Let p̌ : X̌ → B be the moment map of
a projective toric manifold X̌. With respect to the prequantum line bundle
(Ľφ,∇Ľφ

), the SYZ transform F induces a canonical isomorphism between

ΓPR
(X̌, Ľφ) and ΓPC

(X̌, Ľφ).

The Lagrangian section mirror to (Ľφ,∇Ľφ
) here is again given by the

graph of the differential of the Kähler potential ϕ. However, in this case,
due to degeneracy of the moment map fibers over the boundary ∂B of the
moment polytope B, not only Bohr-Sommerfeld Lagrangian fibers, but also
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Bohr-Sommerfeld isotropic fibers, would contribute. Hence we also need to
consider the intersection points of Lφ with L0 over the boundary ∂B (or at
infinity if one considers the Legendre dual NR of B).

Detailed proofs of Theorems 1.1 and 1.2 will be given in Section 4.1.

Remark 1.3. The Lagrangian sections L0 and L are graded, and as pointed
out in [17, Remark 13], the Maslov index of an intersection point of L0 and
L coincides with the Morse index of the corresponding critical point of A.
Since the Lagrangian section L satisfies the condition

Hess(A)(p) > 0,

for every p ∈ L0 ∩ L, so indeed all the intersection points of L0 and L are of
Maslov index 0. It follows that

HF •(L0, L) = HF 0(L0, L) =
⊕

p∈L0∩L

C · p.

Hence we indeed have HF 0(L0, L) ∼= H0(X̌, Ľ) (as vector spaces), as pre-
dicted by the HMS conjecture.

1.3. Relation to other works

The idea of applying mirror symmetry to geometric quantization (or vice
versa) has appeared several times in the literature before our work and must
be well-known among experts.

As far as we know, Andrei Tyurin was the first to suggest that the
numerical quantization problem, namely, the dimension equality

dimΓPR
(X̌, Ľ) = dimΓPC

(X̌, Ľ),

follows from the SYZ [24] and HMS [16] conjectures, at least in the case of
elliptic curves and algebraic K3 surfaces. Our SYZ transform F was called
the geometric Fourier transformation (GFT) in his paper. Let us also point
out that his calculations resembled those carried out in an earlier work [11]
of Gross.

The belief that the space of polarized sections for a complex polariza-
tion PC is canonically isomorphic to that for the real polarization suggests
that when a Kähler manifold X̌ admits a Lagrangian torus fibration (pos-
sibly with singular fibers), the space H0(X̌, Ľ) of holomorphic sections of
a holomorphic line bundle Ľ→ X̌ should have a canonical basis or a theta
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basis. This again was first stated by Tyurin in [25]. In his thesis [22], No-
hara reviewed this idea and, combined with an earlier work of Andersen [1],
reproved the numerical quantization equality for semi-flat Lagrangian torus
fibrations over compact base.

In a series of works ([12] and upcoming works; see also the nice sur-
vey article [13] for an overview), Gross, Hacking, Keel and Siebert show
that a large class of varieties including Calabi-Yau manifolds carry theta
functions. Instead of Lagrangian fibrations and Floer cohomologies (or their
de-Rham versions such as the space ker(dW ) ∩A0

r.d.(P (L0, L)) that we use
in this paper), they use tropical geometry and counts of so-called broken
lines (tropical analogue of holomorphic disks) to construct theta functions
and prove a strong form of Tyurin’s conjecture. Their work was inspired by
Tyurin’s work, and the above heuristic argument for the existence of theta
functions applying both the SYZ and HMS conjectures has actually already
appeared on p.5 of [13]. See also [15, Section 8] for a nice review of these
topics.

In [4], Baier, Mourão and Nunes solved the quantization problem for
abelian varieties and, together with Florentino, they solved the same prob-
lem for projective toric manifolds in [3]. They considered a degenerating
family of complex structures {J̌s}s≥0 approaching a large complex struc-
ture limit and which are compatible with a fixed symplectic structure ω̌.
As s→ +∞, they proved that holomorphic sections of the pre-quantum
line bundle would converge to distributional sections supported on Bohr-
Sommerfeld fibers of the Lagrangian torus fibration, giving rise to the desired
canonical isomorphism.

In our mirror symmetric approach, the same limiting process (here we
use ℏ > 0 and let ℏ → 0) occurs when we apply Witten-Morse theory to
the fiberwise geodesic path space P (L0, L) [6, 20]. If sℏ is a holomorphic
section of the prequantum line bundle Ľℏ, then its SYZ transform in
(A•(P (L0, L)), dW ) (here dW depends on ℏ) converges to a sum of δ-functions
supported on the intersection points between L0 and L (or the critical points
of the area function A) as ℏ → 0. Applying the SYZ transform (or Fourier
transform) in the reverse direction transforms these δ-functions to distribu-
tional sections supported on the Bohr-Sommerfeld fibers. In summary, under
the SYZ transforms, the limiting process in [3, 4] is corresponding precisely
to the Witten deformation, as illustrated in Figure 1.
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H0(X̌ℏ, Ľℏ) ker(dW,ℏ) ∩A
0
r.d.(P (L0, L))

⊕

F̌x: BS fiber

C · F̌x
⊕

p∈L0∩L

C · p

SYZ transform

Degeneration of

complex structures

ℏ → 0

Witten deformation

ℏ → 0

SYZ transform

Figure 1. Degenerating family of complex structures vs. Witten deformation
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2. Semi-flat SYZ mirror symmetry

In this section, we review the constructions of the semi-flat mirror manifold
and the SYZ transform of immersed Lagrangian multi-sections.

2.1. Mirror construction in the semi-flat case

Let B be an n-dimensional integral affine manifold, that is, the transition
functions of B belongs to GL(n,Z)⋊Rn, the group of Z-affine linear map.
Let Λ ⊂ TB and Λ∗ ⊂ T ∗B be the natural lattice bundles defined by the
integral affine structure. More precisely, on a local affine chart U ⊂ B,

Λ(U) :=

n⊕

j=1

Z ·
∂

∂xj
, Λ∗(U) :=

n⊕

j=1

Z · dxj ,

where (xj) are affine coordinates of U . We set

X := T ∗B/Λ∗, X̌ := TB/Λ.
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Let (yj), (y̌
j) be fiber coordinates (which are dual to each other) of X and

X̌ respectively. Then (xj , yj) and (xj , y̌j) define a set of local coordinates
on T ∗U/Λ∗ ⊂ X and TU/Λ ⊂ X̌, respectively.

Equip X with the standard symplectic structure

ωℏ := ℏ
−1
∑

j

dyj ∧ dx
j ,

where ℏ > 0 is a small real parameter. There is a natural almost complex
structure J̌ℏ on X̌ given by

J̌ℏ

(
∂

∂xj

)
= −ℏ

−1 ∂

∂y̌j
and J̌ℏ

(
∂

∂y̌j

)
= ℏ

∂

∂xj
.

It is easy to see that J̌ℏ is indeed integrable with local complex coordinates
given by zj = y̌j + iℏ−1xj . Hence (X̌, J̌ℏ) defines a complex manifold. To
obtain Calabi-Yau structure, we need the following

Definition 2.1. An n-dimensional manifold B is called a special integral
affine manifold if its transition functions sit in SL(n,Z)⋊Rn.

Hence if B is an integral special affine manifold, then the canonical line
bundle of X̌ is trivial. Indeed,

Ω̌ℏ := dz1 ∧ · · · ∧ dzn

defines a global holomorphic volume form on X̌.

Definition 2.2. (X̌, J̌ℏ) is called the SYZ mirror of (X,ωℏ).

The ℏ-parameter gives us a family of symplectic manifolds. As ℏ → 0,
the symplectic volume of (X,ωℏ) approaches infinity, which is the so-called
large volume limit of the family {(X,ωℏ)}ℏ>0.

Next, we equip Kähler structures on both X and X̌.

Definition 2.3. A Riemannian metric on B is said to be of Hessian type
if locally there is a smooth convex function ϕ such that the metric is locally
given by

n∑

j,k=1

∂2ϕ

∂xj∂xk
dxj ⊗ dxk,

where (xj) are local affine coordinate of B.
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Suppose g is a Hessian Riemannian metric on B. Then we can use it to
construct natural complex structure on X and symplectic structure on X̌
such that they compatible with the natural symplectic and complex struc-
ture on X and X̌, respectively.

Proposition 2.4. Given a Hessian Riemannian metric on B, there is a
natural complex structure Jg on X such that (X,ωℏ, Jg) is a Kähler mani-
fold.

Proof. Define

dzj = dyj + i

n∑

k=1

gkjdx
k.

Then one can easily check that {zj} define complex coordinates on X and
the complex structure Jg is given by

J∗
g (dx

j) =

n∑

k=1

gjkdyk,

J∗
g (dyj) = −

n∑

k=1

gkjdx
k.

The symplectic form on X is given by

ωℏ = ℏ
−1

n∑

j=1

dyj ∧ dx
j .

Hence

J∗
gωℏ = −ℏ

−1
n∑

j,k,l=1

gjlgkjdx
k ∧ dyl = ℏ

−1
n∑

k=1

dyk ∧ dx
k = ωℏ.

and so

ωℏ(·, Jg(·)) =

n∑

j,k=1

(
ℏ
−2gjkdx

j ⊗ dxk + gjkdyj ⊗ dyk

)
,

which is positive definite. □
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Using this complex structure, we can also define a holomorphic volume
form Ωg on X by

Ωg := dz1 ∧ · · · ∧ dzn

when B is in fact special. Then (X,ωℏ, Jg) is also a Calabi-Yau manifold.
Similarly, we have the following

Proposition 2.5. Given a Hessian Riemannain metric on B, there is a
natural symplectic structure ω̌g on X̌ such that (X̌, ω̌g, J̌ℏ) is a Kähler man-
ifold.

Proof. We define

ω̌g :=

n∑

j,k=1

gjkdy̌
j ∧ dxk.

Then ω̌g, J̌ℏ is compatible. □

As a conclusion, by fixing a Hessian type metric g on B, we obtain two
Calabi-Yau manifolds (X,ωℏ, Jg) and (X̌, ω̌g, J̌ℏ).

Remark 2.6. Both the Kähler metrics ωℏ, ω̌g are Calabi-Yau metrics if and
only if the local convex function ϕ satisfies the real Monge-Ampère equation:

det (Hess(ϕ)) = constant.

2.2. SYZ transform of branes

We follow [2, 19] to define the SYZ transform of a Lagrangian section in a
semi-flat Lagrangian torus fibration.

Let P → X ×B X̌ be the Poincaré line bundle. The total space is defined
as the quotient

P := (T ∗B ⊕ TB)× C/Λ∗ ⊕ Λ.

The fiberwise action of Λ∗ ⊕ Λ on (T ∗B ⊕ TB)× C is given by

(λ, λ̌) · (y, y̌, t) := (y + λ, y̌ + λ̌, eiπ((y,λ̌)−(λ,y̌)) · t).

Define a connection ∇P on P by

∇P := d+ iπ((y, dy̌)− (y̌, dy)).
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The section eiπ(y,y̌) is invariant under the {0} ⊕ Λ action:

(0, λ̌) · (y, y̌, t) = (y, y̌ + λ̌, eiπ(y,λ̌+y̌)).

Hence it descends to a section 1̌ on T ∗B ×B X̌. With respect to this frame,
the connection ∇P can be written as

∇P = d+ 2πi(y, dy̌).

The remaining action of Λ∗ ⊕ {0} then becomes

λ · [(y, y̌, eiπ(y,y̌))]Λ = e−2πi(λ,y̌)[y + λ, y̌, eiπ(y+λ,y̌)]Λ.

Let L = (L, ξ) be a Lagrangian section and L be a U(1)-local system on
L with holonomy e2πib, for some b ∈ R. Define

Ľb := (πX̌)∗((ξ × idX̌)
∗(P)⊗ L)).

where πX̌ : L×B X̌ → X̌ is the natural projection. The following proposi-
tion is standard.

Proposition 2.7. The connection ∇
Ľb

satisfies (∇2
Ľb

)0,2 = 0 if and only if
ξ : L→ X is a Lagrangian section.

Hence Ľb carries a natural holomorphic structure.

Definition 2.8. (Ľb,∇Ľb
) is called the SYZ mirror bundle of the A-brane

(L,L). For convenience, we just write the SYZ mirror of (L,L) as Ľb for
short.

Remark 2.9. It is known that every Lagrangian sections are graded La-
grangian immersions of the Calabi-Yau manifold (X,ωℏ,Ωg). For a proof,
see [17].

2.3. SYZ transform of morphisms

The exposition here follows Ma’s PhD thesis [20].
Let L1 = (B, ξ1),L2 = (B, ξ2) be two Lagrangian sections of the semi-

flat fibration p : X → B and Ľ1, Ľ2 be the SYZ mirror bundles. Denote the
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images of ξ1 and ξ2 by L1 and L2 respectively. Let

P (L1, L2) :=
∐

x∈B

π1(p
−1(x);L1, L2)

be the fiberwise geodesic path space of (L1, L2). It is a (possibly discon-
nected) covering space of B via the natural projection map.

Let p ∈ L1 ∩ L2 and x ∈ B. Let u : [0, 1]× [0, 1] → X be a smooth map
such that for any s, t ∈ [0, 1],

u(s, 0) ∈ L1, u(s, 1) ∈ L2, u(0, t) = p, u(1, t) ∈ p−1(x).

Let P̃ (L1, L2) be set of all (x, [u]), where x ∈ B and [u] is the homotopy class
of some u that satisfies the above properties. There is a natural boundary
map ∂+ : P̃ (L1, L2) → P (L1, L2) given by

∂+ : (x, [u]) 7→ (x, [u|{1}×[0,1]]).

Define the area function A : P̃ (L1, L2) → R by

A(x, [u]) =

∫ 1

0

∫ 1

0
u∗ωℏ.

Since the boundary of u lies in Lagrangian submanifolds, the integral de-
pends only on the homotopy class of the map u. In general, A may not be
well-defined as a function on P (L1, L2) but its differential

dA(x, γ) = γ̇⌟ωℏ = ℏ
−1

n∑

j=1

(
ξ
(2)
j − ξ

(1)
j +mj

)
dxj ,

where (m1, . . . ,mn) ∈ Zn corresponds to γ ∈ π1(p
−1(x);L1, L2) ∼= Zn, is a

well-defined 1-form on P (L1, L2). That is, there exists a 1-form θ on P (L1, L2)
such that (∂+)∗θ = dA. By abuse of notation, we use dA to stand for the
1-form θ. But one should keep in mind that θ is, in general, not exact. Note
that the critical points of A are precisely the intersection points of L1 and
L2.

On P (L1, L2), one can equip its space of differential forms A•(P (L1, L2))
with the Witten differential:

dW,ℏ := d+ 2π(γ̇⌟ωℏ) ∧ .
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Following [20] (see also [8, 17]), we define the SYZ transform

F : A•(P (L1, L2)) → A0,•(X̌, Ľ∗
1 ⊗ Ľ2)

by

F

(
∑

I

αI(x,m)dxI

)
:=

(
−

ℏ

2i

)|α| ∑

m∈Zn

∑

I

αI(x,m)e2πi(m,y̌)dz̄I ⊗ 1̌∗1 ⊗ 1̌2.

To avoid any convergence issues, we restrict ourselves to rapidly decay dif-
ferential forms:

Definition 2.10. An element α ∈ A•(P (L1, L2)) is said to rapidly decay if
for any compact subset K ⊂ B, integer k, l ≥ 0,

lim
|γ̇|→∞

sup
x∈K

|γ̇|k|∇lα(x, γ)| = 0,

where ∇l stands for the l-times covariant derivative with respective to the
affine connection ∇ on P (L0, L) (induced from the one on B) and | · | is the
norm induced by the Hessian-type metric g on B. The space of all rapidly
decay forms is denoted by A•

r.d.(P (L1, L2)) where the subscript “r.d.” stands
for “rapidly decay”.

It is easy to see that dW,ℏ preserves A•
r.d.(P (L1, L2)). We can also define

the inverse SYZ transform:

F−1

(
∑

I

α̌I(x, y̌)dz̄
I ⊗ 1̌∗1 ⊗ 1̌2

)

m

:=

(
−

ℏ

2i

)−|α̌|∑

I

(∫

p̌−1(x)
α̌(x, y̌)e−2πi(m,y̌)dy̌

)
⊗ dxI .

It is not hard to see that F and F−1 are indeed well-defined and inverse
to each other. More importantly, F and F−1 exchange the Witten complex
(A•

r.d.(P (L1, L2)), dW,ℏ) with the Dolbeault complex (A0,•(X̌, Ľ∗
1 ⊗ Ľ2), ∂̄ℏ).

Proposition 2.11. F : (A•
r.d.(P (L1, L2)), dW,ℏ) → (A0,•(X̌, Ľ∗

1 ⊗ Ľ2), ∂̄ℏ) is
an isomorphism of differential graded vector spaces.
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Proof. For α ∈ A•
r.d.(P (L1, L2)), we compute that

F(dW,ℏα)

=

(
−

ℏ

2i

)|α|+1 ∑

m∈Zn

∑

I

n∑

k=1

(
∂αI
∂xk

+ 2πℏ−1
(
ξk1 − ξk2 +mk

)
αI

)

× e2πi(m,y̌)dz̄k ∧ dz̄I ⊗ 1̌∗1 ⊗ 1̌2

=

(
−

ℏ

2i

)|α|+1 ∑

m∈Zn

∑

I

n∑

k=1

ℏ
−1

×

(
ℏ
∂

∂xk
αIe

2πi(m,y̌) − i
∂

∂y̌k
αIe

2πi(m,y̌)

)
dz̄k ∧ dz̄I ⊗ 1̌∗1 ⊗ 1̌2

+

(
−

ℏ

2i

)|α|+1∑

m∈Zn

∑

I

n∑

k=1

2πℏ−1
(
ξk1 − ξk2

)
αIe

2πi(m,y̌)dz̄k ∧ dz̄I ⊗ 1̌∗1 ⊗ 1̌2

=

(
∂̄ + iπ

n∑

k=1

(ξk2 − ξk1 )dz̄
k

)
F(α)

= ∂̄ℏF(α),

as desired. □

In order to connect (S1-valued) Morse theory of (P (L1, L2),A) with the
de Rham model (A•(P (L1, L2)), dW ), we apply the idea of Witten deforma-
tions, or Witten-Morse theory [26].

For a Morse function f :M → R defined on a closed Riemannian mani-
fold (M, g), Witten considered the twisted differential

df,ℏ := e−f/ℏdef/ℏ = d+ ℏ
−1df ∧ .

According to Witten-Morse theory, when ℏ > 0 is small enough, there is a
1-1 correspondence between index k critical points of f and small eigenforms
of degree k, concentrated at p:

SpanR
(
Critk(f)

) ∼
// Ωksm(M, f) , p 7→ αp,ℏ,

where

Ωksm(M,f) :=
{
αℏ ∈ Ωk(M) : ∆ℏαℏ = λℏαℏ, lim

ℏ→0
λℏ = 0

}
,



✐

✐

“2-Chan” — 2020/5/19 — 18:21 — page 40 — #16
✐

✐

✐

✐

✐

✐

40 K. Chan and Y.-H. Suen

and ∆ℏ is the Witten Laplacian with respect to the metric g. The Morse
cohomology of the pair (M,f) is defined to be the cohomology of

(SpanR (Crit•(f)) , δ),

where δ is defined by counting gradient flow lines from index k critical points
to index k + 1 critical points. Witten also argued that the assignment

p 7→ αp,ℏ

gives an isomorphism between the Morse cohomology and the cohomology
of the Witten complex

(Ω•
sm(M,f), df,ℏ),

which is nothing but the de Rham cohomology.
In Section 4.1, we will apply Witten-Morse theory to (P (L1, L2),A) to

solve the quantization problem.

Remark 2.12. On the A-side, morphisms between two Lagrangian sub-
manifolds should be given by their Floer complex. But here we are using
a twisted version of the de Rham complex as the morphism space. Let us
clarify their (conjectural) relations.

As we mentioned in Remark 1.3, our Lagrangian sections L1, L2 are
graded and the Maslov index of an intersection point between L1 and L2

coincides with the Morse index of the corresponding critical point of the area
function A by [17, Remark 13]. It was further pointed out in [17, Section 5.2]
that the Morse complex of (P (L1, L2),A) (together with higher products) is
an approximation of the Floer complex CF •(L1, L2) when ℏ is small (based
on results of Floer [7] and Fukaya-Oh [9] in the case of cotangent bundles).

On the other hand, Witten’s original work [26] together with the re-
cent work of Chan, Leung and Ma [6] (see also [20]) proved that the Morse
complex is also an approximation of the twisted de Rham complex of
(P (L1, L2),A) when ℏ is small.

In view of these results, we expect that the Floer complex CF •(L1, L2)
is quasi-isomorphic to the twisted de Rham complex of (P (L1, L2),A). This
is why we use the term “morphisms” in this section.

3. Geometric quantization and the quantization problem

In this section, we apply SYZ transforms to solve the quantization prob-
lem for Lagrangian torus fibrations over compact complete integral affine
manifolds and projective toric manifolds.
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3.1. Prequantum line bundles and polarizations

We first recall the precise statement of the quantization problem.

Definition 3.1. A prequantum line bundle on a Kähler manifold (M,J, ω)
is a pair (L,∇), where L is complex line bundle on M and ∇ is a complex
integrable connection satisfying

i

2π
F∇ = ω.

In particular, L is an ample holomorphic line bundle.

Definition 3.2. A polarization is an integrable Lagrangian subbundle P ⊂
TCM meaning that rk(P ) = n and [P, P ] ⊂ P and ω|P = 0. The space of all
polarized sections of L is defined to be

ΓP (M,L) := {s ∈ Γsm(M,L) : ∇vs = 0 for all v ∈ P},

where Γsm(M,L) denotes the L2-completion of the space of smooth sections
of L.

There are two typical choices of polarization, namely, the real and com-
plex polarizations.

Given a Lagrangian fibration f :M → B of M over an integral affine
manifold B, we define

PR := ker(f∗ : TM → f∗TB)⊗ C.

Lemma 3.3. PR is a polarization.

Proof. Since f :M → B is a Lagrangian fibration, PR is of rank n and ω|PR
=

0. Let (xj) be coordinate of B and (yj) be fiber coordinates. Sections of PR

is of form
n∑

j=1

gj(x, y)
∂

∂yj
,

and it follows that [PR, PR] ⊂ PR. □

Definition 3.4. PR is called the real polarization.

Remark 3.5. The terminology “real polarization” is justified by the prop-
erty that PR = PR.
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Definition 3.6. A submanifold S of M is called Bohr-Sommerfeld if
∇|S = d.

Proposition 3.7 (Śniatycki [23]). There is a canonical identification

ΓPR
(M,L) ∼=

⊕

Fx:BS fiber

C · Fx.

Next, we define

PC := T 0,1M = {v ∈ TCM : J̌(v) = −iv}.

Lemma 3.8. PC is a polarization.

Proof. Clearly rk(PC) = n. Since the complex structure of M is integrable,
we have [PC, PC] ⊂ PC. Finally, ω is a Kähler form which is of (1, 1)-type, so
we have ω|PC

= 0. □

Definition 3.9. PC is called the complex polarization.

The space of complex polarized sections is nothing but the space of
holomorphic sections of L:

ΓPC
(M,L) = H0(M,L).

In geometric quantization, physicists ask whether a quantum theory is
independent of the choice of polarizations. In other words, for two given
polarizations P, P ′, they are asking if the spaces of polarized sections are
canonically isomorphic to each other. This is commonly known as the quanti-
zation problem. In particular, for a Kähler manifold admitting a Lagrangian
fibration, we expect that the real and complex polarizations should give
canonically isomorphic spaces of polarized sections.

4. Main results

We prove that, in the case of semi-flat Lagrangian torus fibrations over com-
pact complete bases and projective toric manifolds, the spaces of real and
complex polarized sections are canonically isomorphic via the SYZ trans-
forms defined in Section 2. The proofs also use Witten-Morse theory on the
fiberwise geodesic path spaces.
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4.1. Semi-flat Lagrangian torus fibrations

Throughout this section, B is assumed to be an n-dimensional compact
special integral affine manifold without boundary. We also assume ℏ = 1.

Choose a Hessian type metric g on B and let X̌ := TB/Λ, which is
equipped with the natural complex structure J̌ . By Proposition 2.5, (X̌, J̌ , ω̌g)
is a Kähler manifold (in fact a Calabi-Yau manifold).

Definition 4.1. A Hessian type metric g is said to be integral if there
exists an open cover {U} of B such that on each non-empty overlap U ∩ V ,
the potential functions ϕU : U → R, ϕV : V → R of g satisfy

ϕU (xU (xV ))− ϕV (xV ) = ⟨mUV , xV ⟩+ aUV ,

for some mUV ∈ Zn and aUV ∈ R.

Let g be an integral Hessian type metric on B. Then we can define a
Lagrangian section Lg of the dual fibration p : X → B by

Lg := {(x, dϕ(x)) ∈ X : x ∈ B}.

The integrality condition on g ensures that Lg is independent of the potential
function ϕ. Hence it is a well-defined Lagrangian section of p : X → B.

The SYZ transform Ľg of Lg has connection

∇Ľg
= d+ 2πi

n∑

j=1

∂ϕ

∂xj
dy̌j .

Moreover, the curvature of ∇Ľg
satisfies

i

2π
F∇Ľg

= −
∑

j,k

∂2ϕ

∂xj∂xk
dxj ∧ dy̌k = ω̌g.

Hence we obtain the following

Proposition 4.2. The SYZ transform (Ľg,∇Ľg
) of the Lagrangian section

Lg is a prequantum line bundle on X̌.

A key observation is given by the following
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Proposition 4.3. With respect to the prequantum line bundle (Ľg,∇Ľg
),

there is a 1-1 correspondence between Bohr-Sommerfeld fibers of p̌ : X̌ → B
and intersection points of L0 and Lg.

Proof. The connection ∇Ľg
is trivial on a fiber F̌x of p̌ : X̌ → B if and only

if dϕ(x) ∈ Λ∗
x, that is, a point in L0 ∩ Lg. □

In order to prove the next lemma, we need to introduce the following

Definition 4.4. An affine manifold is said to be complete if its universal
cover is diffeomorphic to Rn as affine manifold.

Remark 4.5. There is a famous conjecture by Markus [21], stating that
any compact special affine manifold is complete. Hence if Markus’ conjecture
is true, then the completeness condition is automatic. since we have assumed
B to be a compact special integral affine manifold.

Lemma 4.6. Suppose the base B is complete. Then we have a decomposi-
tion

P (L0, Lg) = P ⨿
∐

p∈L0∩Lg

Pp(L0, Lg),

where Pp(L0, Lg) is the connected component of p. Moreover, each Pp(L0, Lg)
is contractible.

Proof. Suppose Pp(L0, Lg) ∩ Pq(L0, Lg) ̸= ϕ with p ̸= q. Since Pp(L0, Lg)
and Pq(L0, Lg) are connected components, we have Pp(L0, Lg) = Pq(L0, Lg).
Since B is complete and Pp(L0, Lg) is a covering of B, the universal cover

π : P̃p → Pp(L0, Lg) of Pp(L0, Lg) is affinely diffeomorphic to Rn. Hence the

connection ∇ pulls back to a connection on P̃p which is gauge equivalent to
the trivial connection d. Since any two points in Rn can be join by a geodesic
with respect to the trivial connection, so is Pp(L0, Lg). Let (l(s), γl(s)) be a
geodesic connecting p and q. Then

u(s, t) := (l(s), γl(s)(t))

is a disk in X with the properties

u(0, t) = p, u(1, t) = q, u(s, 0) ∈ L0, u(s, 1) ∈ Lg.

Consider the function f : [0, 1] → R defined by

f(s) := gX

(
∂u

∂s
(s, 1),

∂u

∂t
(s, 1)

)
.
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In an affine chart, it can be written as

f(s) =

n∑

j=1

l̇j(s)

(
∂ϕ

∂xj
(l(s)) +mj

)
.

Since f(0) = f(1) = 0, there exists s0 ∈ (0, 1) such that f ′(s0) = 0. In terms
of the local expression of f , we have

n∑

j=1

l̈j(s0)

(
∂u

∂xj
(l(s0)) +mj

)
+

n∑

j,k=1

∂2ϕ

∂xj∂xk
(l(s0))l̇

j(s0)l̇
k(s0) = 0.

The path l : [0, 1] → B is also a geodesic with respect to the flat connection
∇, so l̈j(s0) = 0 for all j. Hence

n∑

j,k=1

∂2ϕ

∂xj∂xk
(l(s0))l̇

j(s0)l̇
k(s0) = 0.

But l̇(s0) is a nonzero vector, this contradicts positivity of Hess(ϕ). There-
fore, Pp(L0, Lg) ∩ Pq(L0, Lg) = ϕ whenever p ̸= q.

Let [α] be a homotopy class of loops of Pp(L0, Lg) based at p. Let p̃ ∈ P̃p
be a lift of p. Suppose [α] ̸= 0. Choose any loop α ∈ [α]. By the path lifting
property, there is a lift α̃ : [0, 1] → P̃p of α such that α̃(0) = p̃. Since [α] ̸= 0,

p̃′ := α̃(1) ̸= p̃. Choose a geodesic c ⊂ P̃p with starting point p̃ and end point
p̃′ ̸= p̃. Then [π ◦ c] = [α]. In particular, π ◦ c is a non-constant geodesic loop
in Pp(L0, Lg), based at p. Let’s write π ◦ c as

(π ◦ c)(s) = (l(s), γl(s)).

Then

u(s, t) := (l(s), γl(s)(t))

is a disk in X satisfying

u(s, 0) ∈ L0, u(s, 1) ∈ Lg, u(0, t) = p, u(1, t) = p.

Again, we can consider the function

f(s) := gX

(
∂u

∂s
(s, 1),

∂u

∂t
(s, 1)

)
.
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Since l(s) is an non-constant geodesic, the same proof above applies to con-
clude there exists some s0 such that

Hess(ϕ)(l(s0))(l̇(s0), l̇(s0)) = 0.

Hence we must have α = 0, that is, Pp(L0, Lg) is simply connected. In par-
ticular, Pp(L0, Lg) ∼= Rn as affine manifold. □

In order to rule out the solution on P , we need the following

Lemma 4.7. On a component of P (L0, Lg), any rapidly decay positive
(resp. negative) functions have a maximum (resp. minimum).

Proof. Let P0 be a component of P (L0, Lg). Then P0 is a covering of B. If
P0 is a finite covering of B, then we are done since B is compact. Suppose
P0 is an infinite covering of B. Then there in an infinite set S ⊂ Zn such
that P0 is a S-covering of B. Now, since B is compact, we can choose a finite
open covering U = {U} for B. We assume each U is evenly covered by open
sets in P0. Let V = {V } be a pre-compact refinement of U , that is, V ⊂ U
and V is compact. Then by identifying V with a compact subset of P0, we
have

P0 =
⋃

m∈S

⋃

V ∈V

V × {m}.

Let f : P0 → R be a rapidly decay positive function. Then for any ϵ > 0 and
V ∈ V, there exists NV such that for |m| ≥ NV ,

sup
x∈V

f(x,m) < ϵ.

Let N := maxV ∈V NV . Then for |m| ≥ N , the above inequality holds. Re-
stricting f to the compact set

⋃

|m|<N

⋃

V ∈V

V × {m},

f achieves a maximum in it. Since f is bounded on P0, supP0
f exists and is

positive. By taking ϵ smaller then supP0
f , we conclude that f has a global

maximum. □

Let Ap be the primitive of dA defined on the component Pp(L0, Lg) with
Ap(p) = 0, where dA(p) = 0. Then we obtain
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Proposition 4.8. Suppose B is complete. Then the assignment

A : p 7→ e−2πAp

gives an identification between
⊕

p∈L0∩Lg
C · p and ker(dW )∩A0

r.d.(P (L0, Lg)).
In particular, by composing with the SYZ transform F , we obtain the iden-
tification of morphism spaces:

F ◦A :
⊕

p∈L0∩Lg

C · p
∼

// H0(X̌, Ľg) .

Proof. We claim that non-trivial rapidly decay solution to dW f = 0 has a
critical point and this implies dW f = 0 has no non-trivial solution on P . To
prove our claim, suppose f is a non-trivial rapidly decay solution defined
on a component P0 of P . By Lemma 4.7, f achieves its global maximum or
minimum at some point p0 ∈ P0. Hence df(p0) = 0 and so

f(p0)dA(p0) = 0.

By replacing f by −f , we simply assume f(p0) is the maximum of f . If
f(p0) ̸= 0, then dA(p0) = 0. If f(p0) = 0, then f ≤ 0. We can then find p1
such that f(p1) is the global minimum of f . Hence df(p1) = 0 and so

f(p1)dA(p1) = 0.

Since f is non-trivial, f(p1) ̸= 0. Again, we have dA(p1) = 0. But P contains
no critical point of A. Therefore, f must be trivial.

Next, we prove that e−2πAp is rapidly decay. Note that the equation
dW f = 0 has a unique solution (up to a constant multiple) because dA is
exact on Pp(L0, Lg). Hence for each critical point p of A, the vector space
ker(dW ) ∩A0(Pp(L0, Lg)) is 1-dimensional. Now, for two critical point p, q,
both Pp(L0, Lg) and Pq(L0, Lg) are universal covering spaces of B. Hence
there exists a (non-unique) diffeomorphism ψqp : Pp(L0, Lg) → Pq(L0, Lg)
covering the identity idB. In particular, it preserves the 1-form dA, that is,

ψ∗
qpdAq = dAp.
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Hence e−2πAq◦ψqp is a constant multiple of e−2πAp . Now, the inverse SYZ
transform and Lemma 4.6 give the identification:

F−1 : H0(X̌, Ľg) ∼= ker(dW ) ∩A0
r.d.(P (L0, Lg))

=
⊕

p∈L0∩Lg

ker(dW ) ∩A0
r.d.(Pp(L0, Lg)).

This implies dim(ker(dW ) ∩A0
r.d.(Pp(L0, Lg))) = 1 for some p. As rapidly

decay condition is preserved by any fiber preserving diffeomorphism, we
have, for any q,

e−2πAq ∝ e−2πAp◦ψ−1
qp

is also rapidly decay.
Therefore, we conclude that A gives the isomorphism

⊕

p∈L0∩Lg

C · p ∼= ker(dW ) ∩A0
r.d.(P (L0, Lg)).

□

Therefore, the function e−2πAp in Proposition 4.8 is the Witten-
deformation of the intersection point p ∈ L0 ∩ Lg.

Proposition 4.8 can be applied to abelian varieties:

Example 4.9. Let Ω be a positive definite symmetric n× n matrix with
real entries. Let X̌ := Cn/Zn ⊕ iΩZn be the abelian variety with period
Ω. Complex coordinates are given by zj := y̌j + ixj . The mirror of X̌ is
X := R2n/Z2n equipped with the symplectic structure

ω =

n∑

j,k=1

Ωjkdyj ∧ dx
k.

Let Q be any positive definite symmetric integral matrix with the property
that

QΩ = ΩQ.

Then

LQ := {(x,Qx) ∈ X : x ∈ R
n/Zn}.

is a Lagrangian section of p : X → Rn/Zn. Let x1, . . . , xN ∈ B such that
Qxk ∈ Zn for all k = 1, . . . , N . In this case, the geodesic path space is a
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disjoint union of N copies of Rn and the Witten differential on a component
P(xk,0)(L0, LQ) is given by

d+ 2π

n∑

j,l,r=1

Qjl

(
xl − xlk +ml

)
Ωjrdx

r.

Hence the function Ak := A(xk, 0) is given by

Ak(x,m) = exp

(
−2π

∫ x+m

xk

∫ Q(u−xk)

0
ω

)

= exp
(
−π(x− xk +m)tQΩ(x− xk +m)

)

= exp
(
−π(x− xk)

tQΩ(x− xk)
)

× exp

(
−2π

(
mtQΩ(x− xk) +

1

2
mtQΩm

))

Note that QΩ is still positive definite since [Q,Ω] = 0. The local holomorphic
frame ě1 for ĽQ is given by

ě1 = e−π(x−xk)tQΩ(x−xk)1̌1.

The SYZ transform of Ak is given by

F(Ak)(x, y̌) =
∑

m∈Zn

e−2πmtQΩme−2π(QΩm,x−xk)e2πi(Qm,y̌) ⊗ ě1

=
∑

m∈Zn

e−2πmtQΩme2πi(m,Q(y̌+iΩ(x−xk)) ⊗ ě1

and its pullback via the covering map Cn→X̌ is the Riemann theta function

θ

[
0

−iQΩxk

]
(iQΩ, QzΩ) =

∑

m∈Zn

e−2πmtQΩme2πi(m,QzΩ−iQΩxk)

on Cn, where zΩ := y̌ + iΩx. In fact, the conditions [Q,Ω] = 0 and Q > 0
are equivalent to the Riemann bilinear relations:

(
In iΩ

)(On Q
−Q On

)−1(
In
iΩ

)
= 0,

−i
(
In iΩ

)(On Q
−Q On

)−1(
In
−iΩ

)
> 0,
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which gives the ample line bundle ĽQ on X̌ and the space of global holomor-
phic sections of ĽQ is generated by the theta functions F(Ak), k = 1, . . . , N .

Combining Propositions 3.7 and 4.8, we obtain our first main result:

Theorem 4.10. Let p̌ : X̌ → B be a semi-flat Lagrangian torus fibration
over a compact complete special integral affine manifold B. Let g be an inte-
gral Hessian type metric on B. With respect to the prequantum line bundle
(Ľg,∇Ľg

), the SYZ transform F induces a canonical isomorphism between
the spaces of real and complex polarized sections.

We expect that Proposition 4.8 and Theorem 4.10 also hold for non-
compact but complete base B if we impose suitable growth conditions on
the space of holomorphic sections H0(X̌, Ľg), as in the following example.

Example 4.11. Let B = Rn and X̌ = (C×)n. We have the natural torus
fibration p̌ : X̌ → B. The mirror of X̌ is given by X = (C×)n. Consider the
Lagrangian section

L1 := {(x, [x]) ∈ X : x ∈ B}

of the dual fibration p : X → B. The mirror line bundle is isomorphic to
the trivial line bundle OX̌ since X̌ is affine. The set of intersection points
between L1 and the zero section L0 is given by

{(k, 0) ∈ X : k ∈ Z}.

On the component P(k,0)(L0, L1), the function Ak := A((k, 0)) is given by

Ak(x) = exp
(
−π(x− k)2

)
.

If we let 1 := F(A0), then the SYZ transform F(Ak) of Ak is propor-
tional to monomial zk on X̌ = (C×)n. Hence if we restrict our attention
to H0

poly(X̌,OX̌), the space of all holomorphic functions on X̌ that have
polynomial growth (which are just Laurent polynomials), then we obtain
the isomorphisms

ΓPR
(X̌, Ľ1) ∼=

⊕

p∈L0∩L1

C · p ∼= H0
poly(X̌,OX̌),

via Witten-Morse theory and the SYZ transform.
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4.2. Projective toric manifolds

We now turn to the quantization problem for projective toric manifolds. Let
us first recall some basic facts in toric geometry.

Let N ∼= Zn be a lattice of rank n and set

NR := N ⊗Z R, M := HomZ(N,Z), MR :=M ⊗Z R.

Let Σ be a fan with primitive generators v1, . . . , vd ∈ N . Let X̌ := XΣ be the
toric variety associated to Σ. We assume X̌ is smooth and projective. The
Picard group of X̌ has an explicit description as follows. Let ι :M → Zd be
given by

ι : u 7→ (⟨u, v1⟩, . . . , ⟨u, vd⟩) .

The assignment

[a] 7→ L[a] := O




d∑

j=1

ajDj


 ,

where Dj ⊂ X̌ is the toric divisor corresponds to the ray vj , gives the iden-
tification

Pic(X̌) ∼= Z
d/ι(M).

Since X̌ is assumed to be projective, we can take L[λ] to be an ample

line bundle on X̌. It is a well-known fact in toric geometry that such a line
bundle is in fact very ample (see [10]). Hence it determines an embedding
i : X̌ →֒ PN into some projective space PN . Let ω̌ := i∗ωFS , where ωFS is
the Fubini-Study metric on PN . The dense torus in X̌ can be identified
with TNR/N . Denote the coordinates on NR by ξj and the induced complex
coordinates zj := y̌j + iξj on TNR/N . It is well-known (see [14]) that on
TNR/N , the Kähler form ω̌ can be written as

ω̌ := 2i∂∂̄ϕ, ϕ(ξ) :=
1

4π
log

(
∑

u∈B∩M

cue
4π⟨u,ξ⟩

)
.

Here cu ≥ 0 are constants that depend on the embedding i : X̌ →֒ PN .
The (C×)n-action on X̌ restricted to a Hamiltonian Tn-action on (X̌, ω̌)

such that the moment map p̌ : X̌ →MR has image

B := {x ∈MR : ⟨x, vk⟩+ λj ≥ 0, k = 1, . . . , d},

which is a convex polytope in the vector space MR. The interior fibers of p̌ :
X̌ → B are special Lagrangian tori with respect to the following holomorphic
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volume form

Ω̌ :=
dz1

z1
∧ · · · ∧

dzn

zn
,

which has a simple pole along the toric divisors. The fibers of p̌ get de-
generated to isotropic tori on the boundary ∂B. Moreover, the space of
holomorphic sections of L[λ] can be identified with the vector space spanned
by the lattice points in B, that is M ∩B.

Remark 4.12. One can identify NR with B̊, the interior of B, via the dif-
ferential dϕ : NR → B̊. Moreover, if we let π : TNR/N → NR be the natural
projection, the moment map p̌ factors through NR as p̌ = dϕ ◦ π.

Before going into geometric quantization, let us recall mirror symmetry
for a projective toric manifold. The mirror of X̌ is given by the Landau-
Ginzburg model (X,W ), where X := T ∗B̊/Λ∗ andW is a holomorphic func-
tion on X, called the superpotential. Explicitly, we have

X =
{
(z1, . . . , zn) ∈ (C×)n : |e−λjzvj | < 1, ∀j = 1, . . . , d

}

and

W (z1, . . . , zn) :=

d∑

j=1

e−λjzvj .

Here, the complex coordinate zj is given by

zj := e2πi(yj+iφj),

where ϕj =
∂φ
∂ξj . Hence we can identify X with T ∗NR/M via

(y1 + iϕ1, y2 + iϕ2) 7→ (y1 + iξ1, y2 + iξ2).

Hence X admits a special Lagrangian torus fibration over B̊ with respect to
the symplectic form

n∑

j=1

dyj ∧ dξ
j

and the holomorphic volume form

Ω =
dz1
z1

∧ · · · ∧
dzn
zn

.

In [5], the first named author of this paper defined a certain class of La-
grangian sections of the dual fibration p : X → B̊ whose SYZ transform are
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in Pic(X̌). Moreover, every such line bundle carries a natural Tn-invariant
Hermitian metric. Let’s recall this class of objects. We identify B̊ with NR

by dϕ.

Definition 4.13. Let a := (a1, . . . , ad) ∈ Zd. A Lagrangian section L̃ of
p : T ∗NR → NR is said to satisfy Condition (∗a) if there is a C2-potential
function g : NR → R of L̃ satisfies the following conditions: For any top di-
mensional cone σ ∈ Σ(n), without loss of generality, assume σ is generated
by v1, . . . , vn and let ξ(t) = t1v1 + · · ·+ tnvn, for tj ∈ R, we have

1. For any j = 1, . . . , n, the limits

lim
tj→−∞

2e−4πtj (⟨dg(ξ(t)), vj⟩+ aj),

lim
tj→−∞

e−4πtjHess(g(ξ(t)))(vj , vj)

exist and equal.

2. For any j, k, l = 1, . . . , n, the limit

lim
tl→−∞

Hess(g(ξ(t)))(vj , vk)

exists.

3. For any j, k = 1, . . . , n with j ̸= k, we have

lim
tj→−∞

e−2π(tj+tk)Hess(g(ξ(t)))(vj , vk) = 0

or

lim
tk→−∞

e−2π(tj+tk)Hess(g(ξ(t)))(vj , vk) = 0.

Let [a] ∈ Zd/ι(M). A Lagrangian section of p : X → NR is said to satisfy
Condition (∗[a]) if for some lift L̃ ⊂ T ∗NR of L, L̃ satisfies Condition (∗a)
for some representative a of [a].

Remark 4.14. There is a slight difference between our definition and that
given in [5]. We require all the exponential terms in the limits consist of a
fact of 2π. This difference is due to our choice of complex coordinates on X
being e2πi(yj+iφj), while in [5], the author used eφj+iyj instead.

The main result in [5] is the following
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Theorem 4.15 (Chan [5]). Fix a ∈ Zd. The SYZ transform gives a 1-1
correspondence between Lagrangian sections satisfying Condition (∗[a]) and
Tn-invariant Hermitian metrics on L[a] of C

2-class.

In particular, we know that whenever a Lagrangian section satisfies Con-
dition (∗[a]), then its SYZ transform is isomorphic to the holomorphic line
bundle L[a].

Now we are ready to work on the quantization problem for the projective
toric manifold X̌. As the fibers of the moment map p̌ degenerates to isotropic
tori on the boundary ∂B, it is natural consider Bohr-Sommerfeld isotropic
submanifolds. It is already known that Bohr-Sommerfeld isotropic fibers are
precisely those fibers above the lattice points of B (see [3]), and these lattice
points also correspond to holomorphic sections of the associated line bundle
of the polytope B, the equivalence of real and complex polarization is almost
trivial. Here we give a mirror symmetric interpretation of this equivalence.

We consider the Lagrangian section

Lφ := {(ξ, dϕ(ξ)) ∈ X : ξ ∈ NR}.

Applying the SYZ transform, we obtain a holomorphic line bundle Ľφ on
the dense torus TNR/N ⊂ X̌ together with a connection ∇Ľφ

. The following

proposition shows that the pair (Ľφ,∇Ľφ
) in fact extends to a holomorphic

prequantum line bundle on X̌.

Proposition 4.16. The line bundle Ľφ extends to a holomorphic line bun-
dle on X̌ and is isomorphic to the line bundle L[λ]. Moreover, (Ľφ,∇Ľφ

)

defines a prequantum line bundle on X̌.

Proof. Fix a top dimensional cone σ ∈ Σ. By renaming, we assume σ is
generated by v1, . . . , vn. Let ξ(t) =

∑n
j=1 tjvj . We show that

lim
tj→−∞

⟨dϕ(ξ(t)), vj⟩ = −λj .

We compute that

⟨dϕ(ξ(t)), vj⟩ =

∑
u∈B∩M ⟨u, vj⟩cue

4π⟨u,ξ⟩

∑
u∈B∩M cue4π⟨u,ξ⟩

.

Then

lim
tj→−∞

⟨dϕ(ξ(t)), vj⟩ = min
u∈B∩M

⟨u, vj⟩ = −λj .
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It is not hard to see that the Lagrangian Lφ satisfies Condition (∗[λ]). Hence

by Theorem 4.15, (Ľφ,∇Ľφ
) extends to X̌ and Ľφ ∼= L[λ] as holomorphic line

bundle.
For the prequantum condition, recall that the connection ∇Ľφ

is given
by

∇Ľφ
= d+ 2πi

n∑

j=1

∂ϕ

∂ξj
dy̌j .

Hence
i

2π
F∇Ľφ

= −

n∑

j=1

∂2ϕ

∂ξk∂ξj
dξk ∧ dy̌j = ω̌.

This completes the proof of the proposition. □

As we have mentioned, the spaces of real and complex polarized sections
are respectively given by

ΓPR
(X̌, Ľφ) ∼=

⊕

F̌x:BS fiber

C · F̌x,

ΓPC
(X̌, Ľφ) = H0(X̌, Ľφ).

Note that the direct sum is taken over all Bohr-Sommerfeld isotropic fibers.
As the semi-flat case, we would like to establish a correspondence be-

tween L0 ∩ Lφ and Bohr-Sommerfeld fibers. However, this is not true if we
only consider interior intersections. What we need is to include the intersec-
tions at infinity:

Definition 4.17. A Lagrangian section L of p : X → B is said to be inter-
secting the zero section L0 at infinity if there exists a lift L̃ ⊂ T ∗NR of L,
a potential function g : NR → R of L̃, a ray ξ : [0,∞) → NR such that the
limit

lim
t→∞

dg(ξ(t))

exists in M . Fix a potential g. Let

RZ(L) :=
{
ξ : [0,∞) → NR

∣∣∣ lim
t→∞

dg(ξ(t)) exists in M
}
.

Two rays ξ1, ξ2 ∈ RZ(L) are said to be integrally equivalent if

lim
t→∞

dg(ξ1(t)) = lim
t→∞

dg(ξ2(t)).

Denote the set of all equivalence classes of such rays by L0 ∩ L.
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Remark 4.18. Interior intersection points are precisely those equivalence
classes that can be represented (uniquely) by constant path.

In view of Section 4.1, one would like to consider the fiberwise geodesic
path space P (L0, Lφ). However, there are not enough critical points if we
only consider interior intersections. To recall the information coming from
infinity, we consider

R(Lφ) :=
{
ξ : [0,∞) → NR

∣∣∣ lim
t→∞

dϕ(ξ(t)) exists in MR

}
.

Similar to Definition 4.17, we say two rays ξ1, ξ2 are equivalent if

lim
t→∞

dg(ξ1(t)) = lim
t→∞

dg(ξ2(t)).

Denote NR := R(Lφ)/ ∼ and P (L0, Lφ) := NR ×M .

Remark 4.19. There is a natural identification between NR and the poly-
tope B, given by

[ξ] 7→ lim
t→∞

dϕ(ξ(t)).

Moreover, L0 ∩ Lφ is mapped to M ∩B, the set of lattice points of B. See
also [10].

The original path space P (L0, Lφ) can be identified with NR ×M via

(ξ, s(dϕ(ξ) +m)) 7→ (ξ,m).

Hence P (L0, Lφ) sits inside P (L0, Lφ) naturally by

(ξ,m) 7→ ([ξ],m),

where [ξ] is the equivalence class of the constant path ξ. Note that the
interior intersection points are of form

(
[dϕ−1(u)],−u

)
,

with u ∈ B̊ ∩M . For the intersections at infinity, they are of the form

([ξ],−u) ,

where ξ ∈ RZ(Lφ) and u ∈ ∂B ∩M is nothing but the limit

lim
t→∞

dϕ(ξ(t)).
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Next, we study the Morse theory on the fiberwise geodesic path space
P (L0, Lφ). However, not all functions on P (L0, Lφ) can be transformed to
global sections of Ľφ.

Let us recall the the coordinate charts associated to a vertex of B. Let
V (B) be the vertex set of B. Consider the coordinate chart p̌−1(Bv), where

Bv := {v} ∪ B̊ ∪
⋃

F : face contains v

F̊

and v ∈ V (B). Let

lk(x) := ⟨x, vk⟩+ λk, k = 1, . . . , d.

By smoothness, without loss of generality, we assume the vertex v is given
by

l1(x) = · · · = ln(x) = 0.

Let A = (Ajk) ∈ GL(n,Z) be the differential of the affine map

(x1, . . . , xn) 7→ (l1(x), . . . , ln(x)).

The gluing map Fv : TNR/N → p̌−1(Bv) of p̌−1(Bv) ∼= Cn to TNR/N ∼=
(C×)n is given by

Fv :
(
e2πi(y̌

j+iξj)
)

j=1,...,n
7→
(
e2πi

∑
n

k=1
tAjk(y̌k+iξk)

)

j=1,...,n
,

where (tA
jk
) is the transpose of the inverse of A. We write

ξjv :=

n∑

k=1

tA
jk
ξk, y̌jv :=

n∑

k=1

tA
jk
y̌k.

The complex coordinates

Zjv := Xj
v + iY̌ j

v := e2πiz
j
v := e2πi(y̌

j
v+iξ

j
v)

extend to p̌−1(Bv) ∼= Cn.
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Recall the SYZ transform of a function f : P (L0, L) → C is given by

F(f) =
∑

m∈Zn

αI(ξ,m)e2πi(m,y̌) ⊗ 1̌L.

On p̌−1(Bv), there is an unitary frame 1̌v such that

1̌v = e2πi(v,y̌)e2πi(λ,y̌)1̌L,

where v ∈ V (B) and λ ∈ Zn corresponds to the difference between the choices
of lift of L to TNR on the two charts p̌−1(B̊), p̌−1(B̊v). In terms of the co-
ordinates ξjv, y̌

j
v, we have

F(f) =
∑

m∈Zn

f(tAξv, A
−1m+ λ)e2πi(m,y̌v) ⊗ 1̌v.

Lemma 4.20. Let F : (C×)n → C be a smooth function. Equip Cn with the
standard flat metric ḡ. Then F extends to a smooth function on Cn if and
only if for any pre-compact open subset U ⊂ Cn and j ∈ Z≥0, the covariant
derivatives ∇jF are bounded on U ∩ (C×)n.

Proof. We cover Cn by pre-compact open ball U := {U}. Fix U ∈ U . Since
U is connected and the divisor

⋃n
j=1{zj = 0} is of real co-dimension 2, for

each two points z0, z1 ∈ U ∩ (C×)n, we can choose a regular path γ : [0, 1] →
U ∩ (C×)n joining z0 to z1. By reparametrizing γ, we can assume γ has
constant speed |γ̇|ḡ = |z1 − z0|, the distance between z0 and z1. It follows
from the mean value theorem that

|∇jF (z1)−∇jF (z0)|ḡ ≤MU |z1 − z0|,

for some constant MU > 0, depending on the open ball U . This implies
∇jF is uniformly continuous on U ∩ (C×)n. Hence we obtain an unique
continuous extension of ∇jF to U . If U, V are two overlapping pre-compact
open sets in Cn, by uniqueness, the extensions coincide on U ∩ V . Hence∇jF
extends to a global continuous section on Cn. The converse is trivial. □

Remark 4.21. The result of Lemma 4.20 dose not depend on the chosen
metric on Cn. We use flat metrics only for the sake of convenience.
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For a function F : p−1(B̊v) ∼= (C×)n → C, write

∇kF =
∑

|I|+|J |=k

aIJ(ξv, y̌v)dξ
I
v ⊗ dy̌Jv +

∑

|I|+|J |=k

bIJ(ξv, y̌v)dy̌
I
v ⊗ dξJv ,

where we put bIJ ≡ 0 if I = ϕ or J = ϕ. For each multi-sets I, J , let PIJ , QIJ
be the linear differential operator so that

PIJF = aIJ ,

QIJF = bIJ .

In terms of the coordinates ξjv, y̌
j
v, the flat metric ḡ reads

ḡ = 4π2
n∑

j=1

e−4πξjv
(
dξjv ⊗ dξjv + dy̌jv ⊗ dy̌jv

)

and the only non-zero Christoffel symbols are Γjjj = −2π, which are con-
stants. We see that the coefficients of PIJ , QIJ are in fact constants. Let’s
denote P̂IJ , Q̂IJ the differential operator on NR × {m} by replacing ∂

∂y̌jv
by

multiplication by 2πimj .

Definition 4.22. Let L ⊂ X be a Lagrangian section that satisfies Condi-
tion (∗[a]) for some a ∈ Zd. A function f ∈ A0

r.d.(P (L0, L)) is said to be weakly
extendable if for any vertex v ∈ V (B), multi-sets I, J and pre-compact open
subset U ⊂ Bv, there exists constant MIJ,U > 0 such that

∣∣∣P̂IJf(tAξv, A−1m+ λ)
∣∣∣ ≤MIJ,U

∏

i∈I

e−2πξiv
∏

j∈J

e−2πξjv ,

∣∣∣Q̂IJf(tAξv, A−1m+ λ)
∣∣∣ ≤MIJ,U

∏

i∈I

e−2πξiv
∏

j∈J

e−2πξjv ,

for all m ∈M , ξv ∈ dϕ−1(U) and y̌v ∈ Ťn.

In particular, if f is weakly extendable, we see that it is bounded on
NR = dϕ−1(B̊). The terminology “weakly extendable” is justified by the
following

Lemma 4.23. If F(f) extends to a smooth section of Ľ on X̌, then f is
weakly extendable.
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Proof. Since 1̌v is a section defined on p̌−1(Bv), in order to obtain a global
section of Ľ, the functions

F (ξv, y̌v) :=
∑

m∈Zn

fm(ξv)e
2πi(m,y̌v) :=

∑

m∈Zn

f(tAξv, A
−1m+ λ)e2πi(m,y̌v)

need to be extended to smooth functions defined on p̌−1(Bv). Equivalently,
by Lemma 4.20, for every pre-compact subset U ⊂ Cn, they have bounded
covariant derivatives on U ∩ (C×)n.

We have

|∇kF |2ḡ =
∑

|I|+|J |=k

(
|PIJF |

2 + |QIJF |
2
)∏

i∈I

e4πξ
i
v

∏

j∈J

e4πξ
j
v ,

PIJF =
∑

m∈Zn

P̂IJfm(ξv)e
2πi(m,y̌v),

QIJF =
∑

m∈Zn

Q̂IJfm(ξv)e
2πi(m,y̌v).

Now, suppose |∇kF |ḡ ≤MU for some constant MU . Then

|PIJF | ≤MIJ,U

∏

i∈I

e−2πξiv
∏

j∈J

e−2πξjv ,

|QIJF | ≤MIJ,U

∏

i∈I

e−2πξiv
∏

j∈J

e−2πξjv ,

for some constants MIJ,U > 0. Hence by absorbing the constants, we have

|P̂IJfm| ≤

∫

Ťn

|PIJF |dy̌ ≤MIJ,U

∏

i∈I

e−2πξiv
∏

j∈J

e−2πξjv ,

|Q̂IJfm| ≤

∫

Ťn

|QIJF |dy̌ ≤MIJ,U

∏

i∈I

e−2πξiv
∏

j∈J

e−2πξjv .

Thus, f is weakly extendable. □

Remark 4.24. We expect there should be a stronger condition on f so
that F(f) extends to a smooth section of Ľ.

Now, we return to the Lagrangian section Lφ. Lemma 4.23 shows that
not all functions on P (L0, Lφ) can be transformed into global sections of Ľφ.
Next, we deal with holomorphic sections. Via the inverse SYZ transform, we
need to consider the solution to dW f = 0. We have the following
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Lemma 4.25. f : NR × {m} → R is an non-trivial weakly extendable so-
lution to dW f = 0 on the component NR × {m} of P (L0, Lφ) ∼= NR ×M if
and only if f is proportional to

fu(ξ) = e−2πφ(ξ)e2π⟨u,ξ⟩

where u ∈M ∩B.

Proof. On each component Pm := NR × {m} of P (L0, Lφ), solution to
dW f = 0 is proportional to

fm(ξ) = e−2πφ(ξ)e2π⟨m,ξ⟩.

We claim that m ∈M ∩B if and only if fm weakly extendable.
For u ∈ B ∩M , we apply the SYZ transform to fu to obtain

F(fu)(z) = e−2πi⟨u,z⟩ ⊗ ěφ,

which is nothing but the character corresponds to u. It is well-known in toric
geometry that F(fu) extends to a holomorphic section of L[λ]

∼= Ľφ. Hence
fu is weakly extendable by Lemma 4.23.

Conversely, note that ϕ(ξ)− ⟨m, ξ⟩ is convex, we have

ϕ(ξ)− ⟨m, ξ⟩ ≥ ϕ(ξ′)− ⟨m, ξ′⟩+ ⟨dϕ(ξ′)−m, ξ − ξ′⟩,

for any ξ, ξ′ ∈ NR. As m /∈M ∩B, there exists k ∈ {1, . . . , d} such that

⟨m, vk⟩+ λk < 0.

Hence

⟨dϕ(ξ′)−m, vk⟩ > 0.

for all ξ′ ∈ NR. In terms of the polytope coordinates, this means

⟨x−m, vk⟩ > 0,

for all x ∈ B. Since B is compact, there exists δ > 0 such that

⟨x−m, vk⟩ > δ,

for all x ∈ B. Equivalently,

⟨dϕ(ξ′)−m, vk⟩ > δ,
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for all ξ′ ∈ NR. Putting ξ = 0 and ξ′ = tvk, for t > 0, we get

ϕ(tvk)− ⟨m, tvk⟩ < ϕ(0)− tδ.

Hence

lim
t→∞

(ϕ(tvk)− ⟨m, tvk⟩) = −∞

and hence fm is unbounded in the vk-direction. Therefore, fm cannot be
weakly extendable for m /∈ B ∩M . □

As before, the function fu in Lemma 4.25 is regarded as the Witten-
deformation of the intersection point [ξ(t)] ∈ L0 ∩ Lφ, with

lim
t→∞

ξ(t) = u.

We are now ready to give another proof of the quantization problem via
SYZ transforms; the original proof can be found in [3].

Theorem 4.26. Let p̌ : X̌ → B be the moment map of the projective toric
manifold X̌. With respect to the prequantum line bundle (Ľφ,∇Ľφ

), the SYZ
transform F induces a canonical isomorphism between the space of real and
complex polarized sections.

Proof. In terms of the coordinates (ξ, y̌) ∈ TNR/N , the connection ∇Ľφ
is

given by

∇Ľφ
= d+ 2πi

n∑

j=1

∂ϕ

∂ξj
dy̌j .

Suppose ξ(t) is a ray so that

lim
t→∞

dϕ(ξ(t)) = u,

for some u ∈M (u ∈M ∩B in fact). If u ∈ B̊, then

lim
t→∞

∇Ľφ
|F̌ξ(t)

= d+ 2πi

n∑

j=1

ujdy̌
j ,

which is equivalent to the trivial connection on the Lagrangian fiber F̌u. If
u ∈ ∂B, we choose v ∈ V (B) such that u ∈ Bv. Since u ∈ ∂Bv, there exists
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subset Su ⊂ {1, . . . , n} such that the fiber F̌u sits inside the divisor




∏

j∈Su

Zj = 0



 ⊂ C

n ∼= p̌−1(Bv).

Recall we have a frame 1̌v on p̌−1(Bv) and coordinates ξjv, y̌
j
v on p̌−1(Bv)

such that

1̌v = e2πi(v,y̌)e2πi(λ,y̌)1̌φ,

ξjv =

n∑

k=1

tA
jk
ξk,

y̌jv =

n∑

k=1

tA
jk
y̌k.

Then with respect to 1̌v and the coordinates ξjv, y̌
j
v, we have

∇Ľφ
= d+ 2πi

n∑

j,k=1

Ajk

(
vk + λk +

∂ϕ

∂ξk

)
dy̌jv.

Hence

lim
t→∞

∇Ľφ
|F̌ξ(t)

= d+ 2πi
∑

j /∈Su

(A(v + λ+ u))jdy̌
j
v.

Since A(v + λ+ u) ∈ Zn, it is equivalent to the trivial connection on the
isotropic fiber F̌u. Hence we obtain the identification

⊕

F̌x:BS fiber

C · F̌x ∼= L0 ∩ Lφ.

On a component of the fiberwise geodesic path space P (L0, Lφ) ∼= NR ×M ,
by Lemma 4.25, bounded non-trivial solution to dW f = 0 is proportional to

fu(ξ) = e−2πφ(ξ)e2π⟨u,ξ⟩,

which we can regard it as a function on P (L0, Lφ) by setting

fu(ξ,m) :=

{
e−2πφ(ξ)e2π⟨u,ξ⟩ if m = −u

0 if m ̸= −u
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As we have seen in the proof of Lemma 4.25, the SYZ transform of fu is
given by the character

F(fu)(z) = e−2πi⟨u,z⟩ ⊗ ěφ

corresponds to u, which extends to a global holomorphic section of L[λ]. Since

L[λ]
∼= Ľg as holomorphic line bundles by Lemma 4.16 and any holomorphic

section of L[λ] is a linear combination of these holomorphic sections, the
result follows. □
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Boston, Inc., Boston, MA (1994), ISBN 0-8176-3770-2.

[15] A. Kanazawa, Degenerations and Lagrangian fibrations of Calabi-Yau
manifolds, in: Handbook for Mirror Symmetry of Calabi-Yau and Fano
Manifolds, Vol. 47 of Adv. Lect. Math. (ALM), 149–204, Int. Press,
Somerville, MA (2019).

[16] M. Kontsevich, Homological algebra of mirror symmetry, in: Proceed-
ings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich,
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