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Sampling with positive definite kernels

and an associated dichotomy

Palle Jorgensen and James Tian

We study classes of reproducing kernels K on general domains;
these are kernels which arise commonly in machine learning mod-
els; models based on certain families of reproducing kernel Hilbert
spaces. They are the positive definite kernels K with the property
that there are countable discrete sample-subsets S; i.e., proper sub-
sets S having the property that every function in H (K) admits
an S-sample representation. We give a characterizations of ker-
nels which admit such non-trivial countable discrete sample-sets.
A number of applications and concrete kernels are given in the
second half of the paper.
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1. Introduction

In the theory of non-uniform sampling, one studies Hilbert spaces consisting
of signals, understood in a very general sense. One then develops analytic
tools and algorithms, allowing one to draw inference for an “entire” (or
global) signal from partial information obtained from carefully chosen dis-
tributions of sample points. While the better known and classical sampling
algorithms (Shannon and others) are based on interpolation, modern theo-
ries go beyond this. An early motivation is the work of Henry Landau, see
e.g., [Lan60, LP61, Lan64, Lan67, LLSB84, HLS85]. In this setting, it is
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possible to make precise the notion of “average sampling rates” in general
configurations of sample points. (See also [ACH+10, AACM11].)

When a positive definite kernel K is given, we denote by H (K) the
associated reproducing kernel Hilbert space (RKHS). In the present paper
we study classes of reproducing kernels K on general domains, such kernels
arise commonly in machine learning models based on reproducing kernel
Hilbert space (see e.g., [JT15b]) with the property that there are non-trivial
restrictions to countable discrete sample subsets S such that every function
in H (K) has an S-sample representation. In this general framework, we
study properties of positive definite kernels K with respect to sampling
from “small” subsets, and applying to all functions in the associated Hilbert
space H (K). We are motivated by concrete kernels which are used in a
number of applications, for example, on one extreme, the Shannon kernel
for band-limited functions, which admits many sampling realizations; and on
the other, the covariance kernel of Brownian motion which has no non-trivial
countable discrete sample subsets.

We offer an operator theoretic condition which explains, in a general
context, this dichotomy. Our study continues our earlier papers on repro-
ducing kernels and their restrictions to countable discrete subsets; see e.g.,
[JT16, AJ15, JT15b, JT15a], and also [NSW11, SRB+10, SZ09, SY06, SZ05].

A reproducing kernel Hilbert space (RKHS) is a Hilbert space H of
functions on a prescribed set, say T , with the property that point-evaluation
for functions f ∈ H is continuous with respect to the H -norm. They are
called kernel spaces, because, for every t ∈ T , the point-evaluation for func-
tions f ∈ H , f (t) must then be given as a H -inner product of f and a
vector Kt, in H ; called the kernel.

The RKHSs have been studied extensively since the pioneering papers by
Aronszajn [Aro43, Aro48]. They further play an important role in the the-
ory of partial differential operators (PDO); for example as Green’s functions
of second order elliptic PDOs [Nel57, HKL+14]. Other applications include
engineering, physics, machine-learning theory [KH11, SZ09, CS02], stochas-
tic processes [AD93, ABDdS93, AD92, AJSV13, AJV14], numerical analysis,
and more [LB04, HQKL10, ZXZ12, LP11, Vul13, SS13, HN14, STC04, SS01].

An illustration from neural networks: An Extreme Learning Machine
(ELM) is a neural network configuration in which a hidden layer of weights
are randomly sampled [RW06], and the object is then to determine analyt-
ically resulting output layer weights. Hence ELM may be thought of as an
approximation to a network with infinite number of hidden units.

Given a positive definite kernel K : T × T → C (or R for simplification),
there are several notions and approaches to sampling (i.e., an algorithmic
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reconstruction of suitable functions from values at a fixed and pre-selected
set of sample-points):

Definition 1.1. We say that K has non-trivial sampling property, if there
exists a countable subset S ⊂ T , and a, b ∈ R+, such that

(1.1) a
∑

s∈S

|f (s)|2 ≤ ∥f∥2
H (K) ≤ b

∑

s∈S

|f (s)|2 , ∀f ∈ H (K) ,

where H (K) is the reproducing kernel Hilbert space (RKHS) of K, see
[Aro43] and Remark 1.2 below.

Suppose equality holds in (1.1) with a = b = 1; then we say that
{K (·, s)}s∈S is a Parseval frame.

It follows that sampling holds in the form

f (t) =
∑

s∈S

f (s)K (t, s) , ∀f ∈ H (K) , ∀t ∈ T

if and only if {K (·, s)}s∈S is a Parseval frame; see also Theorem 2.10.

As is well known, when a vector f in a Hilbert space H is expanded in
an orthonormal basis (ONB) B, there is then automatically an associated
Parseval identity. In physical terms, this identity typically reflects a stabil-
ity feature of a decomposition based on the chosen ONB B. Specifically,
Parseval’s identity reflects a conserved quantity for a problem at hand, for
example, energy conservation in quantum mechanics.

The theory of frames begins with the observation that there are useful
vector systems which are in fact not ONBs but for which a Parseval formula
still holds. In fact, in applications it is important to go beyond ONBs. While
this viewpoint originated in signal processing (in connection with frequency
bands, aliasing, and filters), the subject of frames appears now to be of
independent interest in mathematics. See, e.g., [BCL11, Chr14, HKLW07,
FJKO05], and also [CD93, BDP05, Dut06].

Remark 1.2. To make the discussion self-contained, we add the following
(for the benefit of the readers.)

(i) A given K : T × T → C is positive definite (p.d.) if and only if for all
n ∈ N, {ξ}nj=1 ⊂ C, and all {tj}nj=1 ⊂ T , we have:

∑

i

∑

j

ξiξjK (ti, tj) ≥ 0.
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(ii) A function f on T is in H (K) if and only if there is a constant
C = C (f) such that for all n, (ξj)

n
1 , (tj)

n
1 , as above, we have

(1.2)

∣∣∣∣∣

n∑

1

ξjf (tj)

∣∣∣∣∣

2

≤ C
∑

i

∑

j

ξiξjK (ti, tj) .

It follows from the above that reproducing kernel Hilbert spaces (RKHS)
arise from a given positive definite kernel K, a corresponding pre-Hilbert
form; and then a Hilbert-completion. The question arises: “What are the
functions in the completion?” The a priori estimate (1.2) in (ii) above is an
answer to the question. We will return to this issue in the application section
3 below. By contrast, the Hilbert space completions are subtle; they are
classical Hilbert spaces of functions, not always transparent from the naked
kernel K itself. Examples of classical RKHSs: Hardy spaces or Bergman
spaces (for complex domains), Sobolev spaces and Dirichlet spaces [OST13,
ST12, Str10] (for real domains, or for fractals), band-limited L2 functions
(from signal analysis), and Cameron-Martin Hilbert spaces (see Lemma 2.3)
from Gaussian processes (in continuous time domain).

Lemma 1.3. Suppose K, T , a, b, and S satisfy the condition in (1.1), then
there is a positive operator B in H (K) with bounded inverse such that

f (·) =
∑

s∈S

(Bf) (s)K (·, s)

is a convergent interpolation formula valid for all f ∈ H (K).
Equivalently,

f (t) =
∑

s∈S

f (s)B (K (·, s)) (t) , for all t ∈ T .

Proof. Define A : H (K) → l2 (S) by (Af) (s) = f (s), s ∈ S; or

Af := (f (s))s∈S ∈ l2 (S) .

Then the adjoint operator A∗ : l2 (S) → H (K) is given by

A∗ξ =
∑

s∈S

ξsK (·, s) , ∀ξ ∈ l2 (S) ,

and

A∗Af =
∑

s∈S

f (s)K (·, s)
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holds in H (K), with H (K)-norm convergence. This is immediate from
(1.1).

Now set B = (A∗A)−1. Note that

∥B∥
H (K)→H (K) ≤ a−1

where a is in the lower bound in (1.1). □

Lemma 1.4. Suppose K, T , a, b, and S satisfy (1.1), then the linear span
of {K (·, s)}s∈S is dense in H (K).

Proof. Let f ∈ H (K), then

f ⊥ {K (·, s)}s∈S
⇕

f (s) = ⟨K (·, s) , f⟩
H (K) = 0, ∀s ∈ S,

by the reproducing property in H (K). But by (1.1), b <∞, this implies
that f = 0 in H (K). Hence the family {K (·, s)}s∈S has dense span. □

2. The dichotomy

While questions of sampling have, traditionally, been restricted to settings of
signals when some form of time-frequency duality is available, we take here
a more general viewpoint, that of general reproducing kernels. It, in turn,
encompasses the more traditional Shannon point of view, but our present
scope is much wider. Indeed, the more familiar and classical approaches
typically do entail special positive definite (p.d.) kernels, but only a very
specialized class of p.d. kernels. In detail, in the traditional context of time
frequency duality, there are already a variety of approaches to selecting
discrete point-configurations which produce a faithful representation of a
continuous time signal. In fact this viewpoint includes cases where “signal”
encompasses images in suitable digital representations. While the literature
here is large, we mention here just [ACH+10, BCL11, Lan60, Lan67] and
the papers cited there. Even in these more restricted contexts, the search
for discrete point-configurations which produce a faithful representations is
highly non-trivial. By contrast, our present focus is that of general positive
definite (p.d.) kernels.

While the traditional contexts of various classes of “band-limited sig-
nals” typically narrow the search for kernels down to the special cases of
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positive definite (p.d.) kernels which arise in multivariable Fourier analysis,
our present context widens the focus to a much broader class of p.d. ker-
nels, kernels arising naturally in a number of infinite-dimensional contexts
from mathematical physics, and from neighboring areas; including, for ex-
ample, new classes of p.d. kernels arising directly from diverse contexts of
features, and feature space, analysis; more precisely, p.d. kernels arising as
part of kernel-algorithms in machine learning. In these wider (non-Fourier)
approaches, the question of dichotomy is then especially natural: If a partic-
ular p.d. kernel arises from a feature-space analysis, from quantum observ-
ables; or in the analysis of fractals (see e.g., [Str10, SY06, SZ09, ZXZ12]),
then what is the variety of discrete point-configurations which produce a
faithful representations. Dichotomy: Given a p.d. kernel, when is it possi-
ble to select associated discrete point-configurations with faithful sampling
features, and when not?

We now turn to dichotomy: (i) Existence of countably discrete sampling
sets vs (ii) non-existence. To help readers appreciate the nature of the two
classes, we begin with two examples, (i) Shannon’s kernel for band-limited
functions, Example 2.1; and (ii) the covariance kernel for standard Brownian
motion, Theorem 2.5.

Question.

(i) Given a positive definite kernel K : T × T → R, how to determine
when there exist S ⊂ T , and a, b ∈ R+ such that (1.1) holds?

(ii) Given K, T as above, how to determine if there is a countable discrete
subset S ⊂ T such that

(2.1) {K (·, s)}s∈S

has dense span in H (K)?

Example 2.1. Let T = R, and let K : R× R → R be the Shannon kernel,
where

K (s, t) := sincπ (s− t)(2.2)

=
sinπ (s− t)

π (s− t)
, ∀s, t ∈ R.

We may choose S = Z, and then {K (·, n)}n∈Z is even an orthonormal
basis (ONB) in H (K), but there are many other examples of countable
discrete subsets S ⊂ R such that (1.1) holds for finite a, b ∈ R+.
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The RKHS of K in (2.2) is the Hilbert space ⊂ L2 (R) consisting of all
f ∈ L2 (R) such that suppt(f̂) ⊂ [−π, π], where “suppt” stands for support
of the Fourier transform f̂ . Note H (K) consists of functions on R which
have entire analytic extensions to C; see [Kat04, Sei04, LP11, Pau02]. Using
the above observations, we get

f (t) =
∑

n∈Z

f (n)K (t, n)

=
∑

n∈Z

f (n) sincπ (t− n) , ∀t ∈ R, ∀f ∈ H (K) .

Example 2.2. LetK be the covariant kernel of standard Brownian motion,
with T := [0,∞), or T := [0, 1). Then

(2.3) K (s, t) := s ∧ t = min (s, t) , ∀ (s, t) ∈ T × T.

Lemma 2.3. Let K, T be as in (2.3). Then H (K) consists of functions
f on T such that f has distribution derivative f ′ ∈ L2 (T, λ), i.e., L2 with
respect to Lebesgue measure λ on T , and

(2.4) ∥f∥2
H (K) =

∫

T

∣∣f ′ (x)
∣∣2 dx.

Proof. This is well-known, see e.g., [JT15b, AJ15, Hid80]. □

Remark 2.4 (see also Section 3.1 below). The significance of (2.4) for
Brownian motion is as follows:

Fix T , and set L2 (T ) = the L2-space from the restriction to T of
Lebesgue measure on R. Pick an ONB {ψk} in L2 (T ), for example a Haar-
Walsh orthonormal basis in L2 (T ). Let {Zk} be an i.i.d. (independent iden-
tically distributed) N (0, 1) system, i.e., standard Gaussian copies. Then

(2.5) Bt (·) =
∑

k

(∫ t

0
ψk (s) ds

)
Zk (·)

is a realization of standard Brownian motion on T ; in particular we have

E (BsBt) = s ∧ t = K (s, t) , ∀ (s, t) ∈ T × T.

See Figure 2.1.
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0.5 1

-0.5

0.5

Figure 2.1: Brownian motion; see (2.5).

Theorem 2.5. Let K, T be as in (2.3); then there is no countable discrete
subset S ⊂ T such that {K (·, s)}s∈S is dense in H (K).

Proof. Suppose S = {xn}, where

(2.6) 0 < x1 < x2 < · · · < xn < xn+1 < · · · ;

then consider the following function

(2.7)
x2 x3 x4 xn-1 xn xn+1

c1 c2 c3 cn-1 cn cn+1

On the respective intervals [xn, xn+1], the function f is as follows:

f (x) =

{
cn (x− xn) if xn ≤ x ≤ xn+xn+1

2

cn (xn+1 − x) if xn+xn+1

2 < x ≤ xn+1.

In particular, f (xn) = f (xn+1) = 0, and on the midpoints:

f

(
xn + xn+1

2

)
= cn

xn+1 − xn
2

,

see Figure 2.2.
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xn xn+1

cn

xn+1 - xn

2

Figure 2.2: The saw-tooth function.

Choose {cn}n∈N such that

(2.8)
∑

n∈N

|cn|2 (xn+1 − xn) <∞.

Admissible choices for the slope-values cn include

cn =
1

n
√
xn+1 − xn

, n ∈ N.

We will now show that f ∈ H (K). To do this, use (2.4). For the distri-
bution derivative computed from (2.7), we get

(2.9)
x1 x2 x3 x4 xn-1 xn xn+1

∫
∞

0

∣∣f ′ (x)
∣∣2 dx =

∑

n∈N

|cn|2 (xn+1 − xn) <∞

which is the desired conclusion, see (2.7). □

Corollary 2.6. For the kernel K (s, t) = s ∧ t in (2.3), T = [0,∞), the fol-
lowing holds:
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Given {xj}j∈N ⊂ R+, {yj}j∈N ⊂ R, then the interpolation problem

(2.10) f (xj) = yj , f ∈ H (K)

is solvable if

(2.11)
∑

j∈N

(yj+1 − yj)
2 / (xj+1 − xj) <∞.

Proof. Let f be the piecewise linear spline (see Figure 2.3) for the problem
(2.10), see Figure 2.3; then the H (K)-norm is as follows:

∫
∞

0

∣∣f ′ (x)
∣∣2 dx =

∑

j∈N

(
yj+1 − yj
xj+1 − xj

)2

(xj+1 − xj) <∞

when (2.11) holds. □

x j-2 x j-1 x j x j+1

Figure 2.3: Piecewise linear spline.

Remark 2.7. Let K be as in (2.3), where

K (s, t) = s ∧ t, s, t ∈ [0,∞).

For all 0 ≤ xj < xj+1 <∞, let

fj (x) : =
2

xj+1 − xj

(
K

(
x− xj ,

xj+1 − xj
2

)

−K
(
x− xj + xj+1

2
,
xj+1 − xj

2

))

=
x j x j+1

1
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Assuming (2.8) holds, then

f (x) =
∑

j

cjfj (x) ∈ H (K) .

Remark 2.8. Let K (s, t) = s ∧ t, (s, t) ∈ [0,∞)× [0,∞), extend to
K̃ (s, t) = |s| ∧ |t|, (s, t) ∈ R× R, and H (K̃) = all f on R such that the
distribution derivative f ′ exists on R, and

∥f∥2
H (K̃)

=

∫

R

∣∣f ′ (x)
∣∣2 dx.

Theorem 2.9. Let T be a set of cardinality c of the continuum, and let
K : T × T → R be a positive definite kernel. Let S = {xj}j∈N be a discrete
subset of T . Suppose there are weights {wj}j∈N, wj ∈ R+, such that

(2.12) (f (xj)) ∈ l2 (N, w)

for all f ∈ H (K). Suppose further that there is a point t0 ∈ T\S, a y0 ∈
R\ {0}, and α ∈ R+ such that the infimum

(2.13) inf
f∈H (K)

{∑
j
wj |f (xj)|2 + |f (t0)− y0|2 + α ∥f∥2

H (K)

}

is strictly positive.
Then S is not a interpolation set for (K,T ).

Proof. Let L denote the analysis operator defined from condition (2.12)
in the statement of the theorem; see also the beginning in the proof of
Lemma 1.3 above, and let L∗ denote the corresponding adjoint operator, the
synthesis operator. Using now [SY06, JT15b], we conclude that the function
f which minimizes the problem (2.13) is unique, and in fact

(2.14) f = (αI + L∗L)−1 L∗ ((yj) ∪ (t0)) .

So, by the hypothesis in the theorem, we get f ∈ H (K) \ {0}, and f (xj) =
0, for all j ∈ N. Then it follows that the closed span of {K (·, xj)}j∈N is

not H (K); specifically, 0 ̸= f ∈ {K (·, xj)}⊥j∈N. See also Lemma 1.4 and
Figure 2.4. □
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l2 ({xj} ∪ {t0} , w)

L∗

&&

H (K)

L

ff

Figure 2.4: Analysis and synthesis operators.

Theorem 2.10. Let K : T × T → R be a positive definite kernel, and let
S ⊂ T be a countable discrete subset. The RKHS H (K) refers to the pair
(K,T ). For all s ∈ S, set Ks (·) = K (·, s). The the following four conditions
are equivalent:

(i) The family {Ks}s∈S is a Parseval frame in H (K);

(ii)

∥f∥2
H (K) =

∑

s∈S

|f (s)|2 , ∀f ∈ H (K) ;

(iii)

K (t, t) =
∑

s∈S

|K (t, s)|2 , ∀t ∈ T ;

(iv)

f (t) =
∑

s∈S

f (s)K (t, s) , ∀f ∈ H (K) , ∀t ∈ T,

where the sum converges in the norm of H (K).

Proof. (i) ⇒ (ii). Assume (i), and note that

(2.15) ⟨Ks, f⟩H (K) = f (s) ;

and (ii) is immediate from the definition of Parseval-frame.
(ii) ⇒ (iii). Assume (ii), and set f = Kt. Note that ∥Kt∥2H (K) = K (t, t),

and ⟨Ks,Kt⟩H (K) = K (s, t).
(iii) ⇒ (iv). It is enough to prove that

(2.16) Kt =
∑

s∈S

K (t, s)Ks, ∀t ∈ T ;
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then (iv) follows from an application of the reproducing property of the
Hilbert space H (K). Now (2.16) follows from

(2.17)
∥∥∥Kt −

∑
s∈S

K (t, s)Ks

∥∥∥
2

H (K)
= 0.

Finally, (2.17) follows from (iii) and multiple application of the kernel prop-
erty:

LHS(2.17) = K (t, t) +
∑∑

(s,s′)∈S×S

K (t, s)K
(
t, s′

)
K

(
s′, s

)

− 2
∑

s∈S

|K (t, s)|2 = 0.

(iv) ⇒ (i). It is clear that (i) ⇔ (ii), and that (iv) ⇒ (ii). □

Remark 2.11 (Stationary kernels). Suppose K : R× R → R is a con-
tinuous positive definite kernel, and K (s, t) = k (s− t), i.e., stationary. Set
Kt (·) := K (·, t) = k (· − t). By Bochner’s theorem,

k (t) =

∫

R

eitxdµ (x) ,

where µ is a finite positive Borel measure on R. Thus,

V : Kt 7−→ e−itx ∈ L2 (µ)

extends to an isometry from H (K) into L2 (µ).
Let S ⊂ R be a countable discrete subset, then for f ∈ H (K), we have

⟨Ks, f⟩H (K) = 0, ∀s ∈ S

⇕
⟨V Ks, V f⟩L2(µ) = 0, ∀s ∈ S

⇕∫

R

eisx (V f) (x) dµ (x) = 0, ∀s ∈ S.

So S has the sampling property if and only if

[
((V f) dµ)∧ (s) = 0, ∀s ∈ S

]
=⇒

[
V f = 0, i.e., f = 0, µ− a.e.

]
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3. Discrete RKHSs

A closely related question from the above discussion is the dichotomy of
discrete vs continuous RKHSs. Our focus in the present section is on the
discrete case, i.e., RKHSs of functions defined on a prescribed countable
infinite discrete set V .

Definition 3.1 ([JT15b]). The RKHS H = H (K) is said to have the
discrete mass property (H is called a discrete RKHS ), if δx ∈ H , for all
x ∈ V . Here, δx (y) is the Dirac mass at x ∈ V .

Question 3.2. Let K : Rd × Rd → R be positive definite, and let V ⊂ Rd

be a countable discrete subset. When does K
∣∣
V×V

have the discrete mass
property?

Of the examples and applications where this question plays an important
role, we emphasize three: (i) discrete Brownian motion-Hilbert spaces, i.e.,
discrete versions of the Cameron-Martin Hilbert space; (ii) energy-Hilbert
spaces corresponding to graph-Laplacians; and finally (iii) RKHSs generated
by binomial coefficients. We show that the point-masses have finite H -norm
in cases (i) and (ii), but not in case (iii).

Definition 3.3. Let V be a countably infinite set, and let F (V ) denote
the set of all finite subsets of V .

(i) For all x ∈ V , set

(3.1) Kx := K (·, x) : V → C.

(ii) Let H := H (K) be the Hilbert-completion of the span {Kx : x ∈ V },
with respect to the inner product

(3.2)
〈∑

cxKx,
∑

dyKy

〉

H

:=
∑∑

cxdyK (x, y)

H is then a reproducing kernel Hilbert space (RKHS), with the re-
producing property:

(3.3) ϕ (x) = ⟨Kx, ϕ⟩H , ∀x ∈ V, ∀ϕ ∈ H .

(iii) If F ∈ F (V ), set HF = span{Kx}x∈F ⊂ H , and let

(3.4) PF := the orthogonal projection onto HF .
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(iv) For F ∈ F (V ), let KF be the matrix given by

(3.5) KF := (K (x, y))(x,y)∈F×F .

Lemma 3.4. Let F ∈ F (V ) = all finite subsets of V , x1 ∈ F . Assume
δx1

∈ H . Then

(3.6) PF (δx1
) (·) =

∑

y∈F

(
K−1

F δx1

)
(y)Ky (·) .

Proof. Show that

(3.7) δx1
−

∑

y∈F

(
K−1

F δx1

)
(y)Ky (·) ∈ H

⊥
F .

The remaining part follows easily from this. □

Theorem 3.5. Let V and K as above, i.e., we assume that V is count-
ably infinite, and K is a p.d. kernel on V × V . Let H = H (K) be the
corresponding RKHS. Fix x1 ∈ V . Then the following three conditions are
equivalent:

(i) δx1
∈ H ;

(ii) ∃Cx1
<∞ such that for all F ∈ F (V ), we have

(3.8) |ξ (x1)|2 ≤ Cx1

∑∑

F×F

ξ (x)ξ (y)K (x, y) .

(iii) For F ∈ F (V ), set

(3.9) KF = (K (x, y))(x,y)∈F×F

as a #F ×#F matrix. Then

(3.10) sup
F∈F (V )

(
K−1

F δx1

)
(x1) <∞.

Proof. This is an application of Remark 1.2. Also see [JT15b] for details. □

LetD be an open domain in Rd, and assume V ⊂ D is countable and discrete
subset of D. In this case, we shall consider two positive definite kernels: the
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original kernel K on D ×D, and KV := K
∣∣
V×V

on V × V by restriction.
Thus if x ∈ V , then

K(V )
x (·) = K (·, x) : V −→ R

is a function on V , while

Kx (·) := K (·, x) : D −→ R

is a function on D. Further, let H and HV be the associated RKHSs re-
spectively.

Lemma 3.6. HV is isometrically embedded into H via the mapping

J (V ) : K(V )
x 7−→ Kx, x ∈ V.

Proof. Assume F ∈ F (V ), i.e., F is a finite subset of V . Let ξ = ξF is a
function on F , then

∥∥∥
∑

x∈F
ξ (x)K(V )

x

∥∥∥
HV

=
∥∥∥
∑

x∈F
ξ (x)Kx

∥∥∥
H

.

Note that, by definition, the linear span of {K(V )
x ; x ∈ V } is dense in

HV , and the span of {Kx ; x ∈ D} is dense in H . We conclude that J (V )

extends uniquely to an isometry from HV into H . The desired result follows
from this. □

In the examples below, we are concerned with cases of kernels K : D ×D →
R with restriction KV : V × V → R, where V is a countable discrete subset
of D. Typically, for x ∈ V , we may have the restriction δx

∣∣
V

contained in
HV , but δx in not in H .

3.1. Brownian Motion

Consider the covariance function of standard Brownian motion Bt, t∈ [0,∞),
i.e., a Gaussian process {Bt} with mean zero and covariance function

(3.11) K (s, t) := E (BsBt) = s ∧ t.

Restrict to V := {0} ∪ Z+ ⊂ D, i.e., consider

K(V ) = K
∣∣
V×V

.



✐

✐

“4-Tian” — 2020/5/20 — 15:57 — page 141 — #17
✐

✐

✐

✐

✐

✐

Sampling with positive definite kernels 141

H (K): Cameron-Martin Hilbert space, consisting of functions f ∈ L2 (R)
s.t. ∫

∞

0

∣∣f ′ (x)
∣∣2 dx <∞, f (0) = 0.

HV := H (KV ). Note that

f ∈ H (KV ) ⇐⇒
∑

n

|f (n)− f (n+ 1)|2 <∞.

We now show that the restriction of (3.11) to V × V for an ordered
subset (we fix such a set V ):

(3.12) V : 0 < x1 < x2 < · · · < xi < xi+1 < · · ·

has the discrete mass property (Definition 3.1).
Set HV = RKHS(K

∣∣
V×V

),

(3.13) KV (xi, xj) = xi ∧ xj .

We consider the set Fn = {x1, x2, . . . , xn} of finite subsets of V , and

(3.14) Kn = K(Fn) =




x1 x1 x1 · · · x1
x1 x2 x2 · · · x2
x1 x2 x3 · · · x3
...

...
...

...
...

x1 x2 x3 · · · xn



= (xi ∧ xj)ni,j=1 .

We will show that condition (iii) in Theorem 3.5 holds for KV .

Lemma 3.7.

(3.15) Dn = det
(
(xi ∧ xj)ni,j=1

)
= x1 (x2 − x1) (x3 − x2) · · · (xn − xn−1) .

Proof. Induction. In fact,




x1 x1 x1 · · · x1
x1 x2 x2 · · · x2
x1 x2 x3 · · · x3
...

...
...

...
...

x1 x2 x3 · · · xn



∼




x1 0 0 · · · 0
0 x2 − x1 0 · · · 0
0 0 x3 − x2 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · xn − xn−1



,

unitary equivalence in finite dimensions. □
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Lemma 3.8. Let

(3.16) ζ(n) := K−1
n (δx1

) (·)

so that

(3.17) ∥PFn
(δx1

)∥2
HV

= ζ(n) (x1) .

Then,

ζ(1) (x1) =
1

x1

ζ(n) (x1) =
x2

x1 (x2 − x1)
, for n = 2, 3, . . . ,

and

∥δx1
∥2

HV
=

x2
x1 (x2 − x1)

.

Proof. A direct computation shows the (1, 1) minor of the matrix K−1
n is

D′
n−1 = det

(
(xi ∧ xj)ni,j=2

)
(3.18)

= x2 (x3 − x2) (x4 − x3) · · · (xn − xn−1)

and so

ζ(1) (x1) =
1

x1
, and

ζ(2) (x1) =
x2

x1 (x2 − x1)

ζ(3) (x1) =
x2 (x3 − x2)

x1 (x2 − x1) (x3 − x2)
=

x2
x1 (x2 − x1)

ζ(4) (x1) =
x2 (x3 − x2) (x4 − x3)

x1 (x2 − x1) (x3 − x2) (x4 − x3)
=

x2
x1 (x2 − x1)

...

The result follows from this. □
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Corollary 3.9. PFn
(δx1

) = PF2
(δx1

), ∀n ≥ 2. Therefore,

(3.19) δx1
∈ H

(F2)
V := span{K(V )

x1
,K(V )

x2
}

and

(3.20) δx1
= ζ(2) (x1)K

(V )
x1

+ ζ(2) (x2)K
(V )
x2

where

ζ(2) (xi) = K−1
2 (δx1

) (xi) , i = 1, 2.

Specifically,

ζ(2) (x1) =
x2

x1 (x2 − x1)
(3.21)

ζ(2) (x2) =
−1

x2 − x1
;(3.22)

and

(3.23) ∥δx1
∥2

HV
=

x2
x1 (x2 − x1)

.

Proof. Note that

ζn (x1) = ∥PFn
(δx1

)∥2
H

and ζ(1) (x1) ≤ ζ(2) (x1) ≤ · · · , since Fn = {x1, x2, . . . , xn}. In particular,
1
x1

≤ x2

x1(x2−x1)
, which yields (3.23). □

Remark 3.10. We showed that δx1
∈ HV , V = {x1 < x2 < · · · } ⊂ R+,

with the restriction of s ∧ t = the covariance kernel of Brownian motion.
The same argument also shows that δxi

∈ HV when i > 1.
Conclusions:

δxi
∈ span

{
K(V )

xi−1
,K(V )

xi
,K(V )

xi+1

}
, and(3.24)

∥δxi
∥2

H
=

xi+1 − xi−1

(xi − xi−1) (xi+1 − xi)
.(3.25)

Details are left for the interested readers.

Corollary 3.11. Let V ⊂ R+ be countable. If xa ∈ V is an accumulation
point (from V ), then ∥δa∥HV

= ∞.
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Example 3.12 (Sparse sample-points). Let V = {xi}∞i=1, where

xi =
i (i− 1)

2
, i ∈ N.

It follows that xi+1 − xi = i, and so

∥δxi
∥2

H
=

xi+1 − xi
(xi − xi−1) (xi+1 − xi)

=
2i− 1

(i− 1) i
−−−→
i→∞

0.

We conclude that ∥δxi
∥

H
−−−→
i→∞

0 if the set V = {xi}∞i=1 ⊂ R+ is sparse.

Now, some general facts:

Lemma 3.13. Let K : V × V → C be p.d., and let H be the corresponding
RKHS. If x1 ∈ V , and if δx1

has a representation as follows:

(3.26) δx1
=

∑

y∈V

ζ(x1) (y)Ky ,

then

(3.27) ∥δx1
∥2

H
= ζ(x1) (x1) .

Proof. Substitute both sides of (3.26) into ⟨δx1
, ·⟩

H
where ⟨·, ·⟩

H
denotes

the inner product in H . □

3.2. Brownian Bridge

Let D := (0, 1) = the open interval 0 < t < 1, and set

(3.28) Kbridge (s, t) := s ∧ t− st;

then (3.28) is the covariance function for the Brownian bridge Bbri (t), i.e.,

(3.29) Bbri (0) = Bbri (1) = 0
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Figure 3.1: Brownian bridge Bbri (t), a simulation of three sample paths of
the Brownian bridge.

(3.30) Bbri (t) = (1− t)B

(
t

1− t

)
, 0 < t < 1;

where B (t) is Brownian motion; see Lemma 3.6.
The corresponding Cameron-Martin space is now

(3.31) Hbri =
{
f on [0, 1] ; f ′ ∈ L2 (0, 1) , f (0) = f (1) = 0

}

with

(3.32) ∥f∥2
Hbri

:=

∫ 1

0

∣∣f ′ (s)
∣∣2 ds <∞.

If V = {xi}∞i=1, x1 < x2 < · · · < 1, is the discrete subset of D, then we
have for Fn ∈ F (V ), Fn = {x1, x2, . . . , xn},

(3.33) KFn
= (Kbridge (xi, xj))

n
i,j=1 ,

see (3.28), and

(3.34) detKFn
= x1 (x2 − x1) · · · (xn − xn−1) (1− xn) .

As a result, we get δxi
∈ H

(bri)
V for all i, and

∥δxi
∥2

H
(bri)
V

=
xi+1 − xi−1

(xi+1 − xi) (xi − xi−1)
.
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Note limxi→1 ∥δxi
∥2

H
(bri)
V

= ∞.

3.3. Binomial RKHS

The purpose of the present subsection if to display a concrete RKHS H (K)
in the discrete framework with the property that H (K) does not contain
the Dirac masses δx. The RKHS in question is generated by the binomial
coefficients, and it is relevant for a host of applications; see e.g., [JKS16,
Dok14, Gal01].

Definition 3.14. Let V = Z+ ∪ {0}; and

Kb (x, y) :=

x∧y∑

n=0

(
x

n

)(
y

n

)
, (x, y) ∈ V × V.

where
(
x
n

)
= x(x−1)···(x−n+1)

n! denotes the standard binomial coefficient from
the binomial expansion.

Let H = H (Kb) be the corresponding RKHS. Set

(3.35) en (x) =

{(
x
n

)
if n ≤ x

0 if n > x.

Lemma 3.15 ([AJ14]).

(i) en (·) ∈ H , n ∈ V ;

(ii) {en}n∈V is an orthonormal basis (ONB) in the Hilbert space H .

(iii) Given f ∈ Func (V ); then

(3.36) f ∈ H ⇐⇒
∞∑

k=0

|⟨ek, f⟩H |2 <∞;

and, in this case,

∥f∥2
H

=

∞∑

k=0

|⟨ek, f⟩H |2 .

(iv) Set Fn = {0, 1, 2, . . . , n}, and

(3.37) PFn
=

n∑

k=0

|ek ⟩⟨ ek|
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or equivalently

(3.38) PFn
f =

n∑

k=0

⟨ek, f⟩H ek .

Then formula (3.38) is well defined for all functions f ∈ Func (V ).

Fix x1 ∈ V , then we shall apply Lemma 3.15 to the function f1 = δx1

(in Func (V )).

Theorem 3.16. We have

∥PFn
(δx1

)∥2
H

=

n∑

k=x1

(
k

x1

)2

.

The proof of the theorem will be subdivided in steps; see below.

Lemma 3.17 ([AJ14]).

(i) For ∀m,n ∈ V , such that m ≤ n, we have

(3.39) δm,n =

n∑

j=m

(−1)m+j

(
n

j

)(
j

m

)
.

(ii) For all n ∈ Z+, the inverse of the following lower triangle matrix is
this: With (see Figure 3.2)

(3.40) L(n)
xy =

{(
x
y

)
if y ≤ x ≤ n

0 if x < y

we have:

(3.41)
(
L(n)

)−1

xy
=

{
(−1)x−y

(
x
y

)
if y ≤ x ≤ n

0 if x < y.

Notation: The numbers in (3.41) are the entries of the matrix
(
L(n)

)−1
.

Proof. In rough outline, (ii) follows from (i). □
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L(n) =




1 0 0 0 · · · · · · 0 · · · 0 0
1 1 0 0 · · · · · · 0 · · · 0 0

1 2 1 0
...

...
...

1 3 3 1
. . .

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

... 1 0
...

...

1 · · ·
(
x
y

) (
x

y+1

)
· · · ∗ 1

. . .
...

...
...

...
...

...
. . . 0

...
...

...
...

... 1 0
1 · · ·

(
n
y

) (
n

y+1

)
· · · · · · · · · · · · n 1




Figure 3.2: The matrix Ln is simply a truncated Pascal triangle, arranged
to fit into a lower triangular matrix.

Corollary 3.18. Let Kb, H , and n ∈ Z+ be as above with the lower tri-
angle matrix Ln. Set

(3.42) Kn (x, y) = Kb (x, y) , (x, y) ∈ Fn × Fn,

i.e., an (n+ 1)× (n+ 1) matrix.

(i) Then Kn is invertible with

(3.43) K−1
n =

(
Ltr
n

)−1
(Ln)

−1 ;

an (upper triangle)× (lower triangle) factorization.

(ii) For the diagonal entries in the (n+ 1)× (n+ 1) matrix K−1
n , we have:

〈
x,K−1

n x
〉
l2
=

n∑

k=x

(
k

x

)2

Conclusion: Since

(3.44) ∥PFn
(δx1

)∥2
H

=
〈
x1,K

−1
n x1

〉
H
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for all x1 ∈ Fn, we get

∥PFn
(δx1

)∥2
H

=

n∑

k=x1

(
k

x1

)2

(3.45)

= 1 +

(
x1 + 1

x1

)2

+

(
x1 + 2

x1

)2

+ · · ·+
(
n

x1

)2

;

and therefore,

∥δx1
∥2

H
=

∞∑

k=x1

(
k

x1

)2

= ∞.

In other words, no δx is in H .
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